ddobokki/klue-roberta-small-nli-sts

한국어 Sentence Transformer 모델입니다.

Usage (Sentence-Transformers)

sentence-transformers 라이브러리를 이용해 사용할 수 있습니다.

pip install -U sentence-transformers

사용법

from sentence_transformers import SentenceTransformer
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"]

model = SentenceTransformer('ddobokki/klue-roberta-small-nli-sts')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

transformers 라이브러리만 사용할 경우

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ddobokki/klue-roberta-small-nli-sts')
model = AutoModel.from_pretrained('ddobokki/klue-roberta-small-nli-sts')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Performance

  • Semantic Textual Similarity test set results
Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSRoBERTasmall 84.27 84.17 83.33 83.65 83.34 83.65 82.10 81.38

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

Downloads last month
286
Safetensors
Model size
68.1M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.