Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'ace_Arab' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status
                  response.raise_for_status()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/models.py", line 1024, in raise_for_status
                  raise HTTPError(http_error_msg, response=self)
              requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/31/ae/31ae613b63f60bc204dee43c860a3c3ee79d2acfa16386b5ed1cb2c65f0bfdbb/b41523097e72d52d7e23fb97aa66a37d763d102458a86dfe9db1710aa27bad94?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20250307%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250307T102812Z&X-Amz-Expires=3600&X-Amz-Signature=aedbccc14651bbc9334544111d26705e388940a5d31045b54957ead0834569b1&X-Amz-SignedHeaders=host&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27train-00000-of-00001.parquet%3B%20filename%3D%22train-00000-of-00001.parquet%22%3B&x-id=GetObject
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 298, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 60, in _split_generators
                  self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 2325, in read_schema
                  file = ParquetFile(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 318, in __init__
                  self.reader.open(
                File "pyarrow/_parquet.pyx", line 1470, in pyarrow._parquet.ParquetReader.open
                File "pyarrow/error.pxi", line 88, in pyarrow.lib.check_status
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 826, in read_with_retries
                  out = read(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 1013, in read
                  return super().read(length)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 1846, in read
                  out = self.cache._fetch(self.loc, self.loc + length)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/caching.py", line 189, in _fetch
                  self.cache = self.fetcher(start, end)  # new block replaces old
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 976, in _fetch_range
                  hf_raise_for_status(r)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status
                  raise _format(HfHubHTTPError, str(e), response) from e
              huggingface_hub.errors.HfHubHTTPError: 404 Client Error: Not Found for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/31/ae/31ae613b63f60bc204dee43c860a3c3ee79d2acfa16386b5ed1cb2c65f0bfdbb/b41523097e72d52d7e23fb97aa66a37d763d102458a86dfe9db1710aa27bad94?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20250307%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250307T102812Z&X-Amz-Expires=3600&X-Amz-Signature=aedbccc14651bbc9334544111d26705e388940a5d31045b54957ead0834569b1&X-Amz-SignedHeaders=host&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27train-00000-of-00001.parquet%3B%20filename%3D%22train-00000-of-00001.parquet%22%3B&x-id=GetObject
              
              <?xml version="1.0" encoding="UTF-8"?>
              <Error><Code>NoSuchKey</Code><Message>The specified key does not exist.</Message><Key>repos/31/ae/31ae613b63f60bc204dee43c860a3c3ee79d2acfa16386b5ed1cb2c65f0bfdbb/b41523097e72d52d7e23fb97aa66a37d763d102458a86dfe9db1710aa27bad94</Key><RequestId>77ADJF2B9SFAGYES</RequestId><HostId>cQqrM6i33FNJsuJWy+WxAUlgua9Utlo77AemHm8/ti9faoYAtoWg/SCXy/FReal3waiLK29kV5c=</HostId></Error>
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 352, in get_dataset_split_names
                  info = get_dataset_config_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 303, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

This is a large-scale collection of web-crawled documents in 191 world languages, produced by the HPLT project. The source of the data is mostly Internet Archive with some additions from Common Crawl.

For a detailed description of the dataset, please refer to https://hplt-project.org/datasets/v2.0

The Cleaned variant of HPLT Datasets v2.0

This is the cleaned variant of the HPLT Datasets v2.0 converted to the Parquet format semi-automatically when being uploaded here. The original JSONL files (which take ~4x fewer disk space than this HF version) and the larger non-cleaned version can be found at https://hplt-project.org/datasets/v2.0.

Dataset Performance

External Evaluation

The HuggingFace team has compared the utility of various multilingual corpora for training large language models in their FineWeb2 initiative.
They found that the HPLT v2 datasets are next to their FineWeb 2, on par with the CulturaX dataset as shown in this figure produced by HuggingFace:

This is a massive improvement compared to the HPLT v1 datasets, as can be seen on the plot above. In fact, it’s even better: if one looks at the language-specific results, it becomes clear that on Arabic, Hindi, Russian, Thai and Turkish (5 out of 9 languages HuggingFace evaluated on), HPLT v2 is on par or better than FineWeb 2. The average score is lower mostly because of Chinese, so we have some work ahead for this language! Note that the source of the FineWeb 2 (and CulturaX) data is exclusively CommonCrawl, while the HPLT datasets are to a large extent composed of Internet Archive crawls. Thus, FineWeb 2 and HPLTv2 are complementary to each other and should be used together.

Internal Evaluation

We also conducted FineWeb-style evaluations within the HPLT project, for now limited to English. It confirmed the findings of HuggingFace in that HPLT v2 datasets are of much better quality than HPLT v1.2 data, which was released almost a year ago.

We replicated the FineWeb evaluation setting, training large language models with the same architecture and pretraining configuration (e.g. 1.82B parameters, Llama architecture with a sequence length of 2048 tokens, GPT 2 tokenizer, and a global batch size of ~2 million tokens), with the only difference between the models being the training data. We randomly sampled approximately 100B tokens from different versions of HPLT as well as FineWeb-data and trained a separate model on each of these datasets.

Each model was trained with the GPT-NeoX framework on 8 nodes on the LUMI cluster, where each node has 4 MI250X GPUs. For evaluation, we use the HuggingFace LightEval in a zero-shot setting with the tasks ARC (Easy and Challenge), Hellaswag, PICA, and OpenbookQA. The figure shows the macro average of the acc_norm values for these evaluations.

Languages

The cleaned version of HPLT Datasets v2.0 consists of subsets corresponding to 191 language codes. Below we provide a list of language codes. For each language code the amount of text is shown as measured in:

  • segments: the number of sequences of characters (possibly empty) separated by the newline symbol,
  • wcwords: the number of words as defined by the Unix wc utility, i.e. the number of non-whitespaces with a whitespace or the beginning of document before,
  • chars: the number of characters,
  • docs: the number of documents, each document corresponds to an individual web page from the sourcing web crawls.
lang segments wcwords chars docs Language Name ISO693-3 code ISO693-3 code macro ISO693-1 direct code ISO693-1 through macro
0 TOTAL 3.00e+11 5.56e+12 3.74e+13 1.06e+10
1 ace_Arab 1.17e+02 8.36e+03 4.97e+04 1.60e+01 Achinese ace
2 ace_Latn 2.06e+05 8.20e+06 5.08e+07 1.29e+04 Achinese ace
3 afr_Latn 3.77e+07 1.00e+09 5.95e+09 1.46e+06 Afrikaans afr af af
4 als_Latn 9.51e+07 2.71e+09 1.61e+10 5.38e+06 Tosk Albanian als sqi sq
5 amh_Ethi 7.01e+06 1.96e+08 1.03e+09 2.96e+05 Amharic amh am am
6 ara_Arab 2.20e+09 4.81e+10 2.80e+11 8.27e+07 Arabic ara ar ar
7 asm_Beng 2.68e+06 7.34e+07 4.76e+08 1.76e+05 Assamese asm as as
8 ast_Latn 7.43e+06 1.95e+08 1.24e+09 2.73e+05 Asturian ast
9 awa_Deva 1.32e+05 6.05e+06 2.88e+07 7.28e+03 Awadhi awa
10 ayr_Latn 1.88e+05 3.07e+06 2.51e+07 9.22e+03 Central Aymara ayr aym ay
11 azb_Arab 2.39e+06 3.96e+07 2.60e+08 6.61e+04 South Azerbaijani azb aze az
12 azj_Latn 1.27e+08 2.57e+09 1.96e+10 6.48e+06 North Azerbaijani azj aze az
13 bak_Cyrl 3.14e+06 7.53e+07 5.58e+08 1.71e+05 Bashkir bak ba ba
14 bam_Latn 9.17e+04 3.98e+06 2.07e+07 5.72e+03 Bambara bam bm bm
15 ban_Latn 6.01e+05 1.13e+07 7.72e+07 1.07e+04 Balinese ban
16 bel_Cyrl 4.88e+07 1.21e+09 8.54e+09 2.32e+06 Belarusian bel be be
17 bem_Latn 1.34e+05 4.52e+06 3.23e+07 6.14e+03 Bemba (Zambia) bem
18 ben_Beng 1.76e+08 4.64e+09 3.02e+10 1.10e+07 Bengali ben bn bn
19 bho_Deva 4.58e+05 1.35e+07 6.86e+07 2.86e+04 Bhojpuri bho
20 bjn_Arab 1.95e+04 5.48e+05 3.32e+06 1.11e+03 Banjar bjn msa ms
21 bjn_Latn 3.66e+05 8.05e+06 5.60e+07 1.88e+04 Banjar bjn msa ms
22 bod_Tibt 4.65e+05 5.78e+06 2.68e+08 2.74e+04 Tibetan bod bo bo
23 bos_Latn 2.68e+08 7.26e+09 4.61e+10 1.46e+07 Bosnian bos hbs bs bs
24 bug_Latn 3.86e+04 2.70e+06 1.93e+07 2.02e+03 Buginese bug
25 bul_Cyrl 6.81e+08 1.53e+10 9.69e+10 2.81e+07 Bulgarian bul bg bg
26 cat_Latn 3.83e+08 1.00e+10 6.02e+10 1.86e+07 Catalan cat ca ca
27 ceb_Latn 2.86e+06 8.59e+07 5.16e+08 1.39e+05 Cebuano ceb
28 ces_Latn 1.93e+09 4.21e+10 2.74e+11 7.53e+07 Czech ces cs cs
29 cjk_Latn 3.67e+04 9.65e+05 7.43e+06 1.20e+03 Chokwe cjk
30 ckb_Arab 5.23e+06 1.43e+08 9.13e+08 2.74e+05 Central Kurdish ckb kur ku
31 crh_Latn 1.38e+06 3.68e+07 2.81e+08 1.23e+05 Crimean Tatar crh
32 cym_Latn 1.56e+07 4.09e+08 2.40e+09 7.58e+05 Welsh cym cy cy
33 dan_Latn 8.73e+08 2.12e+10 1.33e+11 3.38e+07 Danish dan da da
34 deu_Latn 1.11e+10 2.52e+11 1.78e+12 4.82e+08 German deu de de
35 dik_Latn 3.46e+04 2.30e+06 1.15e+07 2.32e+03 Southwestern Dinka dik din
36 dyu_Latn 2.46e+04 1.19e+06 5.55e+06 1.39e+03 Dyula dyu
37 dzo_Tibt 4.00e+04 4.22e+05 7.38e+06 1.63e+03 Dzongkha dzo dz dz
38 ell_Grek 1.85e+09 4.27e+10 2.84e+11 7.03e+07 Modern Greek (1453-) ell el el
39 eng_Latn 1.16e+11 2.86e+12 1.71e+13 4.39e+09 English eng en en
40 epo_Latn 2.04e+07 4.72e+08 2.98e+09 8.19e+05 Esperanto epo eo eo
41 est_Latn 2.64e+08 4.74e+09 3.60e+10 8.45e+06 Estonian est et et
42 eus_Latn 3.76e+07 7.77e+08 6.05e+09 1.97e+06 Basque eus eu eu
43 ewe_Latn 1.43e+05 4.31e+06 2.13e+07 3.77e+03 Ewe ewe ee ee
44 fao_Latn 4.53e+06 9.34e+07 5.82e+08 2.40e+05 Faroese fao fo fo
45 fij_Latn 1.79e+05 7.26e+06 3.77e+07 8.91e+03 Fijian fij fj fj
46 fin_Latn 9.77e+08 1.84e+10 1.56e+11 3.48e+07 Finnish fin fi fi
47 fon_Latn 1.48e+04 1.23e+06 5.34e+06 1.23e+03 Fon fon
48 fra_Latn 1.06e+10 2.37e+11 1.46e+12 4.02e+08 French fra fr fr
49 fur_Latn 7.30e+05 2.08e+07 1.15e+08 3.67e+04 Friulian fur
50 fuv_Latn 1.34e+05 5.14e+06 2.99e+07 7.76e+03 Nigerian Fulfulde fuv ful ff
51 gaz_Latn 9.74e+05 2.89e+07 2.19e+08 4.91e+04 West Central Oromo gaz orm om
52 gla_Latn 3.31e+06 8.07e+07 4.84e+08 1.37e+05 Scottish Gaelic gla gd gd
53 gle_Latn 1.10e+07 2.96e+08 1.75e+09 4.91e+05 Irish gle ga ga
54 glg_Latn 6.12e+07 1.64e+09 1.01e+10 3.02e+06 Galician glg gl gl
55 grn_Latn 1.71e+06 3.07e+07 2.19e+08 7.34e+04 Guarani grn gn gn
56 guj_Gujr 2.06e+07 5.77e+08 3.39e+09 1.13e+06 Gujarati guj gu gu
57 hat_Latn 4.64e+06 1.22e+08 6.39e+08 2.13e+05 Haitian hat ht ht
58 hau_Latn 5.69e+06 1.53e+08 8.54e+08 3.16e+05 Hausa hau ha ha
59 heb_Hebr 4.67e+08 9.97e+09 5.68e+10 1.71e+07 Hebrew heb he he
60 hin_Deva 2.67e+08 8.64e+09 4.40e+10 1.36e+07 Hindi hin hi hi
61 hne_Deva 5.50e+04 2.20e+06 1.06e+07 2.81e+03 Chhattisgarhi hne
62 hrv_Latn 2.97e+08 7.31e+09 4.80e+10 1.23e+07 Croatian hrv hbs hr hr
63 hun_Latn 1.42e+09 3.05e+10 2.25e+11 5.19e+07 Hungarian hun hu hu
64 hye_Armn 6.52e+07 1.40e+09 1.07e+10 3.60e+06 Armenian hye hy hy
65 ibo_Latn 1.41e+06 3.83e+07 2.05e+08 5.63e+04 Igbo ibo ig ig
66 ilo_Latn 1.12e+06 2.48e+07 1.57e+08 4.88e+04 Iloko ilo
67 ind_Latn 2.39e+09 5.46e+10 3.84e+11 9.81e+07 Indonesian ind msa id id
68 isl_Latn 6.96e+07 1.54e+09 9.59e+09 2.84e+06 Icelandic isl is is
69 ita_Latn 5.13e+09 1.27e+11 8.21e+11 2.22e+08 Italian ita it it
70 jav_Latn 6.43e+06 1.38e+08 9.38e+08 1.96e+05 Javanese jav jv jv
71 jpn_Jpan 2.33e+10 4.24e+10 9.01e+11 4.18e+08 Japanese jpn ja ja
72 kab_Latn 3.45e+05 9.22e+06 5.42e+07 1.51e+04 Kabyle kab
73 kac_Latn 1.59e+05 5.96e+06 2.84e+07 7.59e+03 Kachin kac
74 kam_Latn 1.43e+04 6.74e+05 4.64e+06 1.18e+03 Kamba (Kenya) kam
75 kan_Knda 2.49e+07 5.33e+08 4.30e+09 1.34e+06 Kannada kan kn kn
76 kas_Arab 2.71e+04 6.78e+05 3.47e+06 9.49e+02 Kashmiri kas ks ks
77 kas_Deva 1.36e+03 3.19e+04 1.85e+05 1.06e+02 Kashmiri kas ks ks
78 kat_Geor 6.37e+07 1.24e+09 1.02e+10 3.34e+06 Georgian kat ka ka
79 kaz_Cyrl 8.10e+07 1.41e+09 1.11e+10 2.64e+06 Kazakh kaz kk kk
80 kbp_Latn 4.68e+04 4.26e+06 2.09e+07 7.08e+03 Kabiyè kbp
81 kea_Latn 4.39e+04 1.14e+06 6.14e+06 1.96e+03 Kabuverdianu kea
82 khk_Cyrl 5.35e+07 1.34e+09 9.33e+09 2.12e+06 Halh Mongolian khk mon mn
83 khm_Khmr 9.86e+06 1.14e+08 2.12e+09 7.01e+05 Khmer khm km km
84 kik_Latn 5.19e+04 1.43e+06 9.29e+06 4.00e+03 Kikuyu kik ki ki
85 kin_Latn 1.92e+06 5.07e+07 3.67e+08 9.27e+04 Kinyarwanda kin rw rw
86 kir_Cyrl 1.00e+07 2.47e+08 1.92e+09 6.76e+05 Kirghiz kir ky ky
87 kmb_Latn 1.18e+04 3.83e+05 2.07e+06 5.31e+02 Kimbundu kmb
88 kmr_Latn 7.15e+06 1.96e+08 1.12e+09 3.64e+05 Northern Kurdish kmr kur ku
89 knc_Arab 1.08e+04 2.62e+05 1.30e+06 2.45e+02 Central Kanuri knc kau kr
90 knc_Latn 1.05e+04 2.41e+06 1.20e+07 2.47e+03 Central Kanuri knc kau kr
91 kon_Latn 4.75e+04 1.94e+06 1.13e+07 2.54e+03 Kongo kon kg kg
92 kor_Hang 1.36e+09 1.97e+10 8.92e+10 3.89e+07 Korean kor ko ko
93 lao_Laoo 3.20e+05 5.18e+06 8.47e+07 2.95e+04 Lao lao lo lo
94 lij_Latn 1.58e+05 5.59e+06 3.15e+07 8.37e+03 Ligurian lij
95 lim_Latn 7.14e+06 1.81e+08 1.12e+09 3.68e+05 Limburgan lim li li
96 lin_Latn 2.00e+05 5.56e+06 3.29e+07 7.59e+03 Lingala lin ln ln
97 lit_Latn 3.22e+08 6.68e+09 5.04e+10 1.33e+07 Lithuanian lit lt lt
98 lmo_Latn 2.12e+06 5.96e+07 3.45e+08 1.46e+05 Lombard lmo
99 ltg_Latn 1.51e+05 3.79e+06 2.69e+07 9.21e+03 Latgalian ltg lav lv
100 ltz_Latn 5.06e+06 1.07e+08 7.10e+08 2.47e+05 Luxembourgish ltz lb lb
101 lua_Latn 3.87e+04 1.37e+06 9.00e+06 1.08e+03 Luba-Lulua lua
102 lug_Latn 4.08e+05 9.18e+06 6.80e+07 2.13e+04 Ganda lug lg lg
103 luo_Latn 8.41e+04 3.73e+06 2.03e+07 4.15e+03 Luo (Kenya and Tanzania) luo
104 lus_Latn 3.43e+06 1.25e+08 6.52e+08 1.60e+05 Lushai lus
105 lvs_Latn 1.74e+08 3.46e+09 2.52e+10 6.77e+06 Standard Latvian lvs lav lv
106 mag_Deva 1.93e+04 8.91e+05 4.28e+06 3.28e+02 Magahi mag
107 mai_Deva 6.46e+05 1.78e+07 9.67e+07 2.50e+04 Maithili mai
108 mal_Mlym 4.80e+07 9.74e+08 9.49e+09 3.10e+06 Malayalam mal ml ml
109 mar_Deva 3.63e+07 9.81e+08 6.62e+09 2.08e+06 Marathi mar mr mr
110 min_Latn 6.01e+05 1.10e+07 7.48e+07 2.50e+04 Minangkabau min msa ms
111 mkd_Cyrl 5.70e+07 1.48e+09 9.44e+09 3.57e+06 Macedonian mkd mk mk
112 mlt_Latn 8.68e+06 1.96e+08 1.44e+09 3.67e+05 Maltese mlt mt mt
113 mni_Beng 6.58e+04 1.63e+06 1.18e+07 2.93e+03 Manipuri mni
114 mos_Latn 1.91e+04 8.08e+05 3.86e+06 9.31e+02 Mossi mos
115 mri_Latn 2.80e+06 8.68e+07 4.24e+08 1.08e+05 Maori mri mi mi
116 mya_Mymr 3.05e+07 4.53e+08 5.82e+09 1.37e+06 Burmese mya my my
117 nld_Latn 3.08e+09 7.14e+10 4.51e+11 1.39e+08 Dutch nld nl nl
118 nno_Latn 3.46e+07 8.60e+08 5.40e+09 1.42e+06 Norwegian Nynorsk nno nor nn nn
119 nob_Latn 6.76e+08 2.15e+10 1.33e+11 2.70e+07 Norwegian Bokmål nob nor nb nb
120 npi_Deva 3.71e+07 1.13e+09 7.26e+09 2.78e+06 Nepali (individual language) npi nep ne
121 nso_Latn 1.43e+05 5.32e+06 2.75e+07 6.07e+03 Pedi nso
122 nus_Latn 8.51e+03 3.93e+05 1.88e+06 2.72e+02 Nuer nus
123 nya_Latn 1.34e+06 2.71e+07 2.03e+08 5.31e+04 Nyanja nya ny ny
124 oci_Latn 4.20e+06 1.03e+08 6.35e+08 1.90e+05 Occitan (post 1500) oci oc oc
125 ory_Orya 3.60e+06 1.20e+08 7.82e+08 4.13e+05 Odia ory ori or
126 pag_Latn 8.58e+04 5.66e+06 3.35e+07 6.90e+03 Pangasinan pag
127 pan_Guru 1.17e+07 3.72e+08 1.90e+09 5.85e+05 Panjabi pan pa pa
128 pap_Latn 1.39e+06 4.67e+07 2.54e+08 8.98e+04 Papiamento pap
129 pbt_Arab 8.46e+06 2.79e+08 1.30e+09 4.66e+05 Southern Pashto pbt pus ps
130 pes_Arab 3.96e+09 8.86e+10 4.55e+11 9.05e+07 Iranian Persian pes fas fa
131 plt_Latn 4.74e+06 1.17e+08 8.10e+08 2.08e+05 Plateau Malagasy plt mlg mg
132 pol_Latn 4.46e+09 8.95e+10 6.32e+11 1.75e+08 Polish pol pl pl
133 por_Latn 6.12e+09 1.46e+11 8.96e+11 2.38e+08 Portuguese por pt pt
134 prs_Arab 6.90e+07 1.84e+09 9.57e+09 2.84e+06 Dari prs fas fa
135 quy_Latn 4.94e+05 1.73e+07 1.43e+08 3.69e+04 Ayacucho Quechua quy que qu
136 ron_Latn 1.70e+09 4.00e+10 2.51e+11 6.59e+07 Romanian ron ro ro
137 run_Latn 1.75e+06 4.44e+07 3.16e+08 1.37e+05 Rundi run rn rn
138 rus_Cyrl 2.63e+10 5.41e+11 3.91e+12 8.85e+08 Russian rus ru ru
139 sag_Latn 5.19e+04 3.61e+06 1.67e+07 3.16e+03 Sango sag sg sg
140 san_Deva 3.28e+06 4.38e+07 3.59e+08 5.49e+04 Sanskrit san sa sa
141 sat_Olck 4.58e+04 1.08e+06 6.27e+06 2.57e+03 Santali sat
142 scn_Latn 1.65e+06 4.24e+07 2.52e+08 8.20e+04 Sicilian scn
143 shn_Mymr 9.21e+04 1.65e+06 2.12e+07 6.00e+03 Shan shn
144 sin_Sinh 3.37e+07 7.96e+08 4.98e+09 1.15e+06 Sinhala sin si si
145 slk_Latn 4.94e+08 1.06e+10 7.04e+10 2.18e+07 Slovak slk sk sk
146 slv_Latn 2.39e+08 5.44e+09 3.53e+10 1.03e+07 Slovenian slv sl sl
147 smo_Latn 1.01e+06 3.71e+07 1.86e+08 4.59e+04 Samoan smo sm sm
148 sna_Latn 1.20e+06 2.39e+07 1.93e+08 6.11e+04 Shona sna sn sn
149 snd_Arab 2.83e+06 8.95e+07 4.29e+08 1.00e+05 Sindhi snd sd sd
150 som_Latn 1.64e+07 3.89e+08 2.56e+09 9.66e+05 Somali som so so
151 sot_Latn 1.08e+06 3.10e+07 1.72e+08 4.39e+04 Southern Sotho sot st st
152 spa_Latn 1.21e+10 3.22e+11 1.95e+12 5.03e+08 Spanish spa es es
153 srd_Latn 9.17e+05 2.39e+07 1.49e+08 5.38e+04 Sardinian srd sc sc
154 srp_Cyrl 9.38e+07 2.52e+09 1.62e+10 4.12e+06 Serbian srp hbs sr sr
155 ssw_Latn 6.21e+04 9.94e+05 8.82e+06 2.04e+03 Swati ssw ss ss
156 sun_Latn 3.24e+06 6.96e+07 4.75e+08 1.15e+05 Sundanese sun su su
157 swe_Latn 1.76e+09 4.01e+10 2.51e+11 6.68e+07 Swedish swe sv sv
158 swh_Latn 3.43e+07 7.18e+08 4.66e+09 1.37e+06 Swahili (individual language) swh swa sw
159 szl_Latn 6.37e+05 1.47e+07 1.04e+08 4.09e+04 Silesian szl
160 tam_Taml 1.69e+08 2.98e+09 2.62e+10 6.11e+06 Tamil tam ta ta
161 taq_Latn 1.39e+04 1.54e+06 8.84e+06 1.75e+03 Tamasheq taq tmh
162 tat_Cyrl 1.34e+07 2.97e+08 2.16e+09 6.31e+05 Tatar tat tt tt
163 tel_Telu 3.92e+07 8.35e+08 6.50e+09 2.06e+06 Telugu tel te te
164 tgk_Cyrl 2.48e+07 6.25e+08 4.59e+09 1.26e+06 Tajik tgk tg tg
165 tgl_Latn 5.29e+07 1.35e+09 8.13e+09 1.87e+06 Tagalog tgl tl tl
166 tha_Thai 3.39e+08 3.51e+09 6.00e+10 1.77e+07 Thai tha th th
167 tir_Ethi 1.13e+06 3.67e+07 1.82e+08 6.47e+04 Tigrinya tir ti ti
168 tpi_Latn 2.82e+05 1.25e+07 6.45e+07 1.40e+04 Tok Pisin tpi
169 tsn_Latn 1.32e+05 5.27e+06 2.77e+07 6.05e+03 Tswana tsn tn tn
170 tso_Latn 2.21e+05 8.67e+06 4.93e+07 1.10e+04 Tsonga tso ts ts
171 tuk_Latn 3.36e+06 7.07e+07 5.70e+08 1.71e+05 Turkmen tuk tk tk
172 tum_Latn 9.90e+04 2.88e+06 2.11e+07 4.38e+03 Tumbuka tum
173 tur_Latn 2.58e+09 5.17e+10 3.90e+11 1.17e+08 Turkish tur tr tr
174 twi_Latn 1.26e+05 4.70e+06 2.42e+07 5.86e+03 Twi twi aka tw tw
175 uig_Arab 8.98e+06 2.24e+08 1.75e+09 4.42e+05 Uighur uig ug ug
176 ukr_Cyrl 1.17e+09 2.52e+10 1.83e+11 4.74e+07 Ukrainian ukr uk uk
177 umb_Latn 5.99e+04 2.43e+06 1.54e+07 2.47e+03 Umbundu umb
178 urd_Arab 5.06e+07 2.13e+09 1.00e+10 3.19e+06 Urdu urd ur ur
179 uzn_Latn 1.48e+07 3.51e+08 2.85e+09 7.07e+05 Northern Uzbek uzn uzb uz
180 vec_Latn 1.58e+06 3.53e+07 2.18e+08 8.48e+04 Venetian vec
181 vie_Latn 3.02e+09 8.32e+10 3.80e+11 1.01e+08 Vietnamese vie vi vi
182 war_Latn 2.01e+05 5.89e+06 3.56e+07 1.39e+04 Waray (Philippines) war
183 wol_Latn 1.62e+05 5.46e+06 2.75e+07 5.68e+03 Wolof wol wo wo
184 xho_Latn 1.82e+06 3.03e+07 2.59e+08 6.31e+04 Xhosa xho xh xh
185 ydd_Hebr 2.94e+06 7.75e+07 4.58e+08 1.28e+05 Eastern Yiddish ydd yid yi
186 yor_Latn 1.47e+06 4.28e+07 2.18e+08 6.61e+04 Yoruba yor yo yo
187 yue_Hant 1.24e+06 3.27e+06 7.43e+07 6.13e+04 Yue Chinese yue zho zh
188 zho_Hans 4.24e+10 7.40e+10 2.35e+12 1.25e+09 Chinese zho zh zh
189 zho_Hant 4.48e+09 9.51e+09 2.87e+11 1.57e+08 Chinese zho zh zh
190 zsm_Latn 5.80e+08 1.15e+10 7.84e+10 1.84e+07 Standard Malay zsm msa ms
191 zul_Latn 2.71e+06 4.44e+07 3.81e+08 1.14e+05 Zulu zul zu zu
Downloads last month
251