Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Hebrew
Size:
1K - 10K
ArXiv:
License:
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@mastersthesis{naama, | |
title={Hebrew Named Entity Recognition}, | |
author={Ben-Mordecai, Naama}, | |
advisor={Elhadad, Michael}, | |
year={2005}, | |
url="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/", | |
institution={Department of Computer Science, Ben-Gurion University}, | |
school={Department of Computer Science, Ben-Gurion University}, | |
}, | |
@misc{bareket2020neural, | |
title={Neural Modeling for Named Entities and Morphology (NEMO^2)}, | |
author={Dan Bareket and Reut Tsarfaty}, | |
year={2020}, | |
eprint={2007.15620}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
""" | |
SPLITS = ["split1", "split2", "split3"] | |
class BMCConfig(datasets.BuilderConfig): | |
"""BuilderConfig for BMC""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for BMC. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(BMCConfig, self).__init__(**kwargs) | |
class BMC(datasets.GeneratorBasedBuilder): | |
"""BMC dataset.""" | |
BUILDER_CONFIGS = [ | |
BMCConfig(name=split, version=datasets.Version("1.0.0"), description="BMC dataset") | |
for split in SPLITS | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"raw_tags": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
'B-DATE', | |
'I-DATE', | |
'S-DATE', | |
'E-DATE', | |
'B-LOC', | |
'E-LOC', | |
'S-LOC', | |
'I-LOC', | |
'E-MONEY', | |
'B-MONEY', | |
'S-MONEY', | |
'I-MONEY', | |
'O', | |
'S-ORG', | |
'E-ORG', | |
'I-ORG', | |
'B-ORG', | |
'B-PER', | |
'E-PER', | |
'I-PER', | |
'S-PER', | |
'B-PERCENT', | |
'S-PERCENT', | |
'E-PERCENT', | |
'I-PERCENT', | |
'E-TIME', | |
'I-TIME', | |
'B-TIME', | |
'S-TIME' | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
folder = f"data/{self.config.name}" | |
data_files = { | |
"train": dl_manager.download(os.path.join(folder, "bmc_split.train.bmes")), | |
"validation": dl_manager.download(os.path.join(folder, "bmc_split.dev.bmes")), | |
"test": dl_manager.download(os.path.join(folder, "bmc_split.test.bmes")), | |
} | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["validation"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), | |
] | |
def _generate_examples(self, filepath, sep = " "): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
raw_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"raw_tags": raw_tags, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
raw_tags = [] | |
ner_tags = [] | |
else: | |
splits = line.split(sep) | |
tokens.append(splits[0]) | |
raw_tags.append(splits[1].rstrip()) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"raw_tags": raw_tags, | |
"ner_tags": ner_tags, | |
} | |