SentenceTransformer based on sergeyzh/rubert-tiny-turbo

This is a sentence-transformers model finetuned from sergeyzh/rubert-tiny-turbo. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sergeyzh/rubert-tiny-turbo
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("denis-gordeev/reranker_dialog_items_biencoder_rubert-tiny-turbo-4")
# Run inference
sentences = [
    'Здравствуйте! Я хочу купить внешний диск для хранения данных, желательно SSD. Нужно, чтобы он был надёжным и быстрым, для переноса больших файлов. Можете помочь подобрать подходящий?',
    "{'long_web_name': 'Внешний SSD диск KingSpec 240 ГБ Z3-240', 'price': 4129.0, 'description': '', 'rating': 0.0, 'review_count': 0}",
    "{'long_web_name': 'Моноблок MSI AM272P 12M-400RU White (9S6-AF8212-498)', 'price': 122661.0, 'url': 'https://megamarket.ru/catalog/details/monoblok-msi-am272p-12m-400ru-white-9s6-af8212-498-100068211829/', 'image_link': 'https://main-cdn.sbermegamarket.ru/mid9/hlr-system/125/947/036/513/181/4/100068211829b0.webp', 'id': '100068211829', 'description': '', 'rating': 0.0, 'review_count': 0}",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9617
cosine_accuracy_threshold 0.8327
cosine_f1 0.88
cosine_f1_threshold 0.8327
cosine_precision 0.873
cosine_recall 0.8871
cosine_ap 0.9106

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,136 training samples
  • Columns: anchor, text, and label
  • Approximate statistics based on the first 1000 samples:
    anchor text label
    type string string int
    details
    • min: 23 tokens
    • mean: 43.03 tokens
    • max: 91 tokens
    • min: 52 tokens
    • mean: 313.24 tokens
    • max: 1009 tokens
    • 0: ~81.90%
    • 1: ~18.10%
  • Samples:
    anchor text label
    Привет! Подскажите, пожалуйста, у вас есть средства для чистки и ухода за холодильником? Ищу что-то недорогое, но эффективное. {'long_web_name': 'Смартфон Huawei nova 10 8/128Gb Starry Silver', 'price': 29590.0, 'url': 'https://megamarket.ru/catalog/details/pda-huawei-nco-lx1-8-128gb-s-100057069468/', 'image_link': 'https://main-cdn.sbermegamarket.ru/mid9/hlr-system/-98/769/723/010/212/31/100057069468b0.jpg', 'id': '100057069468', 'description': '

    Смартфон Huawei nova 10 8/128Gb Starry Silver — это современный гаджет, который позволяет общаться, работать и развлекаться.

    \n

    Помогает оставаться на связи

    \n

    Устройство оснащено большим экраном с высоким разрешением. На нем удобно смотреть фильмы, играть в игры и читать книги. Есть встроенные динамики, которые обеспечивают качественный звук. Другие параметры смартфона:

    \n
      \n
    • основная камера состоит из трех модулей — они делают яркие и детализированные снимки;
    • \n
    • встроенный сканер отпечатков пальцев — для быстрого доступа к устройству;
    • \n
    • поддерживает функцию бесконтактной оплаты через Google Pay.
    • \n
    \n

    Смартфон работае...

    0
    Здравствуйте! Я Андрей, мне 38 лет, я покупаю у вас товары для своего бизнеса по ремонту бытовой техники в Воронеже. Мне нужны моноблоки — это такие настольные компьютеры, где всё встроено в монитор. Интересуют недорогие модели для тестирования программного обеспечения и проведения диагностики. Можете порекомендовать что-то подходящее? {'long_web_name': 'Моноблок MSI PRO AP242 12M-450RU белый', 'price': 78299.0, 'description': '

    Моноблок MSI Pro AP242 12M-450RU — это производительная рабочая станция для офисных задач.

    \n

    Комфортная работа

    \n

    Корпус выполнен в белом цвете. Матовое покрытие дисплея защищает от бликов. Другие технические параметры:

    \n
      \n
    • мощный процессор Intel Core i5 12400;
    • \n
    • графический чип UHD Graphics 730;
    • \n
    • оперативная память объемом 16 Гб с возможностью расширения до 64 Гб;
    • \n
    • встроенная веб-камера для общения через Skype и Zoom;
    • \n
    • внутренний накопитель SSD на 512 Гб обеспечивает быстрый доступ к файлам;
    • \n
    • поддерживается беспроводная сеть стандарта 802.11ax.
    • \n
    \n

    Предусмотрены два порта USB 3.2 Type-C и два USB 2.0 Type-A. Есть выход HDMI для подключения монитора или телевизора. Для воспроизведения звука есть встроенные динамики и микрофон.

    ', 'rating': 5.0, 'review_count': 18}
    0
    Здравствуйте! Мне нужно купить карты памяти MicroSD, чтобы использовать их в моём телефоне и планшете. Хотелось бы что-то надёжное и с хорошей скоростью записи. Можете помочь выбрать? {'long_web_name': 'Флэш карта Kingston Canvas Select Plus SDCS2/32GB microSDHC Class10, 32 Gb, adapter', 'price': 740.0, 'description': '', 'rating': 4.93, 'review_count': 587} 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 392 evaluation samples
  • Columns: anchor, text, and label
  • Approximate statistics based on the first 392 samples:
    anchor text label
    type string string int
    details
    • min: 23 tokens
    • mean: 42.23 tokens
    • max: 91 tokens
    • min: 53 tokens
    • mean: 322.99 tokens
    • max: 1058 tokens
    • 0: ~84.18%
    • 1: ~15.82%
  • Samples:
    anchor text label
    Здравствуйте! Мне нужны магнитные кабели для зарядки моих устройств в походах. Хочу заказать несколько штук, можно с разными разъёмами (USB-C, Micro USB, и Lightning). Желательно, чтобы они были качественными и прочными. Можете помочь с этим? {'long_web_name': 'Смартфон Samsung Galaxy Z Flip 6 SM-F741B, 256 Гб, Yellow', 'price': 81990.0, 'url': 'https://megamarket.ru/catalog/details/smartfon-samsung-galaxy-z-flip-6-sm-f741b-256-gb-yellow-1-sht-100069687356/', 'image_link': 'https://main-cdn.sbermegamarket.ru/mid9/hlr-system/-12/153/984/177/231/36/100069687356b0.png', 'id': '100069687356', 'description': 'Смартфон Samsung Galaxy Z Flip6 Yellow с раскладным экраном. Гибкий безрамочный дисплей 6.7" с матрицей Dynamic AMOLED 2X FHD+, частотой обновления 120 Гц и плотностью пикселей 426 ppi — передает четкое детализированное изображение с яркими и насыщенными цветами. Покрытие Corning® Gorilla® Glass Victus® защищает дисплей от механических повреждений. Процессор Qualcomm Snapdragon 8 Gen 3 с графическим ускорителем Qualcomm Adreno 750 — обеспечивает высокую производительность и плавную работу системы. Внутренняя память объемом 256 ГБ — предоставляет достаточно места для хранения большого количества данных, фотографий и видео. А... 0
    Здравствуйте! Мне нужны сумки и рюкзаки для фототехники. Что-то удобное и вместительное, чтобы можно было безопасно носить зеркальный фотоаппарат и несколько объективов. Можно посмотреть варианты? {'long_web_name': 'Фильтр ZUMMAN FHR2', 'price': 14.0, 'url': 'https://megamarket.ru/catalog/details/filtr-zumman-fhr2-100026967888/', 'image_link': 'https://main-cdn.sbermegamarket.ru/mid9/hlr-system/-13/878/305/792/603/9/100026967888b0.jpg', 'id': '100026967888_7', 'description': '', 'rating': 0.0, 'review_count': 0} 0
    Здравствуйте! Ищу умные часы Apple Watch Series 2. Скажите, пожалуйста, есть ли у вас в наличии? {'long_web_name': 'Смарт-часы Apple Watch Series 9 45 мм Midnight размер ML', 'price': 58373.0, 'description': 'Смарт-часы Apple Watch. Материал корпуса — алюминий. Время работы в активном режиме — до 18 часов. Функция Double Tap активируется посредством двух быстрых касаний указательного и большого пальцев — можно ответить на звонок, выключить будильник и управлять воспроизведением музыки. Объем встроенной памяти — 64 Гб. В комплекте — кабель USB?C с магнитным креплением для быстрой зарядки', 'rating': 4.97, 'review_count': 114} 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss item-classification_cosine_ap
0 0 - 0.0298 0.3925
0.2551 100 0.0162 - -
0.5102 200 0.0081 - -
0.6378 250 - 0.0070 0.7305
0.7653 300 0.0064 - -
1.0179 400 0.0049 - -
1.2730 500 0.0046 0.0051 0.8504
1.5281 600 0.0038 - -
1.7832 700 0.0037 - -
1.9107 750 - 0.0049 0.8791
2.0357 800 0.0032 - -
2.2908 900 0.0032 - -
2.5459 1000 0.0025 0.0046 0.9016
2.8010 1100 0.0024 - -
3.0536 1200 0.0026 - -
3.1811 1250 - 0.0044 0.8947
3.3087 1300 0.0022 - -
3.5638 1400 0.0019 - -
3.8189 1500 0.002 0.0045 0.9053
4.0714 1600 0.002 - -
4.3265 1700 0.0018 - -
4.4541 1750 - 0.0044 0.9106
4.5816 1800 0.0014 - -
4.8367 1900 0.0017 - -
4.9898 1960 - 0.0044 0.9106
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.2.1
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
3
Safetensors
Model size
29.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for denis-gordeev/reranker_dialog_items_biencoder_rubert-tiny-turbo-4

Finetuned
(7)
this model

Evaluation results