Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Hebrew
Size:
1K - 10K
ArXiv:
License:
File size: 5,317 Bytes
6c6f623 e146819 6c6f623 e146819 6c6f623 a465c37 6c6f623 e146819 6c6f623 e146819 6c6f623 e146819 6c6f623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@mastersthesis{naama,
title={Hebrew Named Entity Recognition},
author={Ben-Mordecai, Naama},
advisor={Elhadad, Michael},
year={2005},
url="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/",
institution={Department of Computer Science, Ben-Gurion University},
school={Department of Computer Science, Ben-Gurion University},
},
@misc{bareket2020neural,
title={Neural Modeling for Named Entities and Morphology (NEMO^2)},
author={Dan Bareket and Reut Tsarfaty},
year={2020},
eprint={2007.15620},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
"""
SPLITS = ["split1", "split2", "split3"]
class BMCConfig(datasets.BuilderConfig):
"""BuilderConfig for BMC"""
def __init__(self, **kwargs):
"""BuilderConfig for BMC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(BMCConfig, self).__init__(**kwargs)
class BMC(datasets.GeneratorBasedBuilder):
"""BMC dataset."""
BUILDER_CONFIGS = [
BMCConfig(name=split, version=datasets.Version("1.0.0"), description="BMC dataset")
for split in SPLITS
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"raw_tags": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'B-DATE',
'I-DATE',
'S-DATE',
'E-DATE',
'B-LOC',
'E-LOC',
'S-LOC',
'I-LOC',
'E-MONEY',
'B-MONEY',
'S-MONEY',
'I-MONEY',
'O',
'S-ORG',
'E-ORG',
'I-ORG',
'B-ORG',
'B-PER',
'E-PER',
'I-PER',
'S-PER',
'B-PERCENT',
'S-PERCENT',
'E-PERCENT',
'I-PERCENT',
'E-TIME',
'I-TIME',
'B-TIME',
'S-TIME'
]
)
),
}
),
supervised_keys=None,
homepage="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
folder = f"data/{self.config.name}"
data_files = {
"train": dl_manager.download(os.path.join(folder, "bmc_split.train.bmes")),
"validation": dl_manager.download(os.path.join(folder, "bmc_split.dev.bmes")),
"test": dl_manager.download(os.path.join(folder, "bmc_split.test.bmes")),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["validation"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
]
def _generate_examples(self, filepath, sep = " "):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
raw_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"raw_tags": raw_tags,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
raw_tags = []
ner_tags = []
else:
splits = line.split(sep)
tokens.append(splits[0])
raw_tags.append(splits[1].rstrip())
ner_tags.append(splits[1].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"raw_tags": raw_tags,
"ner_tags": ner_tags,
}
|