anonymous-submission-acl2025 commited on
Commit
f4102f9
·
1 Parent(s): 96929ce
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 101/paper.pdf +3 -0
  2. 101/replication_package/.gitignore +30 -0
  3. 101/replication_package/.gitmodules +0 -0
  4. 101/replication_package/LICENSE.md +395 -0
  5. 101/replication_package/README.md +105 -0
  6. 101/replication_package/WALS_reanalysis_controlled_setup.R +140 -0
  7. 101/replication_package/WALS_reanalysis_controlled_setup_high_coverage.R +181 -0
  8. 101/replication_package/WALS_reanalysis_setup.R +40 -0
  9. 101/replication_package/WALS_sparseness.R +70 -0
  10. 101/replication_package/all_scripts.R +91 -0
  11. 101/replication_package/assigning_AUTOTYP_areas.R +85 -0
  12. 101/replication_package/create_pop_table.R +117 -0
  13. 101/replication_package/creating_boundness_metric.R +48 -0
  14. 101/replication_package/creating_informativity_score.R +51 -0
  15. 101/replication_package/data/GB_wide/parameters.csv +3 -0
  16. 101/replication_package/data/complexity_data_WALS.csv +3 -0
  17. 101/replication_package/data/glottolog-cldf_wide_df.tsv +3 -0
  18. 101/replication_package/data/lang_endangerment_predictors.xlsx +3 -0
  19. 101/replication_package/data/phylogenies/EDGE6635-merged-relabelled.tree +3 -0
  20. 101/replication_package/data_wrangling/ethnologue_pop_SM.tsv +3 -0
  21. 101/replication_package/data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv +3 -0
  22. 101/replication_package/data_wrangling/glottolog_AUTOTYPE_areas.tsv +3 -0
  23. 101/replication_package/data_wrangling/glottolog_cldf_wide_df.tsv +3 -0
  24. 101/replication_package/data_wrangling/pop_reduced.tsv +3 -0
  25. 101/replication_package/data_wrangling/pop_reduced_with_ISO.tsv +3 -0
  26. 101/replication_package/data_wrangling/wrangled.tree +3 -0
  27. 101/replication_package/generating_GB_input_file.R +42 -0
  28. 101/replication_package/get_external_data.R +46 -0
  29. 101/replication_package/install_and_load_INLA.R +22 -0
  30. 101/replication_package/make_ethnologue_SM_and_merging_tables.R +54 -0
  31. 101/replication_package/make_ethnologue_SM_for_morphological_complexity_reanalysis.R +37 -0
  32. 101/replication_package/measuring_phylosignal.R +48 -0
  33. 101/replication_package/models_Boundness_phylogenetic_spatial.R +412 -0
  34. 101/replication_package/models_Boundness_reduced_social.R +567 -0
  35. 101/replication_package/models_Boundness_reduced_social_only.R +433 -0
  36. 101/replication_package/models_Boundness_social.R +560 -0
  37. 101/replication_package/models_Boundness_social_only.R +452 -0
  38. 101/replication_package/models_Informativity_phylogenetic_spatial.R +414 -0
  39. 101/replication_package/models_Informativity_reduced_social.R +537 -0
  40. 101/replication_package/models_Informativity_reduced_social_only.R +435 -0
  41. 101/replication_package/models_Informativity_social.R +556 -0
  42. 101/replication_package/models_Informativity_social_only.R +454 -0
  43. 101/replication_package/output/Bound_morph/bound_morph_score.tsv +3 -0
  44. 101/replication_package/output/Informativity/informativity_score.tsv +3 -0
  45. 101/replication_package/output_tables/ effects Boundness_phylogenetic_spatial_models .csv +3 -0
  46. 101/replication_package/output_tables/ effects Boundness_social_models .csv +3 -0
  47. 101/replication_package/output_tables/ effects Boundness_social_models prior_0.01 .csv +3 -0
  48. 101/replication_package/output_tables/ effects Boundness_social_models prior_0.5 .csv +3 -0
  49. 101/replication_package/output_tables/ effects Boundness_social_models prior_0.99 .csv +3 -0
  50. 101/replication_package/output_tables/ effects Boundness_social_only_models .csv +3 -0
101/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0288699f0b4a67532df6cb1a3dd6391f46688831a3b092bea21f0fb35e1889d8
3
+ size 3262536
101/replication_package/.gitignore ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .Rproj.user
2
+ .Rhistory
3
+ .RData
4
+ .Ruserdata
5
+ .DS_Store
6
+ *.Rproj
7
+
8
+ *.RData
9
+ Table_of_Languages.tab
10
+ ethnologue_pop_full.tsv
11
+ pop.tsv
12
+ pop_full.tsv
13
+ GB_wide_strict.tsv
14
+ *.png
15
+ .xlsx
16
+ *.jpg
17
+ *.svg
18
+ *.tiff
19
+ *.emf
20
+ *.eps
21
+ *.ps
22
+ *.wmf
23
+ *.pptx
24
+ *.docx
25
+ *.pdf
26
+ *.jpeg
27
+ *.qs
28
+
29
+ #folders
30
+ *grambank-analysed*
101/replication_package/.gitmodules ADDED
File without changes
101/replication_package/LICENSE.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More_considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution 4.0 International Public License
58
+
59
+ By exercising the Licensed Rights (defined below), You accept and agree
60
+ to be bound by the terms and conditions of this Creative Commons
61
+ Attribution 4.0 International Public License ("Public License"). To the
62
+ extent this Public License may be interpreted as a contract, You are
63
+ granted the Licensed Rights in consideration of Your acceptance of
64
+ these terms and conditions, and the Licensor grants You such rights in
65
+ consideration of benefits the Licensor receives from making the
66
+ Licensed Material available under these terms and conditions.
67
+
68
+
69
+ Section 1 -- Definitions.
70
+
71
+ a. Adapted Material means material subject to Copyright and Similar
72
+ Rights that is derived from or based upon the Licensed Material
73
+ and in which the Licensed Material is translated, altered,
74
+ arranged, transformed, or otherwise modified in a manner requiring
75
+ permission under the Copyright and Similar Rights held by the
76
+ Licensor. For purposes of this Public License, where the Licensed
77
+ Material is a musical work, performance, or sound recording,
78
+ Adapted Material is always produced where the Licensed Material is
79
+ synched in timed relation with a moving image.
80
+
81
+ b. Adapter's License means the license You apply to Your Copyright
82
+ and Similar Rights in Your contributions to Adapted Material in
83
+ accordance with the terms and conditions of this Public License.
84
+
85
+ c. Copyright and Similar Rights means copyright and/or similar rights
86
+ closely related to copyright including, without limitation,
87
+ performance, broadcast, sound recording, and Sui Generis Database
88
+ Rights, without regard to how the rights are labeled or
89
+ categorized. For purposes of this Public License, the rights
90
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
91
+ Rights.
92
+
93
+ d. Effective Technological Measures means those measures that, in the
94
+ absence of proper authority, may not be circumvented under laws
95
+ fulfilling obligations under Article 11 of the WIPO Copyright
96
+ Treaty adopted on December 20, 1996, and/or similar international
97
+ agreements.
98
+
99
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
100
+ any other exception or limitation to Copyright and Similar Rights
101
+ that applies to Your use of the Licensed Material.
102
+
103
+ f. Licensed Material means the artistic or literary work, database,
104
+ or other material to which the Licensor applied this Public
105
+ License.
106
+
107
+ g. Licensed Rights means the rights granted to You subject to the
108
+ terms and conditions of this Public License, which are limited to
109
+ all Copyright and Similar Rights that apply to Your use of the
110
+ Licensed Material and that the Licensor has authority to license.
111
+
112
+ h. Licensor means the individual(s) or entity(ies) granting rights
113
+ under this Public License.
114
+
115
+ i. Share means to provide material to the public by any means or
116
+ process that requires permission under the Licensed Rights, such
117
+ as reproduction, public display, public performance, distribution,
118
+ dissemination, communication, or importation, and to make material
119
+ available to the public including in ways that members of the
120
+ public may access the material from a place and at a time
121
+ individually chosen by them.
122
+
123
+ j. Sui Generis Database Rights means rights other than copyright
124
+ resulting from Directive 96/9/EC of the European Parliament and of
125
+ the Council of 11 March 1996 on the legal protection of databases,
126
+ as amended and/or succeeded, as well as other essentially
127
+ equivalent rights anywhere in the world.
128
+
129
+ k. You means the individual or entity exercising the Licensed Rights
130
+ under this Public License. Your has a corresponding meaning.
131
+
132
+
133
+ Section 2 -- Scope.
134
+
135
+ a. License grant.
136
+
137
+ 1. Subject to the terms and conditions of this Public License,
138
+ the Licensor hereby grants You a worldwide, royalty-free,
139
+ non-sublicensable, non-exclusive, irrevocable license to
140
+ exercise the Licensed Rights in the Licensed Material to:
141
+
142
+ a. reproduce and Share the Licensed Material, in whole or
143
+ in part; and
144
+
145
+ b. produce, reproduce, and Share Adapted Material.
146
+
147
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
148
+ Exceptions and Limitations apply to Your use, this Public
149
+ License does not apply, and You do not need to comply with
150
+ its terms and conditions.
151
+
152
+ 3. Term. The term of this Public License is specified in Section
153
+ 6(a).
154
+
155
+ 4. Media and formats; technical modifications allowed. The
156
+ Licensor authorizes You to exercise the Licensed Rights in
157
+ all media and formats whether now known or hereafter created,
158
+ and to make technical modifications necessary to do so. The
159
+ Licensor waives and/or agrees not to assert any right or
160
+ authority to forbid You from making technical modifications
161
+ necessary to exercise the Licensed Rights, including
162
+ technical modifications necessary to circumvent Effective
163
+ Technological Measures. For purposes of this Public License,
164
+ simply making modifications authorized by this Section 2(a)
165
+ (4) never produces Adapted Material.
166
+
167
+ 5. Downstream recipients.
168
+
169
+ a. Offer from the Licensor -- Licensed Material. Every
170
+ recipient of the Licensed Material automatically
171
+ receives an offer from the Licensor to exercise the
172
+ Licensed Rights under the terms and conditions of this
173
+ Public License.
174
+
175
+ b. No downstream restrictions. You may not offer or impose
176
+ any additional or different terms or conditions on, or
177
+ apply any Effective Technological Measures to, the
178
+ Licensed Material if doing so restricts exercise of the
179
+ Licensed Rights by any recipient of the Licensed
180
+ Material.
181
+
182
+ 6. No endorsement. Nothing in this Public License constitutes or
183
+ may be construed as permission to assert or imply that You
184
+ are, or that Your use of the Licensed Material is, connected
185
+ with, or sponsored, endorsed, or granted official status by,
186
+ the Licensor or others designated to receive attribution as
187
+ provided in Section 3(a)(1)(A)(i).
188
+
189
+ b. Other rights.
190
+
191
+ 1. Moral rights, such as the right of integrity, are not
192
+ licensed under this Public License, nor are publicity,
193
+ privacy, and/or other similar personality rights; however, to
194
+ the extent possible, the Licensor waives and/or agrees not to
195
+ assert any such rights held by the Licensor to the limited
196
+ extent necessary to allow You to exercise the Licensed
197
+ Rights, but not otherwise.
198
+
199
+ 2. Patent and trademark rights are not licensed under this
200
+ Public License.
201
+
202
+ 3. To the extent possible, the Licensor waives any right to
203
+ collect royalties from You for the exercise of the Licensed
204
+ Rights, whether directly or through a collecting society
205
+ under any voluntary or waivable statutory or compulsory
206
+ licensing scheme. In all other cases the Licensor expressly
207
+ reserves any right to collect such royalties.
208
+
209
+
210
+ Section 3 -- License Conditions.
211
+
212
+ Your exercise of the Licensed Rights is expressly made subject to the
213
+ following conditions.
214
+
215
+ a. Attribution.
216
+
217
+ 1. If You Share the Licensed Material (including in modified
218
+ form), You must:
219
+
220
+ a. retain the following if it is supplied by the Licensor
221
+ with the Licensed Material:
222
+
223
+ i. identification of the creator(s) of the Licensed
224
+ Material and any others designated to receive
225
+ attribution, in any reasonable manner requested by
226
+ the Licensor (including by pseudonym if
227
+ designated);
228
+
229
+ ii. a copyright notice;
230
+
231
+ iii. a notice that refers to this Public License;
232
+
233
+ iv. a notice that refers to the disclaimer of
234
+ warranties;
235
+
236
+ v. a URI or hyperlink to the Licensed Material to the
237
+ extent reasonably practicable;
238
+
239
+ b. indicate if You modified the Licensed Material and
240
+ retain an indication of any previous modifications; and
241
+
242
+ c. indicate the Licensed Material is licensed under this
243
+ Public License, and include the text of, or the URI or
244
+ hyperlink to, this Public License.
245
+
246
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
247
+ reasonable manner based on the medium, means, and context in
248
+ which You Share the Licensed Material. For example, it may be
249
+ reasonable to satisfy the conditions by providing a URI or
250
+ hyperlink to a resource that includes the required
251
+ information.
252
+
253
+ 3. If requested by the Licensor, You must remove any of the
254
+ information required by Section 3(a)(1)(A) to the extent
255
+ reasonably practicable.
256
+
257
+ 4. If You Share Adapted Material You produce, the Adapter's
258
+ License You apply must not prevent recipients of the Adapted
259
+ Material from complying with this Public License.
260
+
261
+
262
+ Section 4 -- Sui Generis Database Rights.
263
+
264
+ Where the Licensed Rights include Sui Generis Database Rights that
265
+ apply to Your use of the Licensed Material:
266
+
267
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268
+ to extract, reuse, reproduce, and Share all or a substantial
269
+ portion of the contents of the database;
270
+
271
+ b. if You include all or a substantial portion of the database
272
+ contents in a database in which You have Sui Generis Database
273
+ Rights, then the database in which You have Sui Generis Database
274
+ Rights (but not its individual contents) is Adapted Material; and
275
+
276
+ c. You must comply with the conditions in Section 3(a) if You Share
277
+ all or a substantial portion of the contents of the database.
278
+
279
+ For the avoidance of doubt, this Section 4 supplements and does not
280
+ replace Your obligations under this Public License where the Licensed
281
+ Rights include other Copyright and Similar Rights.
282
+
283
+
284
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285
+
286
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296
+
297
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306
+
307
+ c. The disclaimer of warranties and limitation of liability provided
308
+ above shall be interpreted in a manner that, to the extent
309
+ possible, most closely approximates an absolute disclaimer and
310
+ waiver of all liability.
311
+
312
+
313
+ Section 6 -- Term and Termination.
314
+
315
+ a. This Public License applies for the term of the Copyright and
316
+ Similar Rights licensed here. However, if You fail to comply with
317
+ this Public License, then Your rights under this Public License
318
+ terminate automatically.
319
+
320
+ b. Where Your right to use the Licensed Material has terminated under
321
+ Section 6(a), it reinstates:
322
+
323
+ 1. automatically as of the date the violation is cured, provided
324
+ it is cured within 30 days of Your discovery of the
325
+ violation; or
326
+
327
+ 2. upon express reinstatement by the Licensor.
328
+
329
+ For the avoidance of doubt, this Section 6(b) does not affect any
330
+ right the Licensor may have to seek remedies for Your violations
331
+ of this Public License.
332
+
333
+ c. For the avoidance of doubt, the Licensor may also offer the
334
+ Licensed Material under separate terms or conditions or stop
335
+ distributing the Licensed Material at any time; however, doing so
336
+ will not terminate this Public License.
337
+
338
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339
+ License.
340
+
341
+
342
+ Section 7 -- Other Terms and Conditions.
343
+
344
+ a. The Licensor shall not be bound by any additional or different
345
+ terms or conditions communicated by You unless expressly agreed.
346
+
347
+ b. Any arrangements, understandings, or agreements regarding the
348
+ Licensed Material not stated herein are separate from and
349
+ independent of the terms and conditions of this Public License.
350
+
351
+
352
+ Section 8 -- Interpretation.
353
+
354
+ a. For the avoidance of doubt, this Public License does not, and
355
+ shall not be interpreted to, reduce, limit, restrict, or impose
356
+ conditions on any use of the Licensed Material that could lawfully
357
+ be made without permission under this Public License.
358
+
359
+ b. To the extent possible, if any provision of this Public License is
360
+ deemed unenforceable, it shall be automatically reformed to the
361
+ minimum extent necessary to make it enforceable. If the provision
362
+ cannot be reformed, it shall be severed from this Public License
363
+ without affecting the enforceability of the remaining terms and
364
+ conditions.
365
+
366
+ c. No term or condition of this Public License will be waived and no
367
+ failure to comply consented to unless expressly agreed to by the
368
+ Licensor.
369
+
370
+ d. Nothing in this Public License constitutes or may be interpreted
371
+ as a limitation upon, or waiver of, any privileges and immunities
372
+ that apply to the Licensor or You, including from the legal
373
+ processes of any jurisdiction or authority.
374
+
375
+
376
+ =======================================================================
377
+
378
+ Creative Commons is not a party to its public
379
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
380
+ its public licenses to material it publishes and in those instances
381
+ will be considered the “Licensor.” The text of the Creative Commons
382
+ public licenses is dedicated to the public domain under the CC0 Public
383
+ Domain Dedication. Except for the limited purpose of indicating that
384
+ material is shared under a Creative Commons public license or as
385
+ otherwise permitted by the Creative Commons policies published at
386
+ creativecommons.org/policies, Creative Commons does not authorize the
387
+ use of the trademark "Creative Commons" or any other trademark or logo
388
+ of Creative Commons without its prior written consent including,
389
+ without limitation, in connection with any unauthorized modifications
390
+ to any of its public licenses or any other arrangements,
391
+ understandings, or agreements concerning use of licensed material. For
392
+ the avoidance of doubt, this paragraph does not form part of the
393
+ public licenses.
394
+
395
+ Creative Commons may be contacted at creativecommons.org.
101/replication_package/README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code accompanying the paper *Societies of strangers do not speak grammatically simpler languages* by Olena Shcherbakova, Susanne Maria Michaelis, Hannah J. Haynie, Sam Passmore, Volker Gast, Russell D. Gray, Simon J. Greenhill, Damián E. Blasi, and Hedvig Skirgård
2
+
3
+ # Overview of structure
4
+ This project contains all data and all scripts for data-wrangling, analysis and plotting.
5
+
6
+ ## Data sources
7
+
8
+ The data that serves as the input for the analysis comes from Grambank,
9
+ (v1.0, Skirgård et al (in prep)), AUTOTYP (v1.01, Bickel et al (2022)), Glottolog (v4.5), EDGE-tree (v1.0.0, Bouckaert et al (2023)), Ethnologue (Eberhard et al 2020)), and WALS (Dryer & Haspelmath 2013).
10
+
11
+ With the exception of the Ethnologue data, all the data is available
12
+ openly via the science archive Zenodo and/or public GitHub repositories. A
13
+ modified version of the Ethnologue data is available in this repository, it contains
14
+ transformed population numbers that cannot be transformed back into the
15
+ raw numbers. The MCCT EDGE-tree is found in a file inside grambank-analysed.
16
+
17
+ Zenodo locations:
18
+
19
+ * Grambank (v.1.0) <https://doi.org/10.5281/zenodo.7740140>
20
+ * Grambank-analysed (v1.0) <https://doi.org/10.5281/zenodo.7740822>
21
+ * Glottolog-cldf (v4.5) <https://doi.org/10.5281/zenodo.5772649>
22
+ * AUTOTYP (v1.0.1) <https://doi.org/10.5281/zenodo.6255206>
23
+
24
+ GitHub locations:
25
+
26
+ * EDGE-tree (v1.0.0) <https://github.com/rbouckaert/global-language-tree-pipeline/tree/v1.0.0>
27
+ * Grambank (v1.0) <https://github.com/grambank/grambank/tree/v1.0>
28
+ * Grambank-analysed (v1.0) <https://github.com/grambank/grambank-analysed/tree/v1.0>
29
+ * Glottolog-cldf (v4.5) <https://github.com/glottolog/glottolog-cldf/tree/v4.5>
30
+ * AUTOTYP (v1.01) <https://github.com/autotyp/autotyp-data/tree/v1.0.1>
31
+
32
+ In this project, we fetch the data from the Zenodo locations by downloading a zip file and expanding it. We have also made tables and files available derived from these sources in this repos so that users may run the analysis without engaging with fetching from Zenodo. The scripts that generate these files are also found in this repository and can be run by users if they would like.
33
+
34
+ ## Running data-wrangling, analysis and plotting scripts
35
+ All scripts are written in R. The necessary scripts can be called
36
+ one-by-one in order or executed by running the script `all_scripts.R`.
37
+
38
+ Running `all_scripts.R` involves the following:
39
+
40
+ - downloading, installing and loading necessary packages and create
41
+ folders for output (see `requirements.R` & `install_and_load_INLA.R`
42
+ for specific packages)
43
+ - generating a table of languoids from Glottolog v.4.5
44
+ - calculating metric scores from Grambank v.1.0: fusion metric and
45
+ informativity metric; both metrics designed by Hedvig Skirgård and
46
+ Hannah J. Haynie.
47
+ - generating population table (all sociodemographic variables in one
48
+ dataframe): data from Ethnologue e24 (Eberhard et al. 2020) and
49
+ Supplementary Materials in `data\lang_endangerment_predictors.xlsx`
50
+ from Bromham et al. (2022). Based on data availability, within
51
+ `set_up_inla.R`, it is necessary to specify whether `sample` is
52
+ `"full"` (full access to both Ethnologue variables in transformed
53
+ and non-transformed form and running all models; possible only for
54
+ users with their own access to Ethnologue) and `"reduced"` (access
55
+ to both Ethnologue variables - the number of L1 speakers and the
56
+ proportion of L2 speakers - in transformed form (logged and
57
+ standardized number of L1 speakers and the proportion of L2 speakers
58
+ than than raw numbers) and running all models except for one
59
+ including the interaction between the number of L1 speakers and L2
60
+ proportion; the dataset is already provided within the repository).
61
+ - wrangling global phylogeny - EDGE-tree (v1.0.0, Bouckaert et al 2023)
62
+ - generating AUTOTYP-areas table (v.1.0.1, Bickel et al. 2020)
63
+ - prepare everything for and run INLA analysis, including sensitivity
64
+ analyses
65
+ - measuring phylogenetic signal in fusion and informativity
66
+ - generating tables from INLA analyses, including sensitivity analyses
67
+ - make plots
68
+ - running additional analyses on WALS-based morphological complexity scores used in Lupyan & Dale's (2010) study (`data/complexity_data_WALS.csv`) (obtained from Gary Lupyan, personal communication 02.06.2023)
69
+
70
+ Please note: the necessary files, such as metrics scores obtained from the
71
+ Grambank dataset and parameters of metrics (these determine the
72
+ inclusion of Grambank into the metrics), are already made available. The
73
+ script that generates these `generating_GB_input_file.R` relies on the
74
+ folder `grambank_analysed` which incorporates data from
75
+ Grambank v.1.0, AUTOTYP (v1.0.1) and Glottolog v.4.5. To run this script, one needs to
76
+ first clone the repository and then run the R-script `get_external_data.R`.
77
+
78
+ # References
79
+
80
+ R. Bouckaert, D. Redding, O. Sheehan, T. Kyritsis, R. Gray, K. E. Jones, Q. Atkinson, Global language diversification is linked to socio-ecology and threat status (2022), , doi:10.31235/osf.io/f8tr6.
81
+
82
+ Bickel, Balthasar, Johanna Nichols, Taras Zakharko, Alena
83
+ Witzlack-Makarevich, Kristine Hildebrandt, Michael Rießler, Lennart
84
+ Bierkandt, Fernando Zúñiga & John B Lowe. 2022. The AUTOTYP database
85
+ (v1.1.0). <https://doi.org/10.5281/zenodo.6793367>.
86
+
87
+ Bromham, Lindell, Russell Dinnage, Hedvig Skirgård, Andrew Ritchie,
88
+ Marcel Cardillo, Felicity Meakins, Simon Greenhill & Xia Hua. 2022.
89
+ Global predictors of language endangerment and the future of linguistic
90
+ diversity. Nature ecology & evolution 6(2). 163--173.
91
+
92
+ Dryer, Matthew & Martin Haspelmath (eds.). 2013. The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. http://wals.info.
93
+
94
+ Eberhard, David M., Gary F. Simons & Charles D. Fennig (eds.). 2020.
95
+ Ethnologue: Languages of the World. Dallas, Texas: SIL International.
96
+ www.ethnologue.com.
97
+
98
+ Hammarström, Harald & Forkel, Robert & Haspelmath, Martin & Bank, Sebastian. 2021. Glottolog 4.5. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at https://glottolog.org)
99
+
100
+ Skirgård, H., Haynie, H. J., Blasi, D. E., Hammarström, H., Collins, J., Latarche, J., Lesage, J., Weber, T., Witzlack-Makarevich, A., Passmore, S., Chira, A., Dinnage, R., Maurits, L., Dinnage, R., Dunn, M., Reesink, G., Singer, R., Bowern, C., Epps, P., Hill, J., Vesakoski, O., Robbeets, M., Abbas, K., Auer, D., Bakker, N., Barbos, G., Borges, R., Danielsen, S., Dorenbusch, L., Dorn, E., Elliott, J., Falcone, G., Fischer, J., Ghanggo Ate, Y., Gibson, H., Göbel, H., Goodall, J., Gruner, V., Harvey, A., Hayes, R., Heer, L., Herrera Miranda, R., Hübler, N., Huntington-Rainey, B., Ivani, J., Johns, M., Just, E., Kashima, E., Kipf, C., Klingenberg, J., König, N., Koti, K., Kowalik, R., Krasnoukhova, O., Lindvall, N., Lorenzen, M., Lutzenberger, H., Martins, T., Mata German, C., Meer, S., Montoya Samamé, J., Müller, M., Muradoglu, S., Neely, K., Nickel, J., Norvik, M., Oluoch, C. A., Peacock, J., Pearey , I., Peck, N., Petit, S., Pieper, S., Poblete, M., Prestipino, D., Raabe, L., Raja, A., Reimringer, J., Rey, S., Rizaew, J., Ruppert, E., Salmon, K., Sammet, J., Schembri, R., Schlabbach, L., Schmidt, F., Skilton, A., Smith, W. D., Sousa, H., Sverredal, K., Valle, D., Vera, J., Voß, J., Witte, T., Wu, H., Yam, S., Ye 葉婧婷, J., Yong, M., Yuditha, T., Zariquiey, R., Forkel, R., Evans, N., Levinson, S. C., Haspelmath, M., Greenhill, S. J., Atkinson, Q. D. and Gray, R. D. (in prep) "Grambank reveals the importance of genealogical constraints on linguistic diversity and highlights the impact of language loss". Science Advances
101
+
102
+ Hedvig Skirgård; Hannah J. Haynie; Harald Hammarström; Damián E. Blasi; Jeremy Collins; Jay Latarche; Jakob Lesage; Tobias Weber; Alena Witzlack-Makarevich; Michael Dunn; Ger Reesink; Ruth Singer; Claire Bowern; Patience Epps; Jane Hill; Outi Vesakoski; Noor Karolin Abbas; Sunny Ananth; Daniel Auer; Nancy A. Bakker; Giulia Barbos; Anina Bolls; Robert D. Borges; Mitchell Browen; Lennart Chevallier; Swintha Danielsen; Sinoël Dohlen; Luise Dorenbusch; Ella Dorn; Marie Duhamel; Farah El Haj Ali; John Elliott; Giada Falcone; Anna-Maria Fehn; Jana Fischer; Yustinus Ghanggo Ate; Hannah Gibson; Hans-Philipp Göbel; Jemima A. Goodall; Victoria Gruner; Andrew Harvey; Rebekah Hayes; Leonard Heer; Roberto E. Herrera Miranda; Nataliia Hübler; Biu H. Huntington-Rainey; Guglielmo Inglese; Jessica K. Ivani; Marilen Johns; Erika Just; Ivan Kapitonov; Eri Kashima; Carolina Kipf; Janina V. Klingenberg; Nikita König; Aikaterina Koti; Richard G. A. Kowalik; Olga Krasnoukhova; Kate Lynn Lindsey; Nora L. M. Lindvall; Mandy Lorenzen; Hannah Lutzenberger; Alexandra Marley; Tânia R. A. Martins; Celia Mata German; Suzanne van der Meer; Jaime Montoya; Michael Müller; Saliha Muradoglu; HunterGatherer; David Nash; Kelsey Neely; Johanna Nickel; Miina Norvik; Bruno Olsson; Cheryl Akinyi Oluoch; David Osgarby; Jesse Peacock; India O.C. Pearey; Naomi Peck; Jana Peter; Stephanie Petit; Sören Pieper; Mariana Poblete; Daniel Prestipino; Linda Raabe; Amna Raja; Janis Reimringer; Sydney C. Rey; Julia Rizaew; Eloisa Ruppert; Kim K. Salmon; Jill Sammet; Rhiannon Schembri; Lars Schlabbach; Frederick W. P. Schmidt; Dineke Schokkin; Jeff Siegel; Amalia Skilton; Hilário de Sousa; Kristin Sverredal; Daniel Valle; Javier Vera; Judith Voß; Daniel Wikalier Smith; Tim Witte; Henry Wu; Stephanie Yam; Jingting Ye 葉婧婷; Maisie Yong; Tessa Yuditha; Roberto Zariquiey; Robert Forkel; Nicholas Evans; Stephen C. Levinson; Martin Haspelmath; Simon J. Greenhill; Quentin D. Atkinson; Russell D. Gray (2023) Grambank v1.0 https://doi.org/10.5281/zenodo.7740140
103
+
104
+ The Grambank Consortium (eds.). 2022. Grambank 1.0. Leipzig: Max Planck
105
+ Institute for Evolutionary Anthropology. <http://grambank.clld.org>.
101/replication_package/WALS_reanalysis_controlled_setup.R ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("install_and_load_INLA.R")
2
+
3
+ #parameters
4
+ kappa = 1
5
+ phi_1 = c(1, 1.25) # "Local" version: (sigma, phi) First value is not used
6
+
7
+ WALS <- read_csv("data/complexity_data_WALS.csv") %>%
8
+ dplyr::select("Name" = lang, roundComp, logpop2, "ISO_639" = silCode) %>%
9
+ dplyr::mutate(ISO_639 = str_to_lower(ISO_639))
10
+
11
+ min_val <- min(WALS$roundComp)
12
+ max_val <- max(WALS$roundComp)
13
+
14
+ # Perform the rescaling
15
+ WALS$roundComp <- (WALS$roundComp - min_val) / (max_val - min_val)
16
+
17
+ pop_file_fn <-
18
+ "data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv"
19
+ L1 <-
20
+ read_tsv(pop_file_fn, show_col_types = F) %>% dplyr::select(ISO_639, L1_log10_scaled)
21
+
22
+ glottolog_df <-
23
+ read_tsv("data_wrangling/glottolog_cldf_wide_df.tsv", col_types = cols()) %>%
24
+ dplyr::select(
25
+ Glottocode,
26
+ Language_ID,
27
+ "ISO_639" = ISO639P3code,
28
+ Language_level_ID,
29
+ level,
30
+ Family_ID,
31
+ Longitude,
32
+ Latitude
33
+ ) %>%
34
+ mutate(Language_level_ID = if_else(is.na(Language_level_ID), Glottocode, Language_level_ID)) %>%
35
+ mutate(Family_ID = ifelse(is.na(Family_ID), Language_level_ID, Family_ID)) %>%
36
+ dplyr::select(
37
+ Glottocode,
38
+ Language_ID,
39
+ ISO_639,
40
+ Language_level_ID,
41
+ level,
42
+ Family_ID,
43
+ Longitude,
44
+ Latitude
45
+ )
46
+
47
+ WALS_df <- WALS %>%
48
+ inner_join(L1,
49
+ by = c("ISO_639")) %>%
50
+ inner_join(glottolog_df, by = "ISO_639") %>%
51
+ filter(!is.na(Latitude), !is.na(Longitude)) %>%
52
+ dplyr::select(Language_ID = Glottocode,
53
+ Name,
54
+ roundComp,
55
+ ISO_639,
56
+ L1_log10_scaled,
57
+ Longitude,
58
+ Latitude)
59
+
60
+
61
+
62
+ tree <- read.tree(file.path("data_wrangling/wrangled.tree"))
63
+
64
+ #dropping tips not in Grambank
65
+ WALS_df <- WALS_df[WALS_df$Language_ID %in% tree$tip.label,]
66
+ tree <- keep.tip(tree, WALS_df$Language_ID)
67
+
68
+ x <-
69
+ assert_that(all(tree$tip.label %in% WALS_df$Language_ID), msg = "The data and phylogeny taxa do not match")
70
+
71
+ ## Building standardized phylogenetic precision matrix
72
+ tree_scaled <- tree
73
+
74
+ tree_vcv = vcv.phylo(tree_scaled)
75
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
76
+
77
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
78
+ tree_scaled$edge.length <-
79
+ tree_scaled$edge.length / typical_phylogenetic_variance
80
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
81
+ nodes = "ALL",
82
+ scale = FALSE)$Ainv
83
+
84
+ WALS_df = WALS_df[order(match(WALS_df$Language_ID, rownames(phylo_prec_mat))), ]
85
+
86
+ #"local" set of parameters
87
+ ## Create spatial covariance matrix using the matern covariance function
88
+ spatial_covar_mat_1 = varcov.spatial(WALS_df[, c("Longitude", "Latitude")],
89
+ cov.pars = phi_1, kappa = kappa)$varcov
90
+ # Calculate and standardize by the typical variance
91
+ typical_variance_spatial_1 = exp(mean(log(diag(
92
+ spatial_covar_mat_1
93
+ ))))
94
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
95
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
96
+ dimnames(spatial_prec_mat_1) = list(WALS_df$Language_ID, WALS_df$Language_ID)
97
+
98
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
99
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
100
+ WALS_df$phy_id = phy_id
101
+
102
+ ## Other effects are in the same order they appear in the dataset
103
+ WALS_df$sp_id = 1:nrow(spatial_prec_mat_1)
104
+
105
+
106
+ formula <- as.formula(
107
+ paste(
108
+ "roundComp ~",
109
+ "L1_log10_scaled +",
110
+ "f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat,
111
+ constr = TRUE, hyper = pcprior_hyper) +
112
+ f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1,
113
+ constr = TRUE, hyper = pcprior_hyper)"
114
+ )
115
+ )
116
+
117
+ result <- inla(
118
+ formula,
119
+ family = "gaussian",
120
+ data = WALS_df,
121
+ control.compute = list(waic = TRUE)
122
+ )
123
+ summary(result)
124
+
125
+ save(result, file = "output_models/model_WALS_controlled.RData")
126
+
127
+ social_effects_controlled <-
128
+ c("morphological complexity ~ L1 + phylogenetic effect + spatial effect",
129
+ round(
130
+ c(
131
+ result$summary.fixed[2,]$`0.025quant`,
132
+ result$summary.fixed[2,]$`0.5quant`,
133
+ result$summary.fixed[2,]$`0.975quant`,
134
+ nrow(WALS_df)
135
+ ),
136
+ 2
137
+ ), "default (~10%)")
138
+
139
+ save(social_effects_controlled, file = "output_models/social_effects_controlled.RData")
140
+
101/replication_package/WALS_reanalysis_controlled_setup_high_coverage.R ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("install_and_load_INLA.R")
2
+
3
+ #parameters
4
+ kappa = 1
5
+ phi_1 = c(1, 1.25) # "Local" version: (sigma, phi) First value is not used
6
+
7
+ WALS <- read_csv("data/complexity_data_WALS.csv") %>%
8
+ dplyr::select("Name" = lang, roundComp, logpop2, "ISO_639" = silCode) %>%
9
+ dplyr::mutate(ISO_639 = str_to_lower(ISO_639)) %>%
10
+ inner_join(read_csv("output_tables/WALS_high_coverage.csv"),
11
+ by = c("ISO_639"))
12
+
13
+ min_val <- min(WALS$roundComp)
14
+ max_val <- max(WALS$roundComp)
15
+
16
+ # Perform the rescaling
17
+ WALS$roundComp <- (WALS$roundComp - min_val) / (max_val - min_val)
18
+
19
+ pop_file_fn <-
20
+ "data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv"
21
+ L1 <-
22
+ read_tsv(pop_file_fn, show_col_types = F) %>% dplyr::select(ISO_639, L1_log10_scaled)
23
+
24
+ glottolog_df <-
25
+ read_tsv("data_wrangling/glottolog_cldf_wide_df.tsv", col_types = cols()) %>%
26
+ dplyr::select(
27
+ Glottocode,
28
+ Name,
29
+ Language_ID,
30
+ "ISO_639" = ISO639P3code,
31
+ Language_level_ID,
32
+ level,
33
+ Family_ID,
34
+ Longitude,
35
+ Latitude
36
+ ) %>%
37
+ mutate(Language_level_ID = if_else(is.na(Language_level_ID), Glottocode, Language_level_ID)) %>%
38
+ mutate(Family_ID = ifelse(is.na(Family_ID), Language_level_ID, Family_ID)) %>%
39
+ dplyr::select(
40
+ Glottocode,
41
+ Name,
42
+ Language_ID,
43
+ ISO_639,
44
+ Language_level_ID,
45
+ level,
46
+ Family_ID,
47
+ Longitude,
48
+ Latitude
49
+ )
50
+
51
+ WALS_df <- WALS %>%
52
+ inner_join(L1,
53
+ by = c("ISO_639")) %>%
54
+ inner_join(glottolog_df, by = "ISO_639") %>%
55
+ filter(!is.na(Latitude),!is.na(Longitude)) %>%
56
+ dplyr::select(Language_ID = Glottocode,
57
+ Name,
58
+ roundComp,
59
+ ISO_639,
60
+ L1_log10_scaled,
61
+ Longitude,
62
+ Latitude)
63
+
64
+ # jitter points locations
65
+ WALS_df$Latitude <- jitter(WALS_df$Latitude, amount = 0.001)
66
+ WALS_df$Longitude <- jitter(WALS_df$Longitude, amount = 0.001)
67
+
68
+ tree <- read.tree(file.path("data_wrangling/wrangled.tree"))
69
+
70
+ #dropping tips not in Grambank
71
+ WALS_df <- WALS_df[WALS_df$Language_ID %in% tree$tip.label, ]
72
+ WALS_df <- WALS_df[!duplicated(WALS_df$Language_ID),]
73
+ tree <- keep.tip(tree, WALS_df$Language_ID)
74
+
75
+ x <-
76
+ assert_that(all(tree$tip.label %in% WALS_df$Language_ID), msg = "The data and phylogeny taxa do not match")
77
+
78
+ ## Building standardized phylogenetic precision matrix
79
+ tree_scaled <- tree
80
+
81
+ tree_vcv = vcv.phylo(tree_scaled)
82
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
83
+
84
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
85
+ tree_scaled$edge.length <-
86
+ tree_scaled$edge.length / typical_phylogenetic_variance
87
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
88
+ nodes = "ALL",
89
+ scale = FALSE)$Ainv
90
+
91
+ WALS_df = WALS_df[order(match(WALS_df$Language_ID, rownames(phylo_prec_mat))),]
92
+
93
+ #"local" set of parameters
94
+ ## Create spatial covariance matrix using the matern covariance function
95
+ spatial_covar_mat_1 = varcov.spatial(WALS_df[, c("Longitude", "Latitude")],
96
+ cov.pars = phi_1, kappa = kappa)$varcov
97
+ # Calculate and standardize by the typical variance
98
+ typical_variance_spatial_1 = exp(mean(log(diag(
99
+ spatial_covar_mat_1
100
+ ))))
101
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
102
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
103
+ dimnames(spatial_prec_mat_1) = list(WALS_df$Language_ID, WALS_df$Language_ID)
104
+
105
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
106
+ phy_id <- match(tree$tip.label, rownames(phylo_prec_mat))
107
+ if (length(phy_id) != nrow(WALS_df)) {
108
+ stop("The number of phylogenetic IDs does not match the number of rows in WALS_df.")
109
+ }
110
+
111
+ WALS_df$phy_id <- phy_id
112
+
113
+ ## Other effects are in the same order they appear in the dataset
114
+ WALS_df$sp_id = 1:nrow(spatial_prec_mat_1)
115
+
116
+
117
+ formula <- as.formula(
118
+ paste(
119
+ "roundComp ~",
120
+ "L1_log10_scaled +",
121
+ "f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat,
122
+ constr = TRUE, hyper = pcprior_hyper) +
123
+ f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1,
124
+ constr = TRUE, hyper = pcprior_hyper)"
125
+ )
126
+ )
127
+
128
+ result <- inla(
129
+ formula,
130
+ family = "gaussian",
131
+ control.family = list(hyper = pcprior_hyper),
132
+ data = WALS_df,
133
+ control.compute = list(waic = TRUE)
134
+ )
135
+ summary(result)
136
+
137
+ save(result, file = "output_models/model_WALS_high_coverage.RData")
138
+
139
+ #mean estimate of L1_Users: with credible intervals not crossing zero ()
140
+
141
+ social_effects_controlled_coverage <-
142
+ c(
143
+ "morphological complexity ~ L1 + phylogenetic effect + spatial effect",
144
+ round(
145
+ c(
146
+ result$summary.fixed[2, ]$`0.025quant`,
147
+ result$summary.fixed[2, ]$`0.5quant`,
148
+ result$summary.fixed[2, ]$`0.975quant`,
149
+ nrow(WALS_df)
150
+ ),
151
+ 2
152
+ ),
153
+ "35%"
154
+ )
155
+
156
+ save(social_effects_controlled_coverage, file = "output_models/social_effects_controlled.RData")
157
+
158
+ load("output_models/social_effects_uncontrolled.RData")
159
+ load("output_models/social_effects_controlled.RData")
160
+ load("output_models/social_effects_controlled_coverage.RData")
161
+
162
+ effects_morph_comp <-
163
+ as.data.frame(
164
+ rbind(
165
+ social_effects_uncontrolled,
166
+ social_effects_controlled,
167
+ social_effects_controlled_coverage
168
+ )
169
+ )
170
+ colnames(effects_morph_comp) <-
171
+ c("model",
172
+ "2.5%",
173
+ "50%",
174
+ "97.5%",
175
+ "sample size",
176
+ "feature coverage threshold")
177
+
178
+ rownames(effects_morph_comp) <- NULL
179
+
180
+ effects_morph_comp %>%
181
+ write_csv("output_tables/WALS_morph_compl_effects.csv")
101/replication_package/WALS_reanalysis_setup.R ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("install_and_load_INLA.R")
2
+
3
+ #parameters
4
+ kappa = 1
5
+ phi_1 = c(1, 1.25) # "Local" version: (sigma, phi) First value is not used
6
+
7
+ WALS <- read_csv("data/complexity_data_WALS.csv") %>%
8
+ dplyr::select("Name"=lang, roundComp, logpop2, "ISO_639"=silCode) %>%
9
+ dplyr::mutate(ISO_639 = str_to_lower(ISO_639))
10
+
11
+ min_val <- min(WALS$roundComp)
12
+ max_val <- max(WALS$roundComp)
13
+
14
+ # Perform the rescaling
15
+ WALS$roundComp <- (WALS$roundComp - min_val) / (max_val - min_val)
16
+
17
+ pop_file_fn <- "data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv"
18
+ L1 <-
19
+ read_tsv(pop_file_fn, show_col_types = F) %>% dplyr::select(ISO_639, L1_log10_scaled)
20
+
21
+ WALS_df <- WALS %>%
22
+ inner_join(L1,
23
+ by = c("ISO_639"))
24
+
25
+ formula <- as.formula(paste("roundComp ~", "L1_log10_scaled"))
26
+ result <- inla(formula, family = "gaussian",
27
+ data = WALS_df, control.compute = list(waic = TRUE))
28
+ summary(result)
29
+
30
+ save(result, file = "output_models/models_WALS_uncontrolled.RData")
31
+
32
+ social_effects_uncontrolled <- c("morphological complexity ~ L1",
33
+ round(c(
34
+ result$summary.fixed[2,]$`0.025quant`,
35
+ result$summary.fixed[2,]$`0.5quant`,
36
+ result$summary.fixed[2,]$`0.975quant`, nrow(WALS_df)), 2), "default (~10%)")
37
+
38
+ save(social_effects_uncontrolled, file = "output_models/social_effects_uncontrolled.RData")
39
+
40
+
101/replication_package/WALS_sparseness.R ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("requirements.R")
2
+
3
+ library(INLA)
4
+ inla.setOption(inla.mode = "experimental")
5
+
6
+ wals <- read.delim(
7
+ "https://raw.githubusercontent.com/cldf-datasets/wals/master/cldf/languages.csv",
8
+ sep = ","
9
+ ) %>%
10
+ dplyr::select(ID, ISO_639 = ISO_codes, Name, Glottocode) %>%
11
+ rename(Language_ID = ID) %>% #renaming the column to avoid problems
12
+ left_join(
13
+ read.delim(
14
+ "https://raw.githubusercontent.com/cldf-datasets/wals/master/cldf/values.csv",
15
+ sep = ","
16
+ ) %>% dplyr::select(Language_ID, Parameter_ID, Value)
17
+ ) %>%
18
+ dplyr::select(-Language_ID) %>%
19
+ rename(Language_ID = Glottocode)
20
+
21
+ wals_selected <- wals %>%
22
+ filter(
23
+ Parameter_ID == "20A" |
24
+ Parameter_ID == "26A" |
25
+ Parameter_ID == "49A" |
26
+ Parameter_ID == "28A" |
27
+ Parameter_ID == "98A" |
28
+ Parameter_ID == "22A" |
29
+ Parameter_ID == "100A" |
30
+ Parameter_ID == "102A" |
31
+ Parameter_ID == "48A" |
32
+ Parameter_ID == "29A" |
33
+ Parameter_ID == "74A" |
34
+ Parameter_ID == "75A" |
35
+ Parameter_ID == "76A" |
36
+ Parameter_ID == "77A" |
37
+ Parameter_ID == "112A" |
38
+ Parameter_ID == "34A" |
39
+ Parameter_ID == "36A" |
40
+ Parameter_ID == "92A" |
41
+ Parameter_ID == "66A" |
42
+ Parameter_ID == "67A" |
43
+ Parameter_ID == "65A" |
44
+ Parameter_ID == "70A" |
45
+ Parameter_ID == "57A" |
46
+ Parameter_ID == "59A" |
47
+ Parameter_ID == "73A" |
48
+ Parameter_ID == "38A" |
49
+ Parameter_ID == "39A" |
50
+ Parameter_ID == "41A" |
51
+ Parameter_ID == "101A"
52
+ ) %>%
53
+ pivot_wider(
54
+ names_from = Parameter_ID,
55
+ values_from = Value
56
+ )
57
+
58
+ # Specify the range of columns
59
+ start_column <- "92A"
60
+ end_column <- "76A"
61
+
62
+ # Filter and gather the selected columns
63
+ wals_selected_na <- wals_selected %>%
64
+ rowwise() %>%
65
+ mutate(na_proportion = mean(is.na(c_across(starts_with(start_column):starts_with(end_column))))) %>%
66
+ filter(na_proportion <= 0.35)
67
+
68
+ wals_selected_na %>%
69
+ write_csv("output_tables/WALS_high_coverage.csv")
70
+
101/replication_package/all_scripts.R ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Running all scripts
2
+
3
+ #download packages and create folders
4
+ #generate Glottolog table (based on Glottolog 4.4)
5
+ #calculate metric scores (based on Grambank 1.0)
6
+ #generate population table (all sociodemographic variables in one dataframe)
7
+ #wrangling EDGE tree
8
+ #generating AUTOTYP areas table
9
+ source("get_external_data.R")
10
+ source("generating_GB_input_file.R")
11
+ source("set_up_general.R")
12
+
13
+ #setup for INLA analysis
14
+ source("install_and_load_INLA.R")
15
+ #choosing whether to use the full dataset (possible only for reviewers and if one has own access to Ethnologue and saved the dataset in the data folder on their own) or to only to the subset of Ethnologue with transformed variables made available in this repostiory after running create_pop_table.R
16
+
17
+ #sample <- "full"
18
+ sample <- "reduced" #default
19
+
20
+ source("make_ethnologue_SM_and_merging_tables.R")
21
+ source("create_pop_table.R")
22
+ source("set_up_inla.R")
23
+
24
+ #run all INLA models + extract main results tables
25
+ #Note that previously "fusion" was called "boundness", and this is how it is referenced in all scripts
26
+
27
+ #predictors: random effects - phylogenetic and spatial (same scripts for "full" and "reduced" versions)
28
+ source("models_Boundness_phylogenetic_spatial.R")
29
+ source("models_Informativity_phylogenetic_spatial.R")
30
+
31
+ if(sample == "full"){
32
+
33
+ #predictors: phylogenetic and spatial random effects + sociodemograhic variables as fixed effects
34
+ source("models_Boundness_social.R")
35
+ source("models_Informativity_social.R")
36
+
37
+ #predictors: sociodemographic variables as fixed effects
38
+ source("models_Boundness_social_only.R")
39
+ source("models_Informativity_social_only.R")
40
+
41
+ #conduct sensitivity testing + extract the corresponding table
42
+ source("runs_sensitivity.R")
43
+
44
+ #extract tables from INLA analyses
45
+ source("table_INLA_summary_all_models_SI.R")
46
+ source("variance_top_ranking_models.R")
47
+
48
+ #plotting main results
49
+ source("plot_social_effects_combined.R")
50
+ }
51
+
52
+ if(sample == "reduced"){
53
+
54
+ #predictors: phylogenetic and spatial random effects + sociodemograhic variables as fixed effects
55
+ #(on reduced set of social variables: without log10 transformed L1 speakers)
56
+ source("models_Boundness_reduced_social.R")
57
+ source("models_Informativity_reduced_social.R")
58
+
59
+ #predictors: sociodemographic variables as fixed effects
60
+ source("models_Boundness_reduced_social_only.R")
61
+ source("models_Informativity_reduced_social_only.R")
62
+
63
+ #conduct sensitivity testing + extract the corresponding table
64
+ source("runs_sensitivity_on_reduced.R")
65
+
66
+ #extract tables from INLA analyses
67
+ source("table_INLA_summary_all_models_SI_reduced.R")
68
+ source("variance_top_ranking_models_reduced.R")
69
+
70
+ #plotting main results
71
+ source("plots_social_effects_combined_on_reduced.R")
72
+ }
73
+
74
+ #measure phylogenetic signal in two fusion and informativity
75
+ source("measuring_phylosignal.R")
76
+
77
+
78
+ #plotting
79
+ source("plot_maps_main.R") #maps of scores
80
+ source("plot_heatmap_B_I.R") #phylogenetic tree with a heatmap
81
+ source("plot_map_Africa.R")
82
+ source("plot_map_Eurasia.R")
83
+ source("plot_heatmap_informativity_Uralic.R") #Uralic tree (informativity) + combined plot with two maps from above
84
+ source("plot_spatial_parameters_linear_distances.R") #SI figure for visualizing how covariance under different kappa and phi parameters corresponds to spatial distances
85
+
86
+ #additional analyses on WALS data
87
+ source("make_ethnologue_SM_for_morphological_complexity_reanalysis.R")
88
+ source("WALS_sparseness.R")
89
+ source("WALS_reanalysis_setup.R")
90
+ source("WALS_reanalysis_controlled_setup.R")
91
+ source("WALS_reanalysis_controlled_setup_high_coverage.R") #analysis + summary table
101/replication_package/assigning_AUTOTYP_areas.R ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #This script assigns all languages in glottolog_df to their nearest AUTOTYP area
2
+
3
+ #Script was written by Hedvig Skirgård
4
+
5
+ source("requirements.R")
6
+
7
+ OUTPUTDIR_data_wrangling <- here("data_wrangling")
8
+ # create output dir if it does not exist.
9
+ if (!dir.exists(OUTPUTDIR_data_wrangling)) {
10
+ dir.create(OUTPUTDIR_data_wrangling)
11
+ }
12
+
13
+ if (!file.exists(here(OUTPUTDIR_data_wrangling, "glottolog_AUTOTYPE_areas.tsv"))) {
14
+ #GB langs for subsettting
15
+ GB_langs <-
16
+ read_tsv("data/GB_wide/GB_wide_strict.tsv", col_types = WIDE_COLSPEC) %>%
17
+ dplyr::select(Language_ID)
18
+
19
+ #combining the tables languages and values from glottolog_df-cldf into one wide dataframe.
20
+ #this can be replaced with any list of Language_IDs, long and lat
21
+
22
+ glottolog_fn <- "data_wrangling/glottolog_cldf_wide_df.tsv"
23
+ if (!file.exists(glottolog_fn)) {
24
+ source("generating_GB_input_file.R")
25
+ }
26
+
27
+ glottolog_df <- read.delim(glottolog_fn , sep = "\t") %>%
28
+ dplyr::select(Language_ID, Longitude, Latitude) %>%
29
+ inner_join(GB_langs, by = "Language_ID")
30
+
31
+ ##Adding in areas of linguistic contact from AUTOTYP
32
+
33
+ AUTOTYP <-
34
+ read.delim(
35
+ "https://raw.githubusercontent.com/autotyp/autotyp-data/master/data/csv/Register.csv",
36
+ sep = ","
37
+ ) %>%
38
+ dplyr::select(Language_ID = Glottocode, Area, Longitude, Latitude) %>%
39
+ group_by(Language_ID, Area) %>% #some lgs are assigned to more than one area, we level that out.
40
+ sample_n(1)
41
+
42
+ #This next bit where we find the autotyp areas of languages was written by Seán Roberts
43
+ # We know the autotyp-area of langauges in autotyp and their long lat. We don't know the autotyp area of languages in Glottolog. We also can't be sure that the long lat of languoids with the same glottoids in autotyp and glottolog_df have the exact identical long lat. First let's make two datasets, one for autotyp languages (hence lgs where we know the area) and those that we wish to know about, the Glottolog ones.
44
+
45
+ lgs_with_known_area <-
46
+ as.matrix(AUTOTYP[!is.na(AUTOTYP$Area), c("Longitude", "Latitude")])
47
+ rownames(lgs_with_known_area) <-
48
+ AUTOTYP[!is.na(AUTOTYP$Area), ]$Language_ID
49
+
50
+ known_areas <- AUTOTYP %>%
51
+ dplyr::filter(!is.na(Area)) %>%
52
+ dplyr::select(Language_ID, Area) %>%
53
+ distinct() %>%
54
+ dplyr::select(AUTOTYP_Language_ID = Language_ID, everything())
55
+
56
+ rm(AUTOTYP)
57
+
58
+ lgs_with_unknown_area <-
59
+ as.matrix(glottolog_df[, c("Longitude", "Latitude")])
60
+ rownames(lgs_with_unknown_area) <- glottolog_df$Language_ID
61
+
62
+ # For missing, find area of closest langauge
63
+ atDist <-
64
+ rdist.earth(lgs_with_known_area, lgs_with_unknown_area, miles = F)
65
+
66
+ rm(lgs_with_known_area, lgs_with_unknown_area)
67
+
68
+ df_matched_up <-
69
+ as.data.frame(unlist(apply(atDist, 2, function(x) {
70
+ names(which.min(x))
71
+ })), stringsAsFactors = F) %>%
72
+ rename(AUTOTYP_Language_ID = `unlist(apply(atDist, 2, function(x) { names(which.min(x)) }))`)
73
+
74
+ glottolog_df_with_AUTOTYP <- df_matched_up %>%
75
+ tibble::rownames_to_column("Language_ID") %>%
76
+ full_join(known_areas, by = "AUTOTYP_Language_ID") %>%
77
+ right_join(glottolog_df, by = "Language_ID") %>%
78
+ dplyr::select(-AUTOTYP_Language_ID) %>%
79
+ group_by(Language_ID) %>% #some lgs are assigned to more than one area, we level that out.
80
+ sample_n(1) %>%
81
+ rename(AUTOTYP_area = Area)
82
+
83
+ glottolog_df_with_AUTOTYP %>%
84
+ write_tsv(here(OUTPUTDIR_data_wrangling, "glottolog_AUTOTYPE_areas.tsv"))
85
+ }
101/replication_package/create_pop_table.R ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #create_pop_table
2
+
3
+ OUTPUTDIR_data_wrangling <- here("data_wrangling")
4
+ # create output dir if it does not exist.
5
+ if (!dir.exists(OUTPUTDIR_data_wrangling)) {
6
+ dir.create(OUTPUTDIR_data_wrangling)
7
+ }
8
+
9
+
10
+ #Glottolog df for ISO_639 merging
11
+ glottolog_df <-
12
+ read_tsv("data_wrangling/glottolog_cldf_wide_df.tsv", col_types = cols()) %>%
13
+ dplyr::select(
14
+ Glottocode,
15
+ Language_ID,
16
+ "ISO_639" = ISO639P3code,
17
+ Language_level_ID,
18
+ level,
19
+ Family_ID,
20
+ Longitude,
21
+ Latitude
22
+ ) %>%
23
+ mutate(Language_level_ID = if_else(is.na(Language_level_ID), Glottocode, Language_level_ID)) %>%
24
+ mutate(Family_ID = ifelse(is.na(Family_ID), Language_level_ID, Family_ID)) %>%
25
+ dplyr::select(
26
+ Glottocode,
27
+ Language_ID,
28
+ ISO_639,
29
+ Language_level_ID,
30
+ level,
31
+ Family_ID,
32
+ Longitude,
33
+ Latitude
34
+ )
35
+
36
+
37
+ if (sample == "full") {
38
+ data_ethnologue <-
39
+ read_tsv("data_wrangling/ethnologue_pop_full.tsv")
40
+ }
41
+
42
+ if (sample == "reduced") {
43
+ #double check if the file below needs to be changed
44
+ data_ethnologue <-
45
+ read_tsv("data_wrangling/ethnologue_pop_SM.tsv", show_col_types = F) %>%
46
+ rename(L1_log10_st = L1_log10_scaled) %>%
47
+ dplyr::select(ISO_639, Language_ID, L1_log10_st, L2_prop)
48
+ }
49
+
50
+ social_vars <-
51
+ readxl::read_xlsx(
52
+ "data/lang_endangerment_predictors.xlsx",
53
+ sheet = "Supplementary data 1",
54
+ skip = 1,
55
+ col_types = "text",
56
+ na = "NA"
57
+ ) %>%
58
+ left_join(glottolog_df, by = c("ISO" = "ISO_639")) %>%
59
+ rename("ISO_639" = "ISO") %>%
60
+ dplyr::select(
61
+ Language_ID = Glottocode,
62
+ ISO_639,
63
+ official_status,
64
+ language_of_education,
65
+ bordering_language_richness
66
+ ) %>%
67
+ rename(Official = official_status) %>%
68
+ # naniar::replace_with_na(replace = list(L1_log10 = -Inf, L2_log10 = -Inf)) #removing for now
69
+ dplyr::mutate(neighboring_languages = bordering_language_richness, Education =
70
+ language_of_education) %>%
71
+ dplyr::mutate(neighboring_languages = as.numeric(neighboring_languages)) %>%
72
+ #dplyr::mutate(neighboring_languages_log10 = log10(neighboring_languages+1)) %>%
73
+ dplyr::mutate(neighboring_languages_st = scale(neighboring_languages)[, 1]) %>%
74
+ #dplyr::mutate(neighboring_languages_log10_st = scale(neighboring_languages_log10)[,1]) %>%
75
+ dplyr::select(Language_ID, Education, Official, neighboring_languages_st)
76
+
77
+ if (sample == "full") {
78
+ social_vars %>%
79
+ left_join(data_ethnologue, by = c("Language_ID")) %>%
80
+ dplyr::select(
81
+ Language_ID,
82
+ L1_log10_st,
83
+ L1_log10,
84
+ L2_prop,
85
+ Education,
86
+ Official,
87
+ neighboring_languages_st
88
+ ) %>%
89
+ write_tsv(here(OUTPUTDIR_data_wrangling, "pop_full.tsv"))
90
+ } else{
91
+ social_vars %>%
92
+ left_join(data_ethnologue, by = c("Language_ID")) %>%
93
+ dplyr::select(Language_ID,
94
+ L1_log10_st,
95
+ L2_prop,
96
+ Education,
97
+ Official,
98
+ neighboring_languages_st) %>%
99
+ write_tsv(here(OUTPUTDIR_data_wrangling, "pop_reduced.tsv"))
100
+ }
101
+
102
+ glottolog_df_ISO <- glottolog_df %>%
103
+ dplyr::select("Language_ID", "ISO_639")
104
+
105
+ if (sample == "reduced") {
106
+ social_vars %>%
107
+ left_join(data_ethnologue, by = c("Language_ID")) %>%
108
+ dplyr::select(Language_ID,
109
+ L1_log10_st,
110
+ L2_prop,
111
+ Education,
112
+ Official,
113
+ neighboring_languages_st) %>%
114
+ left_join(glottolog_df_ISO,
115
+ by = c("Language_ID")) %>%
116
+ write_tsv(here(OUTPUTDIR_data_wrangling, "pop_reduced_with_ISO.tsv"))
117
+ }
101/replication_package/creating_boundness_metric.R ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #boundness/fusion
2
+
3
+ #Script was written by Hedvig Skirgård
4
+
5
+ source("requirements.R")
6
+
7
+ OUTPUTDIR1 <- file.path('.', "output", "Bound_morph")
8
+ # create output dir if it does not exist.
9
+ if (!dir.exists(OUTPUTDIR1)) {
10
+ dir.create(OUTPUTDIR1)
11
+ }
12
+
13
+ if (!file.exists(here(OUTPUTDIR1, "bound_morph_score.tsv"))) {
14
+ GB_wide <-
15
+ read_tsv(file.path("data", "GB_wide", "GB_wide_strict.tsv"),
16
+ col_types = WIDE_COLSPEC)
17
+
18
+ #read in sheet with scores for whether a feature denotes fusion
19
+ GB_fusion_points <-
20
+ data.table::fread(
21
+ file.path("data", "GB_wide", "parameters.csv"),
22
+ encoding = 'UTF-8',
23
+ quote = "\"",
24
+ header = TRUE,
25
+ sep = ","
26
+ ) %>%
27
+ dplyr::select(Parameter_ID = ID, Fusion = boundness, informativity) %>%
28
+ mutate(Fusion = as.numeric(Fusion))
29
+
30
+ df_morph_count <- GB_wide %>%
31
+ filter(na_prop <= 0.25) %>% #exclude languages with more than 25% missing data
32
+ dplyr::select(-na_prop) %>%
33
+ reshape2::melt(id.vars = "Language_ID") %>%
34
+ dplyr::rename(Parameter_ID = variable) %>%
35
+ inner_join(GB_fusion_points, by = "Parameter_ID") %>%
36
+ filter(Fusion == 1) %>%
37
+ filter(!is.na(value)) %>%
38
+ group_by(Language_ID) %>%
39
+ dplyr::summarise(mean_morph = mean(value)) %>%
40
+ dplyr::select(Language_ID, boundness = mean_morph)
41
+
42
+ boundness_st = scale(df_morph_count$boundness)
43
+ df_morph_count <- cbind(df_morph_count, boundness_st)
44
+
45
+ df_morph_count %>%
46
+ write_tsv(file.path(OUTPUTDIR1, "bound_morph_score.tsv"))
47
+
48
+ }
101/replication_package/creating_informativity_score.R ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #informativity
2
+ source("requirements.R")
3
+
4
+ #Script was written by Hedvig Skirgård
5
+
6
+ OUTPUTDIR2 <- file.path('.', "output", "Informativity")
7
+ # create output dir if it does not exist.
8
+ if (!dir.exists(OUTPUTDIR2)) { dir.create(OUTPUTDIR2) }
9
+
10
+ if (!file.exists(here(OUTPUTDIR2, "informativity_score.tsv"))) {
11
+
12
+ GB_wide <-
13
+ read_tsv(file.path("data", "GB_wide", "GB_wide_strict.tsv"),
14
+ show_col_types = F) %>%
15
+ filter(na_prop <= 0.25) %>%
16
+ dplyr::select(-na_prop)
17
+
18
+ #read in sheet with scores for whether a feature denotes informativity
19
+ GB_informativity_points <- read_csv(file.path("data", "GB_wide", "parameters.csv"),
20
+ show_col_types = F) %>%
21
+ dplyr::select(Parameter_ID = ID, informativity) %>%
22
+ mutate(informativity = replace(informativity, Parameter_ID == "GB177", "argumentanimacy")) %>% #manually adding another parameter: assigning the parameter of GB177 ("Can the verb carry a marker of animacy of argument, unrelated to any gender/noun class of the argument visible in the NP domain?") feature to be informative
23
+ filter(!is.na(informativity))
24
+
25
+ GB_long_for_calc <- GB_wide %>%
26
+ reshape2::melt(id.vars = "Language_ID") %>%
27
+ rename(Parameter_ID = variable) %>%
28
+ inner_join(GB_informativity_points , by = "Parameter_ID")
29
+
30
+ ##informativity score
31
+ lg_df_informativity_score <- GB_long_for_calc %>%
32
+ mutate(value = if_else(Parameter_ID == "GB140", abs(value - 1), value)) %>% # reversing GB140 because 0 is the informative state
33
+ group_by(Language_ID, informativity) %>% #grouping per language and per informativity category
34
+ summarise(sum_informativity = sum(value, na.rm = T),
35
+ #for each informativity cateogry for each langauge, how many are answered 1 ("yes")
36
+ sum_na = sum(is.na(value))) %>% #how many of the values per informativity category are missing
37
+ mutate(sum_informativity = ifelse(sum_na >= 1 &
38
+ sum_informativity == 0, NA, sum_informativity)) %>% #if there is at least one NA and the sum of values for the entire category is 0, the informativity score should be NA because there could be a 1 hiding under the NA value
39
+ mutate(informativity_score = ifelse(sum_informativity >= 1, 1, sum_informativity)) %>%
40
+ ungroup() %>%
41
+ group_by(Language_ID) %>%
42
+ summarise(`Informativity` = mean(informativity_score, na.rm = T, .groups = "drop")) %>%
43
+ dplyr::select(Language_ID, `Informativity`)
44
+
45
+ informativity_st = scale(lg_df_informativity_score$Informativity)
46
+ lg_df_informativity_score <-
47
+ cbind(lg_df_informativity_score, informativity_st)
48
+
49
+ lg_df_informativity_score %>%
50
+ write_tsv(here(OUTPUTDIR2, "informativity_score.tsv"))
51
+ }
101/replication_package/data/GB_wide/parameters.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:effcb8e4ae1ef49e5558a828a2efba5b446c9c289e564fabd822e4b3d1739083
3
+ size 955498
101/replication_package/data/complexity_data_WALS.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05af559ebdfd0fb8a4a84f0ab525fbce3f2609eb43301fb0edeb310a12b9805a
3
+ size 49149
101/replication_package/data/glottolog-cldf_wide_df.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa70feae51fe695ae91d4ec29e5f78fb90bc26e507ede909dd3c10d45e14852b
3
+ size 10892168
101/replication_package/data/lang_endangerment_predictors.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65ba3f53b2eb30352d758c326b4889910022adb64b45bdead1d0fbfa00df6e69
3
+ size 5040478
101/replication_package/data/phylogenies/EDGE6635-merged-relabelled.tree ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a99c4b3cda474be6091ed433fa3fc5ba50f55082e599319b6a6677b5baacbc7f
3
+ size 20461790
101/replication_package/data_wrangling/ethnologue_pop_SM.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42cde751f7f3555c3b9fa4b7bf70a5f0e9c5927c9524286834759370e5c82d90
3
+ size 228185
101/replication_package/data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf9d6ae875e98a5bb4cecfcfee4dd69f0f70949205ff6e3b3f3a6df0430d6e25
3
+ size 639778
101/replication_package/data_wrangling/glottolog_AUTOTYPE_areas.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7365af670f13ad1fee3af423a7fb2c1a508c8dcf90ddd086e43571893ee77818
3
+ size 93225
101/replication_package/data_wrangling/glottolog_cldf_wide_df.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4171fe67d3786919c87dae3a64b85524d6b5c636311d8845e1137e84878f76bc
3
+ size 10906052
101/replication_package/data_wrangling/pop_reduced.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ef392e4f37b4afafe44312bd52cbfdb5d182ce23bcdac0d8d036d419b839a29
3
+ size 289960
101/replication_package/data_wrangling/pop_reduced_with_ISO.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbd2c0fbc91a2b9bd7b6ae38f259840b0a27173af6d86ac8d163e84adc0ab5ae
3
+ size 316008
101/replication_package/data_wrangling/wrangled.tree ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f50cb6ea90d4e3edd5aa26127e19ea1f97dc97a4a809994bcd4cece8720bc522
3
+ size 80074
101/replication_package/generating_GB_input_file.R ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("requirements.R")
2
+
3
+ if (!dir.exists("./grambank-analysed/R_grambank/output")) {
4
+ dir.create("./grambank-analysed/R_grambank/output")
5
+ }
6
+
7
+ #creating a full Grambank file: first, within the submodule itself, and next placing it in the data folder within the repository
8
+
9
+ setwd("grambank-analysed/R_grambank")
10
+
11
+ if (!(file.exists("./../../data/GB_wide/GB_wide_strict.tsv"))) {
12
+ cat("Generating GB_wide_strict.\n")
13
+
14
+ source("make_wide.R")
15
+
16
+ read_tsv("output/GB_wide/GB_wide_strict.tsv", show_col_types = F) %>%
17
+ write_tsv(file = "../../data/GB_wide/GB_wide_strict.tsv")
18
+
19
+ }
20
+
21
+ #extracting glottolog: first, within the submodule itself, and next placing it in the data folder within the repository
22
+
23
+ if (!(file.exists("../../../data_wrangling/glottolog_cldf_wide_df.tsv"))) {
24
+ cat("Generating glottolog table.\n")
25
+
26
+ source("make_glottolog-cldf_table.R")
27
+
28
+ read_tsv("output/non_GB_datasets/glottolog-cldf_wide_df.tsv",
29
+ show_col_types = F) %>%
30
+ write_tsv(file = "./../../data_wrangling/glottolog_cldf_wide_df.tsv")
31
+ }
32
+
33
+ if (!(file.exists("./../data/GB_wide/parameters.csv"))) {
34
+ cat("Generating parameters table.\n")
35
+
36
+ read_csv("../grambank/cldf/parameters.csv", show_col_types = F) %>%
37
+ dplyr::select(ID, Name, Description, boundness = Boundness, informativity = Informativity) %>%
38
+ write_csv(file = "../../data/GB_wide/parameters.csv")
39
+ }
40
+
41
+
42
+ setwd("../../")
101/replication_package/get_external_data.R ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Script was written by Hedvig Skirgård
2
+
3
+ source("requirements.R")
4
+
5
+ #setting up a tempfile path where we can put the zipped files before unzipped to a specific location
6
+ filepath <- file.path(tempfile())
7
+
8
+ ##grambank-analysed: downloading, zipping and moving
9
+ grambank_analysed_fn <- c("https://zenodo.org/record/7740822/files/grambank/grambank-analysed-v1.0.zip")
10
+
11
+ utils::download.file(file.path(grambank_analysed_fn), destfile = filepath)
12
+ utils::unzip(zipfile = filepath, exdir = "grambank-analysed")
13
+
14
+ #Zenodo locations contain a dir with the name of the repos and the commit in the release. This is not convenient for later scripts, so we move the contents up one level
15
+ old_fn <- "grambank-analysed/grambank-grambank-analysed-fcf971a/"
16
+ old_fn_files <- list.files(old_fn)
17
+ new_fn <- "grambank-analysed/"
18
+
19
+ file.copy(from = paste0(old_fn, old_fn_files),to = new_fn, recursive = T, overwrite = T)
20
+ #remove old dir
21
+ unlink(old_fn, recursive = T)
22
+
23
+ ## dirs within grambank-analysed
24
+ # for the dirs within grambank-analysed we can fetch them with a for loop
25
+
26
+ fns_within_grambank_analysed_zip<- c("https://zenodo.org/record/7740140/files/grambank/grambank-v1.0.zip", "https://zenodo.org/record/5772649/files/glottolog/glottolog-cldf-v4.5.zip", "https://zenodo.org/record/6255206/files/autotyp-data-v1.0.1.zip")
27
+ exdir_names <- c("grambank-analysed/grambank", "grambank-analysed/glottolog-cldf", "grambank-analysed/autotyp-data")
28
+
29
+ commit_dir_names <- c("grambank-analysed/grambank/grambank-grambank-9e0f341/", "grambank-analysed/glottolog-cldf/glottolog-glottolog-cldf-6f1558e/", "grambank-analysed/autotyp-data/autotyp-data-1.0.1/")
30
+
31
+
32
+ for(n in 1:3){
33
+ utils::download.file(file.path(fns_within_grambank_analysed_zip[n]), destfile = filepath)
34
+ utils::unzip(zipfile = filepath, exdir = exdir_names[n])
35
+
36
+ old_fn <- commit_dir_names[n]
37
+ old_fn_files <- list.files(old_fn)
38
+ new_fn <- exdir_names[n]
39
+
40
+ file.copy(from = paste0(old_fn, old_fn_files),to = new_fn, recursive = T, overwrite = T)
41
+ #remove old dir
42
+ unlink(old_fn, recursive = T)
43
+
44
+ }
45
+
46
+
101/replication_package/install_and_load_INLA.R ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #installing and loading INLA
2
+
3
+ # script was written by Hedvig Skirgård and Sam Passmore
4
+
5
+ # 1. Install/update and load BiocManager and other necessary packages
6
+ source("requirements.R")
7
+
8
+ if (!is_installed("INLA")) {message("INLA wasn't installed, it is now being installed.")
9
+
10
+ # 2. Install INLA dependencies with BiocManager using:
11
+ BiocManager::install(c("grap","Rgraphviz","sf","rgdal","rgl","spdep"), force=TRUE)#, version = '3.15') #version indication is relevant only for R version 4.2.0
12
+ #grap package is not available for Bioconductor 3.16 (latest version)
13
+
14
+ # 3. Install INLA using:
15
+ # NOTE: This is a big download
16
+ install.packages("INLA", repos=c(getOption("repos"),
17
+ INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)
18
+
19
+ }
20
+
21
+ library(INLA)
22
+ inla.setOption(inla.mode="experimental")
101/replication_package/make_ethnologue_SM_and_merging_tables.R ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("requirements.R")
2
+
3
+ #Script was written by Hedvig Skirgård
4
+
5
+ #this script necessitates that grambank and glottolog files exist. if they do not, run generate_GB_input_file.R
6
+ #this script generates the Ethnologue file that can be published based on the raw ethnologue file from SIL. The raw file CANNOT be shared publicly, but derived information that cannot be transformed back to the original values can, such as scaled and log-transformed values
7
+
8
+ glottolog_df <- read_tsv("data_wrangling/glottolog_cldf_wide_df.tsv", show_col_types = F) %>%
9
+ dplyr::select(ISO_639 = ISO639P3code, Glottocode, Language_level_ID) %>%
10
+ mutate(Language_level_ID = ifelse(is.na(Language_level_ID), Glottocode, Language_level_ID))
11
+
12
+ GB <- read_tsv("data/GB_wide/GB_wide_strict.tsv", show_col_types = F) %>%
13
+ dplyr::select(Glottocode = "Language_ID")
14
+
15
+ #this script needs the Table_of_languages.tab file to exists, which is only available to people with an SIL lisence
16
+ data_ethnologue <- read_tsv("data/Table_of_Languages.tab", show_col_types = F) %>%
17
+ filter(!is.na("All_Users")) %>% #remove rows with missing data for pop of all users
18
+ filter(!is.na("L1_Users")) %>%
19
+ left_join(glottolog_df, by = "ISO_639" ) %>%
20
+ dplyr::select(-Glottocode) %>% #removing old Glottocode column
21
+ rename(Glottocode = Language_level_ID) %>%
22
+ group_by(Glottocode) %>%
23
+ summarise(All_Users = sum(All_Users, na.rm = T),
24
+ L1_Users = sum(L1_Users, na.rm = T),
25
+ ISO_639 = paste0(ISO_639, collapse = "; "))
26
+
27
+ #do some the subsettting to GB and log10 and L2 prop
28
+ data_ethnologue <- data_ethnologue %>%
29
+ inner_join(GB, by = "Glottocode" ) %>%
30
+ dplyr::mutate(L2 = All_Users - L1_Users,
31
+ #calculating the number of L2 users by subtracting the number of L1 from All users
32
+ L2_prop = L2/ All_Users,
33
+ #calculating the proportion of L2 users out of the entire population
34
+ L1_log10 = log10(L1_Users+1),
35
+ All_Users_log10 = log10(All_Users+1)) %>% #adding a 1 for cases where pop is 0
36
+ mutate(L2_prop = ifelse(All_Users == 0, 0, L2_prop)) %>% #if All users is 0, L2_prop would be NA if we didn't do this (can't divide by 0). It should be 0
37
+ dplyr::select(Glottocode, ISO_639, L1_log10, L2_prop, L1_Users, All_Users_log10, All_Users)
38
+
39
+ #do the scaling
40
+ data_ethnologue$L1_scaled <- scale(data_ethnologue$L1_Users)[,1]
41
+ data_ethnologue$L1_log10_scaled <- scale(data_ethnologue$L1_log10)[,1]
42
+
43
+ data_ethnologue$All_Users_scaled <- scale(data_ethnologue$All_Users)[,1]
44
+ data_ethnologue$All_Users_log10_scaled <- scale(data_ethnologue$All_Users_log10)[,1]
45
+
46
+ #write to file: Ethnologue data for supplementary materials and merging into "reduced" version of the final dataset with social variables (excluding L1_log10)
47
+ data_ethnologue %>%
48
+ dplyr::select(ISO_639, Language_ID=Glottocode, L2_prop, L1_scaled, L1_log10_scaled, All_Users_scaled, All_Users_log10_scaled) %>%
49
+ write_tsv("data_wrangling/ethnologue_pop_SM.tsv")
50
+
51
+ #write to file: Ethnologue data for merging into "full" version of the final dataset with social variables (including L1_log10) - won't be available to public
52
+ data_ethnologue %>%
53
+ dplyr::select(ISO_639, Language_ID=Glottocode, L2_prop, L1_st = L1_scaled, L1_log10_st=L1_log10_scaled, L1_log10 ) %>%
54
+ write_tsv("data_wrangling/ethnologue_pop_full.tsv")
101/replication_package/make_ethnologue_SM_for_morphological_complexity_reanalysis.R ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source("requirements.R")
2
+
3
+ #Script was written by Hedvig Skirgård and modified by Olena Shcherbakova
4
+
5
+ #this script generates the Ethnologue file that can be published based on the raw ethnologue file from SIL. The raw file CANNOT be shared publicly, but derived information that cannot be transformed back to the original values can, such as scaled and log-transformed values
6
+
7
+ #this script needs the Table_of_languages.tab file to exists, which is only available to people with an SIL lisence
8
+ data_ethnologue <- read_tsv("data/Table_of_Languages.tab", show_col_types = F) %>%
9
+ filter(!is.na("All_Users")) %>% #remove rows with missing data for pop of all users
10
+ filter(!is.na("L1_Users")) %>%
11
+ dplyr::select(ISO_639, L1_Users, All_Users)
12
+
13
+
14
+ #do some the subsettting to GB and log10 and L2 prop
15
+ data_ethnologue <- data_ethnologue %>%
16
+ dplyr::mutate(L2 = All_Users - L1_Users,
17
+ #calculating the number of L2 users by subtracting the number of L1 from All users
18
+ L2_prop = L2/ All_Users,
19
+ #calculating the proportion of L2 users out of the entire population
20
+ L1_log10 = log10(L1_Users+1),
21
+ All_Users_log10 = log10(All_Users+1)) %>% #adding a 1 for cases where pop is 0
22
+ mutate(L2_prop = ifelse(All_Users == 0, 0, L2_prop)) %>% #if All users is 0, L2_prop would be NA if we didn't do this (can't divide by 0). It should be 0
23
+ dplyr::select(ISO_639, L1_log10, L2_prop, L1_Users, All_Users_log10, All_Users)
24
+
25
+ #do the scaling
26
+ data_ethnologue$L1_scaled <- scale(data_ethnologue$L1_Users)[,1]
27
+ data_ethnologue$L1_log10_scaled <- scale(data_ethnologue$L1_log10)[,1]
28
+
29
+ data_ethnologue$All_Users_scaled <- scale(data_ethnologue$All_Users)[,1]
30
+ data_ethnologue$All_Users_log10_scaled <- scale(data_ethnologue$All_Users_log10)[,1]
31
+
32
+ #write to file: Ethnologue data for supplementary materials and merging into "reduced" version of the final dataset with social variables (excluding L1_log10)
33
+ data_ethnologue_file <- data_ethnologue %>%
34
+ dplyr::select(ISO_639, L2_prop, L1_scaled, L1_log10_scaled, All_Users_scaled, All_Users_log10_scaled)
35
+
36
+ data_ethnologue_file <- data_ethnologue_file %>%
37
+ write_tsv("data_wrangling/ethnologue_pop_SM_morph_compl_reanalysis.tsv")
101/replication_package/measuring_phylosignal.R ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #global tree
2
+ source("set_up_inla.R")
3
+
4
+ metrics_joined <- metrics_joined %>%
5
+ filter(!is.na(L1_log10_st)) %>%
6
+ rename(L1_log_st = L1_log10_st) %>%
7
+ mutate(L1_copy = L1_log_st) %>%
8
+ filter(!is.na(L2_prop)) %>%
9
+ mutate(L2_copy = L2_prop) %>%
10
+ filter(!is.na(neighboring_languages_st)) %>%
11
+ filter(!is.na(Official)) %>%
12
+ filter(!is.na(Education)) %>%
13
+ filter(!is.na(boundness_st)) %>%
14
+ filter(!is.na(informativity_st))
15
+
16
+ #dropping tips not in Grambank
17
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
18
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
19
+
20
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
21
+
22
+ #measuring phylogenetic signal of boundness/fusion
23
+ boundness<-setNames(metrics_joined$boundness_st, metrics_joined$Language_ID)
24
+ physig_boundness_l <- phytools::phylosig(tree, boundness, method="lambda", test=TRUE)
25
+ lambda_boundness_l <- physig_boundness_l[1][["lambda"]]
26
+ LR_boundness_l <- 2*(physig_boundness_l$logL-physig_boundness_l$logL0) #performing likelihood ratio test
27
+ P_lambda_boundness_l <- physig_boundness_l$P
28
+
29
+ #measuring phylogenetic signal of informativity
30
+ informativity<-setNames(metrics_joined$informativity_st, metrics_joined$Language_ID)
31
+ physig_informativity_l <- phytools::phylosig(tree, informativity, method="lambda", test=TRUE)
32
+ lambda_informativity_l <- physig_informativity_l[1][["lambda"]]
33
+ LR_informativity_l <- 2*(physig_informativity_l$logL-physig_informativity_l$logL0) #performing likelihood ratio test
34
+ P_lambda_informativity_l <- physig_informativity_l$P
35
+
36
+ boundness_signal <- c(physig_boundness_l$logL, physig_boundness_l$logL0, LR_boundness_l, lambda_boundness_l, P_lambda_boundness_l)
37
+ informativity_signal <- c(physig_informativity_l$logL, physig_informativity_l$logL0, LR_informativity_l, lambda_informativity_l, P_lambda_informativity_l)
38
+
39
+
40
+ #Making a table out of two measures of phylogenetic signal
41
+ physig <- as.data.frame(rbind(boundness_signal, informativity_signal))
42
+ colnames(physig) <- c("logL", "logL0", "LR (lambda)", "lambda", "p-value")
43
+ physig <- round(physig, digits=2)
44
+ physig$`p-value` <- ifelse(physig$`p-value` < 0.001, "< 0.001", physig$`p-value`)
45
+ features <- as.data.frame(c("fusion", "informativity"))
46
+ colnames(features) <- "Feature"
47
+ physig <- cbind(features, physig)
48
+ write.csv(physig, file=here("output_tables", "Table_phylosig.csv"), row.names = FALSE)
101/replication_package/models_Boundness_phylogenetic_spatial.R ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Boundness predicted by combinations of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ #"regional" set of parameters
54
+ spatial_covar_mat_2 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")], cov.pars = phi_2, kappa = kappa)$varcov
55
+ typical_variance_spatial_2 = exp(mean(log(diag(spatial_covar_mat_2))))
56
+ spatial_cov_std_2 = spatial_covar_mat_2 / typical_variance_spatial_2
57
+ spatial_prec_mat_2 = solve(spatial_cov_std_2)
58
+ dimnames(spatial_prec_mat_2) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
59
+
60
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
61
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
62
+ metrics_joined$phy_id = phy_id
63
+
64
+ ## Other effects are in the same order they appear in the dataset
65
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
66
+
67
+ #Preparing the formulas for 7 competing models to be used in inla() call
68
+ listcombo <- list(#phylogenetic and spatial effects in isolation
69
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)"),
70
+ c("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)"),
71
+ c("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)"),
72
+ c("f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)"),
73
+ #phylogenetic and distinct spatial effects in combination
74
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
75
+ "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)"),
76
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
77
+ "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)"),
78
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
79
+ "f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)"))
80
+
81
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
82
+
83
+ predterms <- t(as.data.frame(predterms))
84
+
85
+ predterms_short <- predterms
86
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
87
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
88
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)", "Spatial: regional", predterms_short, fixed=TRUE)
89
+ predterms_short <- gsub("f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)", "Areal", predterms_short, fixed=TRUE)
90
+
91
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
92
+ number = 1:length(predterms_short))
93
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
94
+
95
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
96
+ number = 1:length(predterms_short))
97
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
98
+
99
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
100
+ number = 1:length(predterms_short))
101
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
102
+
103
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
104
+
105
+ areal_element <- data.frame("judgement" = grepl("Areal", predterms_short),
106
+ number = 1:length(predterms_short))
107
+ areal_element <- areal_element[areal_element$judgement == TRUE,]$number
108
+
109
+
110
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
111
+ phy_effects_matrix <- matrix(NA, 7, 5)
112
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
113
+ spa_effects_matrix <- matrix(NA, 7, 5)
114
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
115
+ area_effects_matrix <- matrix(NA, 7, 5)
116
+ colnames(area_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
117
+
118
+ intercept_matrix <- matrix(NA, 7, 5)
119
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
120
+
121
+ #fitted values
122
+ fitted_list <- vector("list", 7)
123
+ names(fitted_list) <- predterms_short
124
+
125
+ #marginals of hyperparameters
126
+ marginals_hyperpar_list_gaussian <- vector("list", 7)
127
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
128
+
129
+ marginals_hyperpar_list_phy <- vector("list", 7)
130
+ names(marginals_hyperpar_list_phy) <- predterms_short
131
+
132
+ marginals_hyperpar_list_spa <- vector("list", 7)
133
+ names(marginals_hyperpar_list_spa) <- predterms_short
134
+
135
+ marginals_hyperpar_list_area <- vector("list", 7)
136
+ names(marginals_hyperpar_list_area) <- predterms_short
137
+
138
+
139
+ #marginals of fixed effects
140
+ marginals_fixed_list_Intercept <- vector("list", 7)
141
+ names(marginals_fixed_list_Intercept) <- predterms_short
142
+
143
+
144
+ #summary statistics of random effects
145
+ summary_random_list_phy <- vector("list", 7)
146
+ names(summary_random_list_phy) <- predterms_short
147
+
148
+ summary_random_list_spa <- vector("list", 7)
149
+ names(summary_random_list_spa) <- predterms_short
150
+
151
+ summary_random_list_area <- vector("list", 7)
152
+ names(summary_random_list_area) <- predterms_short
153
+
154
+ coefm <- matrix(NA,7,1)
155
+ result <- vector("list",7)
156
+
157
+ for(i in 1:7){
158
+ formula <- as.formula(paste("boundness_st ~ ",predterms[[i]]))
159
+ result[[i]] <- inla(formula, family="gaussian",
160
+ control.family = list(hyper = pcprior_hyper),
161
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
162
+ #tolerance: the tolerance for the optimisation of the hyperparameters
163
+ #h: the step-length for the gradient calculations for the hyperparameters.
164
+ data=metrics_joined, control.compute=list(waic=TRUE))
165
+
166
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
167
+
168
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
169
+ intercept_matrix[i, 4] <- predterms_short[[i]]
170
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
171
+
172
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
173
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
174
+
175
+ if(i %in% phylogenetic_element) {
176
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
177
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
178
+ method = "linear") %>%
179
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
180
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
181
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
182
+ }
183
+
184
+ if(i %in% spatial_element) {
185
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
186
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
187
+ method = "linear") %>%
188
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
189
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
190
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
191
+ }
192
+
193
+ if(i %in% areal_element){
194
+ area_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
195
+ result[[i]]$marginals.hyperpar$`Precision for AUTOTYP_area`,
196
+ method = "linear") %>%
197
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
198
+ area_effects_matrix[i, 4] <- predterms_short[[i]]
199
+ area_effects_matrix[i, 5] <- result[[i]]$waic$waic
200
+ }
201
+
202
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
203
+ fitted_list[[i]] <- fitted_list[[i]] %>%
204
+ mutate(across(where(is.numeric), round, 2))
205
+
206
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
207
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
208
+
209
+ if(i %in% phylogenetic_element){
210
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
211
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
212
+ }
213
+
214
+ if(i %in% spatial_element){
215
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
216
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
217
+ }
218
+
219
+ if(i %in% areal_element){
220
+ marginals_hyperpar_list_area[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for AUTOTYP_area"]]))
221
+ colnames(marginals_hyperpar_list_area[[i]]) <- c("x for AUTOTYP_area", "y for AUTOTYP_area")
222
+ }
223
+
224
+ if(i %in% phylogenetic_element){
225
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
226
+ rename(phy_id = ID) %>%
227
+ as.data.frame() %>%
228
+ mutate(across(where(is.numeric), round, 2))
229
+ }
230
+
231
+ if(i %in% spatial_element){
232
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
233
+ rename(sp_id = ID) %>%
234
+ as.data.frame() %>%
235
+ mutate(across(where(is.numeric), round, 2))
236
+ }
237
+
238
+ if(i %in% areal_element){
239
+ summary_random_list_area[[i]] <- cbind(result[[i]]$summary.random$AUTOTYP_area) %>%
240
+ rename(AUTOTYP_area = ID) %>%
241
+ as.data.frame() %>%
242
+ mutate(across(where(is.numeric), round, 2))
243
+ }
244
+ }
245
+
246
+ #beepr::beep(5)
247
+
248
+ save(result, file = "output_models/models_Boundness_phylogenetic_spatial.RData")
249
+
250
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
251
+ colnames(coefm) <- c("model", "WAIC")
252
+ coefm <- coefm %>%
253
+ mutate(across(.cols=2, as.numeric)) %>%
254
+ mutate(across(where(is.numeric), round, 2)) %>%
255
+ arrange(WAIC)
256
+
257
+ coefm$WAIC <- as.numeric(coefm$WAIC)
258
+ coefm <- coefm[order(coefm$WAIC),]
259
+
260
+ coefm_path <- paste("output_tables/", "waics", "Boundness_phylogenetic_spatial_models", ".csv", collapse = "")
261
+ write.csv(coefm, coefm_path, row.names=FALSE)
262
+
263
+ for (i in 1:length(fitted_list)) {
264
+ fitted_list[[i]]$model <- names(fitted_list)[i]
265
+ }
266
+ fitted_list <- dplyr::bind_rows(fitted_list)
267
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Boundness_phylogenetic_spatial_models", ".csv", collapse = "")
268
+ write.csv(fitted_list, fitted_list_path)
269
+
270
+ phy_effects<-as.data.frame(phy_effects_matrix)
271
+ spa_effects<-as.data.frame(spa_effects_matrix)
272
+ area_effects <- as.data.frame(area_effects_matrix)
273
+ intercept_effects <- as.data.frame(intercept_matrix)
274
+
275
+ phy_effects$effect <- "phylogenetic SD"
276
+ spa_effects$effect <- "spatial SD"
277
+ area_effects$effect <- "areal SD"
278
+ intercept_effects$effect <- "Intercept"
279
+
280
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, area_effects, intercept_effects))
281
+ effs <- effs %>%
282
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
283
+ mutate(across(where(is.numeric), round, 2)) %>%
284
+ na.omit() %>%
285
+ arrange(WAIC) %>%
286
+ relocate(model)
287
+
288
+ effs_path <- paste("output_tables/", "effects", "Boundness_phylogenetic_spatial_models", ".csv", collapse = "")
289
+ write.csv(effs, effs_path, row.names=FALSE)
290
+
291
+ effs <- read.csv("output_tables/ effects Boundness_phylogenetic_spatial_models .csv")
292
+
293
+ effs_table_SM <- effs %>%
294
+ mutate(effect =
295
+ dplyr::recode(effect,
296
+ "areal SD" = "spatial SD")) %>%
297
+ rename("2.5%"=2,
298
+ "50%" = 4,
299
+ "97.5%" = 3) %>%
300
+ flextable() %>%
301
+ autofit() %>%
302
+ merge_v(j=c("model", "WAIC")) %>%
303
+ fix_border_issues() %>%
304
+ border_inner_h()
305
+
306
+ save_as_docx(
307
+ "Effects in boundess models with random effects" = effs_table_SM,
308
+ path = "output_tables/table_SM_effects_Boundness_phylogenetic_spatial_models.docx")
309
+
310
+ effs_plot <- effs %>%
311
+ #filter(WAIC <= top_9) %>%
312
+ rename(lower=2,
313
+ upper = 4,
314
+ mean = 3) %>% #mean here refers to 0.5 quantile
315
+ #filter(!effect == "Intercept") %>%
316
+ mutate(effect =
317
+ dplyr::recode(effect,
318
+ "areal SD" = "spatial SD")) %>%
319
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "areal SD", "Intercept"))) %>%
320
+ mutate(WAIC = round(WAIC, 2)) %>%
321
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
322
+ group_by(WAIC) %>%
323
+ arrange(WAIC) %>%
324
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
325
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
326
+
327
+
328
+
329
+ #plot modified from function ggregplot::Efxplot
330
+ cols = c(brewer.pal(12, "Paired"))
331
+ cols = c(cols[c(12, 10)], "gray50")
332
+
333
+ show_col(cols)
334
+
335
+ plot_1 <- ggplot(effs_plot,
336
+ aes(y = as.factor(model),
337
+ x = mean,
338
+ group = effect,
339
+ colour = effect)) +
340
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
341
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
342
+ scale_color_manual(values=cols) +
343
+ ylab("Model of boundness") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
344
+ theme(axis.text=element_text(size=50),
345
+ legend.text=element_text(size=50),
346
+ axis.title=element_text(size=50),
347
+ legend.title=element_text(size=50),
348
+ legend.spacing.y = unit(1.5, 'cm')) +
349
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
350
+
351
+
352
+ #plot_1
353
+ ggsave(filename = 'output/SP_models_plot_Boundness_phylogenetic_spatial_models.jpg',
354
+ plot_1, height = 29, width = 33)
355
+
356
+
357
+ #saving hyperparameters: Gaussian observations
358
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
359
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
360
+ }
361
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
362
+
363
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Boundness_phylogenetic_spatial_models_marginals_hyperpar_gaussian.csv")
364
+
365
+ #saving hyperparameters: phylogenetic
366
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
367
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
368
+ }
369
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
370
+
371
+ write.csv(marginals_hyperpar_list_phy, "output_tables/Boundness_phylogenetic_spatial_models_marginals_hyperpar_phylogenetic.csv")
372
+
373
+ #saving hyperparameters: spatial
374
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
375
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
376
+ }
377
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
378
+
379
+ write.csv(marginals_hyperpar_list_spa, "output_tables/Boundness_phylogenetic_spatial_models_marginals_hyperpar_spatial.csv")
380
+
381
+ #saving hyperparameters: areas
382
+ for (i in 1:length(marginals_hyperpar_list_area)) {
383
+ marginals_hyperpar_list_area[[i]]$model <- names(marginals_hyperpar_list_area)[i]
384
+ }
385
+ marginals_hyperpar_list_area <- dplyr::bind_rows(marginals_hyperpar_list_area)
386
+
387
+ write.csv(marginals_hyperpar_list_area, "output_tables/Boundness_phylogenetic_spatial_models_marginals_hyperpar_areal.csv")
388
+
389
+
390
+ #saving summaries of random effects: phylogenetic
391
+ for (i in 1:length(summary_random_list_phy)) {
392
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
393
+ }
394
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
395
+
396
+ write.csv(summary_random_list_phy, "output_tables/Boundness_phylogenetic_spatial_models_summary_random_phy.csv")
397
+
398
+ #saving summaries of random effects: spatial
399
+ for (i in 1:length(summary_random_list_spa)) {
400
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
401
+ }
402
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
403
+
404
+ write.csv(summary_random_list_spa, "output_tables/Boundness_phylogenetic_spatial_models_summary_random_spa.csv")
405
+
406
+ #saving summaries of random effects: areas
407
+ for (i in 1:length(summary_random_list_area)) {
408
+ summary_random_list_area[[i]]$model <- names(summary_random_list_area)[i]
409
+ }
410
+ summary_random_list_area <- dplyr::bind_rows(summary_random_list_area)
411
+
412
+ write.csv(summary_random_list_area, "output_tables/Boundness_phylogenetic_spatial_models_summary_random_areas.csv")
101/replication_package/models_Boundness_reduced_social.R ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Boundness predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st"),
63
+
64
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L2_prop"),
67
+
68
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st", "L2_prop"),
73
+
74
+ #unavailable
75
+ # c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log10:L2_prop"),
76
+
77
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "neighboring_languages_st"),
78
+
79
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Official"),
80
+
81
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Education"))
82
+
83
+
84
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
85
+
86
+ predterms <- t(as.data.frame(predterms))
87
+
88
+ predterms_short <- predterms
89
+
90
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
92
+
93
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
94
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
95
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
96
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
97
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
98
+
99
+
100
+
101
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
102
+ number = 1:length(predterms_short))
103
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
104
+
105
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
106
+ number = 1:length(predterms_short))
107
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
108
+
109
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
110
+ number = 1:length(predterms_short))
111
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
112
+
113
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
114
+
115
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
116
+ number = 1:length(predterms_short))
117
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
118
+
119
+
120
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
121
+ number = 1:length(predterms_short))
122
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
123
+
124
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
125
+ number = 1:length(predterms_short))
126
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
127
+ #unnecessary
128
+ #L2_prop_element <- L2_prop_element[-length(L2_prop_element)] #making sure that the interaction term (introduced below) is not treated as belonging to this isolated element
129
+
130
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
131
+ number = 1:length(predterms_short))
132
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
133
+
134
+ #unnecessary
135
+ #can use only part of the interaction term within grepl() function
136
+ # interaction_element <- data.frame("judgement" = grepl(":L2 proportion", predterms_short),
137
+ # number = 1:length(predterms_short))
138
+ # interaction_element <- interaction_element[interaction_element$judgement == TRUE,]$number
139
+
140
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
141
+ number = 1:length(predterms_short))
142
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
143
+
144
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
145
+ number = 1:length(predterms_short))
146
+ official_element <- official_element[official_element$judgement == TRUE,]$number
147
+
148
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
149
+ number = 1:length(predterms_short))
150
+ education_element <- education_element[education_element$judgement == TRUE,]$number
151
+
152
+ models_number <- length(predterms_short)
153
+
154
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
155
+ phy_effects_matrix <- matrix(NA, models_number, 5)
156
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
157
+ spa_effects_matrix <- matrix(NA, models_number, 5)
158
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
159
+
160
+ intercept_matrix <- matrix(NA, models_number, 5)
161
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
162
+
163
+ social_effects_matrix_L1 <- matrix(NA, models_number, 5)
164
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
165
+ social_effects_matrix_L1_nl <- matrix(NA, models_number, 5)
166
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
167
+ social_effects_matrix_L2_prop <- matrix(NA, models_number, 5)
168
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
169
+ social_effects_matrix_L2_prop_nl <- matrix(NA, models_number, 5)
170
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
171
+ social_effects_matrix_N <- matrix(NA, models_number, 5)
172
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
173
+ social_effects_matrix_O <- matrix(NA, models_number, 5)
174
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
175
+ social_effects_matrix_E <- matrix(NA, models_number, 5)
176
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
177
+ social_effects_matrix_L1_L2_prop <- matrix(NA, models_number, 5)
178
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
179
+
180
+ #fitted values
181
+ fitted_list <- vector("list", models_number)
182
+ names(fitted_list) <- predterms_short
183
+
184
+ #marginals of hyperparameters
185
+ marginals_hyperpar_list_gaussian <- vector("list", models_number)
186
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
187
+
188
+ marginals_hyperpar_list_phy <- vector("list", models_number)
189
+ names(marginals_hyperpar_list_phy) <- predterms_short
190
+
191
+ marginals_hyperpar_list_spa <- vector("list", models_number)
192
+ names(marginals_hyperpar_list_spa) <- predterms_short
193
+
194
+ marginals_hyperpar_list_social_L1_nl <- vector("list", models_number)
195
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
196
+
197
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", models_number)
198
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
199
+
200
+
201
+ #marginals of fixed effects
202
+ marginals_fixed_list_Intercept <- vector("list", models_number)
203
+ names(marginals_fixed_list_Intercept) <- predterms_short
204
+
205
+ marginals_fixed_list_L1 <- vector("list", models_number)
206
+ names(marginals_fixed_list_L1) <- predterms_short
207
+
208
+ marginals_fixed_list_L2_prop <- vector("list", models_number)
209
+ names(marginals_fixed_list_L2_prop) <- predterms_short
210
+
211
+ marginals_fixed_list_O <- vector("list", models_number)
212
+ names(marginals_fixed_list_O) <- predterms_short
213
+
214
+ marginals_fixed_list_N <- vector("list", models_number)
215
+ names(marginals_fixed_list_N) <- predterms_short
216
+
217
+ marginals_fixed_list_E <- vector("list", models_number)
218
+ names(marginals_fixed_list_E) <- predterms_short
219
+
220
+ marginals_fixed_list_L1_L2_prop <- vector("list", models_number)
221
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
222
+
223
+
224
+
225
+
226
+ #summary statistics of random effects
227
+ summary_random_list_phy <- vector("list", models_number)
228
+ names(summary_random_list_phy) <- predterms_short
229
+
230
+ summary_random_list_spa <- vector("list", models_number)
231
+ names(summary_random_list_spa) <- predterms_short
232
+
233
+ summary_random_list_social_L1_nl <- vector("list", models_number)
234
+ names(summary_random_list_social_L1_nl) <- predterms_short
235
+
236
+ summary_random_list_social_L2_prop_nl <- vector("list", models_number)
237
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
238
+
239
+
240
+ coefm <- matrix(NA,models_number,1)
241
+ result <- vector("list",models_number)
242
+
243
+ for(i in 1:models_number){
244
+ formula <- as.formula(paste("boundness_st ~ ",predterms[[i]]))
245
+ result[[i]] <- inla(formula, family="gaussian",
246
+ control.family = list(hyper = pcprior_hyper),
247
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
248
+ #tolerance: the tolerance for the optimisation of the hyperparameters
249
+ #h: the step-length for the gradient calculations for the hyperparameters.
250
+ data=metrics_joined, control.compute=list(waic=TRUE))
251
+
252
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
253
+
254
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
255
+ intercept_matrix[i, 4] <- predterms_short[[i]]
256
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
257
+
258
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
259
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
260
+
261
+ if(i %in% phylogenetic_element) {
262
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
263
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
264
+ method = "linear") %>%
265
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
266
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
267
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
268
+ }
269
+
270
+ if(i %in% spatial_element) {
271
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
272
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
273
+ method = "linear") %>%
274
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
275
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
276
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
277
+ }
278
+
279
+
280
+ if(i %in% L1_nl_element){
281
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
282
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
283
+ method = "linear") %>%
284
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
285
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
286
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
287
+ }
288
+
289
+ if(i %in% L2_prop_nl_element){
290
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
291
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
292
+ method = "linear") %>%
293
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
294
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
295
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
296
+ }
297
+
298
+ if(i %in% L1_element) {
299
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
300
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
301
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
302
+
303
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
304
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
305
+ }
306
+
307
+ if(i %in% L2_prop_element) {
308
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
309
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
310
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
311
+
312
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
313
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
314
+ }
315
+
316
+ #unavailable
317
+ # if(i %in% interaction_element) {
318
+ # social_effects_matrix_L1_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.975quant`)
319
+ # social_effects_matrix_L1_L2_prop[i, 4] <- predterms_short[[i]]
320
+ # social_effects_matrix_L1_L2_prop[i, 5] <- result[[i]]$waic$waic
321
+
322
+ # marginals_fixed_list_L1_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log10:L2_prop"]]))
323
+ # colnames(marginals_fixed_list_L1_L2_prop[[i]]) <- c("x for L1*L2 proportion", "y for L1*L2 proportion")
324
+ # }
325
+
326
+ if(i %in% neighbour_element) {
327
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
328
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
329
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
330
+
331
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
332
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
333
+ }
334
+
335
+ if(i %in% official_element) {
336
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
337
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
338
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
339
+
340
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
341
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
342
+ }
343
+
344
+ if(i %in% education_element) {
345
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
346
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
347
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
348
+
349
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
350
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
351
+ }
352
+
353
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
354
+ fitted_list[[i]] <- fitted_list[[i]] %>%
355
+ mutate(across(where(is.numeric), round, 2))
356
+
357
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
358
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
359
+
360
+ if(i %in% phylogenetic_element){
361
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
362
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
363
+ }
364
+
365
+ if(i %in% spatial_element){
366
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
367
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
368
+ }
369
+
370
+ if(i %in% L1_nl_element){
371
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
372
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
373
+ }
374
+
375
+ if(i %in% L2_prop_nl_element){
376
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
377
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
378
+ }
379
+
380
+ if(i %in% phylogenetic_element){
381
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
382
+ rename(phy_id = ID) %>%
383
+ as.data.frame() %>%
384
+ mutate(across(where(is.numeric), round, 2))
385
+ }
386
+
387
+ if(i %in% spatial_element){
388
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
389
+ rename(sp_id = ID) %>%
390
+ as.data.frame() %>%
391
+ mutate(across(where(is.numeric), round, 2))
392
+ }
393
+ }
394
+
395
+ #beepr::beep(5)
396
+
397
+ save(result, file = "output_models_reduced/models_Boundness_social.RData")
398
+ load("output_models_reduced/models_Boundness_social.RData")
399
+
400
+ coefm_copy <- coefm
401
+
402
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
403
+ colnames(coefm) <- c("model", "WAIC")
404
+ coefm <- coefm %>%
405
+ mutate(across(.cols=2, as.numeric)) %>%
406
+ mutate(across(where(is.numeric), round, 2)) %>%
407
+ arrange(WAIC)
408
+
409
+ coefm$WAIC <- as.numeric(coefm$WAIC)
410
+ coefm <- coefm[order(coefm$WAIC),]
411
+
412
+ coefm_path <- paste("output_tables_reduced/", "waics", "Boundness_social_models", ".csv", collapse = "")
413
+ write.csv(coefm, coefm_path, row.names=FALSE)
414
+
415
+ for (i in 1:length(fitted_list)) {
416
+ fitted_list[[i]]$model <- names(fitted_list)[i]
417
+ }
418
+ fitted_list <- dplyr::bind_rows(fitted_list)
419
+ fitted_list_path <- paste("output_tables_reduced/", "fitted_list", "Boundness_social_models", ".csv", collapse = "")
420
+ write.csv(fitted_list, fitted_list_path)
421
+
422
+
423
+ phy_effects<-as.data.frame(phy_effects_matrix)
424
+ spa_effects<-as.data.frame(spa_effects_matrix)
425
+ intercept_effects <- as.data.frame(intercept_matrix)
426
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
427
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
428
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
429
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
430
+ N_effects<-as.data.frame(social_effects_matrix_N)
431
+ E_effects<-as.data.frame(social_effects_matrix_E)
432
+ O_effects<-as.data.frame(social_effects_matrix_O)
433
+ #unavailable
434
+ #interaction_effects <- as.data.frame(social_effects_matrix_L1_L2_prop)
435
+
436
+ phy_effects$effect <- "phylogenetic SD"
437
+ spa_effects$effect <- "spatial SD"
438
+ intercept_effects$effect <- "Intercept"
439
+ L1_effects$effect <- "L1"
440
+ L1_nl_effects$effect <- "social SD:\nL1"
441
+ L2_prop_effects$effect <- "L2 proportion"
442
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
443
+ N_effects$effect <- "Neighbours"
444
+ E_effects$effect <- "Education"
445
+ O_effects$effect <- "Official status"
446
+ #unavailable
447
+ #interaction_effects$effect <- "L1*L2 proportion"
448
+
449
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects))#unavailable: , interaction_effects))
450
+ effs <- effs %>%
451
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
452
+ mutate(across(where(is.numeric), round, 2)) %>%
453
+ na.omit() %>%
454
+ arrange(WAIC) %>%
455
+ relocate(model)
456
+
457
+ effs_path <- paste("output_tables_reduced/", "effects", "Boundness_social_models", ".csv", collapse = "")
458
+ write.csv(effs, effs_path, row.names=FALSE)
459
+
460
+ effs <- read.csv("output_tables_reduced/ effects Boundness_social_models .csv")
461
+
462
+ effs_table_Main <- effs %>%
463
+ rename("2.5%"=2,
464
+ "50%" = 3,
465
+ "97.5%" = 4) %>%
466
+ filter(!grepl("nonlinear", model))
467
+
468
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
469
+
470
+ effs_table_Main <- effs_table_Main %>%
471
+ relocate(effect, .after = model) %>%
472
+ flextable() %>%
473
+ flextable::bold(~ (`2.5%` > 0 & `97.5%` > 0) | (`2.5%` < 0 & `97.5%` < 0), 2) %>%
474
+ autofit() %>%
475
+ merge_v(j=c("model", "WAIC")) %>%
476
+ fix_border_issues() %>%
477
+ border_inner_h()
478
+
479
+ save_as_docx(
480
+ "Effects in boundness models with fixed and random effects" = effs_table_Main,
481
+ path = "output_tables_reduced/table_Main_effects_Boundness_social_models.docx")
482
+
483
+
484
+ effs_plot <- effs %>%
485
+ #filter(WAIC <= top_9) %>%
486
+ rename(lower=2,
487
+ upper = 4,
488
+ mean = 3) %>% #mean here refers to 0.5 quantile
489
+ #filter(!effect == "Intercept") %>%
490
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status"))) %>% #unavailable, "L1*L2 proportion"))) %>%
491
+ mutate(WAIC = round(WAIC, 2)) %>%
492
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
493
+ group_by(WAIC) %>%
494
+ arrange(WAIC) %>%
495
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
496
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
497
+
498
+
499
+
500
+ #plot modified from function ggregplot::Efxplot
501
+ cols = c(brewer.pal(12, "Paired"))
502
+ cols = c(cols[c(12, 10)], "gray50", cols[c(1:8)])
503
+
504
+ show_col(cols)
505
+
506
+ plot_1 <- ggplot(effs_plot,
507
+ aes(y = as.factor(model),
508
+ x = mean,
509
+ group = effect,
510
+ colour = effect)) +
511
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
512
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
513
+ scale_color_manual(values=cols) +
514
+ ylab("Model of boundness") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
515
+ theme(axis.text=element_text(size=50),
516
+ legend.text=element_text(size=50),
517
+ axis.title=element_text(size=50),
518
+ legend.title=element_text(size=50),
519
+ legend.spacing.y = unit(1.5, 'cm')) +
520
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
521
+
522
+
523
+ #plot_1
524
+ ggsave(filename = 'output_reduced/SP_models_plot_Boundness_social_models.jpg',
525
+ plot_1, height = 20, width = 45)
526
+
527
+
528
+ #saving hyperparameters: Gaussian observations
529
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
530
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
531
+ }
532
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
533
+
534
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables_reduced/Boundness_social_models_marginals_hyperpar_gaussian.csv")
535
+
536
+ #saving hyperparameters: phylogenetic
537
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
538
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
539
+ }
540
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
541
+
542
+ write.csv(marginals_hyperpar_list_phy, "output_tables_reduced/Boundness_social_models_marginals_hyperpar_phylogenetic.csv")
543
+
544
+ #saving hyperparameters: spatial
545
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
546
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
547
+ }
548
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
549
+
550
+ write.csv(marginals_hyperpar_list_spa, "output_tables_reduced/Boundness_social_models_marginals_hyperpar_spatial.csv")
551
+
552
+
553
+ #saving summaries of random effects: phylogenetic
554
+ for (i in 1:length(summary_random_list_phy)) {
555
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
556
+ }
557
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
558
+
559
+ write.csv(summary_random_list_phy, "output_tables_reduced/Boundness_social_models_summary_random_phy.csv")
560
+
561
+ #saving summaries of random effects: spatial
562
+ for (i in 1:length(summary_random_list_spa)) {
563
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
564
+ }
565
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
566
+
567
+ write.csv(summary_random_list_spa, "output_tables_reduced/Boundness_social_models_summary_random_spa.csv")
101/replication_package/models_Boundness_reduced_social_only.R ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Boundness predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("L1_log_st"),
63
+
64
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("L2_prop"),
67
+
68
+ c("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("L1_log_st", "L2_prop"),
73
+
74
+ c("neighboring_languages_st"),
75
+
76
+ c("Official"),
77
+
78
+ c("Education"))
79
+
80
+
81
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
82
+
83
+ predterms <- t(as.data.frame(predterms))
84
+
85
+ predterms_short <- predterms
86
+
87
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
88
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
89
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
92
+
93
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
94
+ number = 1:length(predterms_short))
95
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
96
+
97
+
98
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
99
+ number = 1:length(predterms_short))
100
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
101
+
102
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
103
+ number = 1:length(predterms_short))
104
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
105
+
106
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
107
+ number = 1:length(predterms_short))
108
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
109
+
110
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
111
+ number = 1:length(predterms_short))
112
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
113
+
114
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
115
+ number = 1:length(predterms_short))
116
+ official_element <- official_element[official_element$judgement == TRUE,]$number
117
+
118
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
119
+ number = 1:length(predterms_short))
120
+ education_element <- education_element[education_element$judgement == TRUE,]$number
121
+
122
+ models_number <- length(predterms_short)
123
+
124
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
125
+ intercept_matrix <- matrix(NA, models_number, 5)
126
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
127
+
128
+ social_effects_matrix_L1 <- matrix(NA, models_number, 5)
129
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
130
+ social_effects_matrix_L1_nl <- matrix(NA, models_number, 5)
131
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
132
+ social_effects_matrix_L2_prop <- matrix(NA, models_number, 5)
133
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
134
+ social_effects_matrix_L2_prop_nl <- matrix(NA, models_number, 5)
135
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
136
+ social_effects_matrix_N <- matrix(NA, models_number, 5)
137
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
138
+ social_effects_matrix_O <- matrix(NA, models_number, 5)
139
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
140
+ social_effects_matrix_E <- matrix(NA, models_number, 5)
141
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
142
+ social_effects_matrix_L1_L2_prop <- matrix(NA, models_number, 5)
143
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
144
+
145
+ #fitted values
146
+ fitted_list <- vector("list", models_number)
147
+ names(fitted_list) <- predterms_short
148
+
149
+ #marginals of hyperparameters
150
+ marginals_hyperpar_list_gaussian <- vector("list", models_number)
151
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
152
+
153
+ marginals_hyperpar_list_social_L1_nl <- vector("list", models_number)
154
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
155
+
156
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", models_number)
157
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
158
+
159
+
160
+ #marginals of fixed effects
161
+ marginals_fixed_list_Intercept <- vector("list", models_number)
162
+ names(marginals_fixed_list_Intercept) <- predterms_short
163
+
164
+ marginals_fixed_list_L1 <- vector("list", models_number)
165
+ names(marginals_fixed_list_L1) <- predterms_short
166
+
167
+ marginals_fixed_list_L2_prop <- vector("list", models_number)
168
+ names(marginals_fixed_list_L2_prop) <- predterms_short
169
+
170
+ marginals_fixed_list_O <- vector("list", models_number)
171
+ names(marginals_fixed_list_O) <- predterms_short
172
+
173
+ marginals_fixed_list_N <- vector("list", models_number)
174
+ names(marginals_fixed_list_N) <- predterms_short
175
+
176
+ marginals_fixed_list_E <- vector("list", models_number)
177
+ names(marginals_fixed_list_E) <- predterms_short
178
+
179
+ marginals_fixed_list_L1_L2_prop <- vector("list", models_number)
180
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
181
+
182
+
183
+ #summary statistics of random effects
184
+ summary_random_list_social_L1_nl <- vector("list", models_number)
185
+ names(summary_random_list_social_L1_nl) <- predterms_short
186
+
187
+ summary_random_list_social_L2_prop_nl <- vector("list", models_number)
188
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
189
+
190
+
191
+ coefm <- matrix(NA,models_number,1)
192
+ result <- vector("list",models_number)
193
+
194
+ for(i in 1:models_number){
195
+ formula <- as.formula(paste("boundness_st ~ ",predterms[[i]]))
196
+ result[[i]] <- inla(formula, family="gaussian",
197
+ control.family = list(hyper = pcprior_hyper),
198
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
199
+ #tolerance: the tolerance for the optimisation of the hyperparameters
200
+ #h: the step-length for the gradient calculations for the hyperparameters.
201
+ data=metrics_joined, control.compute=list(waic=TRUE))
202
+
203
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
204
+
205
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
206
+ intercept_matrix[i, 4] <- predterms_short[[i]]
207
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
208
+
209
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
210
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
211
+
212
+ if(i %in% L1_nl_element){
213
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
214
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
215
+ method = "linear") %>%
216
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
217
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
218
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
219
+ }
220
+
221
+ if(i %in% L2_prop_nl_element){
222
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
223
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
224
+ method = "linear") %>%
225
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
226
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
227
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
228
+ }
229
+
230
+ if(i %in% L1_element) {
231
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
232
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
233
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
234
+
235
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
236
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
237
+ }
238
+
239
+ if(i %in% L2_prop_element) {
240
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
241
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
242
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
243
+
244
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
245
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
246
+ }
247
+
248
+ if(i %in% neighbour_element) {
249
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
250
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
251
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
252
+
253
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
254
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
255
+ }
256
+
257
+ if(i %in% official_element) {
258
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
259
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
260
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
261
+
262
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
263
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
264
+ }
265
+
266
+ if(i %in% education_element) {
267
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
268
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
269
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
270
+
271
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
272
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
273
+ }
274
+
275
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
276
+ fitted_list[[i]] <- fitted_list[[i]] %>%
277
+ mutate(across(where(is.numeric), round, 2))
278
+
279
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
280
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
281
+
282
+ if(i %in% L1_nl_element){
283
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
284
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
285
+ }
286
+
287
+ if(i %in% L2_prop_nl_element){
288
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
289
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
290
+ }
291
+ }
292
+
293
+ #beepr::beep(5)
294
+
295
+ save(result, file = "output_models/models_Boundness_social_only.RData")
296
+ #load("output_models/models_Boundness_social_only.RData")
297
+
298
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
299
+ colnames(coefm) <- c("model", "WAIC")
300
+ coefm <- coefm %>%
301
+ mutate(across(.cols=2, as.numeric)) %>%
302
+ mutate(across(where(is.numeric), round, 2)) %>%
303
+ arrange(WAIC)
304
+
305
+ coefm$WAIC <- as.numeric(coefm$WAIC)
306
+ coefm <- coefm[order(coefm$WAIC),]
307
+
308
+ coefm_path <- paste("output_tables_reduced/", "waics", "Boundness_social_only_models", ".csv", collapse = "")
309
+ write.csv(coefm, coefm_path, row.names=FALSE)
310
+
311
+ for (i in 1:length(fitted_list)) {
312
+ fitted_list[[i]]$model <- names(fitted_list)[i]
313
+ }
314
+ fitted_list <- dplyr::bind_rows(fitted_list)
315
+ fitted_list_path <- paste("output_tables_reduced/", "fitted_list", "Boundness_social_only_models", ".csv", collapse = "")
316
+ write.csv(fitted_list, fitted_list_path)
317
+
318
+ intercept_effects <- as.data.frame(intercept_matrix)
319
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
320
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
321
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
322
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
323
+ N_effects<-as.data.frame(social_effects_matrix_N)
324
+ E_effects<-as.data.frame(social_effects_matrix_E)
325
+ O_effects<-as.data.frame(social_effects_matrix_O)
326
+
327
+ intercept_effects$effect <- "Intercept"
328
+ L1_effects$effect <- "L1"
329
+ L1_nl_effects$effect <- "social SD:\nL1"
330
+ L2_prop_effects$effect <- "L2 proportion"
331
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
332
+ N_effects$effect <- "Neighbours"
333
+ E_effects$effect <- "Education"
334
+ O_effects$effect <- "Official status"
335
+
336
+ effs <- as.data.frame(rbind(intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects))
337
+ effs <- effs %>%
338
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
339
+ mutate(across(where(is.numeric), round, 2)) %>%
340
+ na.omit() %>%
341
+ arrange(WAIC) %>%
342
+ relocate(model)
343
+
344
+ effs_path <- paste("output_tables_reduced/", "effects", "Boundness_social_only_models", ".csv", collapse = "")
345
+ write.csv(effs, effs_path, row.names=FALSE)
346
+
347
+ effs <- read.csv("output_tables_reduced/ effects Boundness_social_only_models .csv")
348
+
349
+ effs_table_SM <- effs %>%
350
+ rename("2.5%"=2,
351
+ "50%" = 4,
352
+ "97.5%" = 3) %>%
353
+ flextable() %>%
354
+ autofit() %>%
355
+ merge_v(j=c("model", "WAIC")) %>%
356
+ fix_border_issues() %>%
357
+ border_inner_h()
358
+
359
+ save_as_docx(
360
+ "Effects in boundness models with fixed and random effects (including non-linear implementations of some fixed effects)" = effs_table_SM,
361
+ path = "output_tables_reduced/table_SM_effects_Boundness_social_only_models.docx")
362
+
363
+ effs_table_Main <- effs %>%
364
+ rename("2.5%"=2,
365
+ "50%" = 4,
366
+ "97.5%" = 3) %>%
367
+ filter(!grepl("nonlinear", model))
368
+
369
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
370
+
371
+ effs_table_Main <- effs_table_Main %>%
372
+ flextable() %>%
373
+ autofit() %>%
374
+ merge_v(j=c("model", "WAIC")) %>%
375
+ fix_border_issues() %>%
376
+ border_inner_h()
377
+
378
+ save_as_docx(
379
+ "Effects in boundness models with fixed and random effects" = effs_table_Main,
380
+ path = "output_tables_reduced/table_Main_effects_Boundness_social_only_models.docx")
381
+
382
+
383
+ effs_plot <- effs %>%
384
+ #filter(WAIC <= top_9) %>%
385
+ rename(lower=2,
386
+ upper = 4,
387
+ mean = 3) %>% #mean here refers to 0.5 quantile
388
+ #filter(!effect == "Intercept") %>%
389
+ mutate(effect = factor(effect, levels=c("Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status"))) %>%
390
+ mutate(WAIC = round(WAIC, 2)) %>%
391
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
392
+ group_by(WAIC) %>%
393
+ arrange(WAIC) %>%
394
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
395
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
396
+
397
+
398
+ #plot modified from function ggregplot::Efxplot
399
+ cols = c(brewer.pal(12, "Paired"))
400
+ cols = c("gray50", cols[c(1:8)])
401
+
402
+ show_col(cols)
403
+
404
+ plot_1 <- ggplot(effs_plot,
405
+ aes(y = as.factor(model),
406
+ x = mean,
407
+ group = effect,
408
+ colour = effect)) +
409
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
410
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
411
+ scale_color_manual(values=cols) +
412
+ ylab("Model of boundness") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
413
+ theme(axis.text=element_text(size=50),
414
+ legend.text=element_text(size=50),
415
+ axis.title=element_text(size=50),
416
+ legend.title=element_text(size=50),
417
+ legend.spacing.y = unit(1.5, 'cm')) +
418
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
419
+
420
+
421
+
422
+ #plot_1
423
+ ggsave(filename = 'output_reduced/SP_models_plot_Boundness_social_only_models.jpg',
424
+ plot_1, height = 20, width = 45)
425
+
426
+
427
+ #saving hyperparameters: Gaussian observations
428
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
429
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
430
+ }
431
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
432
+
433
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables_reduced/Boundness_social_only_models_marginals_hyperpar_gaussian.csv")
101/replication_package/models_Boundness_social.R ADDED
@@ -0,0 +1,560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Boundness predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st"),
63
+
64
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L2_prop"),
67
+
68
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st", "L2_prop"),
73
+
74
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log10:L2_prop"),
75
+
76
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "neighboring_languages_st"),
77
+
78
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Official"),
79
+
80
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Education"))
81
+
82
+
83
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
84
+
85
+ predterms <- t(as.data.frame(predterms))
86
+
87
+ predterms_short <- predterms
88
+
89
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
91
+
92
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
93
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
94
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
95
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
96
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
97
+
98
+
99
+
100
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
101
+ number = 1:length(predterms_short))
102
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
103
+
104
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
105
+ number = 1:length(predterms_short))
106
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
107
+
108
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
109
+ number = 1:length(predterms_short))
110
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
111
+
112
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
113
+
114
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
115
+ number = 1:length(predterms_short))
116
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
117
+
118
+
119
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
120
+ number = 1:length(predterms_short))
121
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
122
+
123
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
124
+ number = 1:length(predterms_short))
125
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
126
+ L2_prop_element <- L2_prop_element[-length(L2_prop_element)] #making sure that the interaction term (introduced below) is not treated as belonging to this isolated element
127
+
128
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
129
+ number = 1:length(predterms_short))
130
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
131
+
132
+ #can use only part of the interaction term within grepl() function
133
+ interaction_element <- data.frame("judgement" = grepl(":L2 proportion", predterms_short),
134
+ number = 1:length(predterms_short))
135
+ interaction_element <- interaction_element[interaction_element$judgement == TRUE,]$number
136
+
137
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
138
+ number = 1:length(predterms_short))
139
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
140
+
141
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
142
+ number = 1:length(predterms_short))
143
+ official_element <- official_element[official_element$judgement == TRUE,]$number
144
+
145
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
146
+ number = 1:length(predterms_short))
147
+ education_element <- education_element[education_element$judgement == TRUE,]$number
148
+
149
+
150
+
151
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
152
+ phy_effects_matrix <- matrix(NA, 10, 5)
153
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
154
+ spa_effects_matrix <- matrix(NA, 10, 5)
155
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
156
+
157
+ intercept_matrix <- matrix(NA, 10, 5)
158
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
159
+
160
+ social_effects_matrix_L1 <- matrix(NA, 10, 5)
161
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
162
+ social_effects_matrix_L1_nl <- matrix(NA, 10, 5)
163
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
164
+ social_effects_matrix_L2_prop <- matrix(NA, 10, 5)
165
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
166
+ social_effects_matrix_L2_prop_nl <- matrix(NA, 10, 5)
167
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
168
+ social_effects_matrix_N <- matrix(NA, 10, 5)
169
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
170
+ social_effects_matrix_O <- matrix(NA, 10, 5)
171
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
172
+ social_effects_matrix_E <- matrix(NA, 10, 5)
173
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
174
+ social_effects_matrix_L1_L2_prop <- matrix(NA, 10, 5)
175
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
176
+
177
+ #fitted values
178
+ fitted_list <- vector("list", 10)
179
+ names(fitted_list) <- predterms_short
180
+
181
+ #marginals of hyperparameters
182
+ marginals_hyperpar_list_gaussian <- vector("list", 10)
183
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
184
+
185
+ marginals_hyperpar_list_phy <- vector("list", 10)
186
+ names(marginals_hyperpar_list_phy) <- predterms_short
187
+
188
+ marginals_hyperpar_list_spa <- vector("list", 10)
189
+ names(marginals_hyperpar_list_spa) <- predterms_short
190
+
191
+ marginals_hyperpar_list_social_L1_nl <- vector("list", 10)
192
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
193
+
194
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", 10)
195
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
196
+
197
+
198
+ #marginals of fixed effects
199
+ marginals_fixed_list_Intercept <- vector("list", 10)
200
+ names(marginals_fixed_list_Intercept) <- predterms_short
201
+
202
+ marginals_fixed_list_L1 <- vector("list", 10)
203
+ names(marginals_fixed_list_L1) <- predterms_short
204
+
205
+ marginals_fixed_list_L2_prop <- vector("list", 10)
206
+ names(marginals_fixed_list_L2_prop) <- predterms_short
207
+
208
+ marginals_fixed_list_O <- vector("list", 10)
209
+ names(marginals_fixed_list_O) <- predterms_short
210
+
211
+ marginals_fixed_list_N <- vector("list", 10)
212
+ names(marginals_fixed_list_N) <- predterms_short
213
+
214
+ marginals_fixed_list_E <- vector("list", 10)
215
+ names(marginals_fixed_list_E) <- predterms_short
216
+
217
+ marginals_fixed_list_L1_L2_prop <- vector("list", 10)
218
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
219
+
220
+
221
+
222
+
223
+ #summary statistics of random effects
224
+ summary_random_list_phy <- vector("list", 10)
225
+ names(summary_random_list_phy) <- predterms_short
226
+
227
+ summary_random_list_spa <- vector("list", 10)
228
+ names(summary_random_list_spa) <- predterms_short
229
+
230
+ summary_random_list_social_L1_nl <- vector("list", 10)
231
+ names(summary_random_list_social_L1_nl) <- predterms_short
232
+
233
+ summary_random_list_social_L2_prop_nl <- vector("list", 10)
234
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
235
+
236
+
237
+ coefm <- matrix(NA,10,1)
238
+ result <- vector("list",10)
239
+
240
+ for(i in 1:10){
241
+ formula <- as.formula(paste("boundness_st ~ ",predterms[[i]]))
242
+ result[[i]] <- inla(formula, family="gaussian",
243
+ control.family = list(hyper = pcprior_hyper),
244
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
245
+ #tolerance: the tolerance for the optimisation of the hyperparameters
246
+ #h: the step-length for the gradient calculations for the hyperparameters.
247
+ data=metrics_joined, control.compute=list(waic=TRUE))
248
+
249
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
250
+
251
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
252
+ intercept_matrix[i, 4] <- predterms_short[[i]]
253
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
254
+
255
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
256
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
257
+
258
+ if(i %in% phylogenetic_element) {
259
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
260
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
261
+ method = "linear") %>%
262
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
263
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
264
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
265
+ }
266
+
267
+ if(i %in% spatial_element) {
268
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
269
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
270
+ method = "linear") %>%
271
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
272
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
273
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
274
+ }
275
+
276
+
277
+ if(i %in% L1_nl_element){
278
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
279
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
280
+ method = "linear") %>%
281
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
282
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
283
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
284
+ }
285
+
286
+ if(i %in% L2_prop_nl_element){
287
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
288
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
289
+ method = "linear") %>%
290
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
291
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
292
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
293
+ }
294
+
295
+ if(i %in% L1_element) {
296
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
297
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
298
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
299
+
300
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
301
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
302
+ }
303
+
304
+ if(i %in% L2_prop_element) {
305
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
306
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
307
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
308
+
309
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
310
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
311
+ }
312
+
313
+ if(i %in% interaction_element) {
314
+ social_effects_matrix_L1_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.975quant`)
315
+ social_effects_matrix_L1_L2_prop[i, 4] <- predterms_short[[i]]
316
+ social_effects_matrix_L1_L2_prop[i, 5] <- result[[i]]$waic$waic
317
+
318
+ marginals_fixed_list_L1_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log10:L2_prop"]]))
319
+ colnames(marginals_fixed_list_L1_L2_prop[[i]]) <- c("x for L1*L2 proportion", "y for L1*L2 proportion")
320
+ }
321
+
322
+ if(i %in% neighbour_element) {
323
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
324
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
325
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
326
+
327
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
328
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
329
+ }
330
+
331
+ if(i %in% official_element) {
332
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
333
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
334
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
335
+
336
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
337
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
338
+ }
339
+
340
+ if(i %in% education_element) {
341
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
342
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
343
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
344
+
345
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
346
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
347
+ }
348
+
349
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
350
+ fitted_list[[i]] <- fitted_list[[i]] %>%
351
+ mutate(across(where(is.numeric), round, 2))
352
+
353
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
354
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
355
+
356
+ if(i %in% phylogenetic_element){
357
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
358
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
359
+ }
360
+
361
+ if(i %in% spatial_element){
362
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
363
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
364
+ }
365
+
366
+ if(i %in% L1_nl_element){
367
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
368
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
369
+ }
370
+
371
+ if(i %in% L2_prop_nl_element){
372
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
373
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
374
+ }
375
+
376
+ if(i %in% phylogenetic_element){
377
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
378
+ rename(phy_id = ID) %>%
379
+ as.data.frame() %>%
380
+ mutate(across(where(is.numeric), round, 2))
381
+ }
382
+
383
+ if(i %in% spatial_element){
384
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
385
+ rename(sp_id = ID) %>%
386
+ as.data.frame() %>%
387
+ mutate(across(where(is.numeric), round, 2))
388
+ }
389
+ }
390
+
391
+ #beepr::beep(5)
392
+
393
+ save(result, file = "output_models/models_Boundness_social.RData")
394
+ load("output_models/models_Boundness_social.RData")
395
+
396
+
397
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
398
+ colnames(coefm) <- c("model", "WAIC")
399
+ coefm <- coefm %>%
400
+ mutate(across(.cols=2, as.numeric)) %>%
401
+ mutate(across(where(is.numeric), round, 2)) %>%
402
+ arrange(WAIC)
403
+
404
+ coefm$WAIC <- as.numeric(coefm$WAIC)
405
+ coefm <- coefm[order(coefm$WAIC),]
406
+
407
+ coefm_path <- paste("output_tables/", "waics", "Boundness_social_models", ".csv", collapse = "")
408
+ write.csv(coefm, coefm_path, row.names=FALSE)
409
+
410
+ for (i in 1:length(fitted_list)) {
411
+ fitted_list[[i]]$model <- names(fitted_list)[i]
412
+ }
413
+ fitted_list <- dplyr::bind_rows(fitted_list)
414
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Boundness_social_models", ".csv", collapse = "")
415
+ write.csv(fitted_list, fitted_list_path)
416
+
417
+
418
+ phy_effects<-as.data.frame(phy_effects_matrix)
419
+ spa_effects<-as.data.frame(spa_effects_matrix)
420
+ intercept_effects <- as.data.frame(intercept_matrix)
421
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
422
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
423
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
424
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
425
+ N_effects<-as.data.frame(social_effects_matrix_N)
426
+ E_effects<-as.data.frame(social_effects_matrix_E)
427
+ O_effects<-as.data.frame(social_effects_matrix_O)
428
+ interaction_effects <- as.data.frame(social_effects_matrix_L1_L2_prop)
429
+
430
+ phy_effects$effect <- "phylogenetic SD"
431
+ spa_effects$effect <- "spatial SD"
432
+ intercept_effects$effect <- "Intercept"
433
+ L1_effects$effect <- "L1"
434
+ L1_nl_effects$effect <- "social SD:\nL1"
435
+ L2_prop_effects$effect <- "L2 proportion"
436
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
437
+ N_effects$effect <- "Neighbours"
438
+ E_effects$effect <- "Education"
439
+ O_effects$effect <- "Official status"
440
+ interaction_effects$effect <- "L1*L2 proportion"
441
+
442
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects, interaction_effects))
443
+ effs <- effs %>%
444
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
445
+ mutate(across(where(is.numeric), round, 2)) %>%
446
+ na.omit() %>%
447
+ arrange(WAIC) %>%
448
+ relocate(model)
449
+
450
+ effs_path <- paste("output_tables/", "effects", "Boundness_social_models", ".csv", collapse = "")
451
+ write.csv(effs, effs_path, row.names=FALSE)
452
+
453
+ effs <- read.csv("output_tables/ effects Boundness_social_models .csv")
454
+
455
+ effs_table_Main <- effs %>%
456
+ rename("2.5%"=2,
457
+ "50%" = 3,
458
+ "97.5%" = 4) %>%
459
+ filter(!grepl("nonlinear", model))
460
+
461
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
462
+
463
+ effs_table_Main <- effs_table_Main %>%
464
+ relocate(effect, .after = model) %>%
465
+ flextable() %>%
466
+ flextable::bold(~ (`2.5%` > 0 & `97.5%` > 0) | (`2.5%` < 0 & `97.5%` < 0), 2) %>%
467
+ autofit() %>%
468
+ merge_v(j=c("model", "WAIC")) %>%
469
+ fix_border_issues() %>%
470
+ border_inner_h()
471
+
472
+ save_as_docx(
473
+ "Effects in boundness models with fixed and random effects" = effs_table_Main,
474
+ path = "output_tables/table_Main_effects_Boundness_social_models.docx")
475
+
476
+
477
+ effs_plot <- effs %>%
478
+ #filter(WAIC <= top_9) %>%
479
+ rename(lower=2,
480
+ upper = 4,
481
+ mean = 3) %>% #mean here refers to 0.5 quantile
482
+ #filter(!effect == "Intercept") %>%
483
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status", "L1*L2 proportion"))) %>%
484
+ mutate(WAIC = round(WAIC, 2)) %>%
485
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
486
+ group_by(WAIC) %>%
487
+ arrange(WAIC) %>%
488
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
489
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
490
+
491
+
492
+
493
+ #plot modified from function ggregplot::Efxplot
494
+ cols = c(brewer.pal(12, "Paired"))
495
+ cols = c(cols[c(12, 10)], "gray50", cols[c(1:8)])
496
+
497
+ show_col(cols)
498
+
499
+ plot_1 <- ggplot(effs_plot,
500
+ aes(y = as.factor(model),
501
+ x = mean,
502
+ group = effect,
503
+ colour = effect)) +
504
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
505
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
506
+ scale_color_manual(values=cols) +
507
+ ylab("Model of boundness") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
508
+ theme(axis.text=element_text(size=50),
509
+ legend.text=element_text(size=50),
510
+ axis.title=element_text(size=50),
511
+ legend.title=element_text(size=50),
512
+ legend.spacing.y = unit(1.5, 'cm')) +
513
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
514
+
515
+
516
+ #plot_1
517
+ ggsave(filename = 'output/SP_models_plot_Boundness_social_models.jpg',
518
+ plot_1, height = 20, width = 45)
519
+
520
+
521
+ #saving hyperparameters: Gaussian observations
522
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
523
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
524
+ }
525
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
526
+
527
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Boundness_social_models_marginals_hyperpar_gaussian.csv")
528
+
529
+ #saving hyperparameters: phylogenetic
530
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
531
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
532
+ }
533
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
534
+
535
+ write.csv(marginals_hyperpar_list_phy, "output_tables/Boundness_social_models_marginals_hyperpar_phylogenetic.csv")
536
+
537
+ #saving hyperparameters: spatial
538
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
539
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
540
+ }
541
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
542
+
543
+ write.csv(marginals_hyperpar_list_spa, "output_tables/Boundness_social_models_marginals_hyperpar_spatial.csv")
544
+
545
+
546
+ #saving summaries of random effects: phylogenetic
547
+ for (i in 1:length(summary_random_list_phy)) {
548
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
549
+ }
550
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
551
+
552
+ write.csv(summary_random_list_phy, "output_tables/Boundness_social_models_summary_random_phy.csv")
553
+
554
+ #saving summaries of random effects: spatial
555
+ for (i in 1:length(summary_random_list_spa)) {
556
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
557
+ }
558
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
559
+
560
+ write.csv(summary_random_list_spa, "output_tables/Boundness_social_models_summary_random_spa.csv")
101/replication_package/models_Boundness_social_only.R ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Boundness predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("L1_log_st"),
63
+
64
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("L2_prop"),
67
+
68
+ c("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("L1_log_st", "L2_prop"),
73
+
74
+ c("L1_log10:L2_prop"),
75
+
76
+ c("neighboring_languages_st"),
77
+
78
+ c("Official"),
79
+
80
+ c("Education"))
81
+
82
+
83
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
84
+
85
+ predterms <- t(as.data.frame(predterms))
86
+
87
+ predterms_short <- predterms
88
+
89
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
92
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
93
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
94
+
95
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
96
+ number = 1:length(predterms_short))
97
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
98
+
99
+
100
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
101
+ number = 1:length(predterms_short))
102
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
103
+
104
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
105
+ number = 1:length(predterms_short))
106
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
107
+ L2_prop_element <- L2_prop_element[-length(L2_prop_element)] #making sure that the interaction term (introduced below) is not treated as belonging to this isolated element
108
+
109
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
110
+ number = 1:length(predterms_short))
111
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
112
+
113
+ #can use only part of the interaction term within grepl() function
114
+ interaction_element <- data.frame("judgement" = grepl(":L2 proportion", predterms_short),
115
+ number = 1:length(predterms_short))
116
+ interaction_element <- interaction_element[interaction_element$judgement == TRUE,]$number
117
+
118
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
119
+ number = 1:length(predterms_short))
120
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
121
+
122
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
123
+ number = 1:length(predterms_short))
124
+ official_element <- official_element[official_element$judgement == TRUE,]$number
125
+
126
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
127
+ number = 1:length(predterms_short))
128
+ education_element <- education_element[education_element$judgement == TRUE,]$number
129
+
130
+
131
+
132
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
133
+ intercept_matrix <- matrix(NA, 10, 5)
134
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
135
+
136
+ social_effects_matrix_L1 <- matrix(NA, 10, 5)
137
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
138
+ social_effects_matrix_L1_nl <- matrix(NA, 10, 5)
139
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
140
+ social_effects_matrix_L2_prop <- matrix(NA, 10, 5)
141
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
142
+ social_effects_matrix_L2_prop_nl <- matrix(NA, 10, 5)
143
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
144
+ social_effects_matrix_N <- matrix(NA, 10, 5)
145
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
146
+ social_effects_matrix_O <- matrix(NA, 10, 5)
147
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
148
+ social_effects_matrix_E <- matrix(NA, 10, 5)
149
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
150
+ social_effects_matrix_L1_L2_prop <- matrix(NA, 10, 5)
151
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
152
+
153
+ #fitted values
154
+ fitted_list <- vector("list", 10)
155
+ names(fitted_list) <- predterms_short
156
+
157
+ #marginals of hyperparameters
158
+ marginals_hyperpar_list_gaussian <- vector("list", 10)
159
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
160
+
161
+ marginals_hyperpar_list_social_L1_nl <- vector("list", 10)
162
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
163
+
164
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", 10)
165
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
166
+
167
+
168
+ #marginals of fixed effects
169
+ marginals_fixed_list_Intercept <- vector("list", 10)
170
+ names(marginals_fixed_list_Intercept) <- predterms_short
171
+
172
+ marginals_fixed_list_L1 <- vector("list", 10)
173
+ names(marginals_fixed_list_L1) <- predterms_short
174
+
175
+ marginals_fixed_list_L2_prop <- vector("list", 10)
176
+ names(marginals_fixed_list_L2_prop) <- predterms_short
177
+
178
+ marginals_fixed_list_O <- vector("list", 10)
179
+ names(marginals_fixed_list_O) <- predterms_short
180
+
181
+ marginals_fixed_list_N <- vector("list", 10)
182
+ names(marginals_fixed_list_N) <- predterms_short
183
+
184
+ marginals_fixed_list_E <- vector("list", 10)
185
+ names(marginals_fixed_list_E) <- predterms_short
186
+
187
+ marginals_fixed_list_L1_L2_prop <- vector("list", 10)
188
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
189
+
190
+
191
+ #summary statistics of random effects
192
+ summary_random_list_social_L1_nl <- vector("list", 10)
193
+ names(summary_random_list_social_L1_nl) <- predterms_short
194
+
195
+ summary_random_list_social_L2_prop_nl <- vector("list", 10)
196
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
197
+
198
+
199
+ coefm <- matrix(NA,10,1)
200
+ result <- vector("list",10)
201
+
202
+ for(i in 1:10){
203
+ formula <- as.formula(paste("boundness_st ~ ",predterms[[i]]))
204
+ result[[i]] <- inla(formula, family="gaussian",
205
+ control.family = list(hyper = pcprior_hyper),
206
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
207
+ #tolerance: the tolerance for the optimisation of the hyperparameters
208
+ #h: the step-length for the gradient calculations for the hyperparameters.
209
+ data=metrics_joined, control.compute=list(waic=TRUE))
210
+
211
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
212
+
213
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
214
+ intercept_matrix[i, 4] <- predterms_short[[i]]
215
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
216
+
217
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
218
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
219
+
220
+ if(i %in% L1_nl_element){
221
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
222
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
223
+ method = "linear") %>%
224
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
225
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
226
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
227
+ }
228
+
229
+ if(i %in% L2_prop_nl_element){
230
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
231
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
232
+ method = "linear") %>%
233
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
234
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
235
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
236
+ }
237
+
238
+ if(i %in% L1_element) {
239
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
240
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
241
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
242
+
243
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
244
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
245
+ }
246
+
247
+ if(i %in% L2_prop_element) {
248
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
249
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
250
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
251
+
252
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
253
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
254
+ }
255
+
256
+ if(i %in% interaction_element) {
257
+ social_effects_matrix_L1_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.975quant`)
258
+ social_effects_matrix_L1_L2_prop[i, 4] <- predterms_short[[i]]
259
+ social_effects_matrix_L1_L2_prop[i, 5] <- result[[i]]$waic$waic
260
+
261
+ marginals_fixed_list_L1_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log10:L2_prop"]]))
262
+ colnames(marginals_fixed_list_L1_L2_prop[[i]]) <- c("x for L1*L2 proportion", "y for L1*L2 proportion")
263
+ }
264
+
265
+ if(i %in% neighbour_element) {
266
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
267
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
268
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
269
+
270
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
271
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
272
+ }
273
+
274
+ if(i %in% official_element) {
275
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
276
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
277
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
278
+
279
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
280
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
281
+ }
282
+
283
+ if(i %in% education_element) {
284
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
285
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
286
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
287
+
288
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
289
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
290
+ }
291
+
292
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
293
+ fitted_list[[i]] <- fitted_list[[i]] %>%
294
+ mutate(across(where(is.numeric), round, 2))
295
+
296
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
297
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
298
+
299
+ if(i %in% L1_nl_element){
300
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
301
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
302
+ }
303
+
304
+ if(i %in% L2_prop_nl_element){
305
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
306
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
307
+ }
308
+ }
309
+
310
+ #beepr::beep(5)
311
+
312
+ save(result, file = "output_models/models_Boundness_social_only.RData")
313
+ #load("output_models/models_Boundness_social_only.RData")
314
+
315
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
316
+ colnames(coefm) <- c("model", "WAIC")
317
+ coefm <- coefm %>%
318
+ mutate(across(.cols=2, as.numeric)) %>%
319
+ mutate(across(where(is.numeric), round, 2)) %>%
320
+ arrange(WAIC)
321
+
322
+ coefm$WAIC <- as.numeric(coefm$WAIC)
323
+ coefm <- coefm[order(coefm$WAIC),]
324
+
325
+ coefm_path <- paste("output_tables/", "waics", "Boundness_social_only_models", ".csv", collapse = "")
326
+ write.csv(coefm, coefm_path, row.names=FALSE)
327
+
328
+ for (i in 1:length(fitted_list)) {
329
+ fitted_list[[i]]$model <- names(fitted_list)[i]
330
+ }
331
+ fitted_list <- dplyr::bind_rows(fitted_list)
332
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Boundness_social_only_models", ".csv", collapse = "")
333
+ write.csv(fitted_list, fitted_list_path)
334
+
335
+ intercept_effects <- as.data.frame(intercept_matrix)
336
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
337
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
338
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
339
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
340
+ N_effects<-as.data.frame(social_effects_matrix_N)
341
+ E_effects<-as.data.frame(social_effects_matrix_E)
342
+ O_effects<-as.data.frame(social_effects_matrix_O)
343
+ interaction_effects <- as.data.frame(social_effects_matrix_L1_L2_prop)
344
+
345
+ intercept_effects$effect <- "Intercept"
346
+ L1_effects$effect <- "L1"
347
+ L1_nl_effects$effect <- "social SD:\nL1"
348
+ L2_prop_effects$effect <- "L2 proportion"
349
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
350
+ N_effects$effect <- "Neighbours"
351
+ E_effects$effect <- "Education"
352
+ O_effects$effect <- "Official status"
353
+ interaction_effects$effect <- "L1*L2 proportion"
354
+
355
+ effs <- as.data.frame(rbind(intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects, interaction_effects))
356
+ effs <- effs %>%
357
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
358
+ mutate(across(where(is.numeric), round, 2)) %>%
359
+ na.omit() %>%
360
+ arrange(WAIC) %>%
361
+ relocate(model)
362
+
363
+ effs_path <- paste("output_tables/", "effects", "Boundness_social_only_models", ".csv", collapse = "")
364
+ write.csv(effs, effs_path, row.names=FALSE)
365
+
366
+ effs <- read.csv("output_tables/ effects Boundness_social_only_models .csv")
367
+
368
+ effs_table_SM <- effs %>%
369
+ rename("2.5%"=2,
370
+ "50%" = 4,
371
+ "97.5%" = 3) %>%
372
+ flextable() %>%
373
+ autofit() %>%
374
+ merge_v(j=c("model", "WAIC")) %>%
375
+ fix_border_issues() %>%
376
+ border_inner_h()
377
+
378
+ save_as_docx(
379
+ "Effects in boundness models with fixed and random effects (including non-linear implementations of some fixed effects)" = effs_table_SM,
380
+ path = "output_tables/table_SM_effects_Boundness_social_only_models.docx")
381
+
382
+ effs_table_Main <- effs %>%
383
+ rename("2.5%"=2,
384
+ "50%" = 4,
385
+ "97.5%" = 3) %>%
386
+ filter(!grepl("nonlinear", model))
387
+
388
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
389
+
390
+ effs_table_Main <- effs_table_Main %>%
391
+ flextable() %>%
392
+ autofit() %>%
393
+ merge_v(j=c("model", "WAIC")) %>%
394
+ fix_border_issues() %>%
395
+ border_inner_h()
396
+
397
+ save_as_docx(
398
+ "Effects in boundness models with fixed and random effects" = effs_table_Main,
399
+ path = "output_tables/table_Main_effects_Boundness_social_only_models.docx")
400
+
401
+
402
+ effs_plot <- effs %>%
403
+ #filter(WAIC <= top_9) %>%
404
+ rename(lower=2,
405
+ upper = 4,
406
+ mean = 3) %>% #mean here refers to 0.5 quantile
407
+ #filter(!effect == "Intercept") %>%
408
+ mutate(effect = factor(effect, levels=c("Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status", "L1*L2 proportion"))) %>%
409
+ mutate(WAIC = round(WAIC, 2)) %>%
410
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
411
+ group_by(WAIC) %>%
412
+ arrange(WAIC) %>%
413
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
414
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
415
+
416
+
417
+ #plot modified from function ggregplot::Efxplot
418
+ cols = c(brewer.pal(12, "Paired"))
419
+ cols = c("gray50", cols[c(1:8)])
420
+
421
+ show_col(cols)
422
+
423
+ plot_1 <- ggplot(effs_plot,
424
+ aes(y = as.factor(model),
425
+ x = mean,
426
+ group = effect,
427
+ colour = effect)) +
428
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
429
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
430
+ scale_color_manual(values=cols) +
431
+ ylab("Model of boundness") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
432
+ theme(axis.text=element_text(size=50),
433
+ legend.text=element_text(size=50),
434
+ axis.title=element_text(size=50),
435
+ legend.title=element_text(size=50),
436
+ legend.spacing.y = unit(1.5, 'cm')) +
437
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
438
+
439
+
440
+
441
+ #plot_1
442
+ ggsave(filename = 'output/SP_models_plot_Boundness_social_only_models.jpg',
443
+ plot_1, height = 20, width = 45)
444
+
445
+
446
+ #saving hyperparameters: Gaussian observations
447
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
448
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
449
+ }
450
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
451
+
452
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Boundness_social_only_models_marginals_hyperpar_gaussian.csv")
101/replication_package/models_Informativity_phylogenetic_spatial.R ADDED
@@ -0,0 +1,414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Informativity predicted by combinations of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ #"regional" set of parameters
54
+ spatial_covar_mat_2 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")], cov.pars = phi_2, kappa = kappa)$varcov
55
+ typical_variance_spatial_2 = exp(mean(log(diag(spatial_covar_mat_2))))
56
+ spatial_cov_std_2 = spatial_covar_mat_2 / typical_variance_spatial_2
57
+ spatial_prec_mat_2 = solve(spatial_cov_std_2)
58
+ dimnames(spatial_prec_mat_2) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
59
+
60
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
61
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
62
+ metrics_joined$phy_id = phy_id
63
+
64
+ ## Other effects are in the same order they appear in the dataset
65
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
66
+
67
+ #Preparing the formulas for 7 competing models to be used in inla() call
68
+ listcombo <- list(#phylogenetic and spatial effects in isolation
69
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)"),
70
+ c("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)"),
71
+ c("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)"),
72
+ c("f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)"),
73
+ #phylogenetic and distinct spatial effects in combination
74
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
75
+ "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)"),
76
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
77
+ "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)"),
78
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)",
79
+ "f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)"))
80
+
81
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
82
+
83
+ predterms <- t(as.data.frame(predterms))
84
+
85
+ predterms_short <- predterms
86
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
87
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
88
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_2, constr = TRUE, hyper = pcprior_hyper)", "Spatial: regional", predterms_short, fixed=TRUE)
89
+ predterms_short <- gsub("f(AUTOTYP_area, model = 'iid', hyper = pcprior_hyper)", "Areal", predterms_short, fixed=TRUE)
90
+
91
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
92
+ number = 1:length(predterms_short))
93
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
94
+
95
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
96
+ number = 1:length(predterms_short))
97
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
98
+
99
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
100
+ number = 1:length(predterms_short))
101
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
102
+
103
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
104
+
105
+ areal_element <- data.frame("judgement" = grepl("Areal", predterms_short),
106
+ number = 1:length(predterms_short))
107
+ areal_element <- areal_element[areal_element$judgement == TRUE,]$number
108
+
109
+
110
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
111
+ phy_effects_matrix <- matrix(NA, 7, 5)
112
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
113
+ spa_effects_matrix <- matrix(NA, 7, 5)
114
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
115
+ area_effects_matrix <- matrix(NA, 7, 5)
116
+ colnames(area_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
117
+
118
+ intercept_matrix <- matrix(NA, 7, 5)
119
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
120
+
121
+ #fitted values
122
+ fitted_list <- vector("list", 7)
123
+ names(fitted_list) <- predterms_short
124
+
125
+ #marginals of hyperparameters
126
+ marginals_hyperpar_list_gaussian <- vector("list", 7)
127
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
128
+
129
+ marginals_hyperpar_list_phy <- vector("list", 7)
130
+ names(marginals_hyperpar_list_phy) <- predterms_short
131
+
132
+ marginals_hyperpar_list_spa <- vector("list", 7)
133
+ names(marginals_hyperpar_list_spa) <- predterms_short
134
+
135
+ marginals_hyperpar_list_area <- vector("list", 7)
136
+ names(marginals_hyperpar_list_area) <- predterms_short
137
+
138
+
139
+ #marginals of fixed effects
140
+ marginals_fixed_list_Intercept <- vector("list", 7)
141
+ names(marginals_fixed_list_Intercept) <- predterms_short
142
+
143
+
144
+ #summary statistics of random effects
145
+ summary_random_list_phy <- vector("list", 7)
146
+ names(summary_random_list_phy) <- predterms_short
147
+
148
+ summary_random_list_spa <- vector("list", 7)
149
+ names(summary_random_list_spa) <- predterms_short
150
+
151
+ summary_random_list_area <- vector("list", 7)
152
+ names(summary_random_list_area) <- predterms_short
153
+
154
+ coefm <- matrix(NA,7,1)
155
+ result <- vector("list",7)
156
+
157
+ for(i in 1:7){
158
+ formula <- as.formula(paste("informativity_st ~ ",predterms[[i]]))
159
+ result[[i]] <- inla(formula, family="gaussian",
160
+ control.family = list(hyper = pcprior_hyper),
161
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
162
+ #tolerance: the tolerance for the optimisation of the hyperparameters
163
+ #h: the step-length for the gradient calculations for the hyperparameters.
164
+ data=metrics_joined, control.compute=list(waic=TRUE))
165
+
166
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
167
+
168
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
169
+ intercept_matrix[i, 4] <- predterms_short[[i]]
170
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
171
+
172
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
173
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
174
+
175
+ if(i %in% phylogenetic_element) {
176
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
177
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
178
+ method = "linear") %>%
179
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
180
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
181
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
182
+ }
183
+
184
+ if(i %in% spatial_element) {
185
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
186
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
187
+ method = "linear") %>%
188
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
189
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
190
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
191
+ }
192
+
193
+ if(i %in% areal_element){
194
+ area_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
195
+ result[[i]]$marginals.hyperpar$`Precision for AUTOTYP_area`,
196
+ method = "linear") %>%
197
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
198
+ area_effects_matrix[i, 4] <- predterms_short[[i]]
199
+ area_effects_matrix[i, 5] <- result[[i]]$waic$waic
200
+ }
201
+
202
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
203
+ fitted_list[[i]] <- fitted_list[[i]] %>%
204
+ mutate(across(where(is.numeric), round, 2))
205
+
206
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
207
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
208
+
209
+ if(i %in% phylogenetic_element){
210
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
211
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
212
+ }
213
+
214
+ if(i %in% spatial_element){
215
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
216
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
217
+ }
218
+
219
+ if(i %in% areal_element){
220
+ marginals_hyperpar_list_area[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for AUTOTYP_area"]]))
221
+ colnames(marginals_hyperpar_list_area[[i]]) <- c("x for AUTOTYP_area", "y for AUTOTYP_area")
222
+ }
223
+
224
+ if(i %in% phylogenetic_element){
225
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
226
+ rename(phy_id = ID) %>%
227
+ as.data.frame() %>%
228
+ mutate(across(where(is.numeric), round, 2))
229
+ }
230
+
231
+ if(i %in% spatial_element){
232
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
233
+ rename(sp_id = ID) %>%
234
+ as.data.frame() %>%
235
+ mutate(across(where(is.numeric), round, 2))
236
+ }
237
+
238
+ if(i %in% areal_element){
239
+ summary_random_list_area[[i]] <- cbind(result[[i]]$summary.random$AUTOTYP_area) %>%
240
+ rename(AUTOTYP_area = ID) %>%
241
+ as.data.frame() %>%
242
+ mutate(across(where(is.numeric), round, 2))
243
+ }
244
+ }
245
+
246
+ #beepr::beep(5)
247
+
248
+ save(result, file = "output_models/models_Informativity_phylogenetic_spatial.RData")
249
+
250
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
251
+ colnames(coefm) <- c("model", "WAIC")
252
+ coefm <- coefm %>%
253
+ mutate(across(.cols=2, as.numeric)) %>%
254
+ mutate(across(where(is.numeric), round, 2)) %>%
255
+ arrange(WAIC)
256
+
257
+ coefm$WAIC <- as.numeric(coefm$WAIC)
258
+ coefm <- coefm[order(coefm$WAIC),]
259
+
260
+ coefm_path <- paste("output_tables/", "waics", "Informativity_phylogenetic_spatial_models", ".csv", collapse = "")
261
+ write.csv(coefm, coefm_path, row.names=FALSE)
262
+
263
+ for (i in 1:length(fitted_list)) {
264
+ fitted_list[[i]]$model <- names(fitted_list)[i]
265
+ }
266
+ fitted_list <- dplyr::bind_rows(fitted_list)
267
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Informativity_phylogenetic_spatial_models", ".csv", collapse = "")
268
+ write.csv(fitted_list, fitted_list_path)
269
+
270
+ phy_effects<-as.data.frame(phy_effects_matrix)
271
+ spa_effects<-as.data.frame(spa_effects_matrix)
272
+ area_effects <- as.data.frame(area_effects_matrix)
273
+ intercept_effects <- as.data.frame(intercept_matrix)
274
+
275
+ phy_effects$effect <- "phylogenetic SD"
276
+ spa_effects$effect <- "spatial SD"
277
+ area_effects$effect <- "areal SD"
278
+ intercept_effects$effect <- "Intercept"
279
+
280
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, area_effects, intercept_effects))
281
+ effs <- effs %>%
282
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
283
+ mutate(across(where(is.numeric), round, 2)) %>%
284
+ na.omit() %>%
285
+ arrange(WAIC) %>%
286
+ relocate(model)
287
+
288
+ effs_path <- paste("output_tables/", "effects", "Informativity_phylogenetic_spatial_models", ".csv", collapse = "")
289
+ write.csv(effs, effs_path, row.names=FALSE)
290
+
291
+ effs <- read.csv("output_tables/ effects Informativity_phylogenetic_spatial_models .csv")
292
+
293
+ effs_table_SM <- effs %>%
294
+ mutate(effect =
295
+ dplyr::recode(effect,
296
+ "areal SD" = "spatial SD")) %>%
297
+ rename("2.5%"=2,
298
+ "50%" = 4,
299
+ "97.5%" = 3) %>%
300
+ flextable() %>%
301
+ autofit() %>%
302
+ merge_v(j=c("model", "WAIC")) %>%
303
+ fix_border_issues() %>%
304
+ border_inner_h()
305
+
306
+ save_as_docx(
307
+ "Effects in informativity models with random effects" = effs_table_SM,
308
+ path = "output_tables/table_SM_effects_Informativity_phylogenetic_spatial_models.docx")
309
+
310
+
311
+ effs_plot <- effs %>%
312
+ #filter(WAIC <= top_9) %>%
313
+ rename(lower=2,
314
+ upper = 4,
315
+ mean = 3) %>% #mean here refers to 0.5 quantile
316
+ #filter(!effect == "Intercept") %>%
317
+ mutate(effect =
318
+ dplyr::recode(effect,
319
+ "areal SD" = "spatial SD")) %>%
320
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "areal SD", "Intercept"))) %>%
321
+ mutate(WAIC = round(WAIC, 2)) %>%
322
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
323
+ group_by(WAIC) %>%
324
+ arrange(WAIC) %>%
325
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
326
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
327
+
328
+
329
+
330
+ #plot modified from function ggregplot::Efxplot
331
+ cols = c(brewer.pal(12, "Paired"))
332
+ cols = c(cols[c(12, 10)], "gray50")
333
+
334
+ show_col(cols)
335
+
336
+ plot_1 <- ggplot(effs_plot,
337
+ aes(y = as.factor(model),
338
+ x = mean,
339
+ group = effect,
340
+ colour = effect)) +
341
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
342
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
343
+ scale_color_manual(values=cols) +
344
+ ylab("Model of informativity") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
345
+ theme(axis.text=element_text(size=50),
346
+ legend.text=element_text(size=50),
347
+ axis.title=element_text(size=50),
348
+ legend.title=element_text(size=50),
349
+ legend.spacing.y = unit(1.5, 'cm')) +
350
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
351
+
352
+
353
+
354
+ #plot_1
355
+ ggsave(filename = 'output/SP_models_plot_Informativity_phylogenetic_spatial_models.jpg',
356
+ plot_1, height = 29, width = 33)
357
+
358
+
359
+ #saving hyperparameters: Gaussian observations
360
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
361
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
362
+ }
363
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
364
+
365
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Informativity_phylogenetic_spatial_models_marginals_hyperpar_gaussian.csv")
366
+
367
+ #saving hyperparameters: phylogenetic
368
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
369
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
370
+ }
371
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
372
+
373
+ write.csv(marginals_hyperpar_list_phy, "output_tables/Informativity_phylogenetic_spatial_models_marginals_hyperpar_phylogenetic.csv")
374
+
375
+ #saving hyperparameters: spatial
376
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
377
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
378
+ }
379
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
380
+
381
+ write.csv(marginals_hyperpar_list_spa, "output_tables/Informativity_phylogenetic_spatial_models_marginals_hyperpar_spatial.csv")
382
+
383
+ #saving hyperparameters: areas
384
+ for (i in 1:length(marginals_hyperpar_list_area)) {
385
+ marginals_hyperpar_list_area[[i]]$model <- names(marginals_hyperpar_list_area)[i]
386
+ }
387
+ marginals_hyperpar_list_area <- dplyr::bind_rows(marginals_hyperpar_list_area)
388
+
389
+ write.csv(marginals_hyperpar_list_area, "output_tables/Informativity_phylogenetic_spatial_models_marginals_hyperpar_areal.csv")
390
+
391
+
392
+ #saving summaries of random effects: phylogenetic
393
+ for (i in 1:length(summary_random_list_phy)) {
394
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
395
+ }
396
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
397
+
398
+ write.csv(summary_random_list_phy, "output_tables/Informativity_phylogenetic_spatial_models_summary_random_phy.csv")
399
+
400
+ #saving summaries of random effects: spatial
401
+ for (i in 1:length(summary_random_list_spa)) {
402
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
403
+ }
404
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
405
+
406
+ write.csv(summary_random_list_spa, "output_tables/Informativity_phylogenetic_spatial_models_summary_random_spa.csv")
407
+
408
+ #saving summaries of random effects: areas
409
+ for (i in 1:length(summary_random_list_area)) {
410
+ summary_random_list_area[[i]]$model <- names(summary_random_list_area)[i]
411
+ }
412
+ summary_random_list_area <- dplyr::bind_rows(summary_random_list_area)
413
+
414
+ write.csv(summary_random_list_area, "output_tables/Informativity_phylogenetic_spatial_models_summary_random_areas.csv")
101/replication_package/models_Informativity_reduced_social.R ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Informativity predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st"),
63
+
64
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L2_prop"),
67
+
68
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st", "L2_prop"),
73
+
74
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "neighboring_languages_st"),
75
+
76
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Official"),
77
+
78
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Education"))
79
+
80
+
81
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
82
+
83
+ predterms <- t(as.data.frame(predterms))
84
+
85
+ predterms_short <- predterms
86
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
87
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
88
+
89
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
92
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
93
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
94
+
95
+
96
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
97
+ number = 1:length(predterms_short))
98
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
99
+
100
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
101
+ number = 1:length(predterms_short))
102
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
103
+
104
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
105
+ number = 1:length(predterms_short))
106
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
107
+
108
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
109
+
110
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
111
+ number = 1:length(predterms_short))
112
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
113
+
114
+
115
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
116
+ number = 1:length(predterms_short))
117
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
118
+
119
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
120
+ number = 1:length(predterms_short))
121
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
122
+
123
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
124
+ number = 1:length(predterms_short))
125
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
126
+
127
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
128
+ number = 1:length(predterms_short))
129
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
130
+
131
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
132
+ number = 1:length(predterms_short))
133
+ official_element <- official_element[official_element$judgement == TRUE,]$number
134
+
135
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
136
+ number = 1:length(predterms_short))
137
+ education_element <- education_element[education_element$judgement == TRUE,]$number
138
+
139
+ models_number <- length(predterms_short)
140
+
141
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
142
+ phy_effects_matrix <- matrix(NA, models_number, 5)
143
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
144
+ spa_effects_matrix <- matrix(NA, models_number, 5)
145
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
146
+
147
+ intercept_matrix <- matrix(NA, models_number, 5)
148
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
149
+
150
+ social_effects_matrix_L1 <- matrix(NA, models_number, 5)
151
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
152
+ social_effects_matrix_L1_nl <- matrix(NA, models_number, 5)
153
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
154
+ social_effects_matrix_L2_prop <- matrix(NA, models_number, 5)
155
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
156
+ social_effects_matrix_L2_prop_nl <- matrix(NA, models_number, 5)
157
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
158
+ social_effects_matrix_N <- matrix(NA, models_number, 5)
159
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
160
+ social_effects_matrix_O <- matrix(NA, models_number, 5)
161
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
162
+ social_effects_matrix_E <- matrix(NA, models_number, 5)
163
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
164
+ social_effects_matrix_L1_L2_prop <- matrix(NA, models_number, 5)
165
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
166
+
167
+ #fitted values
168
+ fitted_list <- vector("list", models_number)
169
+ names(fitted_list) <- predterms_short
170
+
171
+ #marginals of hyperparameters
172
+ marginals_hyperpar_list_gaussian <- vector("list", models_number)
173
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
174
+
175
+ marginals_hyperpar_list_phy <- vector("list", models_number)
176
+ names(marginals_hyperpar_list_phy) <- predterms_short
177
+
178
+ marginals_hyperpar_list_spa <- vector("list", models_number)
179
+ names(marginals_hyperpar_list_spa) <- predterms_short
180
+
181
+ marginals_hyperpar_list_social_L1_nl <- vector("list", models_number)
182
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
183
+
184
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", models_number)
185
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
186
+
187
+
188
+ #marginals of fixed effects
189
+ marginals_fixed_list_Intercept <- vector("list", models_number)
190
+ names(marginals_fixed_list_Intercept) <- predterms_short
191
+
192
+ marginals_fixed_list_L1 <- vector("list", models_number)
193
+ names(marginals_fixed_list_L1) <- predterms_short
194
+
195
+ marginals_fixed_list_L2_prop <- vector("list", models_number)
196
+ names(marginals_fixed_list_L2_prop) <- predterms_short
197
+
198
+ marginals_fixed_list_O <- vector("list", models_number)
199
+ names(marginals_fixed_list_O) <- predterms_short
200
+
201
+ marginals_fixed_list_N <- vector("list", models_number)
202
+ names(marginals_fixed_list_N) <- predterms_short
203
+
204
+ marginals_fixed_list_E <- vector("list", models_number)
205
+ names(marginals_fixed_list_E) <- predterms_short
206
+
207
+ marginals_fixed_list_L1_L2_prop <- vector("list", models_number)
208
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
209
+
210
+
211
+
212
+
213
+ #summary statistics of random effects
214
+ summary_random_list_phy <- vector("list", models_number)
215
+ names(summary_random_list_phy) <- predterms_short
216
+
217
+ summary_random_list_spa <- vector("list", models_number)
218
+ names(summary_random_list_spa) <- predterms_short
219
+
220
+ summary_random_list_social_L1_nl <- vector("list", models_number)
221
+ names(summary_random_list_social_L1_nl) <- predterms_short
222
+
223
+ summary_random_list_social_L2_prop_nl <- vector("list", models_number)
224
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
225
+
226
+
227
+ coefm <- matrix(NA,models_number,1)
228
+ result <- vector("list",models_number)
229
+
230
+ for(i in 1:models_number){
231
+ formula <- as.formula(paste("informativity_st ~ ",predterms[[i]]))
232
+ result[[i]] <- inla(formula, family="gaussian",
233
+ control.family = list(hyper = pcprior_hyper),
234
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
235
+ #tolerance: the tolerance for the optimisation of the hyperparameters
236
+ #h: the step-length for the gradient calculations for the hyperparameters.
237
+ data=metrics_joined, control.compute=list(waic=TRUE))
238
+
239
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
240
+
241
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
242
+ intercept_matrix[i, 4] <- predterms_short[[i]]
243
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
244
+
245
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
246
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
247
+
248
+ if(i %in% phylogenetic_element) {
249
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
250
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
251
+ method = "linear") %>%
252
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
253
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
254
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
255
+ }
256
+
257
+ if(i %in% spatial_element) {
258
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
259
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
260
+ method = "linear") %>%
261
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
262
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
263
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
264
+ }
265
+
266
+
267
+ if(i %in% L1_nl_element){
268
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
269
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
270
+ method = "linear") %>%
271
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
272
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
273
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
274
+ }
275
+
276
+ if(i %in% L2_prop_nl_element){
277
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
278
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
279
+ method = "linear") %>%
280
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
281
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
282
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
283
+ }
284
+
285
+ if(i %in% L1_element) {
286
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
287
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
288
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
289
+
290
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
291
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
292
+ }
293
+
294
+ if(i %in% L2_prop_element) {
295
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
296
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
297
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
298
+
299
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
300
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
301
+ }
302
+
303
+ if(i %in% neighbour_element) {
304
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
305
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
306
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
307
+
308
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
309
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
310
+ }
311
+
312
+ if(i %in% official_element) {
313
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
314
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
315
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
316
+
317
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
318
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
319
+ }
320
+
321
+ if(i %in% education_element) {
322
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
323
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
324
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
325
+
326
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
327
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
328
+ }
329
+
330
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
331
+ fitted_list[[i]] <- fitted_list[[i]] %>%
332
+ mutate(across(where(is.numeric), round, 2))
333
+
334
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
335
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
336
+
337
+ if(i %in% phylogenetic_element){
338
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
339
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
340
+ }
341
+
342
+ if(i %in% spatial_element){
343
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
344
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
345
+ }
346
+
347
+ if(i %in% L1_nl_element){
348
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
349
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
350
+ }
351
+
352
+ if(i %in% L2_prop_nl_element){
353
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
354
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
355
+ }
356
+
357
+ if(i %in% phylogenetic_element){
358
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
359
+ rename(phy_id = ID) %>%
360
+ as.data.frame() %>%
361
+ mutate(across(where(is.numeric), round, 2))
362
+ }
363
+
364
+ if(i %in% spatial_element){
365
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
366
+ rename(sp_id = ID) %>%
367
+ as.data.frame() %>%
368
+ mutate(across(where(is.numeric), round, 2))
369
+ }
370
+ }
371
+
372
+ #beepr::beep(5)
373
+
374
+ save(result, file = "output_models_reduced/models_Informativity_social.RData")
375
+
376
+
377
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
378
+ colnames(coefm) <- c("model", "WAIC")
379
+ coefm <- coefm %>%
380
+ mutate(across(.cols=2, as.numeric)) %>%
381
+ mutate(across(where(is.numeric), round, 2)) %>%
382
+ arrange(WAIC)
383
+
384
+ coefm$WAIC <- as.numeric(coefm$WAIC)
385
+ coefm <- coefm[order(coefm$WAIC),]
386
+
387
+ coefm_path <- paste("output_tables_reduced/", "waics", "Informativity_social_models", ".csv", collapse = "")
388
+ write.csv(coefm, coefm_path, row.names=FALSE)
389
+
390
+ for (i in 1:length(fitted_list)) {
391
+ fitted_list[[i]]$model <- names(fitted_list)[i]
392
+ }
393
+ fitted_list <- dplyr::bind_rows(fitted_list)
394
+ fitted_list_path <- paste("output_tables_reduced/", "fitted_list", "Informativity_social_models", ".csv", collapse = "")
395
+ write.csv(fitted_list, fitted_list_path)
396
+
397
+ phy_effects<-as.data.frame(phy_effects_matrix)
398
+ spa_effects<-as.data.frame(spa_effects_matrix)
399
+ intercept_effects <- as.data.frame(intercept_matrix)
400
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
401
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
402
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
403
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
404
+ N_effects<-as.data.frame(social_effects_matrix_N)
405
+ E_effects<-as.data.frame(social_effects_matrix_E)
406
+ O_effects<-as.data.frame(social_effects_matrix_O)
407
+
408
+ phy_effects$effect <- "phylogenetic SD"
409
+ spa_effects$effect <- "spatial SD"
410
+ intercept_effects$effect <- "Intercept"
411
+ L1_effects$effect <- "L1"
412
+ L1_nl_effects$effect <- "social SD:\nL1"
413
+ L2_prop_effects$effect <- "L2 proportion"
414
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
415
+ N_effects$effect <- "Neighbours"
416
+ E_effects$effect <- "Education"
417
+ O_effects$effect <- "Official status"
418
+
419
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects))
420
+ effs <- effs %>%
421
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
422
+ mutate(across(where(is.numeric), round, 2)) %>%
423
+ na.omit() %>%
424
+ arrange(WAIC) %>%
425
+ relocate(model)
426
+
427
+ effs_path <- paste("output_tables_reduced/", "effects", "Informativity_social_models", ".csv", collapse = "")
428
+ write.csv(effs, effs_path, row.names=FALSE)
429
+
430
+ effs <- read.csv("output_tables_reduced/ effects Informativity_social_models .csv")
431
+
432
+ effs_table_Main <- effs %>%
433
+ rename("2.5%"=2,
434
+ "50%" = 3,
435
+ "97.5%" = 4) %>%
436
+ filter(!grepl("nonlinear", model))
437
+
438
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
439
+
440
+ effs_table_Main <- effs_table_Main %>%
441
+ relocate(effect, .after = model) %>%
442
+ flextable() %>%
443
+ flextable::bold(~ (`2.5%` > 0 & `97.5%` > 0) | (`2.5%` < 0 & `97.5%` < 0), 2) %>%
444
+ autofit() %>%
445
+ merge_v(j=c("model", "WAIC")) %>%
446
+ fix_border_issues() %>%
447
+ border_inner_h()
448
+
449
+ save_as_docx(
450
+ "Effects in informativity models with fixed and random effects" = effs_table_Main,
451
+ path = "output_tables_reduced/table_Main_effects_Informativity_social_models.docx")
452
+
453
+
454
+ effs_plot <- effs %>%
455
+ #filter(WAIC <= top_9) %>%
456
+ rename(lower=2,
457
+ upper = 4,
458
+ mean = 3) %>% #mean here refers to 0.5 quantile
459
+ #filter(!effect == "Intercept") %>%
460
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status"))) %>%
461
+ mutate(WAIC = round(WAIC, 2)) %>%
462
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
463
+ group_by(WAIC) %>%
464
+ arrange(WAIC) %>%
465
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
466
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
467
+
468
+
469
+ #plot modified from function ggregplot::Efxplot
470
+ cols = c(brewer.pal(12, "Paired"))
471
+ cols = c(cols[c(12, 10)], "gray50", cols[c(1:8)])
472
+
473
+ show_col(cols)
474
+
475
+ plot_1 <- ggplot(effs_plot,
476
+ aes(y = as.factor(model),
477
+ x = mean,
478
+ group = effect,
479
+ colour = effect)) +
480
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
481
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
482
+ scale_color_manual(values=cols) +
483
+ ylab("Model of informativity") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
484
+ theme(axis.text=element_text(size=50),
485
+ legend.text=element_text(size=50),
486
+ axis.title=element_text(size=50),
487
+ legend.title=element_text(size=50),
488
+ legend.spacing.y = unit(1.5, 'cm')) +
489
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
490
+
491
+
492
+
493
+ #plot_1
494
+ ggsave(filename = 'output_reduced/SP_models_plot_Informativity_social_models.jpg',
495
+ plot_1, height = 20, width = 45)
496
+
497
+
498
+ #saving hyperparameters: Gaussian observations
499
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
500
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
501
+ }
502
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
503
+
504
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables_reduced/Informativity_social_models_marginals_hyperpar_gaussian.csv")
505
+
506
+ #saving hyperparameters: phylogenetic
507
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
508
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
509
+ }
510
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
511
+
512
+ write.csv(marginals_hyperpar_list_phy, "output_tables_reduced/Informativity_social_models_marginals_hyperpar_phylogenetic.csv")
513
+
514
+ #saving hyperparameters: spatial
515
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
516
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
517
+ }
518
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
519
+
520
+ write.csv(marginals_hyperpar_list_spa, "output_tables_reduced/Informativity_social_models_marginals_hyperpar_spatial.csv")
521
+
522
+
523
+ #saving summaries of random effects: phylogenetic
524
+ for (i in 1:length(summary_random_list_phy)) {
525
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
526
+ }
527
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
528
+
529
+ write.csv(summary_random_list_phy, "output_tables_reduced/Informativity_social_models_summary_random_phy.csv")
530
+
531
+ #saving summaries of random effects: spatial
532
+ for (i in 1:length(summary_random_list_spa)) {
533
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
534
+ }
535
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
536
+
537
+ write.csv(summary_random_list_spa, "output_tables_reduced/Informativity_social_models_summary_random_spa.csv")
101/replication_package/models_Informativity_reduced_social_only.R ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Informativity predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("L1_log_st"),
63
+
64
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("L2_prop"),
67
+
68
+ c("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("L1_log_st", "L2_prop"),
73
+
74
+ c("neighboring_languages_st"),
75
+
76
+ c("Official"),
77
+
78
+ c("Education"))
79
+
80
+
81
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
82
+
83
+ predterms <- t(as.data.frame(predterms))
84
+
85
+ predterms_short <- predterms
86
+
87
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
88
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
89
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
92
+
93
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
94
+ number = 1:length(predterms_short))
95
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
96
+
97
+
98
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
99
+ number = 1:length(predterms_short))
100
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
101
+
102
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
103
+ number = 1:length(predterms_short))
104
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
105
+
106
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
107
+ number = 1:length(predterms_short))
108
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
109
+
110
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
111
+ number = 1:length(predterms_short))
112
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
113
+
114
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
115
+ number = 1:length(predterms_short))
116
+ official_element <- official_element[official_element$judgement == TRUE,]$number
117
+
118
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
119
+ number = 1:length(predterms_short))
120
+ education_element <- education_element[education_element$judgement == TRUE,]$number
121
+
122
+ models_number <- length(predterms_short)
123
+
124
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
125
+ intercept_matrix <- matrix(NA, models_number, 5)
126
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
127
+
128
+ social_effects_matrix_L1 <- matrix(NA, models_number, 5)
129
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
130
+ social_effects_matrix_L1_nl <- matrix(NA, models_number, 5)
131
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
132
+ social_effects_matrix_L2_prop <- matrix(NA, models_number, 5)
133
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
134
+ social_effects_matrix_L2_prop_nl <- matrix(NA, models_number, 5)
135
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
136
+ social_effects_matrix_N <- matrix(NA, models_number, 5)
137
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
138
+ social_effects_matrix_O <- matrix(NA, models_number, 5)
139
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
140
+ social_effects_matrix_E <- matrix(NA, models_number, 5)
141
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
142
+ social_effects_matrix_L1_L2_prop <- matrix(NA, models_number, 5)
143
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
144
+
145
+ #fitted values
146
+ fitted_list <- vector("list", models_number)
147
+ names(fitted_list) <- predterms_short
148
+
149
+ #marginals of hyperparameters
150
+ marginals_hyperpar_list_gaussian <- vector("list", models_number)
151
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
152
+
153
+ marginals_hyperpar_list_social_L1_nl <- vector("list", models_number)
154
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
155
+
156
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", models_number)
157
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
158
+
159
+
160
+ #marginals of fixed effects
161
+ marginals_fixed_list_Intercept <- vector("list", models_number)
162
+ names(marginals_fixed_list_Intercept) <- predterms_short
163
+
164
+ marginals_fixed_list_L1 <- vector("list", models_number)
165
+ names(marginals_fixed_list_L1) <- predterms_short
166
+
167
+ marginals_fixed_list_L2_prop <- vector("list", models_number)
168
+ names(marginals_fixed_list_L2_prop) <- predterms_short
169
+
170
+ marginals_fixed_list_O <- vector("list", models_number)
171
+ names(marginals_fixed_list_O) <- predterms_short
172
+
173
+ marginals_fixed_list_N <- vector("list", models_number)
174
+ names(marginals_fixed_list_N) <- predterms_short
175
+
176
+ marginals_fixed_list_E <- vector("list", models_number)
177
+ names(marginals_fixed_list_E) <- predterms_short
178
+
179
+ marginals_fixed_list_L1_L2_prop <- vector("list", models_number)
180
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
181
+
182
+
183
+
184
+
185
+ #summary statistics of random effects
186
+ summary_random_list_social_L1_nl <- vector("list", models_number)
187
+ names(summary_random_list_social_L1_nl) <- predterms_short
188
+
189
+ summary_random_list_social_L2_prop_nl <- vector("list", models_number)
190
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
191
+
192
+
193
+ coefm <- matrix(NA,models_number,1)
194
+ result <- vector("list",models_number)
195
+
196
+ for(i in 1:models_number){
197
+ formula <- as.formula(paste("informativity_st ~ ",predterms[[i]]))
198
+ result[[i]] <- inla(formula, family="gaussian",
199
+ control.family = list(hyper = pcprior_hyper),
200
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
201
+ #tolerance: the tolerance for the optimisation of the hyperparameters
202
+ #h: the step-length for the gradient calculations for the hyperparameters.
203
+ data=metrics_joined, control.compute=list(waic=TRUE))
204
+
205
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
206
+
207
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
208
+ intercept_matrix[i, 4] <- predterms_short[[i]]
209
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
210
+
211
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
212
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
213
+
214
+ if(i %in% L1_nl_element){
215
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
216
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
217
+ method = "linear") %>%
218
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
219
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
220
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
221
+ }
222
+
223
+ if(i %in% L2_prop_nl_element){
224
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
225
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
226
+ method = "linear") %>%
227
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
228
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
229
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
230
+ }
231
+
232
+ if(i %in% L1_element) {
233
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
234
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
235
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
236
+
237
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
238
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
239
+ }
240
+
241
+ if(i %in% L2_prop_element) {
242
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
243
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
244
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
245
+
246
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
247
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
248
+ }
249
+
250
+ if(i %in% neighbour_element) {
251
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
252
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
253
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
254
+
255
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
256
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
257
+ }
258
+
259
+ if(i %in% official_element) {
260
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
261
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
262
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
263
+
264
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
265
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
266
+ }
267
+
268
+ if(i %in% education_element) {
269
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
270
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
271
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
272
+
273
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
274
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
275
+ }
276
+
277
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
278
+ fitted_list[[i]] <- fitted_list[[i]] %>%
279
+ mutate(across(where(is.numeric), round, 2))
280
+
281
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
282
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
283
+
284
+ if(i %in% L1_nl_element){
285
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
286
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
287
+ }
288
+
289
+ if(i %in% L2_prop_nl_element){
290
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
291
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
292
+ }
293
+ }
294
+
295
+ #beepr::beep(5)
296
+
297
+ save(result, file = "output_models_reduced/models_Informativity_social_only.RData")
298
+
299
+
300
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
301
+ colnames(coefm) <- c("model", "WAIC")
302
+ coefm <- coefm %>%
303
+ mutate(across(.cols=2, as.numeric)) %>%
304
+ mutate(across(where(is.numeric), round, 2)) %>%
305
+ arrange(WAIC)
306
+
307
+ coefm$WAIC <- as.numeric(coefm$WAIC)
308
+ coefm <- coefm[order(coefm$WAIC),]
309
+
310
+ coefm_path <- paste("output_tables_reduced/", "waics", "Informativity_social_only_models", ".csv", collapse = "")
311
+ write.csv(coefm, coefm_path, row.names=FALSE)
312
+
313
+ for (i in 1:length(fitted_list)) {
314
+ fitted_list[[i]]$model <- names(fitted_list)[i]
315
+ }
316
+ fitted_list <- dplyr::bind_rows(fitted_list)
317
+ fitted_list_path <- paste("output_tables_reduced/", "fitted_list", "Informativity_social_only_models", ".csv", collapse = "")
318
+ write.csv(fitted_list, fitted_list_path)
319
+
320
+ intercept_effects <- as.data.frame(intercept_matrix)
321
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
322
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
323
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
324
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
325
+ N_effects<-as.data.frame(social_effects_matrix_N)
326
+ E_effects<-as.data.frame(social_effects_matrix_E)
327
+ O_effects<-as.data.frame(social_effects_matrix_O)
328
+
329
+ intercept_effects$effect <- "Intercept"
330
+ L1_effects$effect <- "L1"
331
+ L1_nl_effects$effect <- "social SD:\nL1"
332
+ L2_prop_effects$effect <- "L2 proportion"
333
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
334
+ N_effects$effect <- "Neighbours"
335
+ E_effects$effect <- "Education"
336
+ O_effects$effect <- "Official status"
337
+
338
+ effs <- as.data.frame(rbind(intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects))
339
+ effs <- effs %>%
340
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
341
+ mutate(across(where(is.numeric), round, 2)) %>%
342
+ na.omit() %>%
343
+ arrange(WAIC) %>%
344
+ relocate(model)
345
+
346
+ effs_path <- paste("output_tables_reduced/", "effects", "Informativity_social_only_models", ".csv", collapse = "")
347
+ write.csv(effs, effs_path, row.names=FALSE)
348
+
349
+ effs <- read.csv("output_tables_reduced/ effects Informativity_social_only_models .csv")
350
+
351
+ effs_table_SM <- effs %>%
352
+ rename("2.5%"=2,
353
+ "50%" = 4,
354
+ "97.5%" = 3) %>%
355
+ flextable() %>%
356
+ autofit() %>%
357
+ merge_v(j=c("model", "WAIC")) %>%
358
+ fix_border_issues() %>%
359
+ border_inner_h()
360
+
361
+ save_as_docx(
362
+ "Effects in informativity models with fixed and random effects (including non-linear implementations of some fixed effects)" = effs_table_SM,
363
+ path = "output_tables_reduced/table_SM_effects_Informativity_social_only_models.docx")
364
+
365
+ effs_table_Main <- effs %>%
366
+ rename("2.5%"=2,
367
+ "50%" = 4,
368
+ "97.5%" = 3) %>%
369
+ filter(!grepl("nonlinear", model))
370
+
371
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
372
+
373
+ effs_table_Main <- effs_table_Main %>%
374
+ flextable() %>%
375
+ autofit() %>%
376
+ merge_v(j=c("model", "WAIC")) %>%
377
+ fix_border_issues() %>%
378
+ border_inner_h()
379
+
380
+ save_as_docx(
381
+ "Effects in informativity models with fixed and random effects" = effs_table_Main,
382
+ path = "output_tables_reduced/table_Main_effects_Informativity_social_only_models.docx")
383
+
384
+
385
+ effs_plot <- effs %>%
386
+ #filter(WAIC <= top_9) %>%
387
+ rename(lower=2,
388
+ upper = 4,
389
+ mean = 3) %>% #mean here refers to 0.5 quantile
390
+ #filter(!effect == "Intercept") %>%
391
+ mutate(effect = factor(effect, levels=c("Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status"))) %>%
392
+ mutate(WAIC = round(WAIC, 2)) %>%
393
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
394
+ group_by(WAIC) %>%
395
+ arrange(WAIC) %>%
396
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
397
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
398
+
399
+
400
+ #plot modified from function ggregplot::Efxplot
401
+ cols = c(brewer.pal(12, "Paired"))
402
+ cols = c("gray50", cols[c(1:8)])
403
+
404
+ show_col(cols)
405
+
406
+ plot_1 <- ggplot(effs_plot,
407
+ aes(y = as.factor(model),
408
+ x = mean,
409
+ group = effect,
410
+ colour = effect)) +
411
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
412
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
413
+ scale_color_manual(values=cols) +
414
+ ylab("Model of informativity") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
415
+ theme(axis.text=element_text(size=50),
416
+ legend.text=element_text(size=50),
417
+ axis.title=element_text(size=50),
418
+ legend.title=element_text(size=50),
419
+ legend.spacing.y = unit(1.5, 'cm')) +
420
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
421
+
422
+
423
+
424
+ #plot_1
425
+ ggsave(filename = 'output_reduced/SP_models_plot_Informativity_social_only_models.jpg',
426
+ plot_1, height = 20, width = 45)
427
+
428
+
429
+ #saving hyperparameters: Gaussian observations
430
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
431
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
432
+ }
433
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
434
+
435
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables_reduced/Informativity_social_only_models_marginals_hyperpar_gaussian.csv")
101/replication_package/models_Informativity_social.R ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Informativity predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st"),
63
+
64
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L2_prop"),
67
+
68
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log_st", "L2_prop"),
73
+
74
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "L1_log10:L2_prop"),
75
+
76
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "neighboring_languages_st"),
77
+
78
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Official"),
79
+
80
+ c("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Education"))
81
+
82
+
83
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
84
+
85
+ predterms <- t(as.data.frame(predterms))
86
+
87
+ predterms_short <- predterms
88
+ predterms_short <- gsub("f(phy_id, model = 'generic0', Cmatrix = phylo_prec_mat, constr = TRUE, hyper = pcprior_hyper)", "Phylogenetic", predterms_short, fixed=TRUE)
89
+ predterms_short <- gsub("f(sp_id, model = 'generic0', Cmatrix = spatial_prec_mat_1, constr = TRUE, hyper = pcprior_hyper)", "Spatial: local", predterms_short, fixed=TRUE)
90
+
91
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
92
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
93
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
94
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
95
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
96
+
97
+
98
+ phylogenetic_element <- data.frame("judgement" = grepl("Phylogenetic", predterms_short),
99
+ number = 1:length(predterms_short))
100
+ phylogenetic_element <- phylogenetic_element[phylogenetic_element$judgement == TRUE,]$number
101
+
102
+ spatial_element_local <- data.frame("judgement" = grepl("local", predterms_short),
103
+ number = 1:length(predterms_short))
104
+ spatial_element_local <- spatial_element_local[spatial_element_local$judgement == TRUE,]$number
105
+
106
+ spatial_element_regional <- data.frame("judgement" = grepl("regional", predterms_short),
107
+ number = 1:length(predterms_short))
108
+ spatial_element_regional <- spatial_element_regional[spatial_element_regional$judgement == TRUE,]$number
109
+
110
+ spatial_element <- c(spatial_element_local, spatial_element_regional)
111
+
112
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
113
+ number = 1:length(predterms_short))
114
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
115
+
116
+
117
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
118
+ number = 1:length(predterms_short))
119
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
120
+
121
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
122
+ number = 1:length(predterms_short))
123
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
124
+ L2_prop_element <- L2_prop_element[-length(L2_prop_element)] #making sure that the interaction term (introduced below) is not treated as belonging to this isolated element
125
+
126
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
127
+ number = 1:length(predterms_short))
128
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
129
+
130
+ #can use only part of the interaction term within grepl() function
131
+ interaction_element <- data.frame("judgement" = grepl(":L2 proportion", predterms_short),
132
+ number = 1:length(predterms_short))
133
+ interaction_element <- interaction_element[interaction_element$judgement == TRUE,]$number
134
+
135
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
136
+ number = 1:length(predterms_short))
137
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
138
+
139
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
140
+ number = 1:length(predterms_short))
141
+ official_element <- official_element[official_element$judgement == TRUE,]$number
142
+
143
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
144
+ number = 1:length(predterms_short))
145
+ education_element <- education_element[education_element$judgement == TRUE,]$number
146
+
147
+
148
+
149
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
150
+ phy_effects_matrix <- matrix(NA, 10, 5)
151
+ colnames(phy_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
152
+ spa_effects_matrix <- matrix(NA, 10, 5)
153
+ colnames(spa_effects_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
154
+
155
+ intercept_matrix <- matrix(NA, 10, 5)
156
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
157
+
158
+ social_effects_matrix_L1 <- matrix(NA, 10, 5)
159
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
160
+ social_effects_matrix_L1_nl <- matrix(NA, 10, 5)
161
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
162
+ social_effects_matrix_L2_prop <- matrix(NA, 10, 5)
163
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
164
+ social_effects_matrix_L2_prop_nl <- matrix(NA, 10, 5)
165
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
166
+ social_effects_matrix_N <- matrix(NA, 10, 5)
167
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
168
+ social_effects_matrix_O <- matrix(NA, 10, 5)
169
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
170
+ social_effects_matrix_E <- matrix(NA, 10, 5)
171
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
172
+ social_effects_matrix_L1_L2_prop <- matrix(NA, 10, 5)
173
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
174
+
175
+ #fitted values
176
+ fitted_list <- vector("list", 10)
177
+ names(fitted_list) <- predterms_short
178
+
179
+ #marginals of hyperparameters
180
+ marginals_hyperpar_list_gaussian <- vector("list", 10)
181
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
182
+
183
+ marginals_hyperpar_list_phy <- vector("list", 10)
184
+ names(marginals_hyperpar_list_phy) <- predterms_short
185
+
186
+ marginals_hyperpar_list_spa <- vector("list", 10)
187
+ names(marginals_hyperpar_list_spa) <- predterms_short
188
+
189
+ marginals_hyperpar_list_social_L1_nl <- vector("list", 10)
190
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
191
+
192
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", 10)
193
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
194
+
195
+
196
+ #marginals of fixed effects
197
+ marginals_fixed_list_Intercept <- vector("list", 10)
198
+ names(marginals_fixed_list_Intercept) <- predterms_short
199
+
200
+ marginals_fixed_list_L1 <- vector("list", 10)
201
+ names(marginals_fixed_list_L1) <- predterms_short
202
+
203
+ marginals_fixed_list_L2_prop <- vector("list", 10)
204
+ names(marginals_fixed_list_L2_prop) <- predterms_short
205
+
206
+ marginals_fixed_list_O <- vector("list", 10)
207
+ names(marginals_fixed_list_O) <- predterms_short
208
+
209
+ marginals_fixed_list_N <- vector("list", 10)
210
+ names(marginals_fixed_list_N) <- predterms_short
211
+
212
+ marginals_fixed_list_E <- vector("list", 10)
213
+ names(marginals_fixed_list_E) <- predterms_short
214
+
215
+ marginals_fixed_list_L1_L2_prop <- vector("list", 10)
216
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
217
+
218
+
219
+
220
+
221
+ #summary statistics of random effects
222
+ summary_random_list_phy <- vector("list", 10)
223
+ names(summary_random_list_phy) <- predterms_short
224
+
225
+ summary_random_list_spa <- vector("list", 10)
226
+ names(summary_random_list_spa) <- predterms_short
227
+
228
+ summary_random_list_social_L1_nl <- vector("list", 10)
229
+ names(summary_random_list_social_L1_nl) <- predterms_short
230
+
231
+ summary_random_list_social_L2_prop_nl <- vector("list", 10)
232
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
233
+
234
+
235
+ coefm <- matrix(NA,10,1)
236
+ result <- vector("list",10)
237
+
238
+ for(i in 1:10){
239
+ formula <- as.formula(paste("informativity_st ~ ",predterms[[i]]))
240
+ result[[i]] <- inla(formula, family="gaussian",
241
+ control.family = list(hyper = pcprior_hyper),
242
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
243
+ #tolerance: the tolerance for the optimisation of the hyperparameters
244
+ #h: the step-length for the gradient calculations for the hyperparameters.
245
+ data=metrics_joined, control.compute=list(waic=TRUE))
246
+
247
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
248
+
249
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
250
+ intercept_matrix[i, 4] <- predterms_short[[i]]
251
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
252
+
253
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
254
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
255
+
256
+ if(i %in% phylogenetic_element) {
257
+ phy_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
258
+ result[[i]]$marginals.hyperpar$`Precision for phy_id`,
259
+ method = "linear") %>%
260
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
261
+ phy_effects_matrix[i, 4] <- predterms_short[[i]]
262
+ phy_effects_matrix[i, 5] <- result[[i]]$waic$waic
263
+ }
264
+
265
+ if(i %in% spatial_element) {
266
+ spa_effects_matrix[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
267
+ result[[i]]$marginals.hyperpar$`Precision for sp_id`,
268
+ method = "linear") %>%
269
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
270
+ spa_effects_matrix[i, 4] <- predterms_short[[i]]
271
+ spa_effects_matrix[i, 5] <- result[[i]]$waic$waic
272
+ }
273
+
274
+
275
+ if(i %in% L1_nl_element){
276
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
277
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
278
+ method = "linear") %>%
279
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
280
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
281
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
282
+ }
283
+
284
+ if(i %in% L2_prop_nl_element){
285
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
286
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
287
+ method = "linear") %>%
288
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
289
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
290
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
291
+ }
292
+
293
+ if(i %in% L1_element) {
294
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
295
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
296
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
297
+
298
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
299
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
300
+ }
301
+
302
+ if(i %in% L2_prop_element) {
303
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
304
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
305
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
306
+
307
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
308
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
309
+ }
310
+
311
+ if(i %in% interaction_element) {
312
+ social_effects_matrix_L1_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.975quant`)
313
+ social_effects_matrix_L1_L2_prop[i, 4] <- predterms_short[[i]]
314
+ social_effects_matrix_L1_L2_prop[i, 5] <- result[[i]]$waic$waic
315
+
316
+ marginals_fixed_list_L1_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log10:L2_prop"]]))
317
+ colnames(marginals_fixed_list_L1_L2_prop[[i]]) <- c("x for L1*L2 proportion", "y for L1*L2 proportion")
318
+ }
319
+
320
+ if(i %in% neighbour_element) {
321
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
322
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
323
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
324
+
325
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
326
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
327
+ }
328
+
329
+ if(i %in% official_element) {
330
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
331
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
332
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
333
+
334
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
335
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
336
+ }
337
+
338
+ if(i %in% education_element) {
339
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
340
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
341
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
342
+
343
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
344
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
345
+ }
346
+
347
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
348
+ fitted_list[[i]] <- fitted_list[[i]] %>%
349
+ mutate(across(where(is.numeric), round, 2))
350
+
351
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
352
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
353
+
354
+ if(i %in% phylogenetic_element){
355
+ marginals_hyperpar_list_phy[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for phy_id"]]))
356
+ colnames(marginals_hyperpar_list_phy[[i]]) <- c("x for phy_id", "y for phy_id")
357
+ }
358
+
359
+ if(i %in% spatial_element){
360
+ marginals_hyperpar_list_spa[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for sp_id"]]))
361
+ colnames(marginals_hyperpar_list_spa[[i]]) <- c("x for sp_id", "y for sp_id")
362
+ }
363
+
364
+ if(i %in% L1_nl_element){
365
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
366
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
367
+ }
368
+
369
+ if(i %in% L2_prop_nl_element){
370
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
371
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
372
+ }
373
+
374
+ if(i %in% phylogenetic_element){
375
+ summary_random_list_phy[[i]] <- cbind(result[[i]]$summary.random$phy_id) %>%
376
+ rename(phy_id = ID) %>%
377
+ as.data.frame() %>%
378
+ mutate(across(where(is.numeric), round, 2))
379
+ }
380
+
381
+ if(i %in% spatial_element){
382
+ summary_random_list_spa[[i]] <- cbind(result[[i]]$summary.random$sp_id) %>%
383
+ rename(sp_id = ID) %>%
384
+ as.data.frame() %>%
385
+ mutate(across(where(is.numeric), round, 2))
386
+ }
387
+ }
388
+
389
+ #beepr::beep(5)
390
+
391
+ save(result, file = "output_models/models_Informativity_social.RData")
392
+
393
+
394
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
395
+ colnames(coefm) <- c("model", "WAIC")
396
+ coefm <- coefm %>%
397
+ mutate(across(.cols=2, as.numeric)) %>%
398
+ mutate(across(where(is.numeric), round, 2)) %>%
399
+ arrange(WAIC)
400
+
401
+ coefm$WAIC <- as.numeric(coefm$WAIC)
402
+ coefm <- coefm[order(coefm$WAIC),]
403
+
404
+ coefm_path <- paste("output_tables/", "waics", "Informativity_social_models", ".csv", collapse = "")
405
+ write.csv(coefm, coefm_path, row.names=FALSE)
406
+
407
+ for (i in 1:length(fitted_list)) {
408
+ fitted_list[[i]]$model <- names(fitted_list)[i]
409
+ }
410
+ fitted_list <- dplyr::bind_rows(fitted_list)
411
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Informativity_social_models", ".csv", collapse = "")
412
+ write.csv(fitted_list, fitted_list_path)
413
+
414
+ phy_effects<-as.data.frame(phy_effects_matrix)
415
+ spa_effects<-as.data.frame(spa_effects_matrix)
416
+ intercept_effects <- as.data.frame(intercept_matrix)
417
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
418
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
419
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
420
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
421
+ N_effects<-as.data.frame(social_effects_matrix_N)
422
+ E_effects<-as.data.frame(social_effects_matrix_E)
423
+ O_effects<-as.data.frame(social_effects_matrix_O)
424
+ interaction_effects <- as.data.frame(social_effects_matrix_L1_L2_prop)
425
+
426
+ phy_effects$effect <- "phylogenetic SD"
427
+ spa_effects$effect <- "spatial SD"
428
+ intercept_effects$effect <- "Intercept"
429
+ L1_effects$effect <- "L1"
430
+ L1_nl_effects$effect <- "social SD:\nL1"
431
+ L2_prop_effects$effect <- "L2 proportion"
432
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
433
+ N_effects$effect <- "Neighbours"
434
+ E_effects$effect <- "Education"
435
+ O_effects$effect <- "Official status"
436
+ interaction_effects$effect <- "L1*L2 proportion"
437
+
438
+ effs <- as.data.frame(rbind(phy_effects, spa_effects, intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects, interaction_effects))
439
+ effs <- effs %>%
440
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
441
+ mutate(across(where(is.numeric), round, 2)) %>%
442
+ na.omit() %>%
443
+ arrange(WAIC) %>%
444
+ relocate(model)
445
+
446
+ effs_path <- paste("output_tables/", "effects", "Informativity_social_models", ".csv", collapse = "")
447
+ write.csv(effs, effs_path, row.names=FALSE)
448
+
449
+ effs <- read.csv("output_tables/ effects Informativity_social_models .csv")
450
+
451
+ effs_table_Main <- effs %>%
452
+ rename("2.5%"=2,
453
+ "50%" = 3,
454
+ "97.5%" = 4) %>%
455
+ filter(!grepl("nonlinear", model))
456
+
457
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
458
+
459
+ effs_table_Main <- effs_table_Main %>%
460
+ relocate(effect, .after = model) %>%
461
+ flextable() %>%
462
+ flextable::bold(~ (`2.5%` > 0 & `97.5%` > 0) | (`2.5%` < 0 & `97.5%` < 0), 2) %>%
463
+ autofit() %>%
464
+ merge_v(j=c("model", "WAIC")) %>%
465
+ fix_border_issues() %>%
466
+ border_inner_h()
467
+
468
+ save_as_docx(
469
+ "Effects in informativity models with fixed and random effects" = effs_table_Main,
470
+ path = "output_tables/table_Main_effects_Informativity_social_models.docx")
471
+
472
+
473
+ effs_plot <- effs %>%
474
+ #filter(WAIC <= top_9) %>%
475
+ rename(lower=2,
476
+ upper = 4,
477
+ mean = 3) %>% #mean here refers to 0.5 quantile
478
+ #filter(!effect == "Intercept") %>%
479
+ mutate(effect = factor(effect, levels=c("phylogenetic SD", "spatial SD", "Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status", "L1*L2 proportion"))) %>%
480
+ mutate(WAIC = round(WAIC, 2)) %>%
481
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
482
+ group_by(WAIC) %>%
483
+ arrange(WAIC) %>%
484
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
485
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
486
+
487
+
488
+ #plot modified from function ggregplot::Efxplot
489
+ cols = c(brewer.pal(12, "Paired"))
490
+ cols = c(cols[c(12, 10)], "gray50", cols[c(1:8)])
491
+
492
+ show_col(cols)
493
+
494
+ plot_1 <- ggplot(effs_plot,
495
+ aes(y = as.factor(model),
496
+ x = mean,
497
+ group = effect,
498
+ colour = effect)) +
499
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
500
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
501
+ scale_color_manual(values=cols) +
502
+ ylab("Model of informativity") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
503
+ theme(axis.text=element_text(size=50),
504
+ legend.text=element_text(size=50),
505
+ axis.title=element_text(size=50),
506
+ legend.title=element_text(size=50),
507
+ legend.spacing.y = unit(1.5, 'cm')) +
508
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
509
+
510
+
511
+
512
+ #plot_1
513
+ ggsave(filename = 'output/SP_models_plot_Informativity_social_models.jpg',
514
+ plot_1, height = 20, width = 45)
515
+
516
+
517
+ #saving hyperparameters: Gaussian observations
518
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
519
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
520
+ }
521
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
522
+
523
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Informativity_social_models_marginals_hyperpar_gaussian.csv")
524
+
525
+ #saving hyperparameters: phylogenetic
526
+ for (i in 1:length(marginals_hyperpar_list_phy)) {
527
+ marginals_hyperpar_list_phy[[i]]$model <- names(marginals_hyperpar_list_phy)[i]
528
+ }
529
+ marginals_hyperpar_list_phy <- dplyr::bind_rows(marginals_hyperpar_list_phy)
530
+
531
+ write.csv(marginals_hyperpar_list_phy, "output_tables/Informativity_social_models_marginals_hyperpar_phylogenetic.csv")
532
+
533
+ #saving hyperparameters: spatial
534
+ for (i in 1:length(marginals_hyperpar_list_spa)) {
535
+ marginals_hyperpar_list_spa[[i]]$model <- names(marginals_hyperpar_list_spa)[i]
536
+ }
537
+ marginals_hyperpar_list_spa <- dplyr::bind_rows(marginals_hyperpar_list_spa)
538
+
539
+ write.csv(marginals_hyperpar_list_spa, "output_tables/Informativity_social_models_marginals_hyperpar_spatial.csv")
540
+
541
+
542
+ #saving summaries of random effects: phylogenetic
543
+ for (i in 1:length(summary_random_list_phy)) {
544
+ summary_random_list_phy[[i]]$model <- names(summary_random_list_phy)[i]
545
+ }
546
+ summary_random_list_phy <- dplyr::bind_rows(summary_random_list_phy)
547
+
548
+ write.csv(summary_random_list_phy, "output_tables/Informativity_social_models_summary_random_phy.csv")
549
+
550
+ #saving summaries of random effects: spatial
551
+ for (i in 1:length(summary_random_list_spa)) {
552
+ summary_random_list_spa[[i]]$model <- names(summary_random_list_spa)[i]
553
+ }
554
+ summary_random_list_spa <- dplyr::bind_rows(summary_random_list_spa)
555
+
556
+ write.csv(summary_random_list_spa, "output_tables/Informativity_social_models_summary_random_spa.csv")
101/replication_package/models_Informativity_social_only.R ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model fitting: Informativity predicted by social effects on top of random phylogenetic and spatial factors
2
+
3
+ #Script was written by Sam Passmore and modified by Olena Shcherbakova
4
+
5
+ source("requirements.R")
6
+
7
+ source("install_and_load_INLA.R")
8
+
9
+ source("set_up_inla.R")
10
+
11
+ metrics_joined <- metrics_joined %>%
12
+ filter(!is.na(L1_log10_st)) %>%
13
+ rename(L1_log_st = L1_log10_st) %>%
14
+ mutate(L1_copy = L1_log_st) %>%
15
+ filter(!is.na(L2_prop)) %>%
16
+ mutate(L2_copy = L2_prop) %>%
17
+ filter(!is.na(neighboring_languages_st)) %>%
18
+ filter(!is.na(Official)) %>%
19
+ filter(!is.na(Education)) %>%
20
+ filter(!is.na(boundness_st)) %>%
21
+ filter(!is.na(informativity_st))
22
+
23
+ #dropping tips not in Grambank
24
+ metrics_joined <- metrics_joined[metrics_joined$Language_ID %in% tree$tip.label, ]
25
+ tree <- keep.tip(tree, metrics_joined$Language_ID)
26
+
27
+ x <- assert_that(all(tree$tip.label %in% metrics_joined$Language_ID), msg = "The data and phylogeny taxa do not match")
28
+
29
+ ## Building standardized phylogenetic precision matrix
30
+ tree_scaled <- tree
31
+
32
+ tree_vcv = vcv.phylo(tree_scaled)
33
+ typical_phylogenetic_variance = exp(mean(log(diag(tree_vcv))))
34
+
35
+ #We opt for a sparse phylogenetic precision matrix (i.e. it is quantified using all nodes and tips), since sparse matrices make the analysis in INLA less time-intensive
36
+ tree_scaled$edge.length <- tree_scaled$edge.length/typical_phylogenetic_variance
37
+ phylo_prec_mat <- MCMCglmm::inverseA(tree_scaled,
38
+ nodes = "ALL",
39
+ scale = FALSE)$Ainv
40
+
41
+ metrics_joined = metrics_joined[order(match(metrics_joined$Language_ID, rownames(phylo_prec_mat))),]
42
+
43
+ #"local" set of parameters
44
+ ## Create spatial covariance matrix using the matern covariance function
45
+ spatial_covar_mat_1 = varcov.spatial(metrics_joined[,c("Longitude", "Latitude")],
46
+ cov.pars = phi_1, kappa = kappa)$varcov
47
+ # Calculate and standardize by the typical variance
48
+ typical_variance_spatial_1 = exp(mean(log(diag(spatial_covar_mat_1))))
49
+ spatial_cov_std_1 = spatial_covar_mat_1 / typical_variance_spatial_1
50
+ spatial_prec_mat_1 = solve(spatial_cov_std_1)
51
+ dimnames(spatial_prec_mat_1) = list(metrics_joined$Language_ID, metrics_joined$Language_ID)
52
+
53
+ ## Since we are using a sparse phylogenetic matrix, we are matching taxa to rows in the matrix
54
+ phy_id = match(tree$tip.label, rownames(phylo_prec_mat))
55
+ metrics_joined$phy_id = phy_id
56
+
57
+ ## Other effects are in the same order they appear in the dataset
58
+ metrics_joined$sp_id = 1:nrow(spatial_prec_mat_1)
59
+
60
+ #Preparing the formulas for 10 competing models to be used in inla() call
61
+ listcombo <- list(
62
+ c("L1_log_st"),
63
+
64
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)"),
65
+
66
+ c("L2_prop"),
67
+
68
+ c("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
69
+
70
+ c("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "f(inla.group(L2_copy), model='rw2', scale.model = TRUE)"),
71
+
72
+ c("L1_log_st", "L2_prop"),
73
+
74
+ c("L1_log10:L2_prop"),
75
+
76
+ c("neighboring_languages_st"),
77
+
78
+ c("Official"),
79
+
80
+ c("Education"))
81
+
82
+
83
+ predterms <- lapply(listcombo, function(x) paste(x, collapse="+"))
84
+
85
+ predterms <- t(as.data.frame(predterms))
86
+
87
+ predterms_short <- predterms
88
+
89
+ predterms_short <- gsub("f(inla.group(L1_copy), model='rw2', scale.model = TRUE)", "L1 speakers (nonlinear)", predterms_short, fixed=TRUE)
90
+ predterms_short <- gsub("L1_log_st", "L1 speakers (linear)", predterms_short, fixed=TRUE)
91
+ predterms_short <- gsub("f(inla.group(L2_copy), model='rw2', scale.model = TRUE)", "L2 proportion (nonlinear)", predterms_short, fixed=TRUE)
92
+ predterms_short <- gsub("L2_prop", "L2 proportion (linear)", predterms_short, fixed=TRUE)
93
+ predterms_short <- gsub("neighboring_languages_st", "Neighbours", predterms_short, fixed=TRUE)
94
+
95
+ L1_element <- data.frame("judgement" = grepl("L1 speakers (linear)", predterms_short, fixed=TRUE),
96
+ number = 1:length(predterms_short))
97
+ L1_element <- L1_element[L1_element$judgement == TRUE,]$number
98
+
99
+
100
+ L1_nl_element <- data.frame("judgement" = grepl("L1 speakers (nonlinear)", predterms_short, fixed=TRUE),
101
+ number = 1:length(predterms_short))
102
+ L1_nl_element <- L1_nl_element[L1_nl_element$judgement == TRUE,]$number
103
+
104
+ L2_prop_element <- data.frame("judgement" = grepl("L2 proportion (linear)", predterms_short, fixed=TRUE),
105
+ number = 1:length(predterms_short))
106
+ L2_prop_element <- L2_prop_element[L2_prop_element$judgement == TRUE,]$number
107
+ L2_prop_element <- L2_prop_element[-length(L2_prop_element)] #making sure that the interaction term (introduced below) is not treated as belonging to this isolated element
108
+
109
+ L2_prop_nl_element <- data.frame("judgement" = grepl("L2 proportion (nonlinear)", predterms_short, fixed=TRUE),
110
+ number = 1:length(predterms_short))
111
+ L2_prop_nl_element <- L2_prop_nl_element[L2_prop_nl_element$judgement == TRUE,]$number
112
+
113
+ #can use only part of the interaction term within grepl() function
114
+ interaction_element <- data.frame("judgement" = grepl(":L2 proportion", predterms_short),
115
+ number = 1:length(predterms_short))
116
+ interaction_element <- interaction_element[interaction_element$judgement == TRUE,]$number
117
+
118
+ neighbour_element <- data.frame("judgement" = grepl("Neighbours", predterms_short),
119
+ number = 1:length(predterms_short))
120
+ neighbour_element <- neighbour_element[neighbour_element$judgement == TRUE,]$number
121
+
122
+ official_element <- data.frame("judgement" = grepl("Official", predterms_short),
123
+ number = 1:length(predterms_short))
124
+ official_element <- official_element[official_element$judgement == TRUE,]$number
125
+
126
+ education_element <- data.frame("judgement" = grepl("Education", predterms_short),
127
+ number = 1:length(predterms_short))
128
+ education_element <- education_element[education_element$judgement == TRUE,]$number
129
+
130
+
131
+
132
+ #preparing empty matrices to be filled with effect estimates (quantiles), model name, and WAIC value
133
+ intercept_matrix <- matrix(NA, 10, 5)
134
+ colnames(intercept_matrix) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
135
+
136
+ social_effects_matrix_L1 <- matrix(NA, 10, 5)
137
+ colnames(social_effects_matrix_L1) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
138
+ social_effects_matrix_L1_nl <- matrix(NA, 10, 5)
139
+ colnames(social_effects_matrix_L1_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
140
+ social_effects_matrix_L2_prop <- matrix(NA, 10, 5)
141
+ colnames(social_effects_matrix_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
142
+ social_effects_matrix_L2_prop_nl <- matrix(NA, 10, 5)
143
+ colnames(social_effects_matrix_L2_prop_nl) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
144
+ social_effects_matrix_N <- matrix(NA, 10, 5)
145
+ colnames(social_effects_matrix_N) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
146
+ social_effects_matrix_O <- matrix(NA, 10, 5)
147
+ colnames(social_effects_matrix_O) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
148
+ social_effects_matrix_E <- matrix(NA, 10, 5)
149
+ colnames(social_effects_matrix_E) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
150
+ social_effects_matrix_L1_L2_prop <- matrix(NA, 10, 5)
151
+ colnames(social_effects_matrix_L1_L2_prop) <- c("2.5%", "50%", "97.5%", "model", "WAIC")
152
+
153
+ #fitted values
154
+ fitted_list <- vector("list", 10)
155
+ names(fitted_list) <- predterms_short
156
+
157
+ #marginals of hyperparameters
158
+ marginals_hyperpar_list_gaussian <- vector("list", 10)
159
+ names(marginals_hyperpar_list_gaussian) <- predterms_short
160
+
161
+ marginals_hyperpar_list_social_L1_nl <- vector("list", 10)
162
+ names(marginals_hyperpar_list_social_L1_nl) <- predterms_short
163
+
164
+ marginals_hyperpar_list_social_L2_prop_nl <- vector("list", 10)
165
+ names(marginals_hyperpar_list_social_L2_prop_nl) <- predterms_short
166
+
167
+
168
+ #marginals of fixed effects
169
+ marginals_fixed_list_Intercept <- vector("list", 10)
170
+ names(marginals_fixed_list_Intercept) <- predterms_short
171
+
172
+ marginals_fixed_list_L1 <- vector("list", 10)
173
+ names(marginals_fixed_list_L1) <- predterms_short
174
+
175
+ marginals_fixed_list_L2_prop <- vector("list", 10)
176
+ names(marginals_fixed_list_L2_prop) <- predterms_short
177
+
178
+ marginals_fixed_list_O <- vector("list", 10)
179
+ names(marginals_fixed_list_O) <- predterms_short
180
+
181
+ marginals_fixed_list_N <- vector("list", 10)
182
+ names(marginals_fixed_list_N) <- predterms_short
183
+
184
+ marginals_fixed_list_E <- vector("list", 10)
185
+ names(marginals_fixed_list_E) <- predterms_short
186
+
187
+ marginals_fixed_list_L1_L2_prop <- vector("list", 10)
188
+ names(marginals_fixed_list_L1_L2_prop) <- predterms_short
189
+
190
+
191
+
192
+
193
+ #summary statistics of random effects
194
+ summary_random_list_social_L1_nl <- vector("list", 10)
195
+ names(summary_random_list_social_L1_nl) <- predterms_short
196
+
197
+ summary_random_list_social_L2_prop_nl <- vector("list", 10)
198
+ names(summary_random_list_social_L2_prop_nl) <- predterms_short
199
+
200
+
201
+ coefm <- matrix(NA,10,1)
202
+ result <- vector("list",10)
203
+
204
+ for(i in 1:10){
205
+ formula <- as.formula(paste("informativity_st ~ ",predterms[[i]]))
206
+ result[[i]] <- inla(formula, family="gaussian",
207
+ control.family = list(hyper = pcprior_hyper),
208
+ #control.inla = list(tolerance = 1e-8, h = 0.0001),
209
+ #tolerance: the tolerance for the optimisation of the hyperparameters
210
+ #h: the step-length for the gradient calculations for the hyperparameters.
211
+ data=metrics_joined, control.compute=list(waic=TRUE))
212
+
213
+ coefm[i,1] <- round(result[[i]]$waic$waic, 2)
214
+
215
+ intercept_matrix[i, 1:3] <- c(result[[i]]$summary.fixed[1,]$`0.025quant`, result[[i]]$summary.fixed[1,]$`0.5quant`, result[[i]]$summary.fixed[1,]$`0.975quant`)
216
+ intercept_matrix[i, 4] <- predterms_short[[i]]
217
+ intercept_matrix[i, 5] <- result[[i]]$waic$waic
218
+
219
+ marginals_fixed_list_Intercept[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["(Intercept)"]]))
220
+ colnames(marginals_fixed_list_Intercept[[i]]) <- c("x for Intercept", "y for Intercept")
221
+
222
+ if(i %in% L1_nl_element){
223
+ social_effects_matrix_L1_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
224
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L1_copy)`,
225
+ method = "linear") %>%
226
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
227
+ social_effects_matrix_L1_nl[i, 4] <- predterms_short[[i]]
228
+ social_effects_matrix_L1_nl[i, 5] <- result[[i]]$waic$waic
229
+ }
230
+
231
+ if(i %in% L2_prop_nl_element){
232
+ social_effects_matrix_L2_prop_nl[i, 1:3] <- inla.tmarginal(function(x) 1/sqrt(x),
233
+ result[[i]]$marginals.hyperpar$`Precision for inla.group(L2_copy)`,
234
+ method = "linear") %>%
235
+ inla.qmarginal(c(0.025, 0.5, 0.975), .)
236
+ social_effects_matrix_L2_prop_nl[i, 4] <- predterms_short[[i]]
237
+ social_effects_matrix_L2_prop_nl[i, 5] <- result[[i]]$waic$waic
238
+ }
239
+
240
+ if(i %in% L1_element) {
241
+ social_effects_matrix_L1[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log_st",]$`0.025quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.5quant`, result[[i]]$summary.fixed["L1_log_st",]$`0.975quant`)
242
+ social_effects_matrix_L1[i, 4] <- predterms_short[[i]]
243
+ social_effects_matrix_L1[i, 5] <- result[[i]]$waic$waic
244
+
245
+ marginals_fixed_list_L1[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log_st"]]))
246
+ colnames(marginals_fixed_list_L1[[i]]) <- c("x for L1", "y for L1")
247
+ }
248
+
249
+ if(i %in% L2_prop_element) {
250
+ social_effects_matrix_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L2_prop",]$`0.975quant`)
251
+ social_effects_matrix_L2_prop[i, 4] <- predterms_short[[i]]
252
+ social_effects_matrix_L2_prop[i, 5] <- result[[i]]$waic$waic
253
+
254
+ marginals_fixed_list_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L2_prop"]]))
255
+ colnames(marginals_fixed_list_L2_prop[[i]]) <- c("x for L2 proportion", "y for L2 proportion")
256
+ }
257
+
258
+ if(i %in% interaction_element) {
259
+ social_effects_matrix_L1_L2_prop[i, 1:3] <- c(result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.025quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.5quant`, result[[i]]$summary.fixed["L1_log10:L2_prop",]$`0.975quant`)
260
+ social_effects_matrix_L1_L2_prop[i, 4] <- predterms_short[[i]]
261
+ social_effects_matrix_L1_L2_prop[i, 5] <- result[[i]]$waic$waic
262
+
263
+ marginals_fixed_list_L1_L2_prop[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][["L1_log10:L2_prop"]]))
264
+ colnames(marginals_fixed_list_L1_L2_prop[[i]]) <- c("x for L1*L2 proportion", "y for L1*L2 proportion")
265
+ }
266
+
267
+ if(i %in% neighbour_element) {
268
+ social_effects_matrix_N[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
269
+ social_effects_matrix_N[i, 4] <- predterms_short[[i]]
270
+ social_effects_matrix_N[i, 5] <- result[[i]]$waic$waic
271
+
272
+ marginals_fixed_list_N[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
273
+ colnames(marginals_fixed_list_N[[i]]) <- c("x for Neighbours", "y for Neighbours")
274
+ }
275
+
276
+ if(i %in% official_element) {
277
+ social_effects_matrix_O[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
278
+ social_effects_matrix_O[i, 4] <- predterms_short[[i]]
279
+ social_effects_matrix_O[i, 5] <- result[[i]]$waic$waic
280
+
281
+ marginals_fixed_list_O[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
282
+ colnames(marginals_fixed_list_O[[i]]) <- c("x for Official", "y for Official")
283
+ }
284
+
285
+ if(i %in% education_element) {
286
+ social_effects_matrix_E[i, 1:3] <- c(result[[i]]$summary.fixed[2,]$`0.025quant`, result[[i]]$summary.fixed[2,]$`0.5quant`, result[[i]]$summary.fixed[2,]$`0.975quant`)
287
+ social_effects_matrix_E[i, 4] <- predterms_short[[i]]
288
+ social_effects_matrix_E[i, 5] <- result[[i]]$waic$waic
289
+
290
+ marginals_fixed_list_E[[i]] <- as.data.frame(cbind(result[[i]][["marginals.fixed"]][[2]]))
291
+ colnames(marginals_fixed_list_E[[i]]) <- c("x for Education", "y for Education")
292
+ }
293
+
294
+ fitted_list[[i]] <- result[[i]]$summary.fitted.values
295
+ fitted_list[[i]] <- fitted_list[[i]] %>%
296
+ mutate(across(where(is.numeric), round, 2))
297
+
298
+ marginals_hyperpar_list_gaussian[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for the Gaussian observations"]]))
299
+ colnames(marginals_hyperpar_list_gaussian[[i]]) <- c("x for the Gaussian observations", "y for the Gaussian observations")
300
+
301
+ if(i %in% L1_nl_element){
302
+ marginals_hyperpar_list_social_L1_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L1_copy)"]]))
303
+ colnames(marginals_hyperpar_list_social_L1_nl[[i]]) <- c("x for inla.group(L1_copy)", "y for inla.group(L1_copy)")
304
+ }
305
+
306
+ if(i %in% L2_prop_nl_element){
307
+ marginals_hyperpar_list_social_L2_prop_nl[[i]] <- as.data.frame(cbind(result[[i]]$marginals.hyperpar[["Precision for inla.group(L2_copy)"]]))
308
+ colnames(marginals_hyperpar_list_social_L2_prop_nl[[i]]) <- c("x for inla.group(L2_copy)", "y for inla.group(L2_copy)")
309
+ }
310
+ }
311
+
312
+ #beepr::beep(5)
313
+
314
+ save(result, file = "output_models/models_Informativity_social_only.RData")
315
+
316
+
317
+ coefm <- as.data.frame(cbind(predterms_short, coefm))
318
+ colnames(coefm) <- c("model", "WAIC")
319
+ coefm <- coefm %>%
320
+ mutate(across(.cols=2, as.numeric)) %>%
321
+ mutate(across(where(is.numeric), round, 2)) %>%
322
+ arrange(WAIC)
323
+
324
+ coefm$WAIC <- as.numeric(coefm$WAIC)
325
+ coefm <- coefm[order(coefm$WAIC),]
326
+
327
+ coefm_path <- paste("output_tables/", "waics", "Informativity_social_only_models", ".csv", collapse = "")
328
+ write.csv(coefm, coefm_path, row.names=FALSE)
329
+
330
+ for (i in 1:length(fitted_list)) {
331
+ fitted_list[[i]]$model <- names(fitted_list)[i]
332
+ }
333
+ fitted_list <- dplyr::bind_rows(fitted_list)
334
+ fitted_list_path <- paste("output_tables/", "fitted_list", "Informativity_social_only_models", ".csv", collapse = "")
335
+ write.csv(fitted_list, fitted_list_path)
336
+
337
+ intercept_effects <- as.data.frame(intercept_matrix)
338
+ L1_effects <- as.data.frame(social_effects_matrix_L1)
339
+ L1_nl_effects <- as.data.frame(social_effects_matrix_L1_nl)
340
+ L2_prop_effects <- as.data.frame(social_effects_matrix_L2_prop)
341
+ L2_prop_nl_effects <- as.data.frame(social_effects_matrix_L2_prop_nl)
342
+ N_effects<-as.data.frame(social_effects_matrix_N)
343
+ E_effects<-as.data.frame(social_effects_matrix_E)
344
+ O_effects<-as.data.frame(social_effects_matrix_O)
345
+ interaction_effects <- as.data.frame(social_effects_matrix_L1_L2_prop)
346
+
347
+ intercept_effects$effect <- "Intercept"
348
+ L1_effects$effect <- "L1"
349
+ L1_nl_effects$effect <- "social SD:\nL1"
350
+ L2_prop_effects$effect <- "L2 proportion"
351
+ L2_prop_nl_effects$effect <- "social SD:\nL2 proportion"
352
+ N_effects$effect <- "Neighbours"
353
+ E_effects$effect <- "Education"
354
+ O_effects$effect <- "Official status"
355
+ interaction_effects$effect <- "L1*L2 proportion"
356
+
357
+ effs <- as.data.frame(rbind(intercept_effects, L1_effects, L1_nl_effects, L2_prop_effects, L2_prop_nl_effects, N_effects, O_effects, E_effects, interaction_effects))
358
+ effs <- effs %>%
359
+ mutate(across(.cols=c(1:3, 5), as.numeric)) %>%
360
+ mutate(across(where(is.numeric), round, 2)) %>%
361
+ na.omit() %>%
362
+ arrange(WAIC) %>%
363
+ relocate(model)
364
+
365
+ effs_path <- paste("output_tables/", "effects", "Informativity_social_only_models", ".csv", collapse = "")
366
+ write.csv(effs, effs_path, row.names=FALSE)
367
+
368
+ effs <- read.csv("output_tables/ effects Informativity_social_only_models .csv")
369
+
370
+ effs_table_SM <- effs %>%
371
+ rename("2.5%"=2,
372
+ "50%" = 4,
373
+ "97.5%" = 3) %>%
374
+ flextable() %>%
375
+ autofit() %>%
376
+ merge_v(j=c("model", "WAIC")) %>%
377
+ fix_border_issues() %>%
378
+ border_inner_h()
379
+
380
+ save_as_docx(
381
+ "Effects in informativity models with fixed and random effects (including non-linear implementations of some fixed effects)" = effs_table_SM,
382
+ path = "output_tables/table_SM_effects_Informativity_social_only_models.docx")
383
+
384
+ effs_table_Main <- effs %>%
385
+ rename("2.5%"=2,
386
+ "50%" = 4,
387
+ "97.5%" = 3) %>%
388
+ filter(!grepl("nonlinear", model))
389
+
390
+ effs_table_Main$model <- gsub("(\\s*\\(\\w+\\))", "", effs_table_Main$model)
391
+
392
+ effs_table_Main <- effs_table_Main %>%
393
+ flextable() %>%
394
+ autofit() %>%
395
+ merge_v(j=c("model", "WAIC")) %>%
396
+ fix_border_issues() %>%
397
+ border_inner_h()
398
+
399
+ save_as_docx(
400
+ "Effects in informativity models with fixed and random effects" = effs_table_Main,
401
+ path = "output_tables/table_Main_effects_Informativity_social_only_models.docx")
402
+
403
+
404
+ effs_plot <- effs %>%
405
+ #filter(WAIC <= top_9) %>%
406
+ rename(lower=2,
407
+ upper = 4,
408
+ mean = 3) %>% #mean here refers to 0.5 quantile
409
+ #filter(!effect == "Intercept") %>%
410
+ mutate(effect = factor(effect, levels=c("Intercept", "social SD:\nL1", "L1", "social SD:\nL2 proportion", "L2 proportion", "Neighbours", "Education", "Official status", "L1*L2 proportion"))) %>%
411
+ mutate(WAIC = round(WAIC, 2)) %>%
412
+ unite("model", model, WAIC, sep = ",\nWAIC: ", remove=FALSE) %>%
413
+ group_by(WAIC) %>%
414
+ arrange(WAIC) %>%
415
+ mutate(model = forcats::fct_reorder(as.factor(model), WAIC)) %>% #reordering levels within model based on WAIC values
416
+ mutate(model = factor(model, levels=rev(levels(model)))) #reversing the order
417
+
418
+
419
+ #plot modified from function ggregplot::Efxplot
420
+ cols = c(brewer.pal(12, "Paired"))
421
+ cols = c("gray50", cols[c(1:8)])
422
+
423
+ show_col(cols)
424
+
425
+ plot_1 <- ggplot(effs_plot,
426
+ aes(y = as.factor(model),
427
+ x = mean,
428
+ group = effect,
429
+ colour = effect)) +
430
+ geom_pointrangeh(aes(xmin = lower, xmax = upper), position = position_dodge(w = 0.9), size = 1.5) +
431
+ geom_vline(aes(xintercept = 0),lty = 2) + labs(x = NULL) + #coord_flip() +
432
+ scale_color_manual(values=cols) +
433
+ ylab("Model of informativity") + xlab("Estimate") + labs(color = "Effect") + theme_classic() +
434
+ theme(axis.text=element_text(size=50),
435
+ legend.text=element_text(size=50),
436
+ axis.title=element_text(size=50),
437
+ legend.title=element_text(size=50),
438
+ legend.spacing.y = unit(1.5, 'cm')) +
439
+ guides(color = guide_legend(reverse = TRUE, byrow = TRUE))
440
+
441
+
442
+
443
+ #plot_1
444
+ ggsave(filename = 'output/SP_models_plot_Informativity_social_only_models.jpg',
445
+ plot_1, height = 20, width = 45)
446
+
447
+
448
+ #saving hyperparameters: Gaussian observations
449
+ for (i in 1:length(marginals_hyperpar_list_gaussian)) {
450
+ marginals_hyperpar_list_gaussian[[i]]$model <- names(marginals_hyperpar_list_gaussian)[i]
451
+ }
452
+ marginals_hyperpar_list_gaussian <- dplyr::bind_rows(marginals_hyperpar_list_gaussian)
453
+
454
+ write.csv(marginals_hyperpar_list_gaussian, "output_tables/Informativity_social_only_models_marginals_hyperpar_gaussian.csv")
101/replication_package/output/Bound_morph/bound_morph_score.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecd0d3d93eb4ab4d6e6878d47926bfdf88d788d4d95405bb7afc948079ca2951
3
+ size 69462
101/replication_package/output/Informativity/informativity_score.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:118f1ae7e51f874190a34faeef6a146e728c4cfeb200d6aa46f1d638a6c33e16
3
+ size 69173
101/replication_package/output_tables/ effects Boundness_phylogenetic_spatial_models .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfed9a25867240132c4fe5904e664139fbd556356b471fa8b4eab904770d5f93
3
+ size 1024
101/replication_package/output_tables/ effects Boundness_social_models .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee79ae8c8236dd59b5d42bad83276e804026345fb63236d437f28a303c84ce5
3
+ size 3976
101/replication_package/output_tables/ effects Boundness_social_models prior_0.01 .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e7d56a2f09b6efd8ffd98fa108ff67b2f204830629595847a27aea81149939
3
+ size 3959
101/replication_package/output_tables/ effects Boundness_social_models prior_0.5 .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e65e55557d35a540bb0b12107b4b4e1eeb81a7fda23a566493687a8476fead
3
+ size 3966
101/replication_package/output_tables/ effects Boundness_social_models prior_0.99 .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d25006009459bee25ec627686ed01fd8a872b8e05311a17995cdc2bd341ade26
3
+ size 3964
101/replication_package/output_tables/ effects Boundness_social_only_models .csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc3187df105f34b9934146aa4f8e2d4d067be5046b32843981bb2f0db02b3048
3
+ size 1503