repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__msgc_step3_discontinuity_localization
def __msgc_step3_discontinuity_localization(self): """ Estimate discontinuity in basis of low resolution image segmentation. :return: discontinuity in low resolution """ import scipy start = self._start_time seg = 1 - self.segmentation.astype(np.int8) self.stats["low level object voxels"] = np.sum(seg) self.stats["low level image voxels"] = np.prod(seg.shape) # in seg is now stored low resolution segmentation # back to normal parameters # step 2: discontinuity localization # self.segparams = sparams_hi seg_border = scipy.ndimage.filters.laplace(seg, mode="constant") logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # logger.debug(str(np.max(seg_border))) # logger.debug(str(np.min(seg_border))) seg_border[seg_border != 0] = 1 logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # scipy.ndimage.morphology.distance_transform_edt boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"] seg = scipy.ndimage.morphology.binary_dilation( seg_border, # seg, np.ones( [ (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, ] ), ) if self.keep_temp_properties: self.temp_msgc_lowres_discontinuity = seg else: self.temp_msgc_lowres_discontinuity = None if self.debug_images: import sed3 pd = sed3.sed3(seg_border) # ), contour=seg) pd.show() pd = sed3.sed3(seg) # ), contour=seg) pd.show() # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom, # order=0).astype('int8') self.stats["t3"] = time.time() - start return seg
python
def __msgc_step3_discontinuity_localization(self): """ Estimate discontinuity in basis of low resolution image segmentation. :return: discontinuity in low resolution """ import scipy start = self._start_time seg = 1 - self.segmentation.astype(np.int8) self.stats["low level object voxels"] = np.sum(seg) self.stats["low level image voxels"] = np.prod(seg.shape) # in seg is now stored low resolution segmentation # back to normal parameters # step 2: discontinuity localization # self.segparams = sparams_hi seg_border = scipy.ndimage.filters.laplace(seg, mode="constant") logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # logger.debug(str(np.max(seg_border))) # logger.debug(str(np.min(seg_border))) seg_border[seg_border != 0] = 1 logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None)) # scipy.ndimage.morphology.distance_transform_edt boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"] seg = scipy.ndimage.morphology.binary_dilation( seg_border, # seg, np.ones( [ (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, (boundary_dilatation_distance * 2) + 1, ] ), ) if self.keep_temp_properties: self.temp_msgc_lowres_discontinuity = seg else: self.temp_msgc_lowres_discontinuity = None if self.debug_images: import sed3 pd = sed3.sed3(seg_border) # ), contour=seg) pd.show() pd = sed3.sed3(seg) # ), contour=seg) pd.show() # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom, # order=0).astype('int8') self.stats["t3"] = time.time() - start return seg
[ "def", "__msgc_step3_discontinuity_localization", "(", "self", ")", ":", "import", "scipy", "start", "=", "self", ".", "_start_time", "seg", "=", "1", "-", "self", ".", "segmentation", ".", "astype", "(", "np", ".", "int8", ")", "self", ".", "stats", "[", "\"low level object voxels\"", "]", "=", "np", ".", "sum", "(", "seg", ")", "self", ".", "stats", "[", "\"low level image voxels\"", "]", "=", "np", ".", "prod", "(", "seg", ".", "shape", ")", "# in seg is now stored low resolution segmentation", "# back to normal parameters", "# step 2: discontinuity localization", "# self.segparams = sparams_hi", "seg_border", "=", "scipy", ".", "ndimage", ".", "filters", ".", "laplace", "(", "seg", ",", "mode", "=", "\"constant\"", ")", "logger", ".", "debug", "(", "\"seg_border: %s\"", ",", "scipy", ".", "stats", ".", "describe", "(", "seg_border", ",", "axis", "=", "None", ")", ")", "# logger.debug(str(np.max(seg_border)))", "# logger.debug(str(np.min(seg_border)))", "seg_border", "[", "seg_border", "!=", "0", "]", "=", "1", "logger", ".", "debug", "(", "\"seg_border: %s\"", ",", "scipy", ".", "stats", ".", "describe", "(", "seg_border", ",", "axis", "=", "None", ")", ")", "# scipy.ndimage.morphology.distance_transform_edt", "boundary_dilatation_distance", "=", "self", ".", "segparams", "[", "\"boundary_dilatation_distance\"", "]", "seg", "=", "scipy", ".", "ndimage", ".", "morphology", ".", "binary_dilation", "(", "seg_border", ",", "# seg,", "np", ".", "ones", "(", "[", "(", "boundary_dilatation_distance", "*", "2", ")", "+", "1", ",", "(", "boundary_dilatation_distance", "*", "2", ")", "+", "1", ",", "(", "boundary_dilatation_distance", "*", "2", ")", "+", "1", ",", "]", ")", ",", ")", "if", "self", ".", "keep_temp_properties", ":", "self", ".", "temp_msgc_lowres_discontinuity", "=", "seg", "else", ":", "self", ".", "temp_msgc_lowres_discontinuity", "=", "None", "if", "self", ".", "debug_images", ":", "import", "sed3", "pd", "=", "sed3", ".", "sed3", "(", "seg_border", ")", "# ), contour=seg)", "pd", ".", "show", "(", ")", "pd", "=", "sed3", ".", "sed3", "(", "seg", ")", "# ), contour=seg)", "pd", ".", "show", "(", ")", "# segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom,", "# order=0).astype('int8')", "self", ".", "stats", "[", "\"t3\"", "]", "=", "time", ".", "time", "(", ")", "-", "start", "return", "seg" ]
Estimate discontinuity in basis of low resolution image segmentation. :return: discontinuity in low resolution
[ "Estimate", "discontinuity", "in", "basis", "of", "low", "resolution", "image", "segmentation", ".", ":", "return", ":", "discontinuity", "in", "low", "resolution" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L323-L372
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__multiscale_gc_lo2hi_run
def __multiscale_gc_lo2hi_run(self): # , pyed): """ Run Graph-Cut segmentation with refinement of low resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self._msgc_lo2hi_resize_init() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() self.stats["t3.1"] = (time.time() - self._start_time) graph = Graph( seg, voxelsize=self.voxelsize, nsplit=self.segparams["block_size"], edge_weight_table=self._msgc_npenalty_table, compute_low_nodes_index=True, ) # graph.run() = graph.generate_base_grid() + graph.split_voxels() # graph.run() graph.generate_base_grid() self.stats["t3.2"] = (time.time() - self._start_time) graph.split_voxels() self.stats["t3.3"] = (time.time() - self._start_time) self.stats.update(graph.stats) self.stats["t4"] = (time.time() - self._start_time) mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg) area_weight = 1 unariesalt = self.__create_tlinks( self.img, self.voxelsize, self.seeds, area_weight=area_weight, hard_constraints=hard_constraints, mul_mask=None, mul_val=None, ) # N-links prepared self.stats["t5"] = (time.time() - self._start_time) un, ind = np.unique(graph.msinds, return_index=True) self.stats["t6"] = (time.time() - self._start_time) self.stats["t7"] = (time.time() - self._start_time) unariesalt2_lo2hi = np.hstack( [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)] ) nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)]) if self.debug_images: import sed3 ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape)) ed.show() import sed3 ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape)) ed.show() # ed = sed3.sed3(seg) # ed.show() # import sed3 # ed = sed3.sed3(graph.data) # ed.show() # import sed3 # ed = sed3.sed3(graph.msinds) # ed.show() # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg) # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds) self.__msgc_step9_finish_perform_gc_and_reshape( nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds ) self._msgc_lo2hi_resize_clean_finish()
python
def __multiscale_gc_lo2hi_run(self): # , pyed): """ Run Graph-Cut segmentation with refinement of low resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self._msgc_lo2hi_resize_init() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() self.stats["t3.1"] = (time.time() - self._start_time) graph = Graph( seg, voxelsize=self.voxelsize, nsplit=self.segparams["block_size"], edge_weight_table=self._msgc_npenalty_table, compute_low_nodes_index=True, ) # graph.run() = graph.generate_base_grid() + graph.split_voxels() # graph.run() graph.generate_base_grid() self.stats["t3.2"] = (time.time() - self._start_time) graph.split_voxels() self.stats["t3.3"] = (time.time() - self._start_time) self.stats.update(graph.stats) self.stats["t4"] = (time.time() - self._start_time) mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg) area_weight = 1 unariesalt = self.__create_tlinks( self.img, self.voxelsize, self.seeds, area_weight=area_weight, hard_constraints=hard_constraints, mul_mask=None, mul_val=None, ) # N-links prepared self.stats["t5"] = (time.time() - self._start_time) un, ind = np.unique(graph.msinds, return_index=True) self.stats["t6"] = (time.time() - self._start_time) self.stats["t7"] = (time.time() - self._start_time) unariesalt2_lo2hi = np.hstack( [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)] ) nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)]) if self.debug_images: import sed3 ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape)) ed.show() import sed3 ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape)) ed.show() # ed = sed3.sed3(seg) # ed.show() # import sed3 # ed = sed3.sed3(graph.data) # ed.show() # import sed3 # ed = sed3.sed3(graph.msinds) # ed.show() # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg) # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds) self.__msgc_step9_finish_perform_gc_and_reshape( nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds ) self._msgc_lo2hi_resize_clean_finish()
[ "def", "__multiscale_gc_lo2hi_run", "(", "self", ")", ":", "# , pyed):", "# from PyQt4.QtCore import pyqtRemoveInputHook", "# pyqtRemoveInputHook()", "self", ".", "_msgc_lo2hi_resize_init", "(", ")", "self", ".", "__msgc_step0_init", "(", ")", "hard_constraints", "=", "self", ".", "__msgc_step12_low_resolution_segmentation", "(", ")", "# ===== high resolution data processing", "seg", "=", "self", ".", "__msgc_step3_discontinuity_localization", "(", ")", "self", ".", "stats", "[", "\"t3.1\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "graph", "=", "Graph", "(", "seg", ",", "voxelsize", "=", "self", ".", "voxelsize", ",", "nsplit", "=", "self", ".", "segparams", "[", "\"block_size\"", "]", ",", "edge_weight_table", "=", "self", ".", "_msgc_npenalty_table", ",", "compute_low_nodes_index", "=", "True", ",", ")", "# graph.run() = graph.generate_base_grid() + graph.split_voxels()", "# graph.run()", "graph", ".", "generate_base_grid", "(", ")", "self", ".", "stats", "[", "\"t3.2\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "graph", ".", "split_voxels", "(", ")", "self", ".", "stats", "[", "\"t3.3\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "self", ".", "stats", ".", "update", "(", "graph", ".", "stats", ")", "self", ".", "stats", "[", "\"t4\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "mul_mask", ",", "mul_val", "=", "self", ".", "__msgc_tlinks_area_weight_from_low_segmentation", "(", "seg", ")", "area_weight", "=", "1", "unariesalt", "=", "self", ".", "__create_tlinks", "(", "self", ".", "img", ",", "self", ".", "voxelsize", ",", "self", ".", "seeds", ",", "area_weight", "=", "area_weight", ",", "hard_constraints", "=", "hard_constraints", ",", "mul_mask", "=", "None", ",", "mul_val", "=", "None", ",", ")", "# N-links prepared", "self", ".", "stats", "[", "\"t5\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "un", ",", "ind", "=", "np", ".", "unique", "(", "graph", ".", "msinds", ",", "return_index", "=", "True", ")", "self", ".", "stats", "[", "\"t6\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "self", ".", "stats", "[", "\"t7\"", "]", "=", "(", "time", ".", "time", "(", ")", "-", "self", ".", "_start_time", ")", "unariesalt2_lo2hi", "=", "np", ".", "hstack", "(", "[", "unariesalt", "[", "ind", ",", "0", ",", "0", "]", ".", "reshape", "(", "-", "1", ",", "1", ")", ",", "unariesalt", "[", "ind", ",", "0", ",", "1", "]", ".", "reshape", "(", "-", "1", ",", "1", ")", "]", ")", "nlinks_lo2hi", "=", "np", ".", "hstack", "(", "[", "graph", ".", "edges", ",", "graph", ".", "edges_weights", ".", "reshape", "(", "-", "1", ",", "1", ")", "]", ")", "if", "self", ".", "debug_images", ":", "import", "sed3", "ed", "=", "sed3", ".", "sed3", "(", "unariesalt", "[", ":", ",", ":", ",", "0", "]", ".", "reshape", "(", "self", ".", "img", ".", "shape", ")", ")", "ed", ".", "show", "(", ")", "import", "sed3", "ed", "=", "sed3", ".", "sed3", "(", "unariesalt", "[", ":", ",", ":", ",", "1", "]", ".", "reshape", "(", "self", ".", "img", ".", "shape", ")", ")", "ed", ".", "show", "(", ")", "# ed = sed3.sed3(seg)", "# ed.show()", "# import sed3", "# ed = sed3.sed3(graph.data)", "# ed.show()", "# import sed3", "# ed = sed3.sed3(graph.msinds)", "# ed.show()", "# nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg)", "# self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)", "self", ".", "__msgc_step9_finish_perform_gc_and_reshape", "(", "nlinks_lo2hi", ",", "unariesalt2_lo2hi", ",", "graph", ".", "msinds", ")", "self", ".", "_msgc_lo2hi_resize_clean_finish", "(", ")" ]
Run Graph-Cut segmentation with refinement of low resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties`
[ "Run", "Graph", "-", "Cut", "segmentation", "with", "refinement", "of", "low", "resolution", "multiscale", "graph", ".", "In", "first", "step", "is", "performed", "normal", "GC", "on", "low", "resolution", "data", "Second", "step", "construct", "finer", "grid", "on", "edges", "of", "segmentation", "from", "first", "step", ".", "There", "is", "no", "option", "for", "use", "without", "use_boundary_penalties" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L526-L606
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__multiscale_gc_hi2lo_run
def __multiscale_gc_hi2lo_run(self): # , pyed): """ Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph( hard_constraints, seg ) self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
python
def __multiscale_gc_hi2lo_run(self): # , pyed): """ Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties` """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() self.__msgc_step0_init() hard_constraints = self.__msgc_step12_low_resolution_segmentation() # ===== high resolution data processing seg = self.__msgc_step3_discontinuity_localization() nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph( hard_constraints, seg ) self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
[ "def", "__multiscale_gc_hi2lo_run", "(", "self", ")", ":", "# , pyed):", "# from PyQt4.QtCore import pyqtRemoveInputHook", "# pyqtRemoveInputHook()", "self", ".", "__msgc_step0_init", "(", ")", "hard_constraints", "=", "self", ".", "__msgc_step12_low_resolution_segmentation", "(", ")", "# ===== high resolution data processing", "seg", "=", "self", ".", "__msgc_step3_discontinuity_localization", "(", ")", "nlinks", ",", "unariesalt2", ",", "msinds", "=", "self", ".", "__msgc_step45678_hi2lo_construct_graph", "(", "hard_constraints", ",", "seg", ")", "self", ".", "__msgc_step9_finish_perform_gc_and_reshape", "(", "nlinks", ",", "unariesalt2", ",", "msinds", ")" ]
Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph. In first step is performed normal GC on low resolution data Second step construct finer grid on edges of segmentation from first step. There is no option for use without `use_boundary_penalties`
[ "Run", "Graph", "-", "Cut", "segmentation", "with", "simplifiyng", "of", "high", "resolution", "multiscale", "graph", ".", "In", "first", "step", "is", "performed", "normal", "GC", "on", "low", "resolution", "data", "Second", "step", "construct", "finer", "grid", "on", "edges", "of", "segmentation", "from", "first", "step", ".", "There", "is", "no", "option", "for", "use", "without", "use_boundary_penalties" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L608-L626
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__ordered_values_by_indexes
def __ordered_values_by_indexes(self, data, inds): """ Return values (intensities) by indexes. Used for multiscale graph cut. data = [[0 1 1], [0 2 2], [0 2 2]] inds = [[0 1 2], [3 4 4], [5 4 4]] return: [0, 1, 1, 0, 2, 0] If the data are not consistent, it will take the maximal value """ # get unique labels and their first indexes # lab, linds = np.unique(inds, return_index=True) # compute values by indexes # values = data.reshape(-1)[linds] # alternative slow implementation # if there are different data on same index, it will take # maximal value # lab = np.unique(inds) # values = [0]*len(lab) # for label in lab: # values[label] = np.max(data[inds == label]) # # values = np.asarray(values) # yet another implementation values = [None] * (np.max(inds) + 1) linear_inds = inds.ravel() linear_data = data.ravel() for i in range(0, len(linear_inds)): # going over all data pixels if values[linear_inds[i]] is None: # this index is found for first values[linear_inds[i]] = linear_data[i] elif values[linear_inds[i]] < linear_data[i]: # here can be changed maximal or minimal value values[linear_inds[i]] = linear_data[i] values = np.asarray(values) return values
python
def __ordered_values_by_indexes(self, data, inds): """ Return values (intensities) by indexes. Used for multiscale graph cut. data = [[0 1 1], [0 2 2], [0 2 2]] inds = [[0 1 2], [3 4 4], [5 4 4]] return: [0, 1, 1, 0, 2, 0] If the data are not consistent, it will take the maximal value """ # get unique labels and their first indexes # lab, linds = np.unique(inds, return_index=True) # compute values by indexes # values = data.reshape(-1)[linds] # alternative slow implementation # if there are different data on same index, it will take # maximal value # lab = np.unique(inds) # values = [0]*len(lab) # for label in lab: # values[label] = np.max(data[inds == label]) # # values = np.asarray(values) # yet another implementation values = [None] * (np.max(inds) + 1) linear_inds = inds.ravel() linear_data = data.ravel() for i in range(0, len(linear_inds)): # going over all data pixels if values[linear_inds[i]] is None: # this index is found for first values[linear_inds[i]] = linear_data[i] elif values[linear_inds[i]] < linear_data[i]: # here can be changed maximal or minimal value values[linear_inds[i]] = linear_data[i] values = np.asarray(values) return values
[ "def", "__ordered_values_by_indexes", "(", "self", ",", "data", ",", "inds", ")", ":", "# get unique labels and their first indexes", "# lab, linds = np.unique(inds, return_index=True)", "# compute values by indexes", "# values = data.reshape(-1)[linds]", "# alternative slow implementation", "# if there are different data on same index, it will take", "# maximal value", "# lab = np.unique(inds)", "# values = [0]*len(lab)", "# for label in lab:", "# values[label] = np.max(data[inds == label])", "#", "# values = np.asarray(values)", "# yet another implementation", "values", "=", "[", "None", "]", "*", "(", "np", ".", "max", "(", "inds", ")", "+", "1", ")", "linear_inds", "=", "inds", ".", "ravel", "(", ")", "linear_data", "=", "data", ".", "ravel", "(", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "linear_inds", ")", ")", ":", "# going over all data pixels", "if", "values", "[", "linear_inds", "[", "i", "]", "]", "is", "None", ":", "# this index is found for first", "values", "[", "linear_inds", "[", "i", "]", "]", "=", "linear_data", "[", "i", "]", "elif", "values", "[", "linear_inds", "[", "i", "]", "]", "<", "linear_data", "[", "i", "]", ":", "# here can be changed maximal or minimal value", "values", "[", "linear_inds", "[", "i", "]", "]", "=", "linear_data", "[", "i", "]", "values", "=", "np", ".", "asarray", "(", "values", ")", "return", "values" ]
Return values (intensities) by indexes. Used for multiscale graph cut. data = [[0 1 1], [0 2 2], [0 2 2]] inds = [[0 1 2], [3 4 4], [5 4 4]] return: [0, 1, 1, 0, 2, 0] If the data are not consistent, it will take the maximal value
[ "Return", "values", "(", "intensities", ")", "by", "indexes", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L628-L678
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__hi2lo_multiscale_indexes
def __hi2lo_multiscale_indexes(self, mask, orig_shape): # , zoom): """ Function computes multiscale indexes of ndarray. mask: Says where is original resolution (0) and where is small resolution (1). Mask is in small resolution. orig_shape: Original shape of input data. zoom: Usually number greater then 1 result = [[0 1 2], [3 4 4], [5 4 4]] """ mask_orig = zoom_to_shape(mask, orig_shape, dtype=np.int8) inds_small = np.arange(mask.size).reshape(mask.shape) inds_small_in_orig = zoom_to_shape(inds_small, orig_shape, dtype=np.int8) inds_orig = np.arange(np.prod(orig_shape)).reshape(orig_shape) # inds_orig = inds_orig * mask_orig inds_orig += np.max(inds_small_in_orig) + 1 # print 'indexes' # import py3DSeedEditor as ped # import pdb; pdb.set_trace() # BREAKPOINT # '==' is not the same as 'is' for numpy.array inds_small_in_orig[mask_orig == True] = inds_orig[mask_orig == True] # noqa inds = inds_small_in_orig # print np.max(inds) # print np.min(inds) inds = relabel_squeeze(inds) logger.debug( "Index after relabeling: %s", scipy.stats.describe(inds, axis=None) ) # logger.debug("Minimal index after relabeling: " + str(np.min(inds))) # inds_orig[mask_orig==True] = 0 # inds_small_in_orig[mask_orig==False] = 0 # inds = (inds_orig + np.max(inds_small_in_orig) + 1) + inds_small_in_orig return inds, mask_orig
python
def __hi2lo_multiscale_indexes(self, mask, orig_shape): # , zoom): """ Function computes multiscale indexes of ndarray. mask: Says where is original resolution (0) and where is small resolution (1). Mask is in small resolution. orig_shape: Original shape of input data. zoom: Usually number greater then 1 result = [[0 1 2], [3 4 4], [5 4 4]] """ mask_orig = zoom_to_shape(mask, orig_shape, dtype=np.int8) inds_small = np.arange(mask.size).reshape(mask.shape) inds_small_in_orig = zoom_to_shape(inds_small, orig_shape, dtype=np.int8) inds_orig = np.arange(np.prod(orig_shape)).reshape(orig_shape) # inds_orig = inds_orig * mask_orig inds_orig += np.max(inds_small_in_orig) + 1 # print 'indexes' # import py3DSeedEditor as ped # import pdb; pdb.set_trace() # BREAKPOINT # '==' is not the same as 'is' for numpy.array inds_small_in_orig[mask_orig == True] = inds_orig[mask_orig == True] # noqa inds = inds_small_in_orig # print np.max(inds) # print np.min(inds) inds = relabel_squeeze(inds) logger.debug( "Index after relabeling: %s", scipy.stats.describe(inds, axis=None) ) # logger.debug("Minimal index after relabeling: " + str(np.min(inds))) # inds_orig[mask_orig==True] = 0 # inds_small_in_orig[mask_orig==False] = 0 # inds = (inds_orig + np.max(inds_small_in_orig) + 1) + inds_small_in_orig return inds, mask_orig
[ "def", "__hi2lo_multiscale_indexes", "(", "self", ",", "mask", ",", "orig_shape", ")", ":", "# , zoom):", "mask_orig", "=", "zoom_to_shape", "(", "mask", ",", "orig_shape", ",", "dtype", "=", "np", ".", "int8", ")", "inds_small", "=", "np", ".", "arange", "(", "mask", ".", "size", ")", ".", "reshape", "(", "mask", ".", "shape", ")", "inds_small_in_orig", "=", "zoom_to_shape", "(", "inds_small", ",", "orig_shape", ",", "dtype", "=", "np", ".", "int8", ")", "inds_orig", "=", "np", ".", "arange", "(", "np", ".", "prod", "(", "orig_shape", ")", ")", ".", "reshape", "(", "orig_shape", ")", "# inds_orig = inds_orig * mask_orig", "inds_orig", "+=", "np", ".", "max", "(", "inds_small_in_orig", ")", "+", "1", "# print 'indexes'", "# import py3DSeedEditor as ped", "# import pdb; pdb.set_trace() # BREAKPOINT", "# '==' is not the same as 'is' for numpy.array", "inds_small_in_orig", "[", "mask_orig", "==", "True", "]", "=", "inds_orig", "[", "mask_orig", "==", "True", "]", "# noqa", "inds", "=", "inds_small_in_orig", "# print np.max(inds)", "# print np.min(inds)", "inds", "=", "relabel_squeeze", "(", "inds", ")", "logger", ".", "debug", "(", "\"Index after relabeling: %s\"", ",", "scipy", ".", "stats", ".", "describe", "(", "inds", ",", "axis", "=", "None", ")", ")", "# logger.debug(\"Minimal index after relabeling: \" + str(np.min(inds)))", "# inds_orig[mask_orig==True] = 0", "# inds_small_in_orig[mask_orig==False] = 0", "# inds = (inds_orig + np.max(inds_small_in_orig) + 1) + inds_small_in_orig", "return", "inds", ",", "mask_orig" ]
Function computes multiscale indexes of ndarray. mask: Says where is original resolution (0) and where is small resolution (1). Mask is in small resolution. orig_shape: Original shape of input data. zoom: Usually number greater then 1 result = [[0 1 2], [3 4 4], [5 4 4]]
[ "Function", "computes", "multiscale", "indexes", "of", "ndarray", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L680-L721
mjirik/imcut
imcut/pycut.py
ImageGraphCut.interactivity
def interactivity(self, min_val=None, max_val=None, qt_app=None): """ Interactive seed setting with 3d seed editor """ from .seed_editor_qt import QTSeedEditor from PyQt4.QtGui import QApplication if min_val is None: min_val = np.min(self.img) if max_val is None: max_val = np.max(self.img) window_c = (max_val + min_val) / 2 # .astype(np.int16) window_w = max_val - min_val # .astype(np.int16) if qt_app is None: qt_app = QApplication(sys.argv) pyed = QTSeedEditor( self.img, modeFun=self.interactivity_loop, voxelSize=self.voxelsize, seeds=self.seeds, volume_unit=self.volume_unit, ) pyed.changeC(window_c) pyed.changeW(window_w) qt_app.exec_()
python
def interactivity(self, min_val=None, max_val=None, qt_app=None): """ Interactive seed setting with 3d seed editor """ from .seed_editor_qt import QTSeedEditor from PyQt4.QtGui import QApplication if min_val is None: min_val = np.min(self.img) if max_val is None: max_val = np.max(self.img) window_c = (max_val + min_val) / 2 # .astype(np.int16) window_w = max_val - min_val # .astype(np.int16) if qt_app is None: qt_app = QApplication(sys.argv) pyed = QTSeedEditor( self.img, modeFun=self.interactivity_loop, voxelSize=self.voxelsize, seeds=self.seeds, volume_unit=self.volume_unit, ) pyed.changeC(window_c) pyed.changeW(window_w) qt_app.exec_()
[ "def", "interactivity", "(", "self", ",", "min_val", "=", "None", ",", "max_val", "=", "None", ",", "qt_app", "=", "None", ")", ":", "from", ".", "seed_editor_qt", "import", "QTSeedEditor", "from", "PyQt4", ".", "QtGui", "import", "QApplication", "if", "min_val", "is", "None", ":", "min_val", "=", "np", ".", "min", "(", "self", ".", "img", ")", "if", "max_val", "is", "None", ":", "max_val", "=", "np", ".", "max", "(", "self", ".", "img", ")", "window_c", "=", "(", "max_val", "+", "min_val", ")", "/", "2", "# .astype(np.int16)", "window_w", "=", "max_val", "-", "min_val", "# .astype(np.int16)", "if", "qt_app", "is", "None", ":", "qt_app", "=", "QApplication", "(", "sys", ".", "argv", ")", "pyed", "=", "QTSeedEditor", "(", "self", ".", "img", ",", "modeFun", "=", "self", ".", "interactivity_loop", ",", "voxelSize", "=", "self", ".", "voxelsize", ",", "seeds", "=", "self", ".", "seeds", ",", "volume_unit", "=", "self", ".", "volume_unit", ",", ")", "pyed", ".", "changeC", "(", "window_c", ")", "pyed", ".", "changeW", "(", "window_w", ")", "qt_app", ".", "exec_", "(", ")" ]
Interactive seed setting with 3d seed editor
[ "Interactive", "seed", "setting", "with", "3d", "seed", "editor" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L723-L753
mjirik/imcut
imcut/pycut.py
ImageGraphCut.set_seeds
def set_seeds(self, seeds): """ Function for manual seed setting. Sets variable seeds and prepares voxels for density model. :param seeds: ndarray (0 - nothing, 1 - object, 2 - background, 3 - object just hard constraints, no model training, 4 - background just hard constraints, no model training) """ if self.img.shape != seeds.shape: raise Exception("Seeds must be same size as input image") self.seeds = seeds.astype("int8") self.voxels1 = self.img[self.seeds == 1] self.voxels2 = self.img[self.seeds == 2]
python
def set_seeds(self, seeds): """ Function for manual seed setting. Sets variable seeds and prepares voxels for density model. :param seeds: ndarray (0 - nothing, 1 - object, 2 - background, 3 - object just hard constraints, no model training, 4 - background just hard constraints, no model training) """ if self.img.shape != seeds.shape: raise Exception("Seeds must be same size as input image") self.seeds = seeds.astype("int8") self.voxels1 = self.img[self.seeds == 1] self.voxels2 = self.img[self.seeds == 2]
[ "def", "set_seeds", "(", "self", ",", "seeds", ")", ":", "if", "self", ".", "img", ".", "shape", "!=", "seeds", ".", "shape", ":", "raise", "Exception", "(", "\"Seeds must be same size as input image\"", ")", "self", ".", "seeds", "=", "seeds", ".", "astype", "(", "\"int8\"", ")", "self", ".", "voxels1", "=", "self", ".", "img", "[", "self", ".", "seeds", "==", "1", "]", "self", ".", "voxels2", "=", "self", ".", "img", "[", "self", ".", "seeds", "==", "2", "]" ]
Function for manual seed setting. Sets variable seeds and prepares voxels for density model. :param seeds: ndarray (0 - nothing, 1 - object, 2 - background, 3 - object just hard constraints, no model training, 4 - background just hard constraints, no model training)
[ "Function", "for", "manual", "seed", "setting", ".", "Sets", "variable", "seeds", "and", "prepares", "voxels", "for", "density", "model", ".", ":", "param", "seeds", ":", "ndarray", "(", "0", "-", "nothing", "1", "-", "object", "2", "-", "background", "3", "-", "object", "just", "hard", "constraints", "no", "model", "training", "4", "-", "background", "just", "hard", "constraints", "no", "model", "training", ")" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L755-L768
mjirik/imcut
imcut/pycut.py
ImageGraphCut.run
def run(self, run_fit_model=True): """ Run the Graph Cut segmentation according to preset parameters. :param run_fit_model: Allow to skip model fit when the model is prepared before :return: """ if run_fit_model: self.fit_model(self.img, self.voxelsize, self.seeds) self._start_time = time.time() if self.segparams["method"].lower() in ("graphcut", "gc"): self.__single_scale_gc_run() elif self.segparams["method"].lower() in ( "multiscale_graphcut", "multiscale_gc", "msgc", "msgc_lo2hi", "lo2hi", "multiscale_graphcut_lo2hi", ): logger.debug("performing multiscale Graph-Cut lo2hi") self.__multiscale_gc_lo2hi_run() elif self.segparams["method"].lower() in ( "msgc_hi2lo", "hi2lo", "multiscale_graphcut_hi2lo", ): logger.debug("performing multiscale Graph-Cut hi2lo") self.__multiscale_gc_hi2lo_run() else: logger.error("Unknown segmentation method: " + self.segparams["method"])
python
def run(self, run_fit_model=True): """ Run the Graph Cut segmentation according to preset parameters. :param run_fit_model: Allow to skip model fit when the model is prepared before :return: """ if run_fit_model: self.fit_model(self.img, self.voxelsize, self.seeds) self._start_time = time.time() if self.segparams["method"].lower() in ("graphcut", "gc"): self.__single_scale_gc_run() elif self.segparams["method"].lower() in ( "multiscale_graphcut", "multiscale_gc", "msgc", "msgc_lo2hi", "lo2hi", "multiscale_graphcut_lo2hi", ): logger.debug("performing multiscale Graph-Cut lo2hi") self.__multiscale_gc_lo2hi_run() elif self.segparams["method"].lower() in ( "msgc_hi2lo", "hi2lo", "multiscale_graphcut_hi2lo", ): logger.debug("performing multiscale Graph-Cut hi2lo") self.__multiscale_gc_hi2lo_run() else: logger.error("Unknown segmentation method: " + self.segparams["method"])
[ "def", "run", "(", "self", ",", "run_fit_model", "=", "True", ")", ":", "if", "run_fit_model", ":", "self", ".", "fit_model", "(", "self", ".", "img", ",", "self", ".", "voxelsize", ",", "self", ".", "seeds", ")", "self", ".", "_start_time", "=", "time", ".", "time", "(", ")", "if", "self", ".", "segparams", "[", "\"method\"", "]", ".", "lower", "(", ")", "in", "(", "\"graphcut\"", ",", "\"gc\"", ")", ":", "self", ".", "__single_scale_gc_run", "(", ")", "elif", "self", ".", "segparams", "[", "\"method\"", "]", ".", "lower", "(", ")", "in", "(", "\"multiscale_graphcut\"", ",", "\"multiscale_gc\"", ",", "\"msgc\"", ",", "\"msgc_lo2hi\"", ",", "\"lo2hi\"", ",", "\"multiscale_graphcut_lo2hi\"", ",", ")", ":", "logger", ".", "debug", "(", "\"performing multiscale Graph-Cut lo2hi\"", ")", "self", ".", "__multiscale_gc_lo2hi_run", "(", ")", "elif", "self", ".", "segparams", "[", "\"method\"", "]", ".", "lower", "(", ")", "in", "(", "\"msgc_hi2lo\"", ",", "\"hi2lo\"", ",", "\"multiscale_graphcut_hi2lo\"", ",", ")", ":", "logger", ".", "debug", "(", "\"performing multiscale Graph-Cut hi2lo\"", ")", "self", ".", "__multiscale_gc_hi2lo_run", "(", ")", "else", ":", "logger", ".", "error", "(", "\"Unknown segmentation method: \"", "+", "self", ".", "segparams", "[", "\"method\"", "]", ")" ]
Run the Graph Cut segmentation according to preset parameters. :param run_fit_model: Allow to skip model fit when the model is prepared before :return:
[ "Run", "the", "Graph", "Cut", "segmentation", "according", "to", "preset", "parameters", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L770-L802
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__set_hard_hard_constraints
def __set_hard_hard_constraints(self, tdata1, tdata2, seeds): """ it works with seed labels: 0: nothing 1: object 1 - full seeds 2: object 2 - full seeds 3: object 1 - not a training seeds 4: object 2 - not a training seeds """ seeds_mask = (seeds == 1) | (seeds == 3) tdata2[seeds_mask] = np.max(tdata2) + 1 tdata1[seeds_mask] = 0 seeds_mask = (seeds == 2) | (seeds == 4) tdata1[seeds_mask] = np.max(tdata1) + 1 tdata2[seeds_mask] = 0 return tdata1, tdata2
python
def __set_hard_hard_constraints(self, tdata1, tdata2, seeds): """ it works with seed labels: 0: nothing 1: object 1 - full seeds 2: object 2 - full seeds 3: object 1 - not a training seeds 4: object 2 - not a training seeds """ seeds_mask = (seeds == 1) | (seeds == 3) tdata2[seeds_mask] = np.max(tdata2) + 1 tdata1[seeds_mask] = 0 seeds_mask = (seeds == 2) | (seeds == 4) tdata1[seeds_mask] = np.max(tdata1) + 1 tdata2[seeds_mask] = 0 return tdata1, tdata2
[ "def", "__set_hard_hard_constraints", "(", "self", ",", "tdata1", ",", "tdata2", ",", "seeds", ")", ":", "seeds_mask", "=", "(", "seeds", "==", "1", ")", "|", "(", "seeds", "==", "3", ")", "tdata2", "[", "seeds_mask", "]", "=", "np", ".", "max", "(", "tdata2", ")", "+", "1", "tdata1", "[", "seeds_mask", "]", "=", "0", "seeds_mask", "=", "(", "seeds", "==", "2", ")", "|", "(", "seeds", "==", "4", ")", "tdata1", "[", "seeds_mask", "]", "=", "np", ".", "max", "(", "tdata1", ")", "+", "1", "tdata2", "[", "seeds_mask", "]", "=", "0", "return", "tdata1", ",", "tdata2" ]
it works with seed labels: 0: nothing 1: object 1 - full seeds 2: object 2 - full seeds 3: object 1 - not a training seeds 4: object 2 - not a training seeds
[ "it", "works", "with", "seed", "labels", ":", "0", ":", "nothing", "1", ":", "object", "1", "-", "full", "seeds", "2", ":", "object", "2", "-", "full", "seeds", "3", ":", "object", "1", "-", "not", "a", "training", "seeds", "4", ":", "object", "2", "-", "not", "a", "training", "seeds" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L834-L851
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__similarity_for_tlinks_obj_bgr
def __similarity_for_tlinks_obj_bgr( self, data, voxelsize, # voxels1, voxels2, # seeds, otherfeatures=None ): """ Compute edge values for graph cut tlinks based on image intensity and texture. """ # self.fit_model(data, voxelsize, seeds) # There is a need to have small vaues for good fit # R(obj) = -ln( Pr (Ip | O) ) # R(bck) = -ln( Pr (Ip | B) ) # Boykov2001b # ln is computed in likelihood tdata1 = (-(self.mdl.likelihood_from_image(data, voxelsize, 1))) * 10 tdata2 = (-(self.mdl.likelihood_from_image(data, voxelsize, 2))) * 10 # to spare some memory dtype = np.int16 if np.any(tdata1 > 32760): dtype = np.float32 if np.any(tdata2 > 32760): dtype = np.float32 if self.segparams["use_apriori_if_available"] and self.apriori is not None: logger.debug("using apriori information") gamma = self.segparams["apriori_gamma"] a1 = (-np.log(self.apriori * 0.998 + 0.001)) * 10 a2 = (-np.log(0.999 - (self.apriori * 0.998))) * 10 # logger.debug('max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug('max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('max ' + str(np.max(a1)) + ' min ' + str(np.min(a1))) # logger.debug('max ' + str(np.max(a2)) + ' min ' + str(np.min(a2))) tdata1u = (((1 - gamma) * tdata1) + (gamma * a1)).astype(dtype) tdata2u = (((1 - gamma) * tdata2) + (gamma * a2)).astype(dtype) tdata1 = tdata1u tdata2 = tdata2u # logger.debug(' max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug(' max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('gamma ' + str(gamma)) # import sed3 # ed = sed3.show_slices(tdata1) # ed = sed3.show_slices(tdata2) del tdata1u del tdata2u del a1 del a2 # if np.any(tdata1 < 0) or np.any(tdata2 <0): # logger.error("Problem with tlinks. Likelihood is < 0") # if self.debug_images: # self.__show_debug_tdata_images(tdata1, tdata2, suptitle="likelihood") return tdata1, tdata2
python
def __similarity_for_tlinks_obj_bgr( self, data, voxelsize, # voxels1, voxels2, # seeds, otherfeatures=None ): """ Compute edge values for graph cut tlinks based on image intensity and texture. """ # self.fit_model(data, voxelsize, seeds) # There is a need to have small vaues for good fit # R(obj) = -ln( Pr (Ip | O) ) # R(bck) = -ln( Pr (Ip | B) ) # Boykov2001b # ln is computed in likelihood tdata1 = (-(self.mdl.likelihood_from_image(data, voxelsize, 1))) * 10 tdata2 = (-(self.mdl.likelihood_from_image(data, voxelsize, 2))) * 10 # to spare some memory dtype = np.int16 if np.any(tdata1 > 32760): dtype = np.float32 if np.any(tdata2 > 32760): dtype = np.float32 if self.segparams["use_apriori_if_available"] and self.apriori is not None: logger.debug("using apriori information") gamma = self.segparams["apriori_gamma"] a1 = (-np.log(self.apriori * 0.998 + 0.001)) * 10 a2 = (-np.log(0.999 - (self.apriori * 0.998))) * 10 # logger.debug('max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug('max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('max ' + str(np.max(a1)) + ' min ' + str(np.min(a1))) # logger.debug('max ' + str(np.max(a2)) + ' min ' + str(np.min(a2))) tdata1u = (((1 - gamma) * tdata1) + (gamma * a1)).astype(dtype) tdata2u = (((1 - gamma) * tdata2) + (gamma * a2)).astype(dtype) tdata1 = tdata1u tdata2 = tdata2u # logger.debug(' max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1))) # logger.debug(' max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2))) # logger.debug('gamma ' + str(gamma)) # import sed3 # ed = sed3.show_slices(tdata1) # ed = sed3.show_slices(tdata2) del tdata1u del tdata2u del a1 del a2 # if np.any(tdata1 < 0) or np.any(tdata2 <0): # logger.error("Problem with tlinks. Likelihood is < 0") # if self.debug_images: # self.__show_debug_tdata_images(tdata1, tdata2, suptitle="likelihood") return tdata1, tdata2
[ "def", "__similarity_for_tlinks_obj_bgr", "(", "self", ",", "data", ",", "voxelsize", ",", "# voxels1, voxels2,", "# seeds, otherfeatures=None", ")", ":", "# self.fit_model(data, voxelsize, seeds)", "# There is a need to have small vaues for good fit", "# R(obj) = -ln( Pr (Ip | O) )", "# R(bck) = -ln( Pr (Ip | B) )", "# Boykov2001b", "# ln is computed in likelihood", "tdata1", "=", "(", "-", "(", "self", ".", "mdl", ".", "likelihood_from_image", "(", "data", ",", "voxelsize", ",", "1", ")", ")", ")", "*", "10", "tdata2", "=", "(", "-", "(", "self", ".", "mdl", ".", "likelihood_from_image", "(", "data", ",", "voxelsize", ",", "2", ")", ")", ")", "*", "10", "# to spare some memory", "dtype", "=", "np", ".", "int16", "if", "np", ".", "any", "(", "tdata1", ">", "32760", ")", ":", "dtype", "=", "np", ".", "float32", "if", "np", ".", "any", "(", "tdata2", ">", "32760", ")", ":", "dtype", "=", "np", ".", "float32", "if", "self", ".", "segparams", "[", "\"use_apriori_if_available\"", "]", "and", "self", ".", "apriori", "is", "not", "None", ":", "logger", ".", "debug", "(", "\"using apriori information\"", ")", "gamma", "=", "self", ".", "segparams", "[", "\"apriori_gamma\"", "]", "a1", "=", "(", "-", "np", ".", "log", "(", "self", ".", "apriori", "*", "0.998", "+", "0.001", ")", ")", "*", "10", "a2", "=", "(", "-", "np", ".", "log", "(", "0.999", "-", "(", "self", ".", "apriori", "*", "0.998", ")", ")", ")", "*", "10", "# logger.debug('max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1)))", "# logger.debug('max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2)))", "# logger.debug('max ' + str(np.max(a1)) + ' min ' + str(np.min(a1)))", "# logger.debug('max ' + str(np.max(a2)) + ' min ' + str(np.min(a2)))", "tdata1u", "=", "(", "(", "(", "1", "-", "gamma", ")", "*", "tdata1", ")", "+", "(", "gamma", "*", "a1", ")", ")", ".", "astype", "(", "dtype", ")", "tdata2u", "=", "(", "(", "(", "1", "-", "gamma", ")", "*", "tdata2", ")", "+", "(", "gamma", "*", "a2", ")", ")", ".", "astype", "(", "dtype", ")", "tdata1", "=", "tdata1u", "tdata2", "=", "tdata2u", "# logger.debug(' max ' + str(np.max(tdata1)) + ' min ' + str(np.min(tdata1)))", "# logger.debug(' max ' + str(np.max(tdata2)) + ' min ' + str(np.min(tdata2)))", "# logger.debug('gamma ' + str(gamma))", "# import sed3", "# ed = sed3.show_slices(tdata1)", "# ed = sed3.show_slices(tdata2)", "del", "tdata1u", "del", "tdata2u", "del", "a1", "del", "a2", "# if np.any(tdata1 < 0) or np.any(tdata2 <0):", "# logger.error(\"Problem with tlinks. Likelihood is < 0\")", "# if self.debug_images:", "# self.__show_debug_tdata_images(tdata1, tdata2, suptitle=\"likelihood\")", "return", "tdata1", ",", "tdata2" ]
Compute edge values for graph cut tlinks based on image intensity and texture.
[ "Compute", "edge", "values", "for", "graph", "cut", "tlinks", "based", "on", "image", "intensity", "and", "texture", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1023-L1080
mjirik/imcut
imcut/pycut.py
ImageGraphCut.__create_nlinks
def __create_nlinks(self, data, inds=None, boundary_penalties_fcn=None): """ Compute nlinks grid from data shape information. For boundary penalties are data (intensities) values are used. ins: Default is None. Used for multiscale GC. This are indexes of multiscale pixels. Next example shows one superpixel witn index 2. inds = [ [1 2 2], [3 2 2], [4 5 6]] boundary_penalties_fcn: is function with one argument - axis. It can it can be used for setting penalty weights between neighbooring pixels. """ # use the gerneral graph algorithm # first, we construct the grid graph start = time.time() if inds is None: inds = np.arange(data.size).reshape(data.shape) # if not self.segparams['use_boundary_penalties'] and \ # boundary_penalties_fcn is None : if boundary_penalties_fcn is None: # This is faster for some specific format edgx = np.c_[inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel()] edgy = np.c_[inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel()] edgz = np.c_[inds[:-1, :, :].ravel(), inds[1:, :, :].ravel()] else: logger.info("use_boundary_penalties") bpw = self.segparams["boundary_penalties_weight"] bpa = boundary_penalties_fcn(2) # id1=inds[:, :, :-1].ravel() edgx = np.c_[ inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel(), # cc * np.ones(id1.shape) bpw * bpa[:, :, 1:].ravel(), ] bpa = boundary_penalties_fcn(1) # id1 =inds[:, 1:, :].ravel() edgy = np.c_[ inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[:, 1:, :].ravel(), ] bpa = boundary_penalties_fcn(0) # id1 = inds[1:, :, :].ravel() edgz = np.c_[ inds[:-1, :, :].ravel(), inds[1:, :, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[1:, :, :].ravel(), ] # import pdb; pdb.set_trace() edges = np.vstack([edgx, edgy, edgz]).astype(np.int32) # edges - seznam indexu hran, kteres spolu sousedi\ elapsed = time.time() - start self.stats["_create_nlinks time"] = elapsed logger.info("__create nlinks time " + str(elapsed)) return edges
python
def __create_nlinks(self, data, inds=None, boundary_penalties_fcn=None): """ Compute nlinks grid from data shape information. For boundary penalties are data (intensities) values are used. ins: Default is None. Used for multiscale GC. This are indexes of multiscale pixels. Next example shows one superpixel witn index 2. inds = [ [1 2 2], [3 2 2], [4 5 6]] boundary_penalties_fcn: is function with one argument - axis. It can it can be used for setting penalty weights between neighbooring pixels. """ # use the gerneral graph algorithm # first, we construct the grid graph start = time.time() if inds is None: inds = np.arange(data.size).reshape(data.shape) # if not self.segparams['use_boundary_penalties'] and \ # boundary_penalties_fcn is None : if boundary_penalties_fcn is None: # This is faster for some specific format edgx = np.c_[inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel()] edgy = np.c_[inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel()] edgz = np.c_[inds[:-1, :, :].ravel(), inds[1:, :, :].ravel()] else: logger.info("use_boundary_penalties") bpw = self.segparams["boundary_penalties_weight"] bpa = boundary_penalties_fcn(2) # id1=inds[:, :, :-1].ravel() edgx = np.c_[ inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel(), # cc * np.ones(id1.shape) bpw * bpa[:, :, 1:].ravel(), ] bpa = boundary_penalties_fcn(1) # id1 =inds[:, 1:, :].ravel() edgy = np.c_[ inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[:, 1:, :].ravel(), ] bpa = boundary_penalties_fcn(0) # id1 = inds[1:, :, :].ravel() edgz = np.c_[ inds[:-1, :, :].ravel(), inds[1:, :, :].ravel(), # cc * np.ones(id1.shape)] bpw * bpa[1:, :, :].ravel(), ] # import pdb; pdb.set_trace() edges = np.vstack([edgx, edgy, edgz]).astype(np.int32) # edges - seznam indexu hran, kteres spolu sousedi\ elapsed = time.time() - start self.stats["_create_nlinks time"] = elapsed logger.info("__create nlinks time " + str(elapsed)) return edges
[ "def", "__create_nlinks", "(", "self", ",", "data", ",", "inds", "=", "None", ",", "boundary_penalties_fcn", "=", "None", ")", ":", "# use the gerneral graph algorithm", "# first, we construct the grid graph", "start", "=", "time", ".", "time", "(", ")", "if", "inds", "is", "None", ":", "inds", "=", "np", ".", "arange", "(", "data", ".", "size", ")", ".", "reshape", "(", "data", ".", "shape", ")", "# if not self.segparams['use_boundary_penalties'] and \\", "# boundary_penalties_fcn is None :", "if", "boundary_penalties_fcn", "is", "None", ":", "# This is faster for some specific format", "edgx", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", ",", ":", "-", "1", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", ":", ",", "1", ":", "]", ".", "ravel", "(", ")", "]", "edgy", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", "-", "1", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", "1", ":", ",", ":", "]", ".", "ravel", "(", ")", "]", "edgz", "=", "np", ".", "c_", "[", "inds", "[", ":", "-", "1", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", "1", ":", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", "]", "else", ":", "logger", ".", "info", "(", "\"use_boundary_penalties\"", ")", "bpw", "=", "self", ".", "segparams", "[", "\"boundary_penalties_weight\"", "]", "bpa", "=", "boundary_penalties_fcn", "(", "2", ")", "# id1=inds[:, :, :-1].ravel()", "edgx", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", ",", ":", "-", "1", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", ":", ",", "1", ":", "]", ".", "ravel", "(", ")", ",", "# cc * np.ones(id1.shape)", "bpw", "*", "bpa", "[", ":", ",", ":", ",", "1", ":", "]", ".", "ravel", "(", ")", ",", "]", "bpa", "=", "boundary_penalties_fcn", "(", "1", ")", "# id1 =inds[:, 1:, :].ravel()", "edgy", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", "-", "1", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", "1", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "# cc * np.ones(id1.shape)]", "bpw", "*", "bpa", "[", ":", ",", "1", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "]", "bpa", "=", "boundary_penalties_fcn", "(", "0", ")", "# id1 = inds[1:, :, :].ravel()", "edgz", "=", "np", ".", "c_", "[", "inds", "[", ":", "-", "1", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", "1", ":", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "# cc * np.ones(id1.shape)]", "bpw", "*", "bpa", "[", "1", ":", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "]", "# import pdb; pdb.set_trace()", "edges", "=", "np", ".", "vstack", "(", "[", "edgx", ",", "edgy", ",", "edgz", "]", ")", ".", "astype", "(", "np", ".", "int32", ")", "# edges - seznam indexu hran, kteres spolu sousedi\\", "elapsed", "=", "time", ".", "time", "(", ")", "-", "start", "self", ".", "stats", "[", "\"_create_nlinks time\"", "]", "=", "elapsed", "logger", ".", "info", "(", "\"__create nlinks time \"", "+", "str", "(", "elapsed", ")", ")", "return", "edges" ]
Compute nlinks grid from data shape information. For boundary penalties are data (intensities) values are used. ins: Default is None. Used for multiscale GC. This are indexes of multiscale pixels. Next example shows one superpixel witn index 2. inds = [ [1 2 2], [3 2 2], [4 5 6]] boundary_penalties_fcn: is function with one argument - axis. It can it can be used for setting penalty weights between neighbooring pixels.
[ "Compute", "nlinks", "grid", "from", "data", "shape", "information", ".", "For", "boundary", "penalties", "are", "data", "(", "intensities", ")", "values", "are", "used", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1152-L1220
mjirik/imcut
imcut/pycut.py
ImageGraphCut.debug_get_reconstructed_similarity
def debug_get_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, return_unariesalt=False, ): """ Use actual model to calculate similarity. If no input is given the last image is used. :param data3d: :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param return_unariesalt: :return: """ if data3d is None: data3d = self.img if voxelsize is None: voxelsize = self.voxelsize if seeds is None: seeds = self.seeds unariesalt = self.__create_tlinks( data3d, voxelsize, # voxels1, voxels2, seeds, area_weight, hard_constraints, ) if return_unariesalt: return unariesalt else: return self._reshape_unariesalt_to_similarity(unariesalt, data3d.shape)
python
def debug_get_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, return_unariesalt=False, ): """ Use actual model to calculate similarity. If no input is given the last image is used. :param data3d: :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param return_unariesalt: :return: """ if data3d is None: data3d = self.img if voxelsize is None: voxelsize = self.voxelsize if seeds is None: seeds = self.seeds unariesalt = self.__create_tlinks( data3d, voxelsize, # voxels1, voxels2, seeds, area_weight, hard_constraints, ) if return_unariesalt: return unariesalt else: return self._reshape_unariesalt_to_similarity(unariesalt, data3d.shape)
[ "def", "debug_get_reconstructed_similarity", "(", "self", ",", "data3d", "=", "None", ",", "voxelsize", "=", "None", ",", "seeds", "=", "None", ",", "area_weight", "=", "1", ",", "hard_constraints", "=", "True", ",", "return_unariesalt", "=", "False", ",", ")", ":", "if", "data3d", "is", "None", ":", "data3d", "=", "self", ".", "img", "if", "voxelsize", "is", "None", ":", "voxelsize", "=", "self", ".", "voxelsize", "if", "seeds", "is", "None", ":", "seeds", "=", "self", ".", "seeds", "unariesalt", "=", "self", ".", "__create_tlinks", "(", "data3d", ",", "voxelsize", ",", "# voxels1, voxels2,", "seeds", ",", "area_weight", ",", "hard_constraints", ",", ")", "if", "return_unariesalt", ":", "return", "unariesalt", "else", ":", "return", "self", ".", "_reshape_unariesalt_to_similarity", "(", "unariesalt", ",", "data3d", ".", "shape", ")" ]
Use actual model to calculate similarity. If no input is given the last image is used. :param data3d: :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param return_unariesalt: :return:
[ "Use", "actual", "model", "to", "calculate", "similarity", ".", "If", "no", "input", "is", "given", "the", "last", "image", "is", "used", ".", ":", "param", "data3d", ":", ":", "param", "voxelsize", ":", ":", "param", "seeds", ":", ":", "param", "area_weight", ":", ":", "param", "hard_constraints", ":", ":", "param", "return_unariesalt", ":", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1222-L1259
mjirik/imcut
imcut/pycut.py
ImageGraphCut.debug_show_reconstructed_similarity
def debug_show_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, show=True, bins=20, slice_number=None, ): """ Show tlinks. :param data3d: ndarray with input data :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param show: :param bins: histogram bins number :param slice_number: :return: """ unariesalt = self.debug_get_reconstructed_similarity( data3d, voxelsize=voxelsize, seeds=seeds, area_weight=area_weight, hard_constraints=hard_constraints, return_unariesalt=True, ) self._debug_show_unariesalt( unariesalt, show=show, bins=bins, slice_number=slice_number )
python
def debug_show_reconstructed_similarity( self, data3d=None, voxelsize=None, seeds=None, area_weight=1, hard_constraints=True, show=True, bins=20, slice_number=None, ): """ Show tlinks. :param data3d: ndarray with input data :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param show: :param bins: histogram bins number :param slice_number: :return: """ unariesalt = self.debug_get_reconstructed_similarity( data3d, voxelsize=voxelsize, seeds=seeds, area_weight=area_weight, hard_constraints=hard_constraints, return_unariesalt=True, ) self._debug_show_unariesalt( unariesalt, show=show, bins=bins, slice_number=slice_number )
[ "def", "debug_show_reconstructed_similarity", "(", "self", ",", "data3d", "=", "None", ",", "voxelsize", "=", "None", ",", "seeds", "=", "None", ",", "area_weight", "=", "1", ",", "hard_constraints", "=", "True", ",", "show", "=", "True", ",", "bins", "=", "20", ",", "slice_number", "=", "None", ",", ")", ":", "unariesalt", "=", "self", ".", "debug_get_reconstructed_similarity", "(", "data3d", ",", "voxelsize", "=", "voxelsize", ",", "seeds", "=", "seeds", ",", "area_weight", "=", "area_weight", ",", "hard_constraints", "=", "hard_constraints", ",", "return_unariesalt", "=", "True", ",", ")", "self", ".", "_debug_show_unariesalt", "(", "unariesalt", ",", "show", "=", "show", ",", "bins", "=", "bins", ",", "slice_number", "=", "slice_number", ")" ]
Show tlinks. :param data3d: ndarray with input data :param voxelsize: :param seeds: :param area_weight: :param hard_constraints: :param show: :param bins: histogram bins number :param slice_number: :return:
[ "Show", "tlinks", ".", ":", "param", "data3d", ":", "ndarray", "with", "input", "data", ":", "param", "voxelsize", ":", ":", "param", "seeds", ":", ":", "param", "area_weight", ":", ":", "param", "hard_constraints", ":", ":", "param", "show", ":", ":", "param", "bins", ":", "histogram", "bins", "number", ":", "param", "slice_number", ":", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1261-L1296
mjirik/imcut
imcut/pycut.py
ImageGraphCut.debug_inspect_node
def debug_inspect_node(self, node_msindex): """ Get info about the node. See pycut.inspect_node() for details. Processing is done in temporary shape. :param node_seed: :return: node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds """ return inspect_node(self.nlinks, self.unariesalt2, self.msinds, node_msindex)
python
def debug_inspect_node(self, node_msindex): """ Get info about the node. See pycut.inspect_node() for details. Processing is done in temporary shape. :param node_seed: :return: node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds """ return inspect_node(self.nlinks, self.unariesalt2, self.msinds, node_msindex)
[ "def", "debug_inspect_node", "(", "self", ",", "node_msindex", ")", ":", "return", "inspect_node", "(", "self", ".", "nlinks", ",", "self", ".", "unariesalt2", ",", "self", ".", "msinds", ",", "node_msindex", ")" ]
Get info about the node. See pycut.inspect_node() for details. Processing is done in temporary shape. :param node_seed: :return: node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds
[ "Get", "info", "about", "the", "node", ".", "See", "pycut", ".", "inspect_node", "()", "for", "details", ".", "Processing", "is", "done", "in", "temporary", "shape", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1298-L1306
mjirik/imcut
imcut/pycut.py
ImageGraphCut.debug_interactive_inspect_node
def debug_interactive_inspect_node(self): """ Call after segmentation to see selected node neighborhood. User have to select one node by click. :return: """ if ( np.sum( np.abs( np.asarray(self.msinds.shape) - np.asarray(self.segmentation.shape) ) ) == 0 ): segmentation = self.segmentation else: segmentation = self.temp_msgc_resized_segmentation logger.info("Click to select one voxel of interest") import sed3 ed = sed3.sed3(self.msinds, contour=segmentation == 0) ed.show() edseeds = ed.seeds node_msindex = get_node_msindex(self.msinds, edseeds) node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds = self.debug_inspect_node( node_msindex ) import sed3 ed = sed3.sed3( self.msinds, contour=segmentation == 0, seeds=node_neighboor_seeds ) ed.show() return ( node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds, node_msindex, )
python
def debug_interactive_inspect_node(self): """ Call after segmentation to see selected node neighborhood. User have to select one node by click. :return: """ if ( np.sum( np.abs( np.asarray(self.msinds.shape) - np.asarray(self.segmentation.shape) ) ) == 0 ): segmentation = self.segmentation else: segmentation = self.temp_msgc_resized_segmentation logger.info("Click to select one voxel of interest") import sed3 ed = sed3.sed3(self.msinds, contour=segmentation == 0) ed.show() edseeds = ed.seeds node_msindex = get_node_msindex(self.msinds, edseeds) node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds = self.debug_inspect_node( node_msindex ) import sed3 ed = sed3.sed3( self.msinds, contour=segmentation == 0, seeds=node_neighboor_seeds ) ed.show() return ( node_unariesalt, node_neighboor_edges_and_weights, node_neighboor_seeds, node_msindex, )
[ "def", "debug_interactive_inspect_node", "(", "self", ")", ":", "if", "(", "np", ".", "sum", "(", "np", ".", "abs", "(", "np", ".", "asarray", "(", "self", ".", "msinds", ".", "shape", ")", "-", "np", ".", "asarray", "(", "self", ".", "segmentation", ".", "shape", ")", ")", ")", "==", "0", ")", ":", "segmentation", "=", "self", ".", "segmentation", "else", ":", "segmentation", "=", "self", ".", "temp_msgc_resized_segmentation", "logger", ".", "info", "(", "\"Click to select one voxel of interest\"", ")", "import", "sed3", "ed", "=", "sed3", ".", "sed3", "(", "self", ".", "msinds", ",", "contour", "=", "segmentation", "==", "0", ")", "ed", ".", "show", "(", ")", "edseeds", "=", "ed", ".", "seeds", "node_msindex", "=", "get_node_msindex", "(", "self", ".", "msinds", ",", "edseeds", ")", "node_unariesalt", ",", "node_neighboor_edges_and_weights", ",", "node_neighboor_seeds", "=", "self", ".", "debug_inspect_node", "(", "node_msindex", ")", "import", "sed3", "ed", "=", "sed3", ".", "sed3", "(", "self", ".", "msinds", ",", "contour", "=", "segmentation", "==", "0", ",", "seeds", "=", "node_neighboor_seeds", ")", "ed", ".", "show", "(", ")", "return", "(", "node_unariesalt", ",", "node_neighboor_edges_and_weights", ",", "node_neighboor_seeds", ",", "node_msindex", ",", ")" ]
Call after segmentation to see selected node neighborhood. User have to select one node by click. :return:
[ "Call", "after", "segmentation", "to", "see", "selected", "node", "neighborhood", ".", "User", "have", "to", "select", "one", "node", "by", "click", ".", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1318-L1359
mjirik/imcut
imcut/pycut.py
ImageGraphCut._ssgc_prepare_data_and_run_computation
def _ssgc_prepare_data_and_run_computation( self, # voxels1, voxels2, hard_constraints=True, area_weight=1, ): """ Setting of data. You need set seeds if you want use hard_constraints. """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() # import pdb; pdb.set_trace() # BREAKPOINT unariesalt = self.__create_tlinks( self.img, self.voxelsize, # voxels1, voxels2, self.seeds, area_weight, hard_constraints, ) # některém testu organ semgmentation dosahují unaries -15. což je podiné # stačí vyhodit print před if a je to vidět logger.debug("unaries %.3g , %.3g" % (np.max(unariesalt), np.min(unariesalt))) # create potts pairwise # pairwiseAlpha = -10 pairwise = -(np.eye(2) - 1) pairwise = (self.segparams["pairwise_alpha"] * pairwise).astype(np.int32) # pairwise = np.array([[0,30],[30,0]]).astype(np.int32) # print pairwise self.iparams = {} if self.segparams["use_boundary_penalties"]: sigma = self.segparams["boundary_penalties_sigma"] # set boundary penalties function # Default are penalties based on intensity differences boundary_penalties_fcn = lambda ax: self._boundary_penalties_array( axis=ax, sigma=sigma ) else: boundary_penalties_fcn = None nlinks = self.__create_nlinks( self.img, boundary_penalties_fcn=boundary_penalties_fcn ) self.stats["tlinks shape"].append(unariesalt.reshape(-1, 2).shape) self.stats["nlinks shape"].append(nlinks.shape) # we flatten the unaries # result_graph = cut_from_graph(nlinks, unaries.reshape(-1, 2), # pairwise) start = time.time() if self.debug_images: self._debug_show_unariesalt(unariesalt) result_graph = pygco.cut_from_graph(nlinks, unariesalt.reshape(-1, 2), pairwise) elapsed = time.time() - start self.stats["gc time"] = elapsed result_labeling = result_graph.reshape(self.img.shape) return result_labeling
python
def _ssgc_prepare_data_and_run_computation( self, # voxels1, voxels2, hard_constraints=True, area_weight=1, ): """ Setting of data. You need set seeds if you want use hard_constraints. """ # from PyQt4.QtCore import pyqtRemoveInputHook # pyqtRemoveInputHook() # import pdb; pdb.set_trace() # BREAKPOINT unariesalt = self.__create_tlinks( self.img, self.voxelsize, # voxels1, voxels2, self.seeds, area_weight, hard_constraints, ) # některém testu organ semgmentation dosahují unaries -15. což je podiné # stačí vyhodit print před if a je to vidět logger.debug("unaries %.3g , %.3g" % (np.max(unariesalt), np.min(unariesalt))) # create potts pairwise # pairwiseAlpha = -10 pairwise = -(np.eye(2) - 1) pairwise = (self.segparams["pairwise_alpha"] * pairwise).astype(np.int32) # pairwise = np.array([[0,30],[30,0]]).astype(np.int32) # print pairwise self.iparams = {} if self.segparams["use_boundary_penalties"]: sigma = self.segparams["boundary_penalties_sigma"] # set boundary penalties function # Default are penalties based on intensity differences boundary_penalties_fcn = lambda ax: self._boundary_penalties_array( axis=ax, sigma=sigma ) else: boundary_penalties_fcn = None nlinks = self.__create_nlinks( self.img, boundary_penalties_fcn=boundary_penalties_fcn ) self.stats["tlinks shape"].append(unariesalt.reshape(-1, 2).shape) self.stats["nlinks shape"].append(nlinks.shape) # we flatten the unaries # result_graph = cut_from_graph(nlinks, unaries.reshape(-1, 2), # pairwise) start = time.time() if self.debug_images: self._debug_show_unariesalt(unariesalt) result_graph = pygco.cut_from_graph(nlinks, unariesalt.reshape(-1, 2), pairwise) elapsed = time.time() - start self.stats["gc time"] = elapsed result_labeling = result_graph.reshape(self.img.shape) return result_labeling
[ "def", "_ssgc_prepare_data_and_run_computation", "(", "self", ",", "# voxels1, voxels2,", "hard_constraints", "=", "True", ",", "area_weight", "=", "1", ",", ")", ":", "# from PyQt4.QtCore import pyqtRemoveInputHook", "# pyqtRemoveInputHook()", "# import pdb; pdb.set_trace() # BREAKPOINT", "unariesalt", "=", "self", ".", "__create_tlinks", "(", "self", ".", "img", ",", "self", ".", "voxelsize", ",", "# voxels1, voxels2,", "self", ".", "seeds", ",", "area_weight", ",", "hard_constraints", ",", ")", "# některém testu organ semgmentation dosahují unaries -15. což je podiné", "# stačí vyhodit print před if a je to vidět", "logger", ".", "debug", "(", "\"unaries %.3g , %.3g\"", "%", "(", "np", ".", "max", "(", "unariesalt", ")", ",", "np", ".", "min", "(", "unariesalt", ")", ")", ")", "# create potts pairwise", "# pairwiseAlpha = -10", "pairwise", "=", "-", "(", "np", ".", "eye", "(", "2", ")", "-", "1", ")", "pairwise", "=", "(", "self", ".", "segparams", "[", "\"pairwise_alpha\"", "]", "*", "pairwise", ")", ".", "astype", "(", "np", ".", "int32", ")", "# pairwise = np.array([[0,30],[30,0]]).astype(np.int32)", "# print pairwise", "self", ".", "iparams", "=", "{", "}", "if", "self", ".", "segparams", "[", "\"use_boundary_penalties\"", "]", ":", "sigma", "=", "self", ".", "segparams", "[", "\"boundary_penalties_sigma\"", "]", "# set boundary penalties function", "# Default are penalties based on intensity differences", "boundary_penalties_fcn", "=", "lambda", "ax", ":", "self", ".", "_boundary_penalties_array", "(", "axis", "=", "ax", ",", "sigma", "=", "sigma", ")", "else", ":", "boundary_penalties_fcn", "=", "None", "nlinks", "=", "self", ".", "__create_nlinks", "(", "self", ".", "img", ",", "boundary_penalties_fcn", "=", "boundary_penalties_fcn", ")", "self", ".", "stats", "[", "\"tlinks shape\"", "]", ".", "append", "(", "unariesalt", ".", "reshape", "(", "-", "1", ",", "2", ")", ".", "shape", ")", "self", ".", "stats", "[", "\"nlinks shape\"", "]", ".", "append", "(", "nlinks", ".", "shape", ")", "# we flatten the unaries", "# result_graph = cut_from_graph(nlinks, unaries.reshape(-1, 2),", "# pairwise)", "start", "=", "time", ".", "time", "(", ")", "if", "self", ".", "debug_images", ":", "self", ".", "_debug_show_unariesalt", "(", "unariesalt", ")", "result_graph", "=", "pygco", ".", "cut_from_graph", "(", "nlinks", ",", "unariesalt", ".", "reshape", "(", "-", "1", ",", "2", ")", ",", "pairwise", ")", "elapsed", "=", "time", ".", "time", "(", ")", "-", "start", "self", ".", "stats", "[", "\"gc time\"", "]", "=", "elapsed", "result_labeling", "=", "result_graph", ".", "reshape", "(", "self", ".", "img", ".", "shape", ")", "return", "result_labeling" ]
Setting of data. You need set seeds if you want use hard_constraints.
[ "Setting", "of", "data", ".", "You", "need", "set", "seeds", "if", "you", "want", "use", "hard_constraints", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/pycut.py#L1370-L1430
mjirik/imcut
imcut/image_manipulation.py
resize_to_shape
def resize_to_shape(data, shape, zoom=None, mode="nearest", order=0): """ Function resize input data to specific shape. :param data: input 3d array-like data :param shape: shape of output data :param zoom: zoom is used for back compatibility :mode: default is 'nearest' """ # @TODO remove old code in except part # TODO use function from library in future try: # rint 'pred vyjimkou' # aise Exception ('test without skimage') # rint 'za vyjimkou' import skimage import skimage.transform # Now we need reshape seeds and segmentation to original size # with warnings.catch_warnings(): # warnings.filterwarnings("ignore", ".*'constant', will be changed to.*") segm_orig_scale = skimage.transform.resize( data, shape, order=0, preserve_range=True, mode="reflect" ) segmentation = segm_orig_scale logger.debug("resize to orig with skimage") except: if zoom is None: zoom = shape / np.asarray(data.shape).astype(np.double) segmentation = resize_to_shape_with_zoom( data, zoom=zoom, mode=mode, order=order ) return segmentation
python
def resize_to_shape(data, shape, zoom=None, mode="nearest", order=0): """ Function resize input data to specific shape. :param data: input 3d array-like data :param shape: shape of output data :param zoom: zoom is used for back compatibility :mode: default is 'nearest' """ # @TODO remove old code in except part # TODO use function from library in future try: # rint 'pred vyjimkou' # aise Exception ('test without skimage') # rint 'za vyjimkou' import skimage import skimage.transform # Now we need reshape seeds and segmentation to original size # with warnings.catch_warnings(): # warnings.filterwarnings("ignore", ".*'constant', will be changed to.*") segm_orig_scale = skimage.transform.resize( data, shape, order=0, preserve_range=True, mode="reflect" ) segmentation = segm_orig_scale logger.debug("resize to orig with skimage") except: if zoom is None: zoom = shape / np.asarray(data.shape).astype(np.double) segmentation = resize_to_shape_with_zoom( data, zoom=zoom, mode=mode, order=order ) return segmentation
[ "def", "resize_to_shape", "(", "data", ",", "shape", ",", "zoom", "=", "None", ",", "mode", "=", "\"nearest\"", ",", "order", "=", "0", ")", ":", "# @TODO remove old code in except part", "# TODO use function from library in future", "try", ":", "# rint 'pred vyjimkou'", "# aise Exception ('test without skimage')", "# rint 'za vyjimkou'", "import", "skimage", "import", "skimage", ".", "transform", "# Now we need reshape seeds and segmentation to original size", "# with warnings.catch_warnings():", "# warnings.filterwarnings(\"ignore\", \".*'constant', will be changed to.*\")", "segm_orig_scale", "=", "skimage", ".", "transform", ".", "resize", "(", "data", ",", "shape", ",", "order", "=", "0", ",", "preserve_range", "=", "True", ",", "mode", "=", "\"reflect\"", ")", "segmentation", "=", "segm_orig_scale", "logger", ".", "debug", "(", "\"resize to orig with skimage\"", ")", "except", ":", "if", "zoom", "is", "None", ":", "zoom", "=", "shape", "/", "np", ".", "asarray", "(", "data", ".", "shape", ")", ".", "astype", "(", "np", ".", "double", ")", "segmentation", "=", "resize_to_shape_with_zoom", "(", "data", ",", "zoom", "=", "zoom", ",", "mode", "=", "mode", ",", "order", "=", "order", ")", "return", "segmentation" ]
Function resize input data to specific shape. :param data: input 3d array-like data :param shape: shape of output data :param zoom: zoom is used for back compatibility :mode: default is 'nearest'
[ "Function", "resize", "input", "data", "to", "specific", "shape", ".", ":", "param", "data", ":", "input", "3d", "array", "-", "like", "data", ":", "param", "shape", ":", "shape", "of", "output", "data", ":", "param", "zoom", ":", "zoom", "is", "used", "for", "back", "compatibility", ":", "mode", ":", "default", "is", "nearest" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L14-L49
mjirik/imcut
imcut/image_manipulation.py
seed_zoom
def seed_zoom(seeds, zoom): """ Smart zoom for sparse matrix. If there is resize to bigger resolution thin line of label could be lost. This function prefers labels larger then zero. If there is only one small voxel in larger volume with zeros it is selected. """ # import scipy # loseeds=seeds labels = np.unique(seeds) # remove first label - 0 labels = np.delete(labels, 0) # @TODO smart interpolation for seeds in one block # loseeds = scipy.ndimage.interpolation.zoom( # seeds, zoom, order=0) loshape = np.ceil(np.array(seeds.shape) * 1.0 / zoom).astype(np.int) loseeds = np.zeros(loshape, dtype=np.int8) loseeds = loseeds.astype(np.int8) for label in labels: a, b, c = np.where(seeds == label) loa = np.round(a // zoom) lob = np.round(b // zoom) loc = np.round(c // zoom) # loseeds = np.zeros(loshape) loseeds[loa, lob, loc] += label # this is to detect conflict seeds loseeds[loseeds > label] = 100 # remove conflict seeds loseeds[loseeds > 99] = 0 # import py3DSeedEditor # ped = py3DSeedEditor.py3DSeedEditor(loseeds) # ped.show() return loseeds
python
def seed_zoom(seeds, zoom): """ Smart zoom for sparse matrix. If there is resize to bigger resolution thin line of label could be lost. This function prefers labels larger then zero. If there is only one small voxel in larger volume with zeros it is selected. """ # import scipy # loseeds=seeds labels = np.unique(seeds) # remove first label - 0 labels = np.delete(labels, 0) # @TODO smart interpolation for seeds in one block # loseeds = scipy.ndimage.interpolation.zoom( # seeds, zoom, order=0) loshape = np.ceil(np.array(seeds.shape) * 1.0 / zoom).astype(np.int) loseeds = np.zeros(loshape, dtype=np.int8) loseeds = loseeds.astype(np.int8) for label in labels: a, b, c = np.where(seeds == label) loa = np.round(a // zoom) lob = np.round(b // zoom) loc = np.round(c // zoom) # loseeds = np.zeros(loshape) loseeds[loa, lob, loc] += label # this is to detect conflict seeds loseeds[loseeds > label] = 100 # remove conflict seeds loseeds[loseeds > 99] = 0 # import py3DSeedEditor # ped = py3DSeedEditor.py3DSeedEditor(loseeds) # ped.show() return loseeds
[ "def", "seed_zoom", "(", "seeds", ",", "zoom", ")", ":", "# import scipy", "# loseeds=seeds", "labels", "=", "np", ".", "unique", "(", "seeds", ")", "# remove first label - 0", "labels", "=", "np", ".", "delete", "(", "labels", ",", "0", ")", "# @TODO smart interpolation for seeds in one block", "# loseeds = scipy.ndimage.interpolation.zoom(", "# seeds, zoom, order=0)", "loshape", "=", "np", ".", "ceil", "(", "np", ".", "array", "(", "seeds", ".", "shape", ")", "*", "1.0", "/", "zoom", ")", ".", "astype", "(", "np", ".", "int", ")", "loseeds", "=", "np", ".", "zeros", "(", "loshape", ",", "dtype", "=", "np", ".", "int8", ")", "loseeds", "=", "loseeds", ".", "astype", "(", "np", ".", "int8", ")", "for", "label", "in", "labels", ":", "a", ",", "b", ",", "c", "=", "np", ".", "where", "(", "seeds", "==", "label", ")", "loa", "=", "np", ".", "round", "(", "a", "//", "zoom", ")", "lob", "=", "np", ".", "round", "(", "b", "//", "zoom", ")", "loc", "=", "np", ".", "round", "(", "c", "//", "zoom", ")", "# loseeds = np.zeros(loshape)", "loseeds", "[", "loa", ",", "lob", ",", "loc", "]", "+=", "label", "# this is to detect conflict seeds", "loseeds", "[", "loseeds", ">", "label", "]", "=", "100", "# remove conflict seeds", "loseeds", "[", "loseeds", ">", "99", "]", "=", "0", "# import py3DSeedEditor", "# ped = py3DSeedEditor.py3DSeedEditor(loseeds)", "# ped.show()", "return", "loseeds" ]
Smart zoom for sparse matrix. If there is resize to bigger resolution thin line of label could be lost. This function prefers labels larger then zero. If there is only one small voxel in larger volume with zeros it is selected.
[ "Smart", "zoom", "for", "sparse", "matrix", ".", "If", "there", "is", "resize", "to", "bigger", "resolution", "thin", "line", "of", "label", "could", "be", "lost", ".", "This", "function", "prefers", "labels", "larger", "then", "zero", ".", "If", "there", "is", "only", "one", "small", "voxel", "in", "larger", "volume", "with", "zeros", "it", "is", "selected", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L85-L121
mjirik/imcut
imcut/image_manipulation.py
zoom_to_shape
def zoom_to_shape(data, shape, dtype=None): """ Zoom data to specific shape. """ import scipy import scipy.ndimage zoomd = np.array(shape) / np.array(data.shape, dtype=np.double) import warnings datares = scipy.ndimage.interpolation.zoom(data, zoomd, order=0, mode="reflect") if datares.shape != shape: logger.warning("Zoom with different output shape") dataout = np.zeros(shape, dtype=dtype) shpmin = np.minimum(dataout.shape, shape) dataout[: shpmin[0], : shpmin[1], : shpmin[2]] = datares[ : shpmin[0], : shpmin[1], : shpmin[2] ] return datares
python
def zoom_to_shape(data, shape, dtype=None): """ Zoom data to specific shape. """ import scipy import scipy.ndimage zoomd = np.array(shape) / np.array(data.shape, dtype=np.double) import warnings datares = scipy.ndimage.interpolation.zoom(data, zoomd, order=0, mode="reflect") if datares.shape != shape: logger.warning("Zoom with different output shape") dataout = np.zeros(shape, dtype=dtype) shpmin = np.minimum(dataout.shape, shape) dataout[: shpmin[0], : shpmin[1], : shpmin[2]] = datares[ : shpmin[0], : shpmin[1], : shpmin[2] ] return datares
[ "def", "zoom_to_shape", "(", "data", ",", "shape", ",", "dtype", "=", "None", ")", ":", "import", "scipy", "import", "scipy", ".", "ndimage", "zoomd", "=", "np", ".", "array", "(", "shape", ")", "/", "np", ".", "array", "(", "data", ".", "shape", ",", "dtype", "=", "np", ".", "double", ")", "import", "warnings", "datares", "=", "scipy", ".", "ndimage", ".", "interpolation", ".", "zoom", "(", "data", ",", "zoomd", ",", "order", "=", "0", ",", "mode", "=", "\"reflect\"", ")", "if", "datares", ".", "shape", "!=", "shape", ":", "logger", ".", "warning", "(", "\"Zoom with different output shape\"", ")", "dataout", "=", "np", ".", "zeros", "(", "shape", ",", "dtype", "=", "dtype", ")", "shpmin", "=", "np", ".", "minimum", "(", "dataout", ".", "shape", ",", "shape", ")", "dataout", "[", ":", "shpmin", "[", "0", "]", ",", ":", "shpmin", "[", "1", "]", ",", ":", "shpmin", "[", "2", "]", "]", "=", "datares", "[", ":", "shpmin", "[", "0", "]", ",", ":", "shpmin", "[", "1", "]", ",", ":", "shpmin", "[", "2", "]", "]", "return", "datares" ]
Zoom data to specific shape.
[ "Zoom", "data", "to", "specific", "shape", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L124-L144
mjirik/imcut
imcut/image_manipulation.py
crop
def crop(data, crinfo): """ Crop the data. crop(data, crinfo) :param crinfo: min and max for each axis - [[minX, maxX], [minY, maxY], [minZ, maxZ]] """ crinfo = fix_crinfo(crinfo) return data[ __int_or_none(crinfo[0][0]) : __int_or_none(crinfo[0][1]), __int_or_none(crinfo[1][0]) : __int_or_none(crinfo[1][1]), __int_or_none(crinfo[2][0]) : __int_or_none(crinfo[2][1]), ]
python
def crop(data, crinfo): """ Crop the data. crop(data, crinfo) :param crinfo: min and max for each axis - [[minX, maxX], [minY, maxY], [minZ, maxZ]] """ crinfo = fix_crinfo(crinfo) return data[ __int_or_none(crinfo[0][0]) : __int_or_none(crinfo[0][1]), __int_or_none(crinfo[1][0]) : __int_or_none(crinfo[1][1]), __int_or_none(crinfo[2][0]) : __int_or_none(crinfo[2][1]), ]
[ "def", "crop", "(", "data", ",", "crinfo", ")", ":", "crinfo", "=", "fix_crinfo", "(", "crinfo", ")", "return", "data", "[", "__int_or_none", "(", "crinfo", "[", "0", "]", "[", "0", "]", ")", ":", "__int_or_none", "(", "crinfo", "[", "0", "]", "[", "1", "]", ")", ",", "__int_or_none", "(", "crinfo", "[", "1", "]", "[", "0", "]", ")", ":", "__int_or_none", "(", "crinfo", "[", "1", "]", "[", "1", "]", ")", ",", "__int_or_none", "(", "crinfo", "[", "2", "]", "[", "0", "]", ")", ":", "__int_or_none", "(", "crinfo", "[", "2", "]", "[", "1", "]", ")", ",", "]" ]
Crop the data. crop(data, crinfo) :param crinfo: min and max for each axis - [[minX, maxX], [minY, maxY], [minZ, maxZ]]
[ "Crop", "the", "data", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L361-L375
mjirik/imcut
imcut/image_manipulation.py
combinecrinfo
def combinecrinfo(crinfo1, crinfo2): """ Combine two crinfos. First used is crinfo1, second used is crinfo2. """ crinfo1 = fix_crinfo(crinfo1) crinfo2 = fix_crinfo(crinfo2) crinfo = [ [crinfo1[0][0] + crinfo2[0][0], crinfo1[0][0] + crinfo2[0][1]], [crinfo1[1][0] + crinfo2[1][0], crinfo1[1][0] + crinfo2[1][1]], [crinfo1[2][0] + crinfo2[2][0], crinfo1[2][0] + crinfo2[2][1]], ] return crinfo
python
def combinecrinfo(crinfo1, crinfo2): """ Combine two crinfos. First used is crinfo1, second used is crinfo2. """ crinfo1 = fix_crinfo(crinfo1) crinfo2 = fix_crinfo(crinfo2) crinfo = [ [crinfo1[0][0] + crinfo2[0][0], crinfo1[0][0] + crinfo2[0][1]], [crinfo1[1][0] + crinfo2[1][0], crinfo1[1][0] + crinfo2[1][1]], [crinfo1[2][0] + crinfo2[2][0], crinfo1[2][0] + crinfo2[2][1]], ] return crinfo
[ "def", "combinecrinfo", "(", "crinfo1", ",", "crinfo2", ")", ":", "crinfo1", "=", "fix_crinfo", "(", "crinfo1", ")", "crinfo2", "=", "fix_crinfo", "(", "crinfo2", ")", "crinfo", "=", "[", "[", "crinfo1", "[", "0", "]", "[", "0", "]", "+", "crinfo2", "[", "0", "]", "[", "0", "]", ",", "crinfo1", "[", "0", "]", "[", "0", "]", "+", "crinfo2", "[", "0", "]", "[", "1", "]", "]", ",", "[", "crinfo1", "[", "1", "]", "[", "0", "]", "+", "crinfo2", "[", "1", "]", "[", "0", "]", ",", "crinfo1", "[", "1", "]", "[", "0", "]", "+", "crinfo2", "[", "1", "]", "[", "1", "]", "]", ",", "[", "crinfo1", "[", "2", "]", "[", "0", "]", "+", "crinfo2", "[", "2", "]", "[", "0", "]", ",", "crinfo1", "[", "2", "]", "[", "0", "]", "+", "crinfo2", "[", "2", "]", "[", "1", "]", "]", ",", "]", "return", "crinfo" ]
Combine two crinfos. First used is crinfo1, second used is crinfo2.
[ "Combine", "two", "crinfos", ".", "First", "used", "is", "crinfo1", "second", "used", "is", "crinfo2", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L384-L397
mjirik/imcut
imcut/image_manipulation.py
crinfo_from_specific_data
def crinfo_from_specific_data(data, margin=0): """ Create crinfo of minimum orthogonal nonzero block in input data. :param data: input data :param margin: add margin to minimum block :return: """ # hledáme automatický ořez, nonzero dá indexy logger.debug("crinfo") logger.debug(str(margin)) nzi = np.nonzero(data) logger.debug(str(nzi)) if np.isscalar(margin): margin = [margin] * 3 x1 = np.min(nzi[0]) - margin[0] x2 = np.max(nzi[0]) + margin[0] + 1 y1 = np.min(nzi[1]) - margin[0] y2 = np.max(nzi[1]) + margin[0] + 1 z1 = np.min(nzi[2]) - margin[0] z2 = np.max(nzi[2]) + margin[0] + 1 # ošetření mezí polí if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if z1 < 0: z1 = 0 if x2 > data.shape[0]: x2 = data.shape[0] - 1 if y2 > data.shape[1]: y2 = data.shape[1] - 1 if z2 > data.shape[2]: z2 = data.shape[2] - 1 # ořez crinfo = [[x1, x2], [y1, y2], [z1, z2]] return crinfo
python
def crinfo_from_specific_data(data, margin=0): """ Create crinfo of minimum orthogonal nonzero block in input data. :param data: input data :param margin: add margin to minimum block :return: """ # hledáme automatický ořez, nonzero dá indexy logger.debug("crinfo") logger.debug(str(margin)) nzi = np.nonzero(data) logger.debug(str(nzi)) if np.isscalar(margin): margin = [margin] * 3 x1 = np.min(nzi[0]) - margin[0] x2 = np.max(nzi[0]) + margin[0] + 1 y1 = np.min(nzi[1]) - margin[0] y2 = np.max(nzi[1]) + margin[0] + 1 z1 = np.min(nzi[2]) - margin[0] z2 = np.max(nzi[2]) + margin[0] + 1 # ošetření mezí polí if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if z1 < 0: z1 = 0 if x2 > data.shape[0]: x2 = data.shape[0] - 1 if y2 > data.shape[1]: y2 = data.shape[1] - 1 if z2 > data.shape[2]: z2 = data.shape[2] - 1 # ořez crinfo = [[x1, x2], [y1, y2], [z1, z2]] return crinfo
[ "def", "crinfo_from_specific_data", "(", "data", ",", "margin", "=", "0", ")", ":", "# hledáme automatický ořez, nonzero dá indexy", "logger", ".", "debug", "(", "\"crinfo\"", ")", "logger", ".", "debug", "(", "str", "(", "margin", ")", ")", "nzi", "=", "np", ".", "nonzero", "(", "data", ")", "logger", ".", "debug", "(", "str", "(", "nzi", ")", ")", "if", "np", ".", "isscalar", "(", "margin", ")", ":", "margin", "=", "[", "margin", "]", "*", "3", "x1", "=", "np", ".", "min", "(", "nzi", "[", "0", "]", ")", "-", "margin", "[", "0", "]", "x2", "=", "np", ".", "max", "(", "nzi", "[", "0", "]", ")", "+", "margin", "[", "0", "]", "+", "1", "y1", "=", "np", ".", "min", "(", "nzi", "[", "1", "]", ")", "-", "margin", "[", "0", "]", "y2", "=", "np", ".", "max", "(", "nzi", "[", "1", "]", ")", "+", "margin", "[", "0", "]", "+", "1", "z1", "=", "np", ".", "min", "(", "nzi", "[", "2", "]", ")", "-", "margin", "[", "0", "]", "z2", "=", "np", ".", "max", "(", "nzi", "[", "2", "]", ")", "+", "margin", "[", "0", "]", "+", "1", "# ošetření mezí polí", "if", "x1", "<", "0", ":", "x1", "=", "0", "if", "y1", "<", "0", ":", "y1", "=", "0", "if", "z1", "<", "0", ":", "z1", "=", "0", "if", "x2", ">", "data", ".", "shape", "[", "0", "]", ":", "x2", "=", "data", ".", "shape", "[", "0", "]", "-", "1", "if", "y2", ">", "data", ".", "shape", "[", "1", "]", ":", "y2", "=", "data", ".", "shape", "[", "1", "]", "-", "1", "if", "z2", ">", "data", ".", "shape", "[", "2", "]", ":", "z2", "=", "data", ".", "shape", "[", "2", "]", "-", "1", "# ořez", "crinfo", "=", "[", "[", "x1", ",", "x2", "]", ",", "[", "y1", ",", "y2", "]", ",", "[", "z1", ",", "z2", "]", "]", "return", "crinfo" ]
Create crinfo of minimum orthogonal nonzero block in input data. :param data: input data :param margin: add margin to minimum block :return:
[ "Create", "crinfo", "of", "minimum", "orthogonal", "nonzero", "block", "in", "input", "data", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L400-L441
mjirik/imcut
imcut/image_manipulation.py
uncrop
def uncrop(data, crinfo, orig_shape, resize=False, outside_mode="constant", cval=0): """ Put some boundary to input image. :param data: input data :param crinfo: array with minimum and maximum index along each axis [[minX, maxX],[minY, maxY],[minZ, maxZ]]. If crinfo is None, the whole input image is placed into [0, 0, 0]. If crinfo is just series of three numbers, it is used as an initial point for input image placement. :param orig_shape: shape of uncropped image :param resize: True or False (default). Usefull if the data.shape does not fit to crinfo shape. :param outside_mode: 'constant', 'nearest' :return: """ if crinfo is None: crinfo = list(zip([0] * data.ndim, orig_shape)) elif np.asarray(crinfo).size == data.ndim: crinfo = list(zip(crinfo, np.asarray(crinfo) + data.shape)) crinfo = fix_crinfo(crinfo) data_out = np.ones(orig_shape, dtype=data.dtype) * cval # print 'uncrop ', crinfo # print orig_shape # print data.shape if resize: data = resize_to_shape(data, crinfo[:, 1] - crinfo[:, 0]) startx = np.round(crinfo[0][0]).astype(int) starty = np.round(crinfo[1][0]).astype(int) startz = np.round(crinfo[2][0]).astype(int) data_out[ # np.round(crinfo[0][0]).astype(int):np.round(crinfo[0][1]).astype(int)+1, # np.round(crinfo[1][0]).astype(int):np.round(crinfo[1][1]).astype(int)+1, # np.round(crinfo[2][0]).astype(int):np.round(crinfo[2][1]).astype(int)+1 startx : startx + data.shape[0], starty : starty + data.shape[1], startz : startz + data.shape[2], ] = data if outside_mode == "nearest": # for ax in range(data.ndims): # ax = 0 # copy border slice to pixels out of boundary - the higher part for ax in range(data.ndim): # the part under the crop start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = start if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(None, start) # data_out[start + data.shape[ax] : , :, :] = tile0 data_out[slices] = tile0 # plt.imshow(np.squeeze(repeated_slice)) # plt.show() # the part over the crop start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start + data.shape[ax] - 1 repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = data_out.shape[ax] - (start + data.shape[ax]) if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(start + data.shape[ax], None) # data_out[start + data.shape[ax] : , :, :] = tile0 data_out[slices] = tile0 # plt.imshow(np.squeeze(repeated_slice)) # plt.show() return data_out
python
def uncrop(data, crinfo, orig_shape, resize=False, outside_mode="constant", cval=0): """ Put some boundary to input image. :param data: input data :param crinfo: array with minimum and maximum index along each axis [[minX, maxX],[minY, maxY],[minZ, maxZ]]. If crinfo is None, the whole input image is placed into [0, 0, 0]. If crinfo is just series of three numbers, it is used as an initial point for input image placement. :param orig_shape: shape of uncropped image :param resize: True or False (default). Usefull if the data.shape does not fit to crinfo shape. :param outside_mode: 'constant', 'nearest' :return: """ if crinfo is None: crinfo = list(zip([0] * data.ndim, orig_shape)) elif np.asarray(crinfo).size == data.ndim: crinfo = list(zip(crinfo, np.asarray(crinfo) + data.shape)) crinfo = fix_crinfo(crinfo) data_out = np.ones(orig_shape, dtype=data.dtype) * cval # print 'uncrop ', crinfo # print orig_shape # print data.shape if resize: data = resize_to_shape(data, crinfo[:, 1] - crinfo[:, 0]) startx = np.round(crinfo[0][0]).astype(int) starty = np.round(crinfo[1][0]).astype(int) startz = np.round(crinfo[2][0]).astype(int) data_out[ # np.round(crinfo[0][0]).astype(int):np.round(crinfo[0][1]).astype(int)+1, # np.round(crinfo[1][0]).astype(int):np.round(crinfo[1][1]).astype(int)+1, # np.round(crinfo[2][0]).astype(int):np.round(crinfo[2][1]).astype(int)+1 startx : startx + data.shape[0], starty : starty + data.shape[1], startz : startz + data.shape[2], ] = data if outside_mode == "nearest": # for ax in range(data.ndims): # ax = 0 # copy border slice to pixels out of boundary - the higher part for ax in range(data.ndim): # the part under the crop start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = start if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(None, start) # data_out[start + data.shape[ax] : , :, :] = tile0 data_out[slices] = tile0 # plt.imshow(np.squeeze(repeated_slice)) # plt.show() # the part over the crop start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start + data.shape[ax] - 1 repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = data_out.shape[ax] - (start + data.shape[ax]) if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(start + data.shape[ax], None) # data_out[start + data.shape[ax] : , :, :] = tile0 data_out[slices] = tile0 # plt.imshow(np.squeeze(repeated_slice)) # plt.show() return data_out
[ "def", "uncrop", "(", "data", ",", "crinfo", ",", "orig_shape", ",", "resize", "=", "False", ",", "outside_mode", "=", "\"constant\"", ",", "cval", "=", "0", ")", ":", "if", "crinfo", "is", "None", ":", "crinfo", "=", "list", "(", "zip", "(", "[", "0", "]", "*", "data", ".", "ndim", ",", "orig_shape", ")", ")", "elif", "np", ".", "asarray", "(", "crinfo", ")", ".", "size", "==", "data", ".", "ndim", ":", "crinfo", "=", "list", "(", "zip", "(", "crinfo", ",", "np", ".", "asarray", "(", "crinfo", ")", "+", "data", ".", "shape", ")", ")", "crinfo", "=", "fix_crinfo", "(", "crinfo", ")", "data_out", "=", "np", ".", "ones", "(", "orig_shape", ",", "dtype", "=", "data", ".", "dtype", ")", "*", "cval", "# print 'uncrop ', crinfo", "# print orig_shape", "# print data.shape", "if", "resize", ":", "data", "=", "resize_to_shape", "(", "data", ",", "crinfo", "[", ":", ",", "1", "]", "-", "crinfo", "[", ":", ",", "0", "]", ")", "startx", "=", "np", ".", "round", "(", "crinfo", "[", "0", "]", "[", "0", "]", ")", ".", "astype", "(", "int", ")", "starty", "=", "np", ".", "round", "(", "crinfo", "[", "1", "]", "[", "0", "]", ")", ".", "astype", "(", "int", ")", "startz", "=", "np", ".", "round", "(", "crinfo", "[", "2", "]", "[", "0", "]", ")", ".", "astype", "(", "int", ")", "data_out", "[", "# np.round(crinfo[0][0]).astype(int):np.round(crinfo[0][1]).astype(int)+1,", "# np.round(crinfo[1][0]).astype(int):np.round(crinfo[1][1]).astype(int)+1,", "# np.round(crinfo[2][0]).astype(int):np.round(crinfo[2][1]).astype(int)+1", "startx", ":", "startx", "+", "data", ".", "shape", "[", "0", "]", ",", "starty", ":", "starty", "+", "data", ".", "shape", "[", "1", "]", ",", "startz", ":", "startz", "+", "data", ".", "shape", "[", "2", "]", ",", "]", "=", "data", "if", "outside_mode", "==", "\"nearest\"", ":", "# for ax in range(data.ndims):", "# ax = 0", "# copy border slice to pixels out of boundary - the higher part", "for", "ax", "in", "range", "(", "data", ".", "ndim", ")", ":", "# the part under the crop", "start", "=", "np", ".", "round", "(", "crinfo", "[", "ax", "]", "[", "0", "]", ")", ".", "astype", "(", "int", ")", "slices", "=", "[", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", "]", "slices", "[", "ax", "]", "=", "start", "repeated_slice", "=", "np", ".", "expand_dims", "(", "data_out", "[", "slices", "]", ",", "ax", ")", "append_sz", "=", "start", "if", "append_sz", ">", "0", ":", "tile0", "=", "np", ".", "repeat", "(", "repeated_slice", ",", "append_sz", ",", "axis", "=", "ax", ")", "slices", "=", "[", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", "]", "slices", "[", "ax", "]", "=", "slice", "(", "None", ",", "start", ")", "# data_out[start + data.shape[ax] : , :, :] = tile0", "data_out", "[", "slices", "]", "=", "tile0", "# plt.imshow(np.squeeze(repeated_slice))", "# plt.show()", "# the part over the crop", "start", "=", "np", ".", "round", "(", "crinfo", "[", "ax", "]", "[", "0", "]", ")", ".", "astype", "(", "int", ")", "slices", "=", "[", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", "]", "slices", "[", "ax", "]", "=", "start", "+", "data", ".", "shape", "[", "ax", "]", "-", "1", "repeated_slice", "=", "np", ".", "expand_dims", "(", "data_out", "[", "slices", "]", ",", "ax", ")", "append_sz", "=", "data_out", ".", "shape", "[", "ax", "]", "-", "(", "start", "+", "data", ".", "shape", "[", "ax", "]", ")", "if", "append_sz", ">", "0", ":", "tile0", "=", "np", ".", "repeat", "(", "repeated_slice", ",", "append_sz", ",", "axis", "=", "ax", ")", "slices", "=", "[", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", ",", "slice", "(", "None", ")", "]", "slices", "[", "ax", "]", "=", "slice", "(", "start", "+", "data", ".", "shape", "[", "ax", "]", ",", "None", ")", "# data_out[start + data.shape[ax] : , :, :] = tile0", "data_out", "[", "slices", "]", "=", "tile0", "# plt.imshow(np.squeeze(repeated_slice))", "# plt.show()", "return", "data_out" ]
Put some boundary to input image. :param data: input data :param crinfo: array with minimum and maximum index along each axis [[minX, maxX],[minY, maxY],[minZ, maxZ]]. If crinfo is None, the whole input image is placed into [0, 0, 0]. If crinfo is just series of three numbers, it is used as an initial point for input image placement. :param orig_shape: shape of uncropped image :param resize: True or False (default). Usefull if the data.shape does not fit to crinfo shape. :param outside_mode: 'constant', 'nearest' :return:
[ "Put", "some", "boundary", "to", "input", "image", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L444-L522
mjirik/imcut
imcut/image_manipulation.py
fix_crinfo
def fix_crinfo(crinfo, to="axis"): """ Function recognize order of crinfo and convert it to proper format. """ crinfo = np.asarray(crinfo) if crinfo.shape[0] == 2: crinfo = crinfo.T return crinfo
python
def fix_crinfo(crinfo, to="axis"): """ Function recognize order of crinfo and convert it to proper format. """ crinfo = np.asarray(crinfo) if crinfo.shape[0] == 2: crinfo = crinfo.T return crinfo
[ "def", "fix_crinfo", "(", "crinfo", ",", "to", "=", "\"axis\"", ")", ":", "crinfo", "=", "np", ".", "asarray", "(", "crinfo", ")", "if", "crinfo", ".", "shape", "[", "0", "]", "==", "2", ":", "crinfo", "=", "crinfo", ".", "T", "return", "crinfo" ]
Function recognize order of crinfo and convert it to proper format.
[ "Function", "recognize", "order", "of", "crinfo", "and", "convert", "it", "to", "proper", "format", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/image_manipulation.py#L525-L534
mjirik/imcut
imcut/graph.py
grid_edges
def grid_edges(shape, inds=None, return_directions=True): """ Get list of grid edges :param shape: :param inds: :param return_directions: :return: """ if inds is None: inds = np.arange(np.prod(shape)).reshape(shape) # if not self.segparams['use_boundary_penalties'] and \ # boundary_penalties_fcn is None : if len(shape) == 2: edgx = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()] edgy = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()] edges = [edgx, edgy] directions = [ np.ones([edgx.shape[0]], dtype=np.int8) * 0, np.ones([edgy.shape[0]], dtype=np.int8) * 1, ] elif len(shape) == 3: # This is faster for some specific format edgx = np.c_[inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel()] edgy = np.c_[inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel()] edgz = np.c_[inds[:-1, :, :].ravel(), inds[1:, :, :].ravel()] edges = [edgx, edgy, edgz] else: logger.error("Expected 2D or 3D data") # for all edges along first direction put 0, for second direction put 1, for third direction put 3 if return_directions: directions = [] for idirection in range(len(shape)): directions.append( np.ones([edges[idirection].shape[0]], dtype=np.int8) * idirection ) edges = np.concatenate(edges) if return_directions: edge_dir = np.concatenate(directions) return edges, edge_dir else: return edges
python
def grid_edges(shape, inds=None, return_directions=True): """ Get list of grid edges :param shape: :param inds: :param return_directions: :return: """ if inds is None: inds = np.arange(np.prod(shape)).reshape(shape) # if not self.segparams['use_boundary_penalties'] and \ # boundary_penalties_fcn is None : if len(shape) == 2: edgx = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()] edgy = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()] edges = [edgx, edgy] directions = [ np.ones([edgx.shape[0]], dtype=np.int8) * 0, np.ones([edgy.shape[0]], dtype=np.int8) * 1, ] elif len(shape) == 3: # This is faster for some specific format edgx = np.c_[inds[:, :, :-1].ravel(), inds[:, :, 1:].ravel()] edgy = np.c_[inds[:, :-1, :].ravel(), inds[:, 1:, :].ravel()] edgz = np.c_[inds[:-1, :, :].ravel(), inds[1:, :, :].ravel()] edges = [edgx, edgy, edgz] else: logger.error("Expected 2D or 3D data") # for all edges along first direction put 0, for second direction put 1, for third direction put 3 if return_directions: directions = [] for idirection in range(len(shape)): directions.append( np.ones([edges[idirection].shape[0]], dtype=np.int8) * idirection ) edges = np.concatenate(edges) if return_directions: edge_dir = np.concatenate(directions) return edges, edge_dir else: return edges
[ "def", "grid_edges", "(", "shape", ",", "inds", "=", "None", ",", "return_directions", "=", "True", ")", ":", "if", "inds", "is", "None", ":", "inds", "=", "np", ".", "arange", "(", "np", ".", "prod", "(", "shape", ")", ")", ".", "reshape", "(", "shape", ")", "# if not self.segparams['use_boundary_penalties'] and \\", "# boundary_penalties_fcn is None :", "if", "len", "(", "shape", ")", "==", "2", ":", "edgx", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", "-", "1", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", "1", ":", "]", ".", "ravel", "(", ")", "]", "edgy", "=", "np", ".", "c_", "[", "inds", "[", ":", "-", "1", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", "1", ":", ",", ":", "]", ".", "ravel", "(", ")", "]", "edges", "=", "[", "edgx", ",", "edgy", "]", "directions", "=", "[", "np", ".", "ones", "(", "[", "edgx", ".", "shape", "[", "0", "]", "]", ",", "dtype", "=", "np", ".", "int8", ")", "*", "0", ",", "np", ".", "ones", "(", "[", "edgy", ".", "shape", "[", "0", "]", "]", ",", "dtype", "=", "np", ".", "int8", ")", "*", "1", ",", "]", "elif", "len", "(", "shape", ")", "==", "3", ":", "# This is faster for some specific format", "edgx", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", ",", ":", "-", "1", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", ":", ",", "1", ":", "]", ".", "ravel", "(", ")", "]", "edgy", "=", "np", ".", "c_", "[", "inds", "[", ":", ",", ":", "-", "1", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", ":", ",", "1", ":", ",", ":", "]", ".", "ravel", "(", ")", "]", "edgz", "=", "np", ".", "c_", "[", "inds", "[", ":", "-", "1", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", ",", "inds", "[", "1", ":", ",", ":", ",", ":", "]", ".", "ravel", "(", ")", "]", "edges", "=", "[", "edgx", ",", "edgy", ",", "edgz", "]", "else", ":", "logger", ".", "error", "(", "\"Expected 2D or 3D data\"", ")", "# for all edges along first direction put 0, for second direction put 1, for third direction put 3", "if", "return_directions", ":", "directions", "=", "[", "]", "for", "idirection", "in", "range", "(", "len", "(", "shape", ")", ")", ":", "directions", ".", "append", "(", "np", ".", "ones", "(", "[", "edges", "[", "idirection", "]", ".", "shape", "[", "0", "]", "]", ",", "dtype", "=", "np", ".", "int8", ")", "*", "idirection", ")", "edges", "=", "np", ".", "concatenate", "(", "edges", ")", "if", "return_directions", ":", "edge_dir", "=", "np", ".", "concatenate", "(", "directions", ")", "return", "edges", ",", "edge_dir", "else", ":", "return", "edges" ]
Get list of grid edges :param shape: :param inds: :param return_directions: :return:
[ "Get", "list", "of", "grid", "edges", ":", "param", "shape", ":", ":", "param", "inds", ":", ":", "param", "return_directions", ":", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L524-L568
mjirik/imcut
imcut/graph.py
gen_grid_2d
def gen_grid_2d(shape, voxelsize): """ Generate list of edges for a base grid. """ nr, nc = shape nrm1, ncm1 = nr - 1, nc - 1 # sh = nm.asarray(shape) # calculate number of edges, in 2D: (nrows * (ncols - 1)) + ((nrows - 1) * ncols) nedges = 0 for direction in range(len(shape)): sh = copy.copy(list(shape)) sh[direction] += -1 nedges += nm.prod(sh) nedges_old = ncm1 * nr + nrm1 * nc edges = nm.zeros((nedges, 2), dtype=nm.int16) edge_dir = nm.zeros((ncm1 * nr + nrm1 * nc,), dtype=nm.bool) nodes = nm.zeros((nm.prod(shape), 3), dtype=nm.float32) # edges idx = 0 row = nm.zeros((ncm1, 2), dtype=nm.int16) row[:, 0] = nm.arange(ncm1) row[:, 1] = nm.arange(ncm1) + 1 for ii in range(nr): edges[slice(idx, idx + ncm1), :] = row + nc * ii idx += ncm1 edge_dir[slice(0, idx)] = 0 # horizontal dir idx0 = idx col = nm.zeros((nrm1, 2), dtype=nm.int16) col[:, 0] = nm.arange(nrm1) * nc col[:, 1] = nm.arange(nrm1) * nc + nc for ii in range(nc): edges[slice(idx, idx + nrm1), :] = col + ii idx += nrm1 edge_dir[slice(idx0, idx)] = 1 # vertical dir # nodes idx = 0 row = nm.zeros((nc, 3), dtype=nm.float32) row[:, 0] = voxelsize[0] * (nm.arange(nc) + 0.5) row[:, 1] = voxelsize[1] * 0.5 for ii in range(nr): nodes[slice(idx, idx + nc), :] = row row[:, 1] += voxelsize[1] idx += nc return nodes, edges, edge_dir
python
def gen_grid_2d(shape, voxelsize): """ Generate list of edges for a base grid. """ nr, nc = shape nrm1, ncm1 = nr - 1, nc - 1 # sh = nm.asarray(shape) # calculate number of edges, in 2D: (nrows * (ncols - 1)) + ((nrows - 1) * ncols) nedges = 0 for direction in range(len(shape)): sh = copy.copy(list(shape)) sh[direction] += -1 nedges += nm.prod(sh) nedges_old = ncm1 * nr + nrm1 * nc edges = nm.zeros((nedges, 2), dtype=nm.int16) edge_dir = nm.zeros((ncm1 * nr + nrm1 * nc,), dtype=nm.bool) nodes = nm.zeros((nm.prod(shape), 3), dtype=nm.float32) # edges idx = 0 row = nm.zeros((ncm1, 2), dtype=nm.int16) row[:, 0] = nm.arange(ncm1) row[:, 1] = nm.arange(ncm1) + 1 for ii in range(nr): edges[slice(idx, idx + ncm1), :] = row + nc * ii idx += ncm1 edge_dir[slice(0, idx)] = 0 # horizontal dir idx0 = idx col = nm.zeros((nrm1, 2), dtype=nm.int16) col[:, 0] = nm.arange(nrm1) * nc col[:, 1] = nm.arange(nrm1) * nc + nc for ii in range(nc): edges[slice(idx, idx + nrm1), :] = col + ii idx += nrm1 edge_dir[slice(idx0, idx)] = 1 # vertical dir # nodes idx = 0 row = nm.zeros((nc, 3), dtype=nm.float32) row[:, 0] = voxelsize[0] * (nm.arange(nc) + 0.5) row[:, 1] = voxelsize[1] * 0.5 for ii in range(nr): nodes[slice(idx, idx + nc), :] = row row[:, 1] += voxelsize[1] idx += nc return nodes, edges, edge_dir
[ "def", "gen_grid_2d", "(", "shape", ",", "voxelsize", ")", ":", "nr", ",", "nc", "=", "shape", "nrm1", ",", "ncm1", "=", "nr", "-", "1", ",", "nc", "-", "1", "# sh = nm.asarray(shape)", "# calculate number of edges, in 2D: (nrows * (ncols - 1)) + ((nrows - 1) * ncols)", "nedges", "=", "0", "for", "direction", "in", "range", "(", "len", "(", "shape", ")", ")", ":", "sh", "=", "copy", ".", "copy", "(", "list", "(", "shape", ")", ")", "sh", "[", "direction", "]", "+=", "-", "1", "nedges", "+=", "nm", ".", "prod", "(", "sh", ")", "nedges_old", "=", "ncm1", "*", "nr", "+", "nrm1", "*", "nc", "edges", "=", "nm", ".", "zeros", "(", "(", "nedges", ",", "2", ")", ",", "dtype", "=", "nm", ".", "int16", ")", "edge_dir", "=", "nm", ".", "zeros", "(", "(", "ncm1", "*", "nr", "+", "nrm1", "*", "nc", ",", ")", ",", "dtype", "=", "nm", ".", "bool", ")", "nodes", "=", "nm", ".", "zeros", "(", "(", "nm", ".", "prod", "(", "shape", ")", ",", "3", ")", ",", "dtype", "=", "nm", ".", "float32", ")", "# edges", "idx", "=", "0", "row", "=", "nm", ".", "zeros", "(", "(", "ncm1", ",", "2", ")", ",", "dtype", "=", "nm", ".", "int16", ")", "row", "[", ":", ",", "0", "]", "=", "nm", ".", "arange", "(", "ncm1", ")", "row", "[", ":", ",", "1", "]", "=", "nm", ".", "arange", "(", "ncm1", ")", "+", "1", "for", "ii", "in", "range", "(", "nr", ")", ":", "edges", "[", "slice", "(", "idx", ",", "idx", "+", "ncm1", ")", ",", ":", "]", "=", "row", "+", "nc", "*", "ii", "idx", "+=", "ncm1", "edge_dir", "[", "slice", "(", "0", ",", "idx", ")", "]", "=", "0", "# horizontal dir", "idx0", "=", "idx", "col", "=", "nm", ".", "zeros", "(", "(", "nrm1", ",", "2", ")", ",", "dtype", "=", "nm", ".", "int16", ")", "col", "[", ":", ",", "0", "]", "=", "nm", ".", "arange", "(", "nrm1", ")", "*", "nc", "col", "[", ":", ",", "1", "]", "=", "nm", ".", "arange", "(", "nrm1", ")", "*", "nc", "+", "nc", "for", "ii", "in", "range", "(", "nc", ")", ":", "edges", "[", "slice", "(", "idx", ",", "idx", "+", "nrm1", ")", ",", ":", "]", "=", "col", "+", "ii", "idx", "+=", "nrm1", "edge_dir", "[", "slice", "(", "idx0", ",", "idx", ")", "]", "=", "1", "# vertical dir", "# nodes", "idx", "=", "0", "row", "=", "nm", ".", "zeros", "(", "(", "nc", ",", "3", ")", ",", "dtype", "=", "nm", ".", "float32", ")", "row", "[", ":", ",", "0", "]", "=", "voxelsize", "[", "0", "]", "*", "(", "nm", ".", "arange", "(", "nc", ")", "+", "0.5", ")", "row", "[", ":", ",", "1", "]", "=", "voxelsize", "[", "1", "]", "*", "0.5", "for", "ii", "in", "range", "(", "nr", ")", ":", "nodes", "[", "slice", "(", "idx", ",", "idx", "+", "nc", ")", ",", ":", "]", "=", "row", "row", "[", ":", ",", "1", "]", "+=", "voxelsize", "[", "1", "]", "idx", "+=", "nc", "return", "nodes", ",", "edges", ",", "edge_dir" ]
Generate list of edges for a base grid.
[ "Generate", "list", "of", "edges", "for", "a", "base", "grid", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L586-L636
mjirik/imcut
imcut/graph.py
write_grid_to_vtk
def write_grid_to_vtk(fname, nodes, edges, node_flag=None, edge_flag=None): """ Write nodes and edges to VTK file :param fname: VTK filename :param nodes: :param edges: :param node_flag: set if this node is really used in output :param edge_flag: set if this flag is used in output :return: """ if node_flag is None: node_flag = np.ones([nodes.shape[0]], dtype=np.bool) if edge_flag is None: edge_flag = np.ones([edges.shape[0]], dtype=np.bool) nodes = make_nodes_3d(nodes) f = open(fname, "w") f.write("# vtk DataFile Version 2.6\n") f.write("output file\nASCII\nDATASET UNSTRUCTURED_GRID\n") idxs = nm.where(node_flag > 0)[0] nnd = len(idxs) aux = -nm.ones(node_flag.shape, dtype=nm.int32) aux[idxs] = nm.arange(nnd, dtype=nm.int32) f.write("\nPOINTS %d float\n" % nnd) for ndi in idxs: f.write("%.6f %.6f %.6f\n" % tuple(nodes[ndi, :])) idxs = nm.where(edge_flag > 0)[0] ned = len(idxs) f.write("\nCELLS %d %d\n" % (ned, ned * 3)) for edi in idxs: f.write("2 %d %d\n" % tuple(aux[edges[edi, :]])) f.write("\nCELL_TYPES %d\n" % ned) for edi in idxs: f.write("3\n")
python
def write_grid_to_vtk(fname, nodes, edges, node_flag=None, edge_flag=None): """ Write nodes and edges to VTK file :param fname: VTK filename :param nodes: :param edges: :param node_flag: set if this node is really used in output :param edge_flag: set if this flag is used in output :return: """ if node_flag is None: node_flag = np.ones([nodes.shape[0]], dtype=np.bool) if edge_flag is None: edge_flag = np.ones([edges.shape[0]], dtype=np.bool) nodes = make_nodes_3d(nodes) f = open(fname, "w") f.write("# vtk DataFile Version 2.6\n") f.write("output file\nASCII\nDATASET UNSTRUCTURED_GRID\n") idxs = nm.where(node_flag > 0)[0] nnd = len(idxs) aux = -nm.ones(node_flag.shape, dtype=nm.int32) aux[idxs] = nm.arange(nnd, dtype=nm.int32) f.write("\nPOINTS %d float\n" % nnd) for ndi in idxs: f.write("%.6f %.6f %.6f\n" % tuple(nodes[ndi, :])) idxs = nm.where(edge_flag > 0)[0] ned = len(idxs) f.write("\nCELLS %d %d\n" % (ned, ned * 3)) for edi in idxs: f.write("2 %d %d\n" % tuple(aux[edges[edi, :]])) f.write("\nCELL_TYPES %d\n" % ned) for edi in idxs: f.write("3\n")
[ "def", "write_grid_to_vtk", "(", "fname", ",", "nodes", ",", "edges", ",", "node_flag", "=", "None", ",", "edge_flag", "=", "None", ")", ":", "if", "node_flag", "is", "None", ":", "node_flag", "=", "np", ".", "ones", "(", "[", "nodes", ".", "shape", "[", "0", "]", "]", ",", "dtype", "=", "np", ".", "bool", ")", "if", "edge_flag", "is", "None", ":", "edge_flag", "=", "np", ".", "ones", "(", "[", "edges", ".", "shape", "[", "0", "]", "]", ",", "dtype", "=", "np", ".", "bool", ")", "nodes", "=", "make_nodes_3d", "(", "nodes", ")", "f", "=", "open", "(", "fname", ",", "\"w\"", ")", "f", ".", "write", "(", "\"# vtk DataFile Version 2.6\\n\"", ")", "f", ".", "write", "(", "\"output file\\nASCII\\nDATASET UNSTRUCTURED_GRID\\n\"", ")", "idxs", "=", "nm", ".", "where", "(", "node_flag", ">", "0", ")", "[", "0", "]", "nnd", "=", "len", "(", "idxs", ")", "aux", "=", "-", "nm", ".", "ones", "(", "node_flag", ".", "shape", ",", "dtype", "=", "nm", ".", "int32", ")", "aux", "[", "idxs", "]", "=", "nm", ".", "arange", "(", "nnd", ",", "dtype", "=", "nm", ".", "int32", ")", "f", ".", "write", "(", "\"\\nPOINTS %d float\\n\"", "%", "nnd", ")", "for", "ndi", "in", "idxs", ":", "f", ".", "write", "(", "\"%.6f %.6f %.6f\\n\"", "%", "tuple", "(", "nodes", "[", "ndi", ",", ":", "]", ")", ")", "idxs", "=", "nm", ".", "where", "(", "edge_flag", ">", "0", ")", "[", "0", "]", "ned", "=", "len", "(", "idxs", ")", "f", ".", "write", "(", "\"\\nCELLS %d %d\\n\"", "%", "(", "ned", ",", "ned", "*", "3", ")", ")", "for", "edi", "in", "idxs", ":", "f", ".", "write", "(", "\"2 %d %d\\n\"", "%", "tuple", "(", "aux", "[", "edges", "[", "edi", ",", ":", "]", "]", ")", ")", "f", ".", "write", "(", "\"\\nCELL_TYPES %d\\n\"", "%", "ned", ")", "for", "edi", "in", "idxs", ":", "f", ".", "write", "(", "\"3\\n\"", ")" ]
Write nodes and edges to VTK file :param fname: VTK filename :param nodes: :param edges: :param node_flag: set if this node is really used in output :param edge_flag: set if this flag is used in output :return:
[ "Write", "nodes", "and", "edges", "to", "VTK", "file", ":", "param", "fname", ":", "VTK", "filename", ":", "param", "nodes", ":", ":", "param", "edges", ":", ":", "param", "node_flag", ":", "set", "if", "this", "node", "is", "really", "used", "in", "output", ":", "param", "edge_flag", ":", "set", "if", "this", "flag", "is", "used", "in", "output", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L646-L683
mjirik/imcut
imcut/graph.py
Graph.add_nodes
def add_nodes(self, coors, node_low_or_high=None): """ Add new nodes at the end of the list. """ last = self.lastnode if type(coors) is nm.ndarray: if len(coors.shape) == 1: coors = coors.reshape((1, coors.size)) nadd = coors.shape[0] idx = slice(last, last + nadd) else: nadd = 1 idx = self.lastnode right_dimension = coors.shape[1] self.nodes[idx, :right_dimension] = coors self.node_flag[idx] = True self.lastnode += nadd self.nnodes += nadd
python
def add_nodes(self, coors, node_low_or_high=None): """ Add new nodes at the end of the list. """ last = self.lastnode if type(coors) is nm.ndarray: if len(coors.shape) == 1: coors = coors.reshape((1, coors.size)) nadd = coors.shape[0] idx = slice(last, last + nadd) else: nadd = 1 idx = self.lastnode right_dimension = coors.shape[1] self.nodes[idx, :right_dimension] = coors self.node_flag[idx] = True self.lastnode += nadd self.nnodes += nadd
[ "def", "add_nodes", "(", "self", ",", "coors", ",", "node_low_or_high", "=", "None", ")", ":", "last", "=", "self", ".", "lastnode", "if", "type", "(", "coors", ")", "is", "nm", ".", "ndarray", ":", "if", "len", "(", "coors", ".", "shape", ")", "==", "1", ":", "coors", "=", "coors", ".", "reshape", "(", "(", "1", ",", "coors", ".", "size", ")", ")", "nadd", "=", "coors", ".", "shape", "[", "0", "]", "idx", "=", "slice", "(", "last", ",", "last", "+", "nadd", ")", "else", ":", "nadd", "=", "1", "idx", "=", "self", ".", "lastnode", "right_dimension", "=", "coors", ".", "shape", "[", "1", "]", "self", ".", "nodes", "[", "idx", ",", ":", "right_dimension", "]", "=", "coors", "self", ".", "node_flag", "[", "idx", "]", "=", "True", "self", ".", "lastnode", "+=", "nadd", "self", ".", "nnodes", "+=", "nadd" ]
Add new nodes at the end of the list.
[ "Add", "new", "nodes", "at", "the", "end", "of", "the", "list", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L153-L171
mjirik/imcut
imcut/graph.py
Graph.add_edges
def add_edges(self, conn, edge_direction, edge_group=None, edge_low_or_high=None): """ Add new edges at the end of the list. :param edge_direction: direction flag :param edge_group: describes group of edges from same low super node and same direction :param edge_low_or_high: zero for low to low resolution, one for high to high or high to low resolution. It is used to set weight from weight table. """ last = self.lastedge if type(conn) is nm.ndarray: nadd = conn.shape[0] idx = slice(last, last + nadd) if edge_group is None: edge_group = nm.arange(nadd) + last else: nadd = 1 idx = nm.array([last]) conn = nm.array(conn).reshape((1, 2)) if edge_group is None: edge_group = idx self.edges[idx, :] = conn self.edge_flag[idx] = True # t_start0 = time.time() # self.edge_flag_idx.extend(list(range(idx.start, idx.stop))) # self.stats["t split 082"] += time.time() - t_start0 self.edge_dir[idx] = edge_direction self.edge_group[idx] = edge_group # TODO change this just to array of low_or_high_resolution if edge_low_or_high is not None and self._edge_weight_table is not None: self.edges_weights[idx] = self._edge_weight_table[ edge_low_or_high, edge_direction ] self.lastedge += nadd self.nedges += nadd
python
def add_edges(self, conn, edge_direction, edge_group=None, edge_low_or_high=None): """ Add new edges at the end of the list. :param edge_direction: direction flag :param edge_group: describes group of edges from same low super node and same direction :param edge_low_or_high: zero for low to low resolution, one for high to high or high to low resolution. It is used to set weight from weight table. """ last = self.lastedge if type(conn) is nm.ndarray: nadd = conn.shape[0] idx = slice(last, last + nadd) if edge_group is None: edge_group = nm.arange(nadd) + last else: nadd = 1 idx = nm.array([last]) conn = nm.array(conn).reshape((1, 2)) if edge_group is None: edge_group = idx self.edges[idx, :] = conn self.edge_flag[idx] = True # t_start0 = time.time() # self.edge_flag_idx.extend(list(range(idx.start, idx.stop))) # self.stats["t split 082"] += time.time() - t_start0 self.edge_dir[idx] = edge_direction self.edge_group[idx] = edge_group # TODO change this just to array of low_or_high_resolution if edge_low_or_high is not None and self._edge_weight_table is not None: self.edges_weights[idx] = self._edge_weight_table[ edge_low_or_high, edge_direction ] self.lastedge += nadd self.nedges += nadd
[ "def", "add_edges", "(", "self", ",", "conn", ",", "edge_direction", ",", "edge_group", "=", "None", ",", "edge_low_or_high", "=", "None", ")", ":", "last", "=", "self", ".", "lastedge", "if", "type", "(", "conn", ")", "is", "nm", ".", "ndarray", ":", "nadd", "=", "conn", ".", "shape", "[", "0", "]", "idx", "=", "slice", "(", "last", ",", "last", "+", "nadd", ")", "if", "edge_group", "is", "None", ":", "edge_group", "=", "nm", ".", "arange", "(", "nadd", ")", "+", "last", "else", ":", "nadd", "=", "1", "idx", "=", "nm", ".", "array", "(", "[", "last", "]", ")", "conn", "=", "nm", ".", "array", "(", "conn", ")", ".", "reshape", "(", "(", "1", ",", "2", ")", ")", "if", "edge_group", "is", "None", ":", "edge_group", "=", "idx", "self", ".", "edges", "[", "idx", ",", ":", "]", "=", "conn", "self", ".", "edge_flag", "[", "idx", "]", "=", "True", "# t_start0 = time.time()", "# self.edge_flag_idx.extend(list(range(idx.start, idx.stop)))", "# self.stats[\"t split 082\"] += time.time() - t_start0", "self", ".", "edge_dir", "[", "idx", "]", "=", "edge_direction", "self", ".", "edge_group", "[", "idx", "]", "=", "edge_group", "# TODO change this just to array of low_or_high_resolution", "if", "edge_low_or_high", "is", "not", "None", "and", "self", ".", "_edge_weight_table", "is", "not", "None", ":", "self", ".", "edges_weights", "[", "idx", "]", "=", "self", ".", "_edge_weight_table", "[", "edge_low_or_high", ",", "edge_direction", "]", "self", ".", "lastedge", "+=", "nadd", "self", ".", "nedges", "+=", "nadd" ]
Add new edges at the end of the list. :param edge_direction: direction flag :param edge_group: describes group of edges from same low super node and same direction :param edge_low_or_high: zero for low to low resolution, one for high to high or high to low resolution. It is used to set weight from weight table.
[ "Add", "new", "edges", "at", "the", "end", "of", "the", "list", ".", ":", "param", "edge_direction", ":", "direction", "flag", ":", "param", "edge_group", ":", "describes", "group", "of", "edges", "from", "same", "low", "super", "node", "and", "same", "direction", ":", "param", "edge_low_or_high", ":", "zero", "for", "low", "to", "low", "resolution", "one", "for", "high", "to", "high", "or", "high", "to", "low", "resolution", ".", "It", "is", "used", "to", "set", "weight", "from", "weight", "table", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L173-L207
mjirik/imcut
imcut/graph.py
Graph._edge_group_substitution
def _edge_group_substitution( self, ndid, nsplit, idxs, sr_tab, ndoffset, ed_remove, into_or_from ): """ Reconnect edges. :param ndid: id of low resolution edges :param nsplit: number of split :param idxs: indexes of low resolution :param sr_tab: :param ndoffset: :param ed_remove: :param into_or_from: if zero, connection of input edges is done. If one, connection of output edges is performed. :return: """ # this is useful for type(idxs) == np.ndarray eidxs = idxs[nm.where(self.edges[idxs, 1 - into_or_from] == ndid)[0]] # selected_edges = self.edges[idxs, 1 - into_or_from] # selected_edges == ndid # whre = nm.where(self.edges[idxs, 1 - into_or_from] == ndid) # whre0 = (nm.where(self.edges[idxs, 1 - into_or_from] == ndid) == ndid)[0] # eidxs = [idxs[i] for i in idxs] for igrp in self.edges_by_group(eidxs): if igrp.shape[0] > 1: # high resolution block to high resolution block # all directions are the same directions = self.edge_dir[igrp[0]] edge_indexes = sr_tab[directions, :].T.flatten() + ndoffset # debug code # if len(igrp) != len(edge_indexes): # print("Problem ") self.edges[igrp, 1] = edge_indexes if self._edge_weight_table is not None: self.edges_weights[igrp] = self._edge_weight_table[1, directions] else: # low res block to hi res block, if into_or_from is set to 0 # hig res block to low res block, if into_or_from is set to 1 ed_remove.append(igrp[0]) # number of new edges is equal to number of pixels on one side of the box (in 2D and D too) nnewed = np.power(nsplit, self.data.ndim - 1) muleidxs = nm.tile(igrp, nnewed) # copy the low-res edge multipletime newed = self.edges[muleidxs, :] neweddir = self.edge_dir[muleidxs] local_node_ids = sr_tab[ self.edge_dir[igrp] + self.data.ndim * into_or_from, : ].T.flatten() # first or second (the actual) node id is substitued by new node indexes newed[:, 1 - into_or_from] = local_node_ids + ndoffset if self._edge_weight_table is not None: self.add_edges( newed, neweddir, self.edge_group[igrp], edge_low_or_high=1 ) else: self.add_edges( newed, neweddir, self.edge_group[igrp], edge_low_or_high=None ) return ed_remove
python
def _edge_group_substitution( self, ndid, nsplit, idxs, sr_tab, ndoffset, ed_remove, into_or_from ): """ Reconnect edges. :param ndid: id of low resolution edges :param nsplit: number of split :param idxs: indexes of low resolution :param sr_tab: :param ndoffset: :param ed_remove: :param into_or_from: if zero, connection of input edges is done. If one, connection of output edges is performed. :return: """ # this is useful for type(idxs) == np.ndarray eidxs = idxs[nm.where(self.edges[idxs, 1 - into_or_from] == ndid)[0]] # selected_edges = self.edges[idxs, 1 - into_or_from] # selected_edges == ndid # whre = nm.where(self.edges[idxs, 1 - into_or_from] == ndid) # whre0 = (nm.where(self.edges[idxs, 1 - into_or_from] == ndid) == ndid)[0] # eidxs = [idxs[i] for i in idxs] for igrp in self.edges_by_group(eidxs): if igrp.shape[0] > 1: # high resolution block to high resolution block # all directions are the same directions = self.edge_dir[igrp[0]] edge_indexes = sr_tab[directions, :].T.flatten() + ndoffset # debug code # if len(igrp) != len(edge_indexes): # print("Problem ") self.edges[igrp, 1] = edge_indexes if self._edge_weight_table is not None: self.edges_weights[igrp] = self._edge_weight_table[1, directions] else: # low res block to hi res block, if into_or_from is set to 0 # hig res block to low res block, if into_or_from is set to 1 ed_remove.append(igrp[0]) # number of new edges is equal to number of pixels on one side of the box (in 2D and D too) nnewed = np.power(nsplit, self.data.ndim - 1) muleidxs = nm.tile(igrp, nnewed) # copy the low-res edge multipletime newed = self.edges[muleidxs, :] neweddir = self.edge_dir[muleidxs] local_node_ids = sr_tab[ self.edge_dir[igrp] + self.data.ndim * into_or_from, : ].T.flatten() # first or second (the actual) node id is substitued by new node indexes newed[:, 1 - into_or_from] = local_node_ids + ndoffset if self._edge_weight_table is not None: self.add_edges( newed, neweddir, self.edge_group[igrp], edge_low_or_high=1 ) else: self.add_edges( newed, neweddir, self.edge_group[igrp], edge_low_or_high=None ) return ed_remove
[ "def", "_edge_group_substitution", "(", "self", ",", "ndid", ",", "nsplit", ",", "idxs", ",", "sr_tab", ",", "ndoffset", ",", "ed_remove", ",", "into_or_from", ")", ":", "# this is useful for type(idxs) == np.ndarray", "eidxs", "=", "idxs", "[", "nm", ".", "where", "(", "self", ".", "edges", "[", "idxs", ",", "1", "-", "into_or_from", "]", "==", "ndid", ")", "[", "0", "]", "]", "# selected_edges = self.edges[idxs, 1 - into_or_from]", "# selected_edges == ndid", "# whre = nm.where(self.edges[idxs, 1 - into_or_from] == ndid)", "# whre0 = (nm.where(self.edges[idxs, 1 - into_or_from] == ndid) == ndid)[0]", "# eidxs = [idxs[i] for i in idxs]", "for", "igrp", "in", "self", ".", "edges_by_group", "(", "eidxs", ")", ":", "if", "igrp", ".", "shape", "[", "0", "]", ">", "1", ":", "# high resolution block to high resolution block", "# all directions are the same", "directions", "=", "self", ".", "edge_dir", "[", "igrp", "[", "0", "]", "]", "edge_indexes", "=", "sr_tab", "[", "directions", ",", ":", "]", ".", "T", ".", "flatten", "(", ")", "+", "ndoffset", "# debug code", "# if len(igrp) != len(edge_indexes):", "# print(\"Problem \")", "self", ".", "edges", "[", "igrp", ",", "1", "]", "=", "edge_indexes", "if", "self", ".", "_edge_weight_table", "is", "not", "None", ":", "self", ".", "edges_weights", "[", "igrp", "]", "=", "self", ".", "_edge_weight_table", "[", "1", ",", "directions", "]", "else", ":", "# low res block to hi res block, if into_or_from is set to 0", "# hig res block to low res block, if into_or_from is set to 1", "ed_remove", ".", "append", "(", "igrp", "[", "0", "]", ")", "# number of new edges is equal to number of pixels on one side of the box (in 2D and D too)", "nnewed", "=", "np", ".", "power", "(", "nsplit", ",", "self", ".", "data", ".", "ndim", "-", "1", ")", "muleidxs", "=", "nm", ".", "tile", "(", "igrp", ",", "nnewed", ")", "# copy the low-res edge multipletime", "newed", "=", "self", ".", "edges", "[", "muleidxs", ",", ":", "]", "neweddir", "=", "self", ".", "edge_dir", "[", "muleidxs", "]", "local_node_ids", "=", "sr_tab", "[", "self", ".", "edge_dir", "[", "igrp", "]", "+", "self", ".", "data", ".", "ndim", "*", "into_or_from", ",", ":", "]", ".", "T", ".", "flatten", "(", ")", "# first or second (the actual) node id is substitued by new node indexes", "newed", "[", ":", ",", "1", "-", "into_or_from", "]", "=", "local_node_ids", "+", "ndoffset", "if", "self", ".", "_edge_weight_table", "is", "not", "None", ":", "self", ".", "add_edges", "(", "newed", ",", "neweddir", ",", "self", ".", "edge_group", "[", "igrp", "]", ",", "edge_low_or_high", "=", "1", ")", "else", ":", "self", ".", "add_edges", "(", "newed", ",", "neweddir", ",", "self", ".", "edge_group", "[", "igrp", "]", ",", "edge_low_or_high", "=", "None", ")", "return", "ed_remove" ]
Reconnect edges. :param ndid: id of low resolution edges :param nsplit: number of split :param idxs: indexes of low resolution :param sr_tab: :param ndoffset: :param ed_remove: :param into_or_from: if zero, connection of input edges is done. If one, connection of output edges is performed. :return:
[ "Reconnect", "edges", ".", ":", "param", "ndid", ":", "id", "of", "low", "resolution", "edges", ":", "param", "nsplit", ":", "number", "of", "split", ":", "param", "idxs", ":", "indexes", "of", "low", "resolution", ":", "param", "sr_tab", ":", ":", "param", "ndoffset", ":", ":", "param", "ed_remove", ":", ":", "param", "into_or_from", ":", "if", "zero", "connection", "of", "input", "edges", "is", "done", ".", "If", "one", "connection", "of", "output", "edges", "is", "performed", ".", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L264-L321
mjirik/imcut
imcut/graph.py
Graph.generate_base_grid
def generate_base_grid(self, vtk_filename=None): """ Run first step of algorithm. Next step is split_voxels :param vtk_filename: :return: """ nd, ed, ed_dir = self.gen_grid_fcn(self.data.shape, self.voxelsize) self.add_nodes(nd) self.add_edges(ed, ed_dir, edge_low_or_high=0) if vtk_filename is not None: self.write_vtk(vtk_filename)
python
def generate_base_grid(self, vtk_filename=None): """ Run first step of algorithm. Next step is split_voxels :param vtk_filename: :return: """ nd, ed, ed_dir = self.gen_grid_fcn(self.data.shape, self.voxelsize) self.add_nodes(nd) self.add_edges(ed, ed_dir, edge_low_or_high=0) if vtk_filename is not None: self.write_vtk(vtk_filename)
[ "def", "generate_base_grid", "(", "self", ",", "vtk_filename", "=", "None", ")", ":", "nd", ",", "ed", ",", "ed_dir", "=", "self", ".", "gen_grid_fcn", "(", "self", ".", "data", ".", "shape", ",", "self", ".", "voxelsize", ")", "self", ".", "add_nodes", "(", "nd", ")", "self", ".", "add_edges", "(", "ed", ",", "ed_dir", ",", "edge_low_or_high", "=", "0", ")", "if", "vtk_filename", "is", "not", "None", ":", "self", ".", "write_vtk", "(", "vtk_filename", ")" ]
Run first step of algorithm. Next step is split_voxels :param vtk_filename: :return:
[ "Run", "first", "step", "of", "algorithm", ".", "Next", "step", "is", "split_voxels", ":", "param", "vtk_filename", ":", ":", "return", ":" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L404-L415
mjirik/imcut
imcut/graph.py
Graph.split_voxels
def split_voxels(self, vtk_filename=None): """ Second step of algorithm :return:() """ self.cache = {} self.stats["t graph 10"] = time.time() - self.start_time self.msi = MultiscaleArray(self.data.shape, block_size=self.nsplit) # old implementation # idxs = nm.where(self.data) # nr, nc = self.data.shape # for k, (ir, ic) in enumerate(zip(*idxs)): # ndid = ic + ir * nc # self.split_voxel(ndid, self.nsplit) # new_implementation # for ndid in np.flatnonzero(self.data): # self.split_voxel(ndid, self.nsplit) # even newer implementation self.stats["t graph 11"] = time.time() - self.start_time for ndid, val in enumerate(self.data.ravel()): t_split_start = time.time() if val == 0: if self.compute_msindex: self.msi.set_block_lowres(ndid, ndid) self.stats["t graph low"] += time.time() - t_split_start else: self.split_voxel(ndid) self.stats["t graph high"] += time.time() - t_split_start self.stats["t graph 13"] = time.time() - self.start_time self.finish() if vtk_filename is not None: self.write_vtk(vtk_filename) self.stats["t graph 14"] = time.time() - self.start_time
python
def split_voxels(self, vtk_filename=None): """ Second step of algorithm :return:() """ self.cache = {} self.stats["t graph 10"] = time.time() - self.start_time self.msi = MultiscaleArray(self.data.shape, block_size=self.nsplit) # old implementation # idxs = nm.where(self.data) # nr, nc = self.data.shape # for k, (ir, ic) in enumerate(zip(*idxs)): # ndid = ic + ir * nc # self.split_voxel(ndid, self.nsplit) # new_implementation # for ndid in np.flatnonzero(self.data): # self.split_voxel(ndid, self.nsplit) # even newer implementation self.stats["t graph 11"] = time.time() - self.start_time for ndid, val in enumerate(self.data.ravel()): t_split_start = time.time() if val == 0: if self.compute_msindex: self.msi.set_block_lowres(ndid, ndid) self.stats["t graph low"] += time.time() - t_split_start else: self.split_voxel(ndid) self.stats["t graph high"] += time.time() - t_split_start self.stats["t graph 13"] = time.time() - self.start_time self.finish() if vtk_filename is not None: self.write_vtk(vtk_filename) self.stats["t graph 14"] = time.time() - self.start_time
[ "def", "split_voxels", "(", "self", ",", "vtk_filename", "=", "None", ")", ":", "self", ".", "cache", "=", "{", "}", "self", ".", "stats", "[", "\"t graph 10\"", "]", "=", "time", ".", "time", "(", ")", "-", "self", ".", "start_time", "self", ".", "msi", "=", "MultiscaleArray", "(", "self", ".", "data", ".", "shape", ",", "block_size", "=", "self", ".", "nsplit", ")", "# old implementation", "# idxs = nm.where(self.data)", "# nr, nc = self.data.shape", "# for k, (ir, ic) in enumerate(zip(*idxs)):", "# ndid = ic + ir * nc", "# self.split_voxel(ndid, self.nsplit)", "# new_implementation", "# for ndid in np.flatnonzero(self.data):", "# self.split_voxel(ndid, self.nsplit)", "# even newer implementation", "self", ".", "stats", "[", "\"t graph 11\"", "]", "=", "time", ".", "time", "(", ")", "-", "self", ".", "start_time", "for", "ndid", ",", "val", "in", "enumerate", "(", "self", ".", "data", ".", "ravel", "(", ")", ")", ":", "t_split_start", "=", "time", ".", "time", "(", ")", "if", "val", "==", "0", ":", "if", "self", ".", "compute_msindex", ":", "self", ".", "msi", ".", "set_block_lowres", "(", "ndid", ",", "ndid", ")", "self", ".", "stats", "[", "\"t graph low\"", "]", "+=", "time", ".", "time", "(", ")", "-", "t_split_start", "else", ":", "self", ".", "split_voxel", "(", "ndid", ")", "self", ".", "stats", "[", "\"t graph high\"", "]", "+=", "time", ".", "time", "(", ")", "-", "t_split_start", "self", ".", "stats", "[", "\"t graph 13\"", "]", "=", "time", ".", "time", "(", ")", "-", "self", ".", "start_time", "self", ".", "finish", "(", ")", "if", "vtk_filename", "is", "not", "None", ":", "self", ".", "write_vtk", "(", "vtk_filename", ")", "self", ".", "stats", "[", "\"t graph 14\"", "]", "=", "time", ".", "time", "(", ")", "-", "self", ".", "start_time" ]
Second step of algorithm :return:()
[ "Second", "step", "of", "algorithm", ":", "return", ":", "()" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L417-L453
mjirik/imcut
imcut/graph.py
MultiscaleArray.mul_block
def mul_block(self, index, val): """Multiply values in block""" self._prepare_cache_slice(index) self.msinds[self.cache_slice] *= val
python
def mul_block(self, index, val): """Multiply values in block""" self._prepare_cache_slice(index) self.msinds[self.cache_slice] *= val
[ "def", "mul_block", "(", "self", ",", "index", ",", "val", ")", ":", "self", ".", "_prepare_cache_slice", "(", "index", ")", "self", ".", "msinds", "[", "self", ".", "cache_slice", "]", "*=", "val" ]
Multiply values in block
[ "Multiply", "values", "in", "block" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/graph.py#L714-L717
mjirik/imcut
imcut/features.py
select_from_fv_by_seeds
def select_from_fv_by_seeds(fv, seeds, unique_cls): """ Tool to make simple feature functions take features from feature array by seeds. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv_selection, seeds_selection - selection from feature vector and selection from seeds """ logger.debug("seeds" + str(seeds)) # fvlin = fv.reshape(-1, int(fv.size/seeds.size)) expected_shape = [seeds.size, int(fv.size/seeds.size)] if fv.shape[0] != expected_shape[0] or fv.shape[1] != expected_shape[1]: raise AssertionError("Wrong shape of input feature vector array fv") # sd = seeds.reshape(-1, 1) selection = np.in1d(seeds, unique_cls) fv_selection = fv[selection] seeds_selection = seeds.flatten()[selection] # sd = sd[] return fv_selection, seeds_selection
python
def select_from_fv_by_seeds(fv, seeds, unique_cls): """ Tool to make simple feature functions take features from feature array by seeds. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv_selection, seeds_selection - selection from feature vector and selection from seeds """ logger.debug("seeds" + str(seeds)) # fvlin = fv.reshape(-1, int(fv.size/seeds.size)) expected_shape = [seeds.size, int(fv.size/seeds.size)] if fv.shape[0] != expected_shape[0] or fv.shape[1] != expected_shape[1]: raise AssertionError("Wrong shape of input feature vector array fv") # sd = seeds.reshape(-1, 1) selection = np.in1d(seeds, unique_cls) fv_selection = fv[selection] seeds_selection = seeds.flatten()[selection] # sd = sd[] return fv_selection, seeds_selection
[ "def", "select_from_fv_by_seeds", "(", "fv", ",", "seeds", ",", "unique_cls", ")", ":", "logger", ".", "debug", "(", "\"seeds\"", "+", "str", "(", "seeds", ")", ")", "# fvlin = fv.reshape(-1, int(fv.size/seeds.size))", "expected_shape", "=", "[", "seeds", ".", "size", ",", "int", "(", "fv", ".", "size", "/", "seeds", ".", "size", ")", "]", "if", "fv", ".", "shape", "[", "0", "]", "!=", "expected_shape", "[", "0", "]", "or", "fv", ".", "shape", "[", "1", "]", "!=", "expected_shape", "[", "1", "]", ":", "raise", "AssertionError", "(", "\"Wrong shape of input feature vector array fv\"", ")", "# sd = seeds.reshape(-1, 1)", "selection", "=", "np", ".", "in1d", "(", "seeds", ",", "unique_cls", ")", "fv_selection", "=", "fv", "[", "selection", "]", "seeds_selection", "=", "seeds", ".", "flatten", "(", ")", "[", "selection", "]", "# sd = sd[]", "return", "fv_selection", ",", "seeds_selection" ]
Tool to make simple feature functions take features from feature array by seeds. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv_selection, seeds_selection - selection from feature vector and selection from seeds
[ "Tool", "to", "make", "simple", "feature", "functions", "take", "features", "from", "feature", "array", "by", "seeds", ".", ":", "param", "fv", ":", "ndarray", "with", "lineariezed", "feature", ".", "It", "s", "shape", "is", "MxN", "where", "M", "is", "number", "of", "image", "pixels", "and", "N", "is", "number", "of", "features", ":", "param", "seeds", ":", "ndarray", "with", "seeds", ".", "Does", "not", "to", "be", "linear", ".", ":", "param", "unique_cls", ":", "number", "of", "used", "seeds", "clases", ".", "Like", "[", "1", "2", "]", ":", "return", ":", "fv_selection", "seeds_selection", "-", "selection", "from", "feature", "vector", "and", "selection", "from", "seeds" ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/features.py#L39-L58
mjirik/imcut
imcut/features.py
return_fv_by_seeds
def return_fv_by_seeds(fv, seeds=None, unique_cls=None): """ Return features selected by seeds and unique_cls or selection from features and corresponding seed classes. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv, sd - selection from feature vector and selection from seeds or just fv for whole image """ if seeds is not None: if unique_cls is not None: return select_from_fv_by_seeds(fv, seeds, unique_cls) else: raise AssertionError("Input unique_cls has to be not None if seeds is not None.") else: return fv
python
def return_fv_by_seeds(fv, seeds=None, unique_cls=None): """ Return features selected by seeds and unique_cls or selection from features and corresponding seed classes. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv, sd - selection from feature vector and selection from seeds or just fv for whole image """ if seeds is not None: if unique_cls is not None: return select_from_fv_by_seeds(fv, seeds, unique_cls) else: raise AssertionError("Input unique_cls has to be not None if seeds is not None.") else: return fv
[ "def", "return_fv_by_seeds", "(", "fv", ",", "seeds", "=", "None", ",", "unique_cls", "=", "None", ")", ":", "if", "seeds", "is", "not", "None", ":", "if", "unique_cls", "is", "not", "None", ":", "return", "select_from_fv_by_seeds", "(", "fv", ",", "seeds", ",", "unique_cls", ")", "else", ":", "raise", "AssertionError", "(", "\"Input unique_cls has to be not None if seeds is not None.\"", ")", "else", ":", "return", "fv" ]
Return features selected by seeds and unique_cls or selection from features and corresponding seed classes. :param fv: ndarray with lineariezed feature. It's shape is MxN, where M is number of image pixels and N is number of features :param seeds: ndarray with seeds. Does not to be linear. :param unique_cls: number of used seeds clases. Like [1, 2] :return: fv, sd - selection from feature vector and selection from seeds or just fv for whole image
[ "Return", "features", "selected", "by", "seeds", "and", "unique_cls", "or", "selection", "from", "features", "and", "corresponding", "seed", "classes", "." ]
train
https://github.com/mjirik/imcut/blob/1b38e7cd18a7a38fe683c1cabe1222fe5fa03aa3/imcut/features.py#L60-L76
chitamoor/Rester
rester/manifest.py
Variables.expand
def expand(self, expression): """Expands logical constructions.""" self.logger.debug("expand : expression %s", str(expression)) if not is_string(expression): return expression result = self._pattern.sub(lambda var: str(self._variables[var.group(1)]), expression) result = result.strip() self.logger.debug('expand : %s - result : %s', expression, result) if is_number(result): if result.isdigit(): self.logger.debug(' expand is integer !!!') return int(result) else: self.logger.debug(' expand is float !!!') return float(result) return result
python
def expand(self, expression): """Expands logical constructions.""" self.logger.debug("expand : expression %s", str(expression)) if not is_string(expression): return expression result = self._pattern.sub(lambda var: str(self._variables[var.group(1)]), expression) result = result.strip() self.logger.debug('expand : %s - result : %s', expression, result) if is_number(result): if result.isdigit(): self.logger.debug(' expand is integer !!!') return int(result) else: self.logger.debug(' expand is float !!!') return float(result) return result
[ "def", "expand", "(", "self", ",", "expression", ")", ":", "self", ".", "logger", ".", "debug", "(", "\"expand : expression %s\"", ",", "str", "(", "expression", ")", ")", "if", "not", "is_string", "(", "expression", ")", ":", "return", "expression", "result", "=", "self", ".", "_pattern", ".", "sub", "(", "lambda", "var", ":", "str", "(", "self", ".", "_variables", "[", "var", ".", "group", "(", "1", ")", "]", ")", ",", "expression", ")", "result", "=", "result", ".", "strip", "(", ")", "self", ".", "logger", ".", "debug", "(", "'expand : %s - result : %s'", ",", "expression", ",", "result", ")", "if", "is_number", "(", "result", ")", ":", "if", "result", ".", "isdigit", "(", ")", ":", "self", ".", "logger", ".", "debug", "(", "' expand is integer !!!'", ")", "return", "int", "(", "result", ")", "else", ":", "self", ".", "logger", ".", "debug", "(", "' expand is float !!!'", ")", "return", "float", "(", "result", ")", "return", "result" ]
Expands logical constructions.
[ "Expands", "logical", "constructions", "." ]
train
https://github.com/chitamoor/Rester/blob/1865b17f70b7c597aeadde2d0907cb1b59f10c0f/rester/manifest.py#L34-L52
disqus/gutter
gutter/client/__init__.py
get_gutter_client
def get_gutter_client( alias='default', cache=CLIENT_CACHE, **kwargs ): """ Creates gutter clients and memoizes them in a registry for future quick access. Args: alias (str or None): Name of the client. Used for caching. If name is falsy then do not use the cache. cache (dict): cache to store gutter managers in. **kwargs: kwargs to be passed the Manger class. Returns (Manager): A gutter client. """ from gutter.client.models import Manager if not alias: return Manager(**kwargs) elif alias not in cache: cache[alias] = Manager(**kwargs) return cache[alias]
python
def get_gutter_client( alias='default', cache=CLIENT_CACHE, **kwargs ): """ Creates gutter clients and memoizes them in a registry for future quick access. Args: alias (str or None): Name of the client. Used for caching. If name is falsy then do not use the cache. cache (dict): cache to store gutter managers in. **kwargs: kwargs to be passed the Manger class. Returns (Manager): A gutter client. """ from gutter.client.models import Manager if not alias: return Manager(**kwargs) elif alias not in cache: cache[alias] = Manager(**kwargs) return cache[alias]
[ "def", "get_gutter_client", "(", "alias", "=", "'default'", ",", "cache", "=", "CLIENT_CACHE", ",", "*", "*", "kwargs", ")", ":", "from", "gutter", ".", "client", ".", "models", "import", "Manager", "if", "not", "alias", ":", "return", "Manager", "(", "*", "*", "kwargs", ")", "elif", "alias", "not", "in", "cache", ":", "cache", "[", "alias", "]", "=", "Manager", "(", "*", "*", "kwargs", ")", "return", "cache", "[", "alias", "]" ]
Creates gutter clients and memoizes them in a registry for future quick access. Args: alias (str or None): Name of the client. Used for caching. If name is falsy then do not use the cache. cache (dict): cache to store gutter managers in. **kwargs: kwargs to be passed the Manger class. Returns (Manager): A gutter client.
[ "Creates", "gutter", "clients", "and", "memoizes", "them", "in", "a", "registry", "for", "future", "quick", "access", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/__init__.py#L17-L42
disqus/gutter
gutter/client/operators/misc.py
PercentRange._modulo
def _modulo(self, decimal_argument): """ The mod operator is prone to floating point errors, so use decimal. 101.1 % 100 >>> 1.0999999999999943 decimal_context.divmod(Decimal('100.1'), 100) >>> (Decimal('1'), Decimal('0.1')) """ _times, remainder = self._context.divmod(decimal_argument, 100) # match the builtin % behavior by adding the N to the result if negative return remainder if remainder >= 0 else remainder + 100
python
def _modulo(self, decimal_argument): """ The mod operator is prone to floating point errors, so use decimal. 101.1 % 100 >>> 1.0999999999999943 decimal_context.divmod(Decimal('100.1'), 100) >>> (Decimal('1'), Decimal('0.1')) """ _times, remainder = self._context.divmod(decimal_argument, 100) # match the builtin % behavior by adding the N to the result if negative return remainder if remainder >= 0 else remainder + 100
[ "def", "_modulo", "(", "self", ",", "decimal_argument", ")", ":", "_times", ",", "remainder", "=", "self", ".", "_context", ".", "divmod", "(", "decimal_argument", ",", "100", ")", "# match the builtin % behavior by adding the N to the result if negative", "return", "remainder", "if", "remainder", ">=", "0", "else", "remainder", "+", "100" ]
The mod operator is prone to floating point errors, so use decimal. 101.1 % 100 >>> 1.0999999999999943 decimal_context.divmod(Decimal('100.1'), 100) >>> (Decimal('1'), Decimal('0.1'))
[ "The", "mod", "operator", "is", "prone", "to", "floating", "point", "errors", "so", "use", "decimal", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/operators/misc.py#L16-L29
disqus/gutter
gutter/client/models.py
Switch.enabled_for
def enabled_for(self, inpt): """ Checks to see if this switch is enabled for the provided input. If ``compounded``, all switch conditions must be ``True`` for the switch to be enabled. Otherwise, *any* condition needs to be ``True`` for the switch to be enabled. The switch state is then checked to see if it is ``GLOBAL`` or ``DISABLED``. If it is not, then the switch is ``SELECTIVE`` and each condition is checked. Keyword Arguments: inpt -- An instance of the ``Input`` class. """ signals.switch_checked.call(self) signal_decorated = partial(self.__signal_and_return, inpt) if self.state is self.states.GLOBAL: return signal_decorated(True) elif self.state is self.states.DISABLED: return signal_decorated(False) conditions_dict = ConditionsDict.from_conditions_list(self.conditions) conditions = conditions_dict.get_by_input(inpt) if conditions: result = self.__enabled_func( cond.call(inpt) for cond in conditions if cond.argument(inpt).applies ) else: result = None return signal_decorated(result)
python
def enabled_for(self, inpt): """ Checks to see if this switch is enabled for the provided input. If ``compounded``, all switch conditions must be ``True`` for the switch to be enabled. Otherwise, *any* condition needs to be ``True`` for the switch to be enabled. The switch state is then checked to see if it is ``GLOBAL`` or ``DISABLED``. If it is not, then the switch is ``SELECTIVE`` and each condition is checked. Keyword Arguments: inpt -- An instance of the ``Input`` class. """ signals.switch_checked.call(self) signal_decorated = partial(self.__signal_and_return, inpt) if self.state is self.states.GLOBAL: return signal_decorated(True) elif self.state is self.states.DISABLED: return signal_decorated(False) conditions_dict = ConditionsDict.from_conditions_list(self.conditions) conditions = conditions_dict.get_by_input(inpt) if conditions: result = self.__enabled_func( cond.call(inpt) for cond in conditions if cond.argument(inpt).applies ) else: result = None return signal_decorated(result)
[ "def", "enabled_for", "(", "self", ",", "inpt", ")", ":", "signals", ".", "switch_checked", ".", "call", "(", "self", ")", "signal_decorated", "=", "partial", "(", "self", ".", "__signal_and_return", ",", "inpt", ")", "if", "self", ".", "state", "is", "self", ".", "states", ".", "GLOBAL", ":", "return", "signal_decorated", "(", "True", ")", "elif", "self", ".", "state", "is", "self", ".", "states", ".", "DISABLED", ":", "return", "signal_decorated", "(", "False", ")", "conditions_dict", "=", "ConditionsDict", ".", "from_conditions_list", "(", "self", ".", "conditions", ")", "conditions", "=", "conditions_dict", ".", "get_by_input", "(", "inpt", ")", "if", "conditions", ":", "result", "=", "self", ".", "__enabled_func", "(", "cond", ".", "call", "(", "inpt", ")", "for", "cond", "in", "conditions", "if", "cond", ".", "argument", "(", "inpt", ")", ".", "applies", ")", "else", ":", "result", "=", "None", "return", "signal_decorated", "(", "result", ")" ]
Checks to see if this switch is enabled for the provided input. If ``compounded``, all switch conditions must be ``True`` for the switch to be enabled. Otherwise, *any* condition needs to be ``True`` for the switch to be enabled. The switch state is then checked to see if it is ``GLOBAL`` or ``DISABLED``. If it is not, then the switch is ``SELECTIVE`` and each condition is checked. Keyword Arguments: inpt -- An instance of the ``Input`` class.
[ "Checks", "to", "see", "if", "this", "switch", "is", "enabled", "for", "the", "provided", "input", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/models.py#L150-L187
disqus/gutter
gutter/client/models.py
Condition.call
def call(self, inpt): """ Returns if the condition applies to the ``inpt``. If the class ``inpt`` is an instance of is not the same class as the condition's own ``argument``, then ``False`` is returned. This also applies to the ``NONE`` input. Otherwise, ``argument`` is called, with ``inpt`` as the instance and the value is compared to the ``operator`` and the Value is returned. If the condition is ``negative``, then then ``not`` the value is returned. Keyword Arguments: inpt -- An instance of the ``Input`` class. """ if inpt is Manager.NONE_INPUT: return False # Call (construct) the argument with the input object argument_instance = self.argument(inpt) if not argument_instance.applies: return False application = self.__apply(argument_instance, inpt) if self.negative: application = not application return application
python
def call(self, inpt): """ Returns if the condition applies to the ``inpt``. If the class ``inpt`` is an instance of is not the same class as the condition's own ``argument``, then ``False`` is returned. This also applies to the ``NONE`` input. Otherwise, ``argument`` is called, with ``inpt`` as the instance and the value is compared to the ``operator`` and the Value is returned. If the condition is ``negative``, then then ``not`` the value is returned. Keyword Arguments: inpt -- An instance of the ``Input`` class. """ if inpt is Manager.NONE_INPUT: return False # Call (construct) the argument with the input object argument_instance = self.argument(inpt) if not argument_instance.applies: return False application = self.__apply(argument_instance, inpt) if self.negative: application = not application return application
[ "def", "call", "(", "self", ",", "inpt", ")", ":", "if", "inpt", "is", "Manager", ".", "NONE_INPUT", ":", "return", "False", "# Call (construct) the argument with the input object", "argument_instance", "=", "self", ".", "argument", "(", "inpt", ")", "if", "not", "argument_instance", ".", "applies", ":", "return", "False", "application", "=", "self", ".", "__apply", "(", "argument_instance", ",", "inpt", ")", "if", "self", ".", "negative", ":", "application", "=", "not", "application", "return", "application" ]
Returns if the condition applies to the ``inpt``. If the class ``inpt`` is an instance of is not the same class as the condition's own ``argument``, then ``False`` is returned. This also applies to the ``NONE`` input. Otherwise, ``argument`` is called, with ``inpt`` as the instance and the value is compared to the ``operator`` and the Value is returned. If the condition is ``negative``, then then ``not`` the value is returned. Keyword Arguments: inpt -- An instance of the ``Input`` class.
[ "Returns", "if", "the", "condition", "applies", "to", "the", "inpt", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/models.py#L333-L362
disqus/gutter
gutter/client/models.py
Manager.switches
def switches(self): """ List of all switches currently registered. """ results = [ switch for name, switch in self.storage.iteritems() if name.startswith(self.__joined_namespace) ] return results
python
def switches(self): """ List of all switches currently registered. """ results = [ switch for name, switch in self.storage.iteritems() if name.startswith(self.__joined_namespace) ] return results
[ "def", "switches", "(", "self", ")", ":", "results", "=", "[", "switch", "for", "name", ",", "switch", "in", "self", ".", "storage", ".", "iteritems", "(", ")", "if", "name", ".", "startswith", "(", "self", ".", "__joined_namespace", ")", "]", "return", "results" ]
List of all switches currently registered.
[ "List", "of", "all", "switches", "currently", "registered", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/models.py#L438-L447
disqus/gutter
gutter/client/models.py
Manager.switch
def switch(self, name): """ Returns the switch with the provided ``name``. If ``autocreate`` is set to ``True`` and no switch with that name exists, a ``DISABLED`` switch will be with that name. Keyword Arguments: name -- A name of a switch. """ try: switch = self.storage[self.__namespaced(name)] except KeyError: if not self.autocreate: raise ValueError("No switch named '%s' registered in '%s'" % (name, self.namespace)) switch = self.__create_and_register_disabled_switch(name) switch.manager = self return switch
python
def switch(self, name): """ Returns the switch with the provided ``name``. If ``autocreate`` is set to ``True`` and no switch with that name exists, a ``DISABLED`` switch will be with that name. Keyword Arguments: name -- A name of a switch. """ try: switch = self.storage[self.__namespaced(name)] except KeyError: if not self.autocreate: raise ValueError("No switch named '%s' registered in '%s'" % (name, self.namespace)) switch = self.__create_and_register_disabled_switch(name) switch.manager = self return switch
[ "def", "switch", "(", "self", ",", "name", ")", ":", "try", ":", "switch", "=", "self", ".", "storage", "[", "self", ".", "__namespaced", "(", "name", ")", "]", "except", "KeyError", ":", "if", "not", "self", ".", "autocreate", ":", "raise", "ValueError", "(", "\"No switch named '%s' registered in '%s'\"", "%", "(", "name", ",", "self", ".", "namespace", ")", ")", "switch", "=", "self", ".", "__create_and_register_disabled_switch", "(", "name", ")", "switch", ".", "manager", "=", "self", "return", "switch" ]
Returns the switch with the provided ``name``. If ``autocreate`` is set to ``True`` and no switch with that name exists, a ``DISABLED`` switch will be with that name. Keyword Arguments: name -- A name of a switch.
[ "Returns", "the", "switch", "with", "the", "provided", "name", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/models.py#L449-L468
disqus/gutter
gutter/client/models.py
Manager.register
def register(self, switch, signal=signals.switch_registered): ''' Register a switch and persist it to the storage. ''' if not switch.name: raise ValueError('Switch name cannot be blank') switch.manager = self self.__persist(switch) signal.call(switch)
python
def register(self, switch, signal=signals.switch_registered): ''' Register a switch and persist it to the storage. ''' if not switch.name: raise ValueError('Switch name cannot be blank') switch.manager = self self.__persist(switch) signal.call(switch)
[ "def", "register", "(", "self", ",", "switch", ",", "signal", "=", "signals", ".", "switch_registered", ")", ":", "if", "not", "switch", ".", "name", ":", "raise", "ValueError", "(", "'Switch name cannot be blank'", ")", "switch", ".", "manager", "=", "self", "self", ".", "__persist", "(", "switch", ")", "signal", ".", "call", "(", "switch", ")" ]
Register a switch and persist it to the storage.
[ "Register", "a", "switch", "and", "persist", "it", "to", "the", "storage", "." ]
train
https://github.com/disqus/gutter/blob/d686fa3cd0551cacfc5630c8e7b5fa75e6dcfdf5/gutter/client/models.py#L479-L489
kaste/mockito-python
mockito/mockito.py
verify
def verify(obj, times=1, atleast=None, atmost=None, between=None, inorder=False): """Central interface to verify interactions. `verify` uses a fluent interface:: verify(<obj>, times=2).<method_name>(<args>) `args` can be as concrete as necessary. Often a catch-all is enough, especially if you're working with strict mocks, bc they throw at call time on unwanted, unconfigured arguments:: from mockito import ANY, ARGS, KWARGS when(manager).add_tasks(1, 2, 3) ... # no need to duplicate the specification; every other argument pattern # would have raised anyway. verify(manager).add_tasks(1, 2, 3) # duplicates `when`call verify(manager).add_tasks(*ARGS) verify(manager).add_tasks(...) # Py3 verify(manager).add_tasks(Ellipsis) # Py2 """ if isinstance(obj, str): obj = get_obj(obj) verification_fn = _get_wanted_verification( times=times, atleast=atleast, atmost=atmost, between=between) if inorder: verification_fn = verification.InOrder(verification_fn) # FIXME?: Catch error if obj is neither a Mock nor a known stubbed obj theMock = _get_mock_or_raise(obj) class Verify(object): def __getattr__(self, method_name): return invocation.VerifiableInvocation( theMock, method_name, verification_fn) return Verify()
python
def verify(obj, times=1, atleast=None, atmost=None, between=None, inorder=False): """Central interface to verify interactions. `verify` uses a fluent interface:: verify(<obj>, times=2).<method_name>(<args>) `args` can be as concrete as necessary. Often a catch-all is enough, especially if you're working with strict mocks, bc they throw at call time on unwanted, unconfigured arguments:: from mockito import ANY, ARGS, KWARGS when(manager).add_tasks(1, 2, 3) ... # no need to duplicate the specification; every other argument pattern # would have raised anyway. verify(manager).add_tasks(1, 2, 3) # duplicates `when`call verify(manager).add_tasks(*ARGS) verify(manager).add_tasks(...) # Py3 verify(manager).add_tasks(Ellipsis) # Py2 """ if isinstance(obj, str): obj = get_obj(obj) verification_fn = _get_wanted_verification( times=times, atleast=atleast, atmost=atmost, between=between) if inorder: verification_fn = verification.InOrder(verification_fn) # FIXME?: Catch error if obj is neither a Mock nor a known stubbed obj theMock = _get_mock_or_raise(obj) class Verify(object): def __getattr__(self, method_name): return invocation.VerifiableInvocation( theMock, method_name, verification_fn) return Verify()
[ "def", "verify", "(", "obj", ",", "times", "=", "1", ",", "atleast", "=", "None", ",", "atmost", "=", "None", ",", "between", "=", "None", ",", "inorder", "=", "False", ")", ":", "if", "isinstance", "(", "obj", ",", "str", ")", ":", "obj", "=", "get_obj", "(", "obj", ")", "verification_fn", "=", "_get_wanted_verification", "(", "times", "=", "times", ",", "atleast", "=", "atleast", ",", "atmost", "=", "atmost", ",", "between", "=", "between", ")", "if", "inorder", ":", "verification_fn", "=", "verification", ".", "InOrder", "(", "verification_fn", ")", "# FIXME?: Catch error if obj is neither a Mock nor a known stubbed obj", "theMock", "=", "_get_mock_or_raise", "(", "obj", ")", "class", "Verify", "(", "object", ")", ":", "def", "__getattr__", "(", "self", ",", "method_name", ")", ":", "return", "invocation", ".", "VerifiableInvocation", "(", "theMock", ",", "method_name", ",", "verification_fn", ")", "return", "Verify", "(", ")" ]
Central interface to verify interactions. `verify` uses a fluent interface:: verify(<obj>, times=2).<method_name>(<args>) `args` can be as concrete as necessary. Often a catch-all is enough, especially if you're working with strict mocks, bc they throw at call time on unwanted, unconfigured arguments:: from mockito import ANY, ARGS, KWARGS when(manager).add_tasks(1, 2, 3) ... # no need to duplicate the specification; every other argument pattern # would have raised anyway. verify(manager).add_tasks(1, 2, 3) # duplicates `when`call verify(manager).add_tasks(*ARGS) verify(manager).add_tasks(...) # Py3 verify(manager).add_tasks(Ellipsis) # Py2
[ "Central", "interface", "to", "verify", "interactions", "." ]
train
https://github.com/kaste/mockito-python/blob/d6b22b003f56ee5b156dbd9d8ba209faf35b6713/mockito/mockito.py#L100-L140
README.md exists but content is empty.
Downloads last month
7