|
--- |
|
language: |
|
- en |
|
- zh |
|
license: mit |
|
task_categories: |
|
- image-segmentation |
|
task_ids: |
|
- semantic-segmentation |
|
tags: |
|
- remote-sensing |
|
- change-detection |
|
- satellite-imagery |
|
- high-resolution |
|
- multi-temporal |
|
dataset_info: |
|
config_name: jl1-cd |
|
features: |
|
- name: image_pair |
|
sequence: |
|
- name: image |
|
dtype: image |
|
shape: |
|
- 512 |
|
- 512 |
|
- 3 |
|
- name: change_label |
|
dtype: image |
|
shape: |
|
- 512 |
|
- 512 |
|
- 1 |
|
splits: |
|
- name: train |
|
num_bytes: 1024000000 |
|
num_examples: 4000 |
|
- name: test |
|
num_bytes: 256000000 |
|
num_examples: 1000 |
|
download_size: 1280000000 |
|
dataset_size: 1280000000 |
|
--- |
|
|
|
# Dataset Card for JL1-CD |
|
|
|
## Dataset Description (English) |
|
|
|
### Overview |
|
|
|
**JL1-CD** is a large-scale, sub-meter, all-inclusive open-source dataset for remote sensing image change detection (CD). It contains 5,000 pairs of 512×512 pixel satellite images with a resolution of 0.5 to 0.75 meters, covering various types of surface changes in multiple regions of China. JL1-CD includes not only common human-induced changes (e.g., buildings, roads) but also natural changes (e.g., forests, water bodies, grasslands). The dataset aims to provide a comprehensive benchmark for change detection algorithms. |
|
|
|
### Dataset Structure |
|
|
|
- **Number of Image Pairs**: 5,000 pairs |
|
- **Image Size**: 512×512 pixels |
|
- **Resolution**: 0.5 to 0.75 meters |
|
- **Change Types**: Human-induced changes (e.g., buildings, roads) and natural changes (e.g., forests, water bodies, grasslands) |
|
- **Dataset Split**: 4,000 pairs for training, 1,000 pairs for testing |
|
|
|
### Dataset Features |
|
|
|
- **High Resolution**: Provides rich spatial information, facilitating visual interpretation. |
|
- **Comprehensive**: Covers various change types, enhancing the generalization capability of algorithms. |
|
- **Open Source**: The dataset is fully open-source, supporting the research community's use and improvement. |
|
|
|
### Usage |
|
|
|
The JL1-CD dataset can be used to train and evaluate remote sensing image change detection models. The image pairs in the dataset include images from two time points along with corresponding pixel-level change labels. Users can utilize this dataset to develop, test, and optimize change detection algorithms. |
|
|
|
### Benchmark Results |
|
|
|
The **Multi-Teacher Knowledge Distillation (MTKD)** framework proposed in the paper achieves new state-of-the-art (SOTA) results on the JL1-CD dataset. Experiments demonstrate that the MTKD framework significantly improves the performance of change detection models with various network architectures and parameter sizes. |
|
|
|
### Code |
|
The code can be found at https://github.com/circleLZY/MTKD-CD. |
|
|
|
### Citation |
|
|
|
If you use the JL1-CD dataset, please cite the following paper: |
|
|
|
[JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework](https://huggingface.co/papers/2502.13407) |
|
|
|
```bibtex |
|
@article{liu2025jl1, |
|
title={JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework}, |
|
author={Liu, Ziyuan and Zhu, Ruifei and Gao, Long and Zhou, Yuanxiu and Ma, Jingyu and Gu, Yuantao}, |
|
journal={arXiv preprint arXiv:2502.13407}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
### License |
|
|
|
The JL1-CD dataset is licensed under the **MIT License**, allowing users to freely use, modify, and distribute the dataset. |
|
|
|
### Contact |
|
|
|
For any questions or suggestions, please contact: |
|
- **Ziyuan Liu**: [email protected] |
|
|
|
--- |
|
|
|
## 数据集描述 (中文) |
|
|
|
### 概述 |
|
|
|
**JL1-CD** 是一个用于遥感图像变化检测(Change Detection, CD)的大规模、亚米级、全要素开源数据集。该数据集包含 5,000 对 512×512 像素的卫星图像,分辨率为 0.5 至 0.75 米,覆盖了中国多个地区的多种地表变化类型。JL1-CD 不仅包含常见的人为变化(如建筑物、道路),还涵盖了自然变化(如森林、水体、草地等)。该数据集旨在为变化检测算法提供一个全面的基准测试平台。 |
|
|
|
### 数据集结构 |
|
|
|
- **图像对数量**:5,000 对 |
|
- **图像尺寸**:512×512 像素 |
|
- **分辨率**:0.5 至 0.75 米 |
|
- **变化类型**:人为变化(如建筑物、道路)和自然变化(如森林、水体、草地) |
|
- **数据集划分**:4,000 对用于训练,1,000 对用于测试 |
|
|
|
### 数据集特点 |
|
|
|
- **高分辨率**:提供丰富的空间信息,便于视觉解释。 |
|
- **综合性**:涵盖多种变化类型,提升算法的泛化能力 |