The dataset viewer is not available for this subset.
Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 18f0de13-9999-4a1a-8254-044171849dd3)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response for split in get_dataset_split_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 352, in get_dataset_split_names info = get_dataset_config_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 277, in get_dataset_config_info builder = load_dataset_builder( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1849, in load_dataset_builder dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1731, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1688, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1067, in get_module data_files = DataFilesDict.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 721, in from_patterns else DataFilesList.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 634, in from_patterns origin_metadata = _get_origin_metadata(data_files, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 548, in _get_origin_metadata return thread_map( File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/std.py", line 1169, in __iter__ for obj in iterable: File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator yield fs.pop().result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 446, in result return self.__get_result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 527, in _get_single_origin_metadata resolved_path = fs.resolve_path(data_file) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2704, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2561, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 18f0de13-9999-4a1a-8254-044171849dd3)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Data statices of M2RAG
Click the links below to view our paper and Github project.
If you find this work useful, please cite our paper and give us a shining star π in Github
@misc{liu2025benchmarkingretrievalaugmentedgenerationmultimodal,
title={Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts},
author={Zhenghao Liu and Xingsheng Zhu and Tianshuo Zhou and Xinyi Zhang and Xiaoyuan Yi and Yukun Yan and Yu Gu and Ge Yu and Maosong Sun},
year={2025},
eprint={2502.17297},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.17297},
}
π Overview
The MΒ²RAG benchmark evaluates Multi-modal Large Language Models (MLLMs) by using multi-modal retrieved documents to answer questions. It includes four tasks: image captioning, multi-modal QA, fact verification, and image reranking, assessing MLLMsβ ability to leverage knowledge from multi-modal contexts.
π Data Storage Structure
The data storage structure of M2RAG is as followsοΌ
M2RAG/
βββfact_verify/
βββimage_cap/
βββimage_rerank/
βββmmqa/
βββimgs.lineidx.new
βββimgs.tsv
βοΈNote: To obtain the imgs.tsv
, you can follow the instructions in the WebQA project. Specifically, you need to first download all the data from the folder WebQA_imgs_7z_chunks, and then run the command 7z x imgs.7z.001
to unzip and merge all chunks to get the imgs.tsv.
- Downloads last month
- 703