anonymous-submission-acl2025 commited on
Commit
d552dff
·
1 Parent(s): a98ffee
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 105/paper.pdf +3 -0
  2. 105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_gov_bonds.csv +3 -0
  3. 105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_liabilities.csv +3 -0
  4. 105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Asset_Details.csv +3 -0
  5. 105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Safe_Liabilities.csv +3 -0
  6. 105/replication_package/Financial balance sheets non consolidated SNA 2008/Government_Safe_Liabilities.csv +3 -0
  7. 105/replication_package/Financial balance sheets non consolidated SNA 2008/Total liabilities.csv +3 -0
  8. 105/replication_package/GDP/GDP_current_prices.csv +3 -0
  9. 105/replication_package/GENERAL_IES/Parameters.m +22 -0
  10. 105/replication_package/GENERAL_IES/Table_6_theta_half.m +100 -0
  11. 105/replication_package/GENERAL_IES/Table_6_theta_two.m +100 -0
  12. 105/replication_package/GENERAL_IES/correct_params.m +45 -0
  13. 105/replication_package/GENERAL_IES/define_model.m +152 -0
  14. 105/replication_package/GENERAL_IES/make_Table_6_part_1.m +44 -0
  15. 105/replication_package/GENERAL_IES/simulate_with_disasters.m +19 -0
  16. 105/replication_package/GENERAL_IES/solve_and_simulate.m +84 -0
  17. 105/replication_package/GENERAL_IES/summarize_results.m +61 -0
  18. 105/replication_package/Make_OECD_data.do +684 -0
  19. 105/replication_package/ReadMe.pdf +3 -0
  20. 105/replication_package/Replicate_Empirical_Results.do +16 -0
  21. 105/replication_package/Replicate_Simulation_Results.m +40 -0
  22. 105/replication_package/UNIT_IES/Disaster_IRF.m +46 -0
  23. 105/replication_package/UNIT_IES/Parameters.m +22 -0
  24. 105/replication_package/UNIT_IES/Table_6_MU.m +94 -0
  25. 105/replication_package/UNIT_IES/Table_6_NU.m +94 -0
  26. 105/replication_package/UNIT_IES/Table_6_P.m +94 -0
  27. 105/replication_package/UNIT_IES/Tranquility.m +51 -0
  28. 105/replication_package/UNIT_IES/correct_params.m +45 -0
  29. 105/replication_package/UNIT_IES/define_model.m +139 -0
  30. 105/replication_package/UNIT_IES/make_Table_5.m +210 -0
  31. 105/replication_package/UNIT_IES/make_Table_6_part_2.m +60 -0
  32. 105/replication_package/UNIT_IES/rep_agent.m +66 -0
  33. 105/replication_package/UNIT_IES/simulate_with_disasters.m +19 -0
  34. 105/replication_package/UNIT_IES/solve_and_simulate.m +84 -0
  35. 105/replication_package/UNIT_IES/summarize_results.m +56 -0
  36. 105/replication_package/User Guide.pdf +3 -0
  37. 105/replication_package/Variable_Disaster_Size/Parameters.m +46 -0
  38. 105/replication_package/Variable_Disaster_Size/correct_params.m +45 -0
  39. 105/replication_package/Variable_Disaster_Size/define_model.m +142 -0
  40. 105/replication_package/Variable_Disaster_Size/make_Table_7.m +200 -0
  41. 105/replication_package/Variable_Disaster_Size/simulate_with_disasters.m +19 -0
  42. 105/replication_package/Variable_Disaster_Size/solve_and_simulate.m +84 -0
  43. 105/replication_package/Variable_Disaster_Size/summarize_results.m +55 -0
  44. 105/replication_package/examples/rbc/prepare_model.m +69 -0
  45. 105/replication_package/examples/rbc/prepare_model_auxiliary_functions.m +127 -0
  46. 105/replication_package/examples/rbc/solve_continuation.m +102 -0
  47. 105/replication_package/examples/rbc/solve_model.m +160 -0
  48. 105/replication_package/examples/rbc_EZ/prepare_model.m +88 -0
  49. 105/replication_package/examples/rbc_EZ/prepare_model_auxiliary_functions.m +106 -0
  50. 105/replication_package/examples/rbc_EZ/solve_model.m +104 -0
105/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f400ea5e7ad9695850fedeb786911509bc15785d2f93f9c5077b3a67df043325
3
+ size 881387
105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_gov_bonds.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847836042b8c20655ccefa8b019995882e1407948b594372a66b0056aadea271
3
+ size 502130
105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_liabilities.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64747220749fe3eae333298ff678591438ae19a9f08a1aa651c306bc9158853
3
+ size 1153426
105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Asset_Details.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:447da03cd373c357bdca599308266247fbe3a3115951d965cb6679dcce8a2df5
3
+ size 1092238
105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Safe_Liabilities.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8df4d6cfbfc9415b11754089a1e9a6278d0da1dbeb76ab85e09e8ddfda1572ac
3
+ size 1996412
105/replication_package/Financial balance sheets non consolidated SNA 2008/Government_Safe_Liabilities.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f230d212c89375d7252466681a17d53e570673cd976d3e36dfc755d65ff4c431
3
+ size 1268435
105/replication_package/Financial balance sheets non consolidated SNA 2008/Total liabilities.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea484dee1a87689447c1987f5b337acc86f23a02197c833105c8aa49ffe96393
3
+ size 6614345
105/replication_package/GDP/GDP_current_prices.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cea81d95092d1b07bfa92d0b08aa4c802192558d27c10848f3fc24b9cc9ae6d1
3
+ size 803870
105/replication_package/GENERAL_IES/Parameters.m ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ period_length = 0.25;
2
+
3
+ P = 1 - exp(-.04*period_length); % disaster probability
4
+
5
+ B = -log(1 - .32); % disaster size
6
+
7
+ meanB = B;
8
+
9
+ G = 0.025*period_length; % drift of log output
10
+
11
+ RHO = 0.04*period_length; % time preference rate
12
+
13
+ NU = 0.02*period_length; % replacement rate
14
+
15
+ MU = 0.05; % popoulation share of agent 1
16
+
17
+ ALPHA = 1/3; % capital share in output
18
+
19
+ TAU = 0; % bond duration - short-term bonds
20
+
21
+ GAMMA1 = 1.000001; % start with unit risk aversion
22
+ GAMMA2 = GAMMA1;
105/replication_package/GENERAL_IES/Table_6_theta_half.m ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % THETA = 0.5
2
+
3
+ load('model')
4
+ addpath('files')
5
+
6
+ Parameters;
7
+ THETA = 0.9999; % start with THETA close to 1, for which we have a good initial guess
8
+
9
+ % make the vector of parameters
10
+ params = eval(symparams);
11
+
12
+ % distribution of hatyp
13
+ nodes = exp([G,G-B]); % hatyp
14
+ weights = [1-P,P]; % corresponding probabilities
15
+
16
+ T = 2000/period_length; % simulate 2000 years
17
+
18
+ % disaster shock
19
+ rng('default')
20
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
21
+
22
+ GAMMA1 = 2.6;
23
+ GAMMA2 = GAMMA1;
24
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
26
+
27
+ % tolerance for the Newton solver
28
+ tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
29
+ % tolerance for the least squares solver (if a simple Newton fails)
30
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
31
+
32
+ solve_and_simulate;
33
+
34
+ %% Change THETA to 0.5
35
+
36
+ THETA = 0.5;
37
+ newparams = params;
38
+ newparams(logical(symparams==sym('THETA'))) = THETA;
39
+ burn=1;
40
+
41
+ correct_params;
42
+
43
+ %%
44
+
45
+ GAMMA1 = 2.6;
46
+ GAMMA2 = 4.15;
47
+
48
+ newparams = params;
49
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
50
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
51
+
52
+ burn=1;
53
+
54
+ correct_params;
55
+ simulate_with_disasters; % This file simulates the model with disasters.
56
+ summarize_results;
57
+
58
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
59
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
60
+ Table_vol = [vol_roe,vol_rb];
61
+
62
+ %%%%%%%%%%%%%%%%%%%%%%%%
63
+
64
+ GAMMA1=2.5;
65
+ GAMMA2=4.29;
66
+
67
+ burn=1;
68
+ newparams=params;
69
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
70
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
71
+
72
+ correct_params;
73
+
74
+ simulate_with_disasters;
75
+
76
+ summarize_results;
77
+
78
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
79
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
80
+ Table_vol = [Table_vol;vol_roe,vol_rb];
81
+
82
+ %%%%%%%%%%%%%%%%%%%%%
83
+ GAMMA1=2.4;
84
+ GAMMA2=4.54;
85
+
86
+ newparams=params;
87
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
88
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
89
+
90
+ correct_params;
91
+
92
+ simulate_with_disasters;
93
+
94
+ summarize_results;
95
+
96
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
97
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
98
+ Table_vol = [Table_vol;vol_roe,vol_rb];
99
+
100
+ save('Table_6_theta_half','Table*')
105/replication_package/GENERAL_IES/Table_6_theta_two.m ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % THETA = 0.5
2
+
3
+ load('model')
4
+ addpath('files')
5
+
6
+ Parameters;
7
+ THETA = 0.9999; % start with THETA close to 1, for which we have a good initial guess
8
+
9
+ % make the vector of parameters
10
+ params = eval(symparams);
11
+
12
+ % distribution of hatyp
13
+ nodes = exp([G,G-B]); % hatyp
14
+ weights = [1-P,P]; % corresponding probabilities
15
+
16
+ T = 2000/period_length; % simulate 2000 years
17
+
18
+ % disaster shock
19
+ rng('default')
20
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
21
+
22
+ GAMMA1 = 2.6;
23
+ GAMMA2 = GAMMA1;
24
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
26
+
27
+ % tolerance for the Newton solver
28
+ tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
29
+ % tolerance for the least squares solver (if a simple Newton fails)
30
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
31
+
32
+ solve_and_simulate;
33
+
34
+ %% Change THETA to 0.5
35
+
36
+ THETA = 2;
37
+ newparams = params;
38
+ newparams(logical(symparams==sym('THETA'))) = THETA;
39
+ burn=1;
40
+
41
+ correct_params;
42
+
43
+ %%
44
+
45
+ GAMMA1 = 2.6;
46
+ GAMMA2 = 4.15;
47
+
48
+ newparams = params;
49
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
50
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
51
+
52
+ burn=1;
53
+
54
+ correct_params;
55
+ simulate_with_disasters; % This file simulates the model with disasters.
56
+ summarize_results;
57
+
58
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
59
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
60
+ Table_vol = [vol_roe,vol_rb];
61
+
62
+ %%%%%%%%%%%%%%%%%%%%%%%%
63
+
64
+ GAMMA1=2.5;
65
+ GAMMA2=4.29;
66
+
67
+ burn=1;
68
+ newparams=params;
69
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
70
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
71
+
72
+ correct_params;
73
+
74
+ simulate_with_disasters;
75
+
76
+ summarize_results;
77
+
78
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
79
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
80
+ Table_vol = [Table_vol;vol_roe,vol_rb];
81
+
82
+ %%%%%%%%%%%%%%%%%%%%%
83
+ GAMMA1=2.4;
84
+ GAMMA2=4.54;
85
+
86
+ newparams=params;
87
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
88
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
89
+
90
+ correct_params;
91
+
92
+ simulate_with_disasters;
93
+
94
+ summarize_results;
95
+
96
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
97
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
98
+ Table_vol = [Table_vol;vol_roe,vol_rb];
99
+
100
+ save('Table_6_theta_two','Table*')
105/replication_package/GENERAL_IES/correct_params.m ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file changes the parameters gradually from their initival value to
2
+ % the target value
3
+
4
+ solve = 1;
5
+ stop = 0;
6
+ t = 0;
7
+
8
+ xt = state0;
9
+ params0 = params;
10
+ while stop==0
11
+ t = t + 1;
12
+
13
+ if t<=burn
14
+ factor = t/burn;
15
+ params = (1 - factor)*params0 + factor*newparams;
16
+ end
17
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
18
+
19
+ % if residuals are too large solve again
20
+ if norm(R(:))>testF && solve==1
21
+ t
22
+ [coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
23
+
24
+ % evaluate the new solution
25
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
26
+ end
27
+
28
+ newxt = nPhi(:,1); % assume no realized disasters
29
+
30
+ if t>burn+10 % after 10 periods start checking for convergence
31
+ if max(abs(newxt-xt))<1e-7
32
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
33
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
34
+
35
+ newxt = nPhi(:,1);
36
+ if max(abs(newxt-xt))<1e-7
37
+ stop = 1;
38
+ state0 = xt; % solution point
39
+ coeffs0 = coeffs;
40
+ end
41
+ end
42
+ end
43
+ xt = newxt;
44
+ end
45
+
105/replication_package/GENERAL_IES/define_model.m ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %-------------------------------------------------------------------------
2
+ % The model: Safe Assets - the case of general IES (THETA not equal 1)
3
+ %
4
+ % This file defines the model (see Appendix for the full derivation).
5
+ % Bonds are perfectly safe short-term assets.
6
+ %
7
+ % Variables are denoted by small letters and
8
+ % parameters by capital letters. Future values are denoted by suffix p.
9
+ %-------------------------------------------------------------------------
10
+
11
+ clear,clc
12
+
13
+ %% Symbolic variables
14
+
15
+ syms RHO GAMMA1 GAMMA2 NU MU THETA real
16
+ syms f1 f2 f1p f2p x1 x2 x1p x2p real
17
+ syms logq logqp tilp tilpp real
18
+ syms state1 state1p state2 state2p hatyp k1 tilb1 real
19
+ syms tila1 tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
20
+ syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p u1p_power u2p_power u1p u2p logf1 logf1p logf2 logf2p real
21
+ syms term1p term2p invr1p invr2p real
22
+
23
+ %% Parameters
24
+
25
+ symparams = [RHO,GAMMA1,GAMMA2,NU,MU,THETA];
26
+
27
+ %% State variables
28
+
29
+ state = [state1,state2]; % current period
30
+ statep = [state1p,state2p]; % future period
31
+
32
+ %% Control variables
33
+
34
+ control = [f1,f2,x1,x2,logq,tilp]; % current period
35
+ controlp = [f1p,f2p,x1p,x2p,logqp,tilpp]; % future period
36
+
37
+ %% shocks
38
+
39
+ shocks = hatyp;
40
+
41
+ %% auxiliary variables
42
+
43
+ logc1p = log(c1p);
44
+ logc2p = log(c2p);
45
+
46
+ invf1_ = 1/f1;
47
+ invf2_ = 1/f2;
48
+
49
+ logf1p_ = log(f1p);
50
+ logf2p_ = log(f2p);
51
+
52
+ invr1p_ = 1/r1p;
53
+ invr2p_ = 1/r2p;
54
+
55
+ q_ = exp(logq);
56
+ qp_ = exp(logqp);
57
+
58
+ invtila1_ = 1/tila1;
59
+ invtila2_ = 1/tila2;
60
+
61
+ rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
62
+ rbp_ = 1/q; % return on bond
63
+
64
+ %% MODEL CONDITIONS
65
+
66
+ invc1_ = 1 + 1/RHO*f1^(1 - THETA);
67
+
68
+ c1_ = 1/invc1;
69
+
70
+ invc1p_ = 1 + 1/RHO*f1p^(1 - THETA);
71
+
72
+ c1p_ = 1/invc1p;
73
+
74
+ invc2_ = 1 + 1/RHO*f2^(1-THETA);
75
+
76
+ c2_ = 1/invc2;
77
+
78
+ invc2p_ = 1 + 1/RHO*f2p^(1 - THETA);
79
+
80
+ c2p_ = 1/invc2p;
81
+
82
+ tila1_ = (1 + tilp)*state1 + state2;
83
+
84
+ tila2_ = tilp + 1 - tila1;
85
+
86
+ k1_ = x1*(1 - c1)*tila1/tilp;
87
+
88
+ eq0 = -(1 - k1) + x2*(1 - c2)*tila2/tilp;
89
+
90
+ tilb1_ = (1 - x1)*(1 - c1)*tila1;
91
+
92
+ eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
93
+
94
+ r1p_ = x1*rep + (1 - x1)*rbp;
95
+
96
+ r2p_ = x2*rep + (1 - x2)*rbp;
97
+
98
+ term1p_ = ((invc1 - 1)*r1p*invf1)^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
99
+ + NU*(1 - MU)*u2p^(1 - GAMMA1));
100
+
101
+ term2p_ = ((invc2 - 1)*r2p*invf2)^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
102
+ + NU*MU*u1p^(1 - GAMMA2));
103
+
104
+ eq2 = -1 + term1p;
105
+
106
+ eq3 = -1 + term2p;
107
+
108
+ u1p_power_ = RHO/(1 + RHO)*c1p^(1 - THETA) + 1/(1 + RHO)*c1p^(1 - THETA)*f1p^(1 - THETA);
109
+
110
+ u2p_power_ = RHO/(1 + RHO)*c2p^(1 - THETA) + 1/(1 + RHO)*c2p^(1 - THETA)*f2p^(1 - THETA);
111
+
112
+ u1p_ = u1p_power^(1/(1 - THETA));
113
+
114
+ u2p_ = u2p_power^(1/(1 - THETA));
115
+
116
+ eq4 = (rep - rbp)*term1p*invr1p;
117
+
118
+ eq5 = (rep - rbp)*term2p*invr2p;
119
+
120
+ %% Function f (Ef = 0 imposes model conditions)
121
+
122
+ f_fun = [eq0;eq1;eq2;eq3;eq4;eq5];
123
+
124
+ %% law of motion of state variables
125
+
126
+ Phi_fun = [k1 - NU*(k1 - MU); % law of motion of state1p
127
+ (1 - NU)*tilb1/(hatyp*q)]; % law of motion of state2p
128
+
129
+ %% collect auxiliary variables and functions
130
+
131
+ allvars=who;
132
+ auxfuns=[];
133
+ auxvars=[];
134
+ for i=1:length(allvars)
135
+ if strcmp(allvars{i}(end),'_')
136
+ eval(['tempfun=' allvars{i} ';'])
137
+ eval(['tempvar=' allvars{i}(1:end-1) ';'])
138
+ auxfuns=[auxfuns;tempfun];
139
+ auxvars=[auxvars;tempvar];
140
+ end
141
+ end
142
+
143
+ %% Approximation order (<=4)
144
+
145
+ order = 4;
146
+
147
+ %% Preprocess model and save
148
+
149
+ model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
150
+
151
+ save('model')
152
+
105/replication_package/GENERAL_IES/make_Table_6_part_1.m ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Table_6_theta_half;
2
+ Table_6_theta_two;
3
+
4
+ %% Display Table 6 (part 1)
5
+ clc
6
+ homefolder = pwd;
7
+ cd ..
8
+
9
+ diary on
10
+
11
+ disp('********** Table 6 **********')
12
+
13
+ load([homefolder '\Table_6_theta_half'])
14
+
15
+ Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
16
+
17
+ disp('THETA = 0.5')
18
+ disp(Table_6(3,:))
19
+
20
+ load([homefolder '\Table_6_theta_two'])
21
+
22
+ Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
23
+
24
+ disp('THETA = 2')
25
+ disp(Table_6(3,:))
26
+
27
+ %% Accuracy Measures
28
+ disp('Appendix Table 2: Accuracy Measures for Table 6')
29
+
30
+ load([homefolder '\Table_6_theta_half'])
31
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
32
+
33
+ disp('THETA = 0.5')
34
+ disp(Accuarcy(3,2:end))
35
+
36
+ load([homefolder '\Table_6_theta_two'])
37
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
38
+
39
+ disp('THETA = 2')
40
+ disp(Accuarcy(3,2:end))
41
+
42
+ diary off
43
+
44
+ cd(homefolder)
105/replication_package/GENERAL_IES/simulate_with_disasters.m ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Simulate with disasters
2
+ y_results = zeros(model.n_y,T+1);
3
+ x_results = zeros(model.n_x,T+1);
4
+ R_results = zeros(model.n_f,T+1);
5
+
6
+ x_results(:,1) = state0;
7
+
8
+ for t = 1:T
9
+ t
10
+ xt = x_results(:,t);
11
+
12
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
13
+
14
+ % store results
15
+ R_results(:,t) = R;
16
+ y_results(:,t) = g;
17
+
18
+ x_results(:,t+1) = nPhi(:,disaster(t+1));
19
+ end
105/replication_package/GENERAL_IES/solve_and_simulate.m ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file performs the following:
2
+ % 1. Solve the model by Taylor projection at the initial state.
3
+ % 2. Simulate the model without realized disasters.
4
+
5
+ %% make initial guess for a deterministic version of the model
6
+
7
+ % in a deterministic economy, the following variables are constant:
8
+
9
+ x1 = 1; % agents invests only in equity
10
+ x2 = 1;
11
+ tilp = 1/RHO; % price/earning ratio
12
+ hatyp = exp(G-meanB*P); % average growth
13
+ haty = hatyp;
14
+ rep = (1+tilp)/tilp*hatyp; % asset return
15
+ logq = log(1/rep); % price of bond
16
+ c1 = RHO/(1+RHO); % consumption/wealth ratio
17
+ c2 = c1;
18
+ logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
19
+ u1 = exp(logu1);
20
+ logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
21
+ u2 = exp(logu2);
22
+ f1 = (rep*u1);
23
+ f2 = (rep*u2);
24
+
25
+ k1 = MU;
26
+
27
+ tila1 = k1*(1+tilp);
28
+
29
+ state0 = [k1;0];
30
+ c0 = state0;
31
+
32
+ derivs0 = [f1;f2;x1;x2;logq;tilp];
33
+
34
+ derivs1 = zeros(model.n_f,model.n_x);
35
+ derivs2 = zeros(model.n_f,model.n_x^2);
36
+ derivs3 = zeros(model.n_f,model.n_x^3);
37
+ derivs4 = zeros(model.n_f,model.n_x^4);
38
+
39
+ if order==1
40
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
41
+ elseif order==2
42
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
43
+ elseif order==3
44
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
45
+ elseif order==4
46
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
47
+ end
48
+
49
+ %% solve the model
50
+
51
+ [coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
52
+
53
+ %% simulate the model
54
+
55
+ solve = 1;
56
+ stop = 0;
57
+ t = 0;
58
+ xt = state0;
59
+ while stop==0
60
+ t = t+1;
61
+ % evaluate the previous solution at the new point xt
62
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
63
+
64
+ % if residuals are too large solve again
65
+ if norm(R(:))>testF && solve==1
66
+ t
67
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
68
+
69
+ % evaluate the new solution
70
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
71
+ end
72
+
73
+ newxt = nPhi(:,disaster(t+1)); % new state
74
+
75
+ if t>=10 % after 10 periods start checking for convergence
76
+ if max(abs(newxt-xt))<1e-7
77
+ stop = 1;
78
+ state0 = xt;
79
+ coeffs0 = coeffs;
80
+ end
81
+ end
82
+ xt = newxt;
83
+ end
84
+
105/replication_package/GENERAL_IES/summarize_results.m ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ normal = logical(disaster==1); % normal periods
3
+ d = logical(disaster>1); % disaster periods
4
+
5
+ state1 = x_results(1,1:T);
6
+ state2 = x_results(2,1:T);
7
+
8
+ f1 = y_results(1,1:T);
9
+ x1 = y_results(3,1:T);
10
+ logq = y_results(5,1:T);
11
+ tilp=y_results(6,1:T);
12
+
13
+ invc1 = 1 + 1/RHO*f1.^(1 - THETA);
14
+ c1 = 1./invc1;
15
+
16
+ q = exp(logq);
17
+
18
+ tila1 = (1 + tilp).*state1(1:T) + state2(1:T);
19
+
20
+ k1 = x1.*(1 - c1).*tila1./tilp;
21
+ tilb1 = (1 - x1).*(1 - c1).*tila1;
22
+
23
+
24
+ W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
25
+ equity = k1 - NU*(k1 - MU);
26
+
27
+ debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
28
+ debt_to_GDP = -(1 - NU)*tilb1*period_length;
29
+
30
+ haty = nodes(1,double(disaster(1:T)));
31
+
32
+ % compute means by iterated expectations
33
+
34
+ roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
35
+ mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
36
+
37
+ period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
38
+ period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
39
+ vol_roe = sqrt(period_var_roe/period_length);
40
+
41
+ rb = log(1./q(1:T-1))/period_length; % this is log return on bonds
42
+ mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
43
+
44
+ Rb = 1./q(2:T-1);
45
+ period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
46
+ period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
47
+ vol_rb = sqrt(period_var_rb/period_length);
48
+
49
+ mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
50
+ mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
51
+ mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
52
+ mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
53
+
54
+ % mean_W1_share_excluding_labor = mean_W1_share*(1+L) - MU*L;
55
+ % mean_debt_to_assets_excluding_labor = mean_debt_to_assets*(1+L);
56
+ % mean_debt_to_GDP_including_labor = mean_debt_to_GDP/(1+L);
57
+ % mean_equity_excluding_labor = mean_equity*(1+L) - MU*L;
58
+
59
+ mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
60
+ mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
61
+ mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
105/replication_package/Make_OECD_data.do ADDED
@@ -0,0 +1,684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ clear
2
+
3
+ *set matsize 3000
4
+ set matsize 800
5
+ clear mata
6
+ set mem 500m
7
+ set more off
8
+ set logtype text
9
+ capture log close
10
+ *set linesize 255
11
+
12
+ // IMPORTANT!!! change working directory to the folder of this file
13
+
14
+ * cd "folder name"
15
+
16
+ // GDP current prices
17
+ clear
18
+
19
+ local folder="GDP"
20
+
21
+ insheet using "`folder'\GDP_current_prices.csv", n c case
22
+
23
+ des
24
+
25
+ tab PowerCode /* all number in millions */
26
+ tab Measure /* two types of measures - current price and ppp */
27
+ tab Transaction
28
+
29
+ keep if Measure=="Current prices"
30
+
31
+ keep Country Year Value
32
+
33
+ rename Value GDP
34
+
35
+ rename Country country
36
+ rename Year year
37
+
38
+
39
+ label var GDP "GDP current prices, Million of national currency"
40
+
41
+ save GDP, replace
42
+
43
+
44
+ // Step 1: make dataset.dta
45
+
46
+ clear
47
+
48
+ local folder="Financial balance sheets non consolidated SNA 2008"
49
+
50
+ * Total liabilities - all sectors
51
+
52
+ insheet using "`folder'\Total liabilities.csv", n c case
53
+
54
+ des
55
+
56
+ tab PowerCode /* all number in millions */
57
+ tab Measure /* two types of measures - national currency and USD */
58
+ tab Transaction
59
+
60
+ keep if Measure=="National currency, current prices"
61
+
62
+ keep Country Sector Time Value
63
+
64
+ rename Time Year
65
+ rename Value totliab
66
+
67
+ gen Sec=""
68
+
69
+ replace Sec="Total" if Sector=="Total economy"
70
+ replace Sec="World" if Sector=="Rest of the world"
71
+ replace Sec="Households" if Sector=="Households and NPISH"
72
+ replace Sec="Financials" if Sector=="Financial corporations"
73
+ replace Sec="nonFinancials" if Sector=="Non-financial corporations"
74
+ replace Sec="Gov" if Sector=="General Government"
75
+
76
+ keep if Sec~=""
77
+
78
+ keep Country Year Sec totliab
79
+
80
+ rename Country country
81
+ rename Year year
82
+ rename Sec sector
83
+ rename totliab totliab_
84
+
85
+ reshape wide totliab_, i(country year) j(sector) string
86
+
87
+ label var totliab_Total "Tota Liabilities - Total Economy"
88
+ label var totliab_World "Tota Liabilities - Rest of the World"
89
+ label var totliab_Households "Tota Liabilities - Households and NPISH"
90
+ label var totliab_Financials "Tota Liabilities - Financial corporations"
91
+ label var totliab_nonFinancials "Tota Liabilities - Non-financial corporations"
92
+
93
+ save total_liabilities, replace
94
+
95
+
96
+ //* Financial Corporations - safe liabilities
97
+ clear
98
+
99
+ insheet using "`folder'\Financial_Safe_Liabilities.csv", n c case
100
+
101
+ des
102
+
103
+ tab PowerCode /* all number in millions */
104
+ tab Measure /* two types of measures - national currency and USD */
105
+ tab Transaction
106
+ tab Sector /* only financial corporations */
107
+
108
+ keep if Measure=="National currency, current prices" & Sector=="Financial corporations"
109
+
110
+ keep Country Time Transaction Value
111
+
112
+ gen tran=""
113
+
114
+ replace tran="dep" if Transaction=="Currency and deposits"
115
+ replace tran="secur" if Transaction=="Debt securities"
116
+ replace tran="loan" if Transaction=="Loans"
117
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
118
+ replace tran="trade" if Transaction=="Trade credits and advances"
119
+
120
+ drop if tran==""
121
+
122
+ keep Country Time tran Value
123
+ rename Country country
124
+ rename Time year
125
+ rename Value fin_
126
+
127
+ reshape wide fin_, i(country year) j(tran) string
128
+
129
+ label var fin_dep "Currency and deposits - Financial corporations"
130
+ label var fin_secur "Debt securities - Financial corporations"
131
+ label var fin_loan "Loans - Financial corporations"
132
+ label var fin_mmf "Money market fund shares /units - Financial corporations"
133
+ label var fin_trade "Trade credits and advances - Financial corporations"
134
+
135
+
136
+ save financials_safe_items, replace
137
+
138
+
139
+ //* General Government - safe liabilities
140
+
141
+ clear
142
+
143
+ insheet using "`folder'\Government_Safe_Liabilities.csv", n c case
144
+
145
+ des
146
+
147
+ tab PowerCode /* all number in millions */
148
+ tab Measure /* two types of measures - national currency and USD */
149
+ tab Transaction
150
+ tab Sector /* only general government */
151
+
152
+ keep if Measure=="National currency, current prices" & Sector=="General Government"
153
+
154
+ keep Country Time Transaction Value
155
+
156
+ gen tran=""
157
+
158
+ replace tran="dep" if Transaction=="Currency and deposits"
159
+ replace tran="secur" if Transaction=="Debt securities"
160
+ replace tran="loan" if Transaction=="Loans"
161
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
162
+ replace tran="trade" if Transaction=="Trade credits and advances"
163
+
164
+ drop if tran==""
165
+
166
+ keep Country Time tran Value
167
+ rename Country country
168
+ rename Time year
169
+ rename Value gov_
170
+
171
+ reshape wide gov_, i(country year) j(tran) string
172
+
173
+
174
+ label var gov_dep "Currency and deposits - General Government"
175
+ label var gov_secur "Debt securities - General Government"
176
+ label var gov_loan "Loans - General Government"
177
+ label var gov_mmf "Money market fund shares /units - General Government"
178
+ label var gov_trade "Trade credits and advances - General Government"
179
+
180
+ save government_safe_items, replace
181
+
182
+ //* Central bank holdings of bonds (assume most of these holdings are government bonds)
183
+
184
+ clear
185
+
186
+ insheet using "`folder'\CentralBank_gov_bonds.csv", n c case
187
+
188
+ des
189
+
190
+ tab PowerCode /* all number in millions */
191
+ tab Measure /* two types of measures - national currency and USD */
192
+ tab Transaction
193
+ tab Sector /* only general government */
194
+
195
+ keep if Measure=="National currency, current prices" & Sector=="Central Bank"
196
+
197
+ keep Country Time Transaction Value
198
+
199
+ gen tran=""
200
+
201
+ replace tran="lbond" if Transaction=="Long-term debt securities"
202
+ replace tran="sbond" if Transaction=="Short-term debt securities"
203
+
204
+
205
+ drop if tran==""
206
+
207
+ keep Country Time tran Value
208
+ rename Country country
209
+ rename Time year
210
+ rename Value cb_
211
+
212
+ reshape wide cb_, i(country year) j(tran) string
213
+
214
+ save central_bank_bonds, replace
215
+
216
+ //* Central bank - safe and total liabilities
217
+
218
+ clear
219
+
220
+ insheet using "`folder'\CentralBank_liabilities.csv", n c case
221
+
222
+ des
223
+
224
+ tab PowerCode /* all number in millions */
225
+ tab Measure /* two types of measures - national currency and USD */
226
+ tab Transaction
227
+ tab Sector /* only Central Bank */
228
+
229
+ keep if Measure=="National currency, current prices" & Sector=="Central Bank"
230
+
231
+ keep Country Time Transaction Value
232
+
233
+ gen tran=""
234
+
235
+ replace tran="dep" if Transaction=="Currency and deposits"
236
+ replace tran="secur" if Transaction=="Debt securities"
237
+ replace tran="loan" if Transaction=="Loans"
238
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
239
+ replace tran="trade" if Transaction=="Trade credits and advances"
240
+ replace tran="totliab_Total" if Transaction=="Financial liabilities"
241
+
242
+ drop if tran==""
243
+
244
+ keep Country Time tran Value
245
+ rename Country country
246
+ rename Time year
247
+ rename Value cb_
248
+
249
+ reshape wide cb_, i(country year) j(tran) string
250
+
251
+
252
+ label var cb_dep "Currency and deposits - Central Bank"
253
+ label var cb_secur "Debt securities - Central Bank"
254
+ label var cb_loan "Loans - Central Bank"
255
+ label var cb_mmf "Money market fund shares /units - Central Bank"
256
+ label var cb_trade "Trade credits and advances - Central Bank"
257
+ label var cb_totliab_Total "Financial liabilities - Central Bank"
258
+
259
+ save cb_safe_items, replace
260
+
261
+ clear
262
+
263
+ use total_liabilities, replace
264
+
265
+ joinby country year using financials_safe_items, unmatched(both)
266
+ cap drop _merge
267
+
268
+ joinby country year using government_safe_items, unmatched(both)
269
+ cap drop _merge
270
+
271
+ joinby country year using central_bank_bonds, unmatched(both)
272
+ cap drop _merge
273
+
274
+ joinby country year using GDP, unmatched(master)
275
+ cap drop _merge
276
+
277
+ joinby country year using cb_safe_items, unmatched(master)
278
+ cap drop _merge
279
+
280
+ * replace missing values with zeros
281
+ foreach var of varlist fin_* gov_* cb_* {
282
+ replace `var'=0 if `var'==.
283
+ }
284
+
285
+ label var cb_lbond "Long-term debt securities held by the central bank"
286
+ label var cb_sbond "Short-term debt securities held by the central bank"
287
+
288
+
289
+ encode country, gen(countrys)
290
+
291
+ drop country
292
+ rename countrys country
293
+
294
+ tsset country year
295
+
296
+ save dataset, replace
297
+
298
+ //* Compute variables in USD
299
+ * Total liabilities - all sectors
300
+
301
+ clear
302
+
303
+ insheet using "`folder'\Total liabilities.csv", n c case
304
+
305
+ des
306
+
307
+ tab PowerCode /* all number in millions */
308
+ tab Measure /* two types of measures - national currency and USD */
309
+ tab Transaction
310
+
311
+
312
+ *keep if Measure=="National currency, current prices"
313
+ keep if Measure=="US $, current prices, current exchange rates, end of period"
314
+
315
+ keep Country Sector Time Value
316
+
317
+ rename Time Year
318
+ rename Value totliab
319
+
320
+ gen Sec=""
321
+
322
+ replace Sec="Total" if Sector=="Total economy"
323
+ replace Sec="World" if Sector=="Rest of the world"
324
+ replace Sec="Households" if Sector=="Households and NPISH"
325
+ replace Sec="Financials" if Sector=="Financial corporations"
326
+ replace Sec="nonFinancials" if Sector=="Non-financial corporations"
327
+ replace Sec="Gov" if Sector=="General Government"
328
+
329
+ keep if Sec~=""
330
+
331
+ keep Country Year Sec totliab
332
+
333
+ rename Country country
334
+ rename Year year
335
+ rename Sec sector
336
+ rename totliab totliab_
337
+
338
+ reshape wide totliab_, i(country year) j(sector) string
339
+
340
+ label var totliab_Total "Tota Liabilities - Total Economy"
341
+ label var totliab_World "Tota Liabilities - Rest of the World"
342
+ label var totliab_Households "Tota Liabilities - Households and NPISH"
343
+ label var totliab_Financials "Tota Liabilities - Financial corporations"
344
+ label var totliab_nonFinancials "Tota Liabilities - Non-financial corporations"
345
+
346
+ save total_liabilitiesUSD, replace
347
+
348
+ */
349
+
350
+ //* Financial Corporations - safe liabilities
351
+ clear
352
+
353
+ insheet using "`folder'\Financial_Safe_Liabilities.csv", n c case
354
+
355
+ des
356
+
357
+ tab PowerCode /* all number in millions */
358
+ tab Measure /* two types of measures - national currency and USD */
359
+ tab Transaction
360
+ tab Sector /* only financial corporations */
361
+
362
+ *keep if Measure=="National currency, current prices" & Sector=="Financial corporations"
363
+ keep if Measure=="US $, current prices, current exchange rates, end of period"
364
+
365
+ keep Country Time Transaction Value
366
+
367
+ gen tran=""
368
+
369
+ replace tran="dep" if Transaction=="Currency and deposits"
370
+ replace tran="secur" if Transaction=="Debt securities"
371
+ replace tran="loan" if Transaction=="Loans"
372
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
373
+ replace tran="trade" if Transaction=="Trade credits and advances"
374
+
375
+ drop if tran==""
376
+
377
+ keep Country Time tran Value
378
+ rename Country country
379
+ rename Time year
380
+ rename Value fin_
381
+
382
+ reshape wide fin_, i(country year) j(tran) string
383
+
384
+ label var fin_dep "Currency and deposits - Financial corporations"
385
+ label var fin_secur "Debt securities - Financial corporations"
386
+ label var fin_loan "Loans - Financial corporations"
387
+ label var fin_mmf "Money market fund shares /units - Financial corporations"
388
+ label var fin_trade "Trade credits and advances - Financial corporations"
389
+
390
+
391
+ save financials_safe_itemsUSD, replace
392
+
393
+ //* General Government - safe liabilities
394
+
395
+ clear
396
+
397
+ insheet using "`folder'\Government_Safe_Liabilities.csv", n c case
398
+
399
+ des
400
+
401
+ tab PowerCode /* all number in millions */
402
+ tab Measure /* two types of measures - national currency and USD */
403
+ tab Transaction
404
+ tab Sector /* only general government */
405
+
406
+ *keep if Measure=="National currency, current prices" & Sector=="General Government"
407
+ keep if Measure=="US $, current prices, current exchange rates, end of period"
408
+
409
+ keep Country Time Transaction Value
410
+
411
+ gen tran=""
412
+
413
+ replace tran="dep" if Transaction=="Currency and deposits"
414
+ replace tran="secur" if Transaction=="Debt securities"
415
+ replace tran="loan" if Transaction=="Loans"
416
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
417
+ replace tran="trade" if Transaction=="Trade credits and advances"
418
+
419
+ drop if tran==""
420
+
421
+ keep Country Time tran Value
422
+ rename Country country
423
+ rename Time year
424
+ rename Value gov_
425
+
426
+ reshape wide gov_, i(country year) j(tran) string
427
+
428
+
429
+ label var gov_dep "Currency and deposits - General Government"
430
+ label var gov_secur "Debt securities - General Government"
431
+ label var gov_loan "Loans - General Government"
432
+ label var gov_mmf "Money market fund shares /units - General Government"
433
+ label var gov_trade "Trade credits and advances - General Government"
434
+
435
+ save government_safe_itemsUSD, replace
436
+
437
+
438
+ //* Central bank holdings of bonds (assume most of these holdings are government bonds)
439
+
440
+ clear
441
+
442
+ insheet using "`folder'\CentralBank_gov_bonds.csv", n c case
443
+
444
+ des
445
+
446
+ tab PowerCode /* all number in millions */
447
+ tab Measure /* two types of measures - national currency and USD */
448
+ tab Transaction
449
+ tab Sector /* only general government */
450
+
451
+ *keep if Measure=="National currency, current prices" & Sector=="Central Bank"
452
+ keep if Measure=="US $, current prices, current exchange rates, end of period"
453
+
454
+ keep Country Time Transaction Value
455
+
456
+ gen tran=""
457
+
458
+ replace tran="lbond" if Transaction=="Long-term debt securities"
459
+ replace tran="sbond" if Transaction=="Short-term debt securities"
460
+
461
+
462
+ drop if tran==""
463
+
464
+ keep Country Time tran Value
465
+ rename Country country
466
+ rename Time year
467
+ rename Value cb_
468
+
469
+ reshape wide cb_, i(country year) j(tran) string
470
+
471
+ save central_bank_bondsUSD, replace
472
+
473
+
474
+ //* Central bank - safe and total liabilities
475
+
476
+ clear
477
+
478
+ insheet using "`folder'\CentralBank_liabilities.csv", n c case
479
+
480
+ des
481
+
482
+ tab PowerCode /* all number in millions */
483
+ tab Measure /* two types of measures - national currency and USD */
484
+ tab Transaction
485
+ tab Sector /* only Central Bank */
486
+
487
+ *keep if Measure=="National currency, current prices" & Sector=="Central Bank"
488
+ keep if Measure=="US $, current prices, current exchange rates, end of period"
489
+
490
+ keep Country Time Transaction Value
491
+
492
+ gen tran=""
493
+
494
+ replace tran="dep" if Transaction=="Currency and deposits"
495
+ replace tran="secur" if Transaction=="Debt securities"
496
+ replace tran="loan" if Transaction=="Loans"
497
+ replace tran="mmf" if Transaction=="Money market fund shares /units"
498
+ replace tran="trade" if Transaction=="Trade credits and advances"
499
+ replace tran="totliab_Total" if Transaction=="Financial liabilities"
500
+
501
+ drop if tran==""
502
+
503
+ keep Country Time tran Value
504
+ rename Country country
505
+ rename Time year
506
+ rename Value cb_
507
+
508
+ reshape wide cb_, i(country year) j(tran) string
509
+
510
+
511
+ label var cb_dep "Currency and deposits - Central Bank"
512
+ label var cb_secur "Debt securities - Central Bank"
513
+ label var cb_loan "Loans - Central Bank"
514
+ label var cb_mmf "Money market fund shares /units - Central Bank"
515
+ label var cb_trade "Trade credits and advances - Central Bank"
516
+ label var cb_totliab_Total "Financial liabilities - Central Bank"
517
+
518
+ save cb_safe_itemsUSD, replace
519
+
520
+ ***
521
+
522
+ clear
523
+
524
+ use total_liabilitiesUSD, replace
525
+
526
+ joinby country year using financials_safe_itemsUSD, unmatched(both)
527
+ cap drop _merge
528
+
529
+ joinby country year using government_safe_itemsUSD, unmatched(both)
530
+ cap drop _merge
531
+
532
+ joinby country year using central_bank_bondsUSD, unmatched(both)
533
+ cap drop _merge
534
+
535
+ joinby country year using cb_safe_itemsUSD, unmatched(both)
536
+ cap drop _merge
537
+
538
+
539
+ * replace missing values with zeros
540
+ foreach var of varlist fin_* gov_* cb_* {
541
+ replace `var'=0 if `var'==.
542
+ }
543
+
544
+ label var cb_lbond "Long-term debt securities held by the central bank"
545
+ label var cb_sbond "Short-term debt securities held by the central bank"
546
+
547
+
548
+ encode country, gen(countrys)
549
+
550
+ drop country
551
+ rename countrys country
552
+
553
+ tsset country year
554
+
555
+ save datasetUSD, replace
556
+
557
+ *** do USD aggregates
558
+
559
+ use datasetUSD, clear
560
+
561
+
562
+ gen fin_safeUSD=fin_dep+fin_loan+fin_mmf+fin_secur // remove trade credit and advances - it's a small part of financial debt and seems unrelated
563
+ gen cb_safeUSD=cb_dep+cb_loan+cb_mmf+cb_secur // remove trade credit and advances - it's a small part of financial debt and seems unrelated
564
+
565
+
566
+ gen gov_safeUSD=gov_dep+gov_loan+gov_mmf+gov_secur // remove trade credit and advnaces
567
+
568
+
569
+ rename totliab_Total totliab_TotalUSD
570
+
571
+ keep country year fin_safeUSD gov_safeUSD cb_safeUSD totliab_TotalUSD
572
+
573
+ sort country year
574
+ tsset country year
575
+
576
+
577
+ save safeUSD, replace
578
+
579
+ // Make world table
580
+
581
+ use safeUSD, clear
582
+
583
+ gen tempvar=fin_safeUSD+gov_safeUSD+totliab_TotalUSD
584
+
585
+ bysort country: egen minyear=min(year) if tempvar<.
586
+ bysort country: egen maxyear=max(year) if tempvar<.
587
+
588
+ keep if minyear<=1995
589
+ keep if year>=1995
590
+
591
+ keep if maxyear>=2017
592
+ keep if year<=2017
593
+
594
+ sort country year
595
+ tsset country year // panel is balanced
596
+
597
+
598
+ if r(balanced)!="strongly balanced" {
599
+ di "WARNING!!!! panel is not balanced"
600
+ }
601
+
602
+ preserve
603
+
604
+ keep if year==2017
605
+
606
+ keep country
607
+
608
+ gen OECD=1
609
+
610
+ save OECD, replace
611
+
612
+ restore
613
+
614
+
615
+ decode country, g(country_name)
616
+
617
+ bysort year: egen fin_safeWorld=total(fin_safeUSD)
618
+ bysort year: egen gov_safeWorld=total(gov_safeUSD)
619
+ bysort year: egen new_totalWorld=total(totliab_TotalUSD)
620
+
621
+ bysort year: egen cb_safeWorld=total(cb_safeUSD)
622
+
623
+ gen fin_shareWorld=fin_safeWorld/new_totalWorld
624
+ gen gov_shareWorld=gov_safeWorld/new_totalWorld
625
+ gen shareWorld=fin_shareWorld+gov_shareWorld
626
+
627
+ gen cb_shareWorld=cb_safeWorld/new_totalWorld
628
+
629
+ bysort year: egen fin_safeNonUS=total(fin_safeUSD) if country_name!="United States"
630
+ bysort year: egen gov_safeNonUS=total(gov_safeUSD) if country_name!="United States"
631
+ bysort year: egen new_totalNonUS=total(totliab_TotalUSD) if country_name!="United States"
632
+
633
+ bysort year: egen cb_safeNonUS=total(cb_safeUSD) if country_name!="United States"
634
+
635
+ gen fin_shareNonUS=fin_safeNonUS/new_totalNonUS
636
+ gen gov_shareNonUS=gov_safeNonUS/new_totalNonUS
637
+ gen shareNonUS=fin_shareNonUS+gov_shareNonUS
638
+
639
+ gen cb_shareNonUS=cb_safeNonUS/new_totalNonUS
640
+
641
+ sort country year
642
+
643
+ keep if country==country[1]
644
+
645
+ keep fin_shareWorld gov_shareWorld shareWorld cb_shareWorld fin_shareNonUS gov_shareNonUS shareNonUS cb_shareNonUS year
646
+
647
+
648
+ keep year fin_shareWorld gov_shareWorld shareWorld cb_shareWorld fin_shareNonUS gov_shareNonUS shareNonUS cb_shareNonUS
649
+
650
+ save World, replace
651
+
652
+
653
+ // Make final dataset
654
+
655
+ use dataset // non-consolidated data
656
+
657
+ joinby country year using safeUSD, unmatched(both)
658
+ cap drop _merge
659
+
660
+ joinby year using World, unmatched(both)
661
+ cap drop _merge
662
+
663
+ joinby country using OECD, unmatched(both)
664
+ cap drop _merge
665
+
666
+ cap drop fin_safe
667
+ cap drop cb_safe
668
+
669
+ label var gov_safeUSD "government safe liabilities in USD"
670
+ label var fin_shareWorld "financial liabilities (as share of total assets) for the whole world"
671
+ label var gov_shareWorld "government liabilities (as share of total assets) for the whole world"
672
+ label var cb_shareWorld "central bank liabilities (as share of total assets) for the whole world"
673
+ label var shareWorld "safe liabilities (as share of total assets) for the whole world"
674
+
675
+ label var fin_shareNonUS "financial liabilities (as share of total assets) for non-US sample"
676
+ label var gov_shareNonUS "government liabilities (as share of total assets) for non-US sample"
677
+ label var cb_shareNonUS "central bank liabilities (as share of total assets) for non-US sample"
678
+ label var shareNonUS "safe liabilities (as share of total assets) for non-US sample"
679
+
680
+ label var totliab_Gov "Tota Liabilities - Government"
681
+ label var OECD "dummy for OECD countries"
682
+
683
+ save OECD_data, replace
684
+
105/replication_package/ReadMe.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9068400c5ca91682b0dd81943ea676402c4cd3e4a0083709b46a65c0d502af1f
3
+ size 42724
105/replication_package/Replicate_Empirical_Results.do ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *************************************************************************************************************
2
+ * Replicate Tables 1-4 and Figures 1-2 of "Safe Assets" by Barro, Fernandez-Villaverde, Levintal and Mollerus
3
+ *************************************************************************************************************
4
+
5
+ clear all
6
+
7
+ clear mata
8
+ set mem 500m
9
+ set maxvar 32767
10
+ set more off
11
+ set linesize 255
12
+ cap log close
13
+
14
+ do make_Tables_1_to_3_Figures_1_and_2
15
+
16
+ do make_Table_4
105/replication_package/Replicate_Simulation_Results.m ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
+ % Replicate Tables 5-7 and Figure 3 of "Safe Assets" by Barro, Fernandez-Villaverde, Levintal and Mollerus
3
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
+
5
+ clear
6
+
7
+ %% open diary file
8
+
9
+ FID = fopen('Tables_5_to_7.txt','w');
10
+ fclose(FID);
11
+
12
+ diary Tables_5_to_7.txt
13
+ diary off
14
+
15
+ %% add folders to search path
16
+ homefolder = pwd;
17
+
18
+ addpath(genpath([homefolder '\solution_methods']));
19
+
20
+ %% define models
21
+
22
+ run('UNIT_IES\define_model'); % THETA = 1
23
+ run('GENERAL_IES\define_model'); % THETA ~= 1
24
+ run('Variable_Disaster_Size\define_model'); % THETA = 1, variable disaster size, defaultable long-term bonds
25
+
26
+
27
+ %% replicate Table 5
28
+ run('UNIT_IES\make_Table_5.m')
29
+
30
+ %% replicate Table 6
31
+ run('GENERAL_IES\make_Table_6_part_1.m')
32
+ run('UNIT_IES\make_Table_6_part_2.m')
33
+
34
+ %% replicate Table 7
35
+ run('Variable_Disaster_Size\make_Table_7.m')
36
+
37
+ %% replicate Figure 3
38
+ run('UNIT_IES\Disaster_IRF.m')
39
+
40
+
105/replication_package/UNIT_IES/Disaster_IRF.m ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Disaster Impulse response function
2
+
3
+ clear,clc,close all
4
+ addpath('files')
5
+
6
+ load('benchmark')
7
+
8
+ state0 = mean(tila1);
9
+ mean_W1_share0 = mean_W1_share;
10
+
11
+ T = 10/period_length + 1;
12
+
13
+ disaster = ones(1,T+1);
14
+ disaster(2) = 2;
15
+
16
+ simulate_with_disasters;
17
+ summarize_results;
18
+
19
+ W1_share = [mean_W1_share0;W1_share(:)];
20
+
21
+ % adjust for human capital
22
+ equity = equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
23
+ debt_to_assets = debt_to_assets/ALPHA;
24
+ W1_share = W1_share/ALPHA - (1 - ALPHA)/ALPHA*MU;
25
+
26
+ set(0, 'defaultFigurePaperPosition', [0 0 20 21.5]*30);
27
+ h = figure('color', [1 1 1], 'PaperType', 'A4');
28
+
29
+ subplot(2,2,1);
30
+ plot(W1_share);
31
+ title('W1/W')
32
+
33
+ subplot(2,2,2)
34
+ plot(rb);
35
+ title('rf')
36
+
37
+ subplot(2,2,3)
38
+ plot(equity);
39
+ title('K1')
40
+
41
+ subplot(2,2,4)
42
+ plot(debt_to_assets);
43
+ title('B1/assets')
44
+
45
+ cd ..
46
+ saveas(h,'Figure_3','jpg')
105/replication_package/UNIT_IES/Parameters.m ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ period_length = 0.25;
2
+
3
+ P = 1 - exp(-.04*period_length); % disaster probability
4
+
5
+ B = -log(1 - .32); % disaster size
6
+
7
+ meanB = B;
8
+
9
+ G = 0.025*period_length; % drift of log output
10
+
11
+ RHO = 0.04*period_length; % time preference rate
12
+
13
+ NU = 0.02*period_length; % replacement rate
14
+
15
+ MU = 0.05; % popoulation share of agent 1
16
+
17
+ ALPHA = 1/3; % capital share in output
18
+
19
+ TAU = 0; % bond duration - short-term bonds
20
+
21
+ GAMMA1 = 1.000001; % start with unit risk aversion
22
+ GAMMA2 = GAMMA1;
105/replication_package/UNIT_IES/Table_6_MU.m ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % MU = 0.1
2
+
3
+ load('model')
4
+ addpath('files')
5
+
6
+ Parameters;
7
+ MU = 0.1; % popoulation share of agent 1
8
+
9
+ % make the vector of parameters
10
+ params = eval(symparams);
11
+
12
+ % distribution of hatyp
13
+ nodes = exp([G,G-B]); % hatyp
14
+ weights = [1-P,P]; % corresponding probabilities
15
+
16
+ T = 2000/period_length; % simulate 2000 years
17
+
18
+ % disaster shock
19
+ rng('default')
20
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
21
+
22
+ GAMMA1 = 2.6;
23
+ GAMMA2 = GAMMA1;
24
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
26
+
27
+ % tolerance for the Newton solver
28
+ tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
29
+ % tolerance for the least squares solver (if a simple Newton fails)
30
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
31
+
32
+ solve_and_simulate;
33
+
34
+ %%%%%%%%%%%%%%%%%
35
+
36
+ GAMMA1 = 2.6;
37
+ GAMMA2 = 4.15;
38
+
39
+ newparams = params;
40
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
41
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
42
+
43
+ burn=1;
44
+
45
+ correct_params;
46
+ simulate_with_disasters; % This file simulates the model with disasters.
47
+ summarize_results;
48
+
49
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
50
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
51
+ Table_vol = [vol_roe,vol_rb];
52
+
53
+ %%%%%%%%%%%%%%%%%%%%%%%%
54
+
55
+ GAMMA1=2.5;
56
+ GAMMA2=4.29;
57
+
58
+ burn=1;
59
+ newparams=params;
60
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
61
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
62
+
63
+ correct_params;
64
+
65
+ simulate_with_disasters;
66
+
67
+ summarize_results;
68
+
69
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
70
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
71
+ Table_vol = [Table_vol;vol_roe,vol_rb];
72
+
73
+ %%%%%%%%%%%%%%%%%%%%%
74
+ GAMMA1=2.4;
75
+ GAMMA2=4.54;
76
+
77
+ newparams=params;
78
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
79
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
80
+
81
+ params=newparams;
82
+ xt=max(x_results);
83
+ [coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
84
+
85
+ simulate_with_disasters;
86
+
87
+ summarize_results;
88
+
89
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
90
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
91
+ Table_vol = [Table_vol;vol_roe,vol_rb];
92
+
93
+ save('Table_6_MU','Table*')
94
+
105/replication_package/UNIT_IES/Table_6_NU.m ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % NU = .03
2
+
3
+ load('model')
4
+ addpath('files')
5
+
6
+ Parameters;
7
+ NU = 0.03*period_length; % replacement rate
8
+
9
+ % make the vector of parameters
10
+ params = eval(symparams);
11
+
12
+ % distribution of hatyp
13
+ nodes = exp([G,G-B]); % hatyp
14
+ weights = [1-P,P]; % corresponding probabilities
15
+
16
+ T = 2000/period_length; % simulate 2000 years
17
+
18
+ % disaster shock
19
+ rng('default')
20
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
21
+
22
+ GAMMA1 = 2.6;
23
+ GAMMA2 = GAMMA1;
24
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
26
+
27
+ % tolerance for the Newton solver
28
+ tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
29
+ % tolerance for the least squares solver (if a simple Newton fails)
30
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
31
+
32
+ solve_and_simulate;
33
+
34
+ %%%%%%%%%%%%%%%%%
35
+
36
+ GAMMA1 = 2.6;
37
+ GAMMA2 = 4.15;
38
+
39
+ newparams = params;
40
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
41
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
42
+
43
+ burn=1;
44
+
45
+ correct_params;
46
+ simulate_with_disasters; % This file simulates the model with disasters.
47
+ summarize_results;
48
+
49
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
50
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
51
+ Table_vol = [vol_roe,vol_rb];
52
+
53
+ %%%%%%%%%%%%%%%%%%%%%%%%
54
+
55
+ GAMMA1=2.5;
56
+ GAMMA2=4.29;
57
+
58
+ burn=1;
59
+ newparams=params;
60
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
61
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
62
+
63
+ correct_params;
64
+
65
+ simulate_with_disasters;
66
+
67
+ summarize_results;
68
+
69
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
70
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
71
+ Table_vol = [Table_vol;vol_roe,vol_rb];
72
+
73
+ %%%%%%%%%%%%%%%%%%%%%
74
+ GAMMA1=2.4;
75
+ GAMMA2=4.54;
76
+
77
+ newparams=params;
78
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
79
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
80
+
81
+ params=newparams;
82
+ xt=max(x_results);
83
+ [coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
84
+
85
+ simulate_with_disasters;
86
+
87
+ summarize_results;
88
+
89
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
90
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
91
+ Table_vol = [Table_vol;vol_roe,vol_rb];
92
+
93
+
94
+ save('Table_6_NU','Table*')
105/replication_package/UNIT_IES/Table_6_P.m ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % P = .02
2
+
3
+ load('model')
4
+ addpath('files')
5
+
6
+ Parameters;
7
+ P = 1 - exp(-.02*period_length); % disaster probability
8
+
9
+ % make the vector of parameters
10
+ params = eval(symparams);
11
+
12
+ % distribution of hatyp
13
+ nodes = exp([G,G-B]); % hatyp
14
+ weights = [1-P,P]; % corresponding probabilities
15
+
16
+ T = 2000/period_length; % simulate 2000 years
17
+
18
+ % disaster shock
19
+ rng('default')
20
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
21
+
22
+ GAMMA1 = 2.6;
23
+ GAMMA2 = GAMMA1;
24
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
26
+
27
+ % tolerance for the Newton solver
28
+ tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
29
+ % tolerance for the least squares solver (if a simple Newton fails)
30
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
31
+
32
+ solve_and_simulate;
33
+
34
+ %%%%%%%%%%%%%%%%%
35
+
36
+ GAMMA1 = 2.6;
37
+ GAMMA2 = 4.15;
38
+
39
+ newparams = params;
40
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
41
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
42
+
43
+ burn=1;
44
+
45
+ correct_params;
46
+ simulate_with_disasters; % This file simulates the model with disasters.
47
+ summarize_results;
48
+
49
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
50
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
51
+ Table_vol = [vol_roe,vol_rb];
52
+
53
+ %%%%%%%%%%%%%%%%%%%%%%%%
54
+
55
+ GAMMA1=2.5;
56
+ GAMMA2=4.29;
57
+
58
+ burn=1;
59
+ newparams=params;
60
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
61
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
62
+
63
+ correct_params;
64
+
65
+ simulate_with_disasters;
66
+
67
+ summarize_results;
68
+
69
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
70
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
71
+ Table_vol = [Table_vol;vol_roe,vol_rb];
72
+
73
+ %%%%%%%%%%%%%%%%%%%%%
74
+ GAMMA1=2.4;
75
+ GAMMA2=4.54;
76
+
77
+ newparams=params;
78
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
79
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
80
+
81
+ params=newparams;
82
+ xt=max(x_results);
83
+ [coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
84
+
85
+ simulate_with_disasters;
86
+
87
+ summarize_results;
88
+
89
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
90
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
91
+ Table_vol = [Table_vol;vol_roe,vol_rb];
92
+
93
+ save('Table_6_P','Table*')
94
+
105/replication_package/UNIT_IES/Tranquility.m ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % 40 years of tranquility
2
+
3
+ clear,clc,close all
4
+ addpath('files')
5
+
6
+ load('benchmark')
7
+
8
+ state0 = mean(tila1);
9
+ mean_W1_share0 = mean_W1_share;
10
+
11
+ T40 = 40/period_length+1;
12
+ T = 2000;
13
+
14
+ disaster = ones(1,T+1);
15
+
16
+ simulate_with_disasters;
17
+ summarize_results;
18
+
19
+ W1_share = [mean_W1_share0;W1_share(:)];
20
+
21
+ % adjust for human capital
22
+ equity = equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
23
+ debt_to_assets = debt_to_assets/ALPHA;
24
+ W1_share = W1_share/ALPHA - (1 - ALPHA)/ALPHA*MU;
25
+
26
+ [W1_share(end),rb(end),equity(end),debt_to_assets(end)]
27
+
28
+ W1_share = W1_share(1:T40);
29
+ rf = rb(1:T40);
30
+ equity = equity(1:T40);
31
+ debt_to_assets = debt_to_assets(1:T40);
32
+
33
+ set(0, 'defaultFigurePaperPosition', [0 0 20 21.5]*30);
34
+ h = figure('color', [1 1 1], 'PaperType', 'A4');
35
+
36
+ subplot(2,2,1);
37
+ plot(W1_share);
38
+ title('W1/W')
39
+
40
+ subplot(2,2,2)
41
+ plot(rf);
42
+ title('rf')
43
+
44
+ subplot(2,2,3)
45
+ plot(equity);
46
+ title('K1')
47
+
48
+ subplot(2,2,4)
49
+ plot(debt_to_assets);
50
+ title('B1/assets')
51
+
105/replication_package/UNIT_IES/correct_params.m ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file changes the parameters gradually from their initival value to
2
+ % the target value
3
+
4
+ solve = 1;
5
+ stop = 0;
6
+ t = 0;
7
+
8
+ xt = state0;
9
+ params0 = params;
10
+ while stop==0
11
+ t = t + 1;
12
+
13
+ if t<=burn
14
+ factor = t/burn;
15
+ params = (1 - factor)*params0 + factor*newparams;
16
+ end
17
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
18
+
19
+ % if residuals are too large solve again
20
+ if norm(R(:))>testF && solve==1
21
+ t
22
+ [coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
23
+
24
+ % evaluate the new solution
25
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
26
+ end
27
+
28
+ newxt = nPhi(:,1); % assume no realized disasters
29
+
30
+ if t>burn+10 % after 10 periods start checking for convergence
31
+ if max(abs(newxt-xt))<1e-7
32
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
33
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
34
+
35
+ newxt = nPhi(:,1);
36
+ if max(abs(newxt-xt))<1e-7
37
+ stop = 1;
38
+ state0 = xt; % solution point
39
+ coeffs0 = coeffs;
40
+ end
41
+ end
42
+ end
43
+ xt = newxt;
44
+ end
45
+
105/replication_package/UNIT_IES/define_model.m ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %-------------------------------------------------------------------------
2
+ % The model: Safe Assets - the case of unit IES (THETA = 1)
3
+ %
4
+ % This file defines the baseline model (see Appendix for the full derivation).
5
+ % Bonds are short term perfectly safe.
6
+ %
7
+ % Variables are denoted by small letters and
8
+ % parameters by capital letters. Future values are denoted by suffix p.
9
+ %-------------------------------------------------------------------------
10
+
11
+ clear,clc
12
+
13
+ %% Symbolic variables
14
+
15
+ syms RHO GAMMA1 GAMMA2 NU MU TAU real
16
+ syms f1 f2 f1p f2p x1 x2 x1p x2p real
17
+ syms logq logqp tilp tilpp real
18
+ syms state1 state1p state2 state2p hatyp deltap k1 tilb1 real
19
+ syms tila1 tila1p tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
20
+ syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p logu1p logu2p u1p u2p logf1 logf1p logf2 logf2p real
21
+ syms term1p term2p invr1p invr2p real
22
+
23
+ %% Parameters
24
+
25
+ symparams = [RHO,GAMMA1,GAMMA2,NU,MU];
26
+
27
+ %% State variables
28
+
29
+ state = [tila1]; % current period
30
+ statep = [tila1p]; % future period
31
+
32
+ %% Control variables
33
+
34
+ control = [f1,f2,x1,x2,logq]; % current period
35
+ controlp = [f1p,f2p,x1p,x2p,logqp]; % future period
36
+
37
+ %% shocks
38
+
39
+ shocks = [hatyp];
40
+
41
+ %% auxiliary variables
42
+
43
+ tilp = 1/RHO; % price-dividend ratio for unit IES
44
+ tilpp = tilp; % next period
45
+
46
+ c1 = RHO/(1 + RHO); % consumption/wealth ratio of agent 1 for unit IES
47
+ c1p = c1; % next period
48
+
49
+ c2 = c1; % consumption/wealth ratio of agent 2 for unit IES
50
+ c2p = c2; % next period
51
+
52
+ logc1p = log(c1p);
53
+ logc2p = log(c2p);
54
+
55
+ invf1_ = 1/f1;
56
+ invf2_ = 1/f2;
57
+
58
+ logf1p_ = log(f1p);
59
+ logf2p_ = log(f2p);
60
+
61
+ invr1p_ = 1/r1p;
62
+ invr2p_ = 1/r2p;
63
+
64
+ q_ = exp(logq);
65
+ qp_ = exp(logqp);
66
+
67
+ invtila1_ = 1/tila1;
68
+ invtila2_ = 1/tila2;
69
+
70
+ rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
71
+ rbp_ = 1/q; % return on bond
72
+
73
+ u1p_ = exp(logu1p);
74
+ u2p_ = exp(logu2p);
75
+
76
+ %% MODEL CONDITIONS
77
+
78
+ tila2_ = tilp + 1 - tila1;
79
+
80
+ k1_ = x1*(1 - c1)*tila1/tilp;
81
+
82
+ tilb1_ = (1 - x1)*(1 - c1)*tila1;
83
+
84
+ eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
85
+
86
+ r1p_ = x1*rep + (1 - x1)*rbp;
87
+
88
+ r2p_ = x2*rep + (1 - x2)*rbp;
89
+
90
+ term1p_ = r1p^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
91
+ + NU*(1 - MU)*u2p^(1 - GAMMA1))*invf1^(1 - GAMMA1);
92
+
93
+ term2p_ = r2p^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
94
+ +NU*MU*u1p^(1 - GAMMA2))*invf2^(1 - GAMMA2);
95
+
96
+ eq2 = -1 + term1p; % define f1 = (E(r1p*u1p)^(1-GAMMA1))^(1/(1-GAMMA1))
97
+
98
+ eq3 = -1 + term2p; % define f2 similarly
99
+
100
+ logu1p_ = RHO/(1 + RHO)*logc1p + 1/(1 + RHO)*log(1 - c1p) + 1/(1 + RHO)*logf1p;
101
+
102
+ logu2p_ = RHO/(1 + RHO)*logc2p + 1/(1 + RHO)*log(1 - c2p) + 1/(1 + RHO)*logf2p;
103
+
104
+ eq4 = (rep - rbp)*term1p*invr1p;
105
+
106
+ eq5 = (rep - rbp)*term2p*invr2p;
107
+
108
+ %% Function f (Ef = 0 imposes model conditions)
109
+
110
+ f_fun = [eq1;eq2;eq3;eq4;eq5];
111
+
112
+ %% law of motion of state variables
113
+
114
+ Phi_fun = (1 + tilp)*(k1 - NU*(k1 - MU)) + (1 - NU)*tilb1/(hatyp*q); % law of motion of tila1
115
+
116
+ %% collect auxiliary variables and functions
117
+
118
+ allvars=who;
119
+ auxfuns=[];
120
+ auxvars=[];
121
+ for i=1:length(allvars)
122
+ if strcmp(allvars{i}(end),'_')
123
+ eval(['tempfun=' allvars{i} ';'])
124
+ eval(['tempvar=' allvars{i}(1:end-1) ';'])
125
+ auxfuns=[auxfuns;tempfun];
126
+ auxvars=[auxvars;tempvar];
127
+ end
128
+ end
129
+
130
+ %% Approximation order (<=4)
131
+
132
+ order = 4;
133
+
134
+ %% Preprocess model and save
135
+
136
+ model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
137
+
138
+ save('model')
139
+
105/replication_package/UNIT_IES/make_Table_5.m ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Table 5
2
+
3
+ clear,clc
4
+
5
+ load('model')
6
+ addpath('files')
7
+
8
+ Parameters;
9
+
10
+ % make the vector of parameters
11
+ params = eval(symparams);
12
+
13
+ % distribution of hatyp
14
+ nodes = exp([G,G-B]); % hatyp
15
+ weights = [1-P,P]; % corresponding probabilities
16
+
17
+ T = 2000/period_length; % simulate 2000 years
18
+
19
+ % disaster shock
20
+ rng('default')
21
+ disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
22
+
23
+ GAMMA1 = 3.85;
24
+ GAMMA2 = GAMMA1;
25
+ params(logical(symparams==sym('GAMMA1')))=GAMMA1;
26
+ params(logical(symparams==sym('GAMMA2')))=GAMMA2;
27
+
28
+ step_size=1;
29
+
30
+ % tolerance for the Newton solver
31
+ tolX = 1e-5; tolF = 1e-5; maxiter = 10; testF = 1e-5;
32
+ % tolerance for the least squares solver (if a simple Newton fails)
33
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
34
+
35
+ solve_and_simulate;
36
+
37
+ simulate_with_disasters; % This file simulates the model with disasters.
38
+
39
+ summarize_results;
40
+
41
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
42
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
43
+ Table_vol = [vol_roe,vol_rb];
44
+
45
+ %%
46
+ GAMMA1 = 3.3;
47
+ GAMMA2 = 3.89;
48
+
49
+ burn=1;
50
+ newparams = params;
51
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
52
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
53
+
54
+ correct_params;
55
+ simulate_with_disasters;
56
+ summarize_results;
57
+
58
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
59
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
60
+ Table_vol = [Table_vol;vol_roe,vol_rb];
61
+
62
+ %%
63
+ GAMMA1 = 2.9;
64
+ GAMMA2 = 3.98;
65
+
66
+ burn=5;
67
+
68
+ newparams = params;
69
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
70
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
71
+
72
+ correct_params;
73
+ simulate_with_disasters;
74
+ summarize_results;
75
+
76
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
77
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
78
+ Table_vol = [Table_vol;vol_roe,vol_rb];
79
+
80
+ %%
81
+ GAMMA1 = 2.8;
82
+ GAMMA2 = 4.02;
83
+
84
+ burn = 5;
85
+
86
+ newparams = params;
87
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
88
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
89
+
90
+ correct_params;
91
+ simulate_with_disasters;
92
+ summarize_results;
93
+
94
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
95
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
96
+ Table_vol = [Table_vol;vol_roe,vol_rb];
97
+
98
+ %%
99
+ GAMMA1 = 2.7;
100
+ GAMMA2 = 4.07;
101
+
102
+ burn = 5;
103
+
104
+ newparams = params;
105
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
106
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
107
+
108
+ correct_params;
109
+ simulate_with_disasters;
110
+ summarize_results;
111
+
112
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
113
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
114
+ Table_vol = [Table_vol;vol_roe,vol_rb];
115
+
116
+ %%
117
+ GAMMA1 = 2.6;
118
+ GAMMA2 = 4.15;
119
+
120
+ burn = 5;
121
+
122
+ newparams = params;
123
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
124
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
125
+
126
+ correct_params;
127
+ simulate_with_disasters;
128
+ summarize_results;
129
+
130
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
131
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
132
+ Table_vol = [Table_vol;vol_roe,vol_rb];
133
+
134
+ %%
135
+ GAMMA1 = 2.5;
136
+ GAMMA2 = 4.29;
137
+
138
+ burn=5;
139
+
140
+ newparams = params;
141
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
142
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
143
+
144
+ correct_params;
145
+ simulate_with_disasters;
146
+ summarize_results;
147
+
148
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
149
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
150
+ Table_vol = [Table_vol;vol_roe,vol_rb];
151
+
152
+ %%
153
+
154
+ GAMMA1 = 2.4;
155
+ GAMMA2 = 4.54;
156
+
157
+ burn=5;
158
+
159
+ newparams = params;
160
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
161
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
162
+
163
+ correct_params;
164
+ simulate_with_disasters;
165
+ summarize_results;
166
+
167
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
168
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
169
+ Table_vol = [Table_vol;vol_roe,vol_rb];
170
+
171
+ save('benchmark')
172
+
173
+ %%
174
+ GAMMA1 = 2.3;
175
+ GAMMA2 = 5.50;
176
+
177
+ burn=5;
178
+
179
+ newparams = params;
180
+ newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
181
+ newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
182
+
183
+ correct_params;
184
+ simulate_with_disasters;
185
+ summarize_results;
186
+
187
+ Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
188
+ Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
189
+ Table_vol = [Table_vol;vol_roe,vol_rb];
190
+
191
+ %% display Table 5
192
+ clc
193
+
194
+ homefolder = pwd;
195
+ cd ..
196
+ diary on
197
+
198
+ disp('********** Table 5 **********')
199
+
200
+ Table_5 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)]
201
+
202
+
203
+ %% display accuracy measure
204
+ disp('Appendix Table 1: Accuracy Measures for Table 5')
205
+
206
+ Accuracy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)]
207
+
208
+ diary off
209
+
210
+ cd(homefolder)
105/replication_package/UNIT_IES/make_Table_6_part_2.m ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Table_6_NU;
2
+ Table_6_P;
3
+ Table_6_MU;
4
+
5
+ %% Display Table 6 (part 2)
6
+ clc
7
+ homefolder = pwd;
8
+ cd ..
9
+ diary on
10
+
11
+ disp('********** Table 6 (continued) **********')
12
+
13
+ load([homefolder '\Table_6_NU'],'Table*')
14
+
15
+ Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
16
+
17
+ disp('nu = 0.03')
18
+ disp(Table_6(3,:))
19
+
20
+ load([homefolder '\Table_6_P'],'Table*')
21
+
22
+ Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
23
+
24
+ disp('p = 0.02')
25
+ disp(Table_6(3,:))
26
+
27
+ load([homefolder '\Table_6_MU'],'Table*')
28
+
29
+ Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
30
+
31
+ disp('mu = 0.1')
32
+ disp(Table_6(3,:))
33
+
34
+ %% Accuracy Measures
35
+ disp('Appendix Table 2 (continued): Accuarcy Measures for Table 6')
36
+
37
+ load([homefolder '\Table_6_NU'],'Table*')
38
+
39
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
40
+
41
+ disp('nu = 0.03')
42
+ disp(Accuarcy(3,2:end))
43
+
44
+ load([homefolder '\Table_6_P'],'Table*')
45
+
46
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
47
+
48
+ disp('p = 0.02')
49
+ disp(Accuarcy(3,2:end))
50
+
51
+ load([homefolder '\Table_6_MU'],'Table*')
52
+
53
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
54
+
55
+ disp('mu = 0.1')
56
+ disp(Accuarcy(3,2:end))
57
+
58
+ diary off
59
+
60
+ cd(homefolder)
105/replication_package/UNIT_IES/rep_agent.m ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Table 5
2
+
3
+ clear,clc
4
+
5
+ load('model')
6
+
7
+ addpath('files')
8
+
9
+ Parameters;
10
+
11
+ % make the vector of parameters
12
+ params = eval(symparams);
13
+
14
+ % distribution of hatyp and deltap
15
+ nodes = exp([G,G-B]); % hatyp
16
+ weights = [1-P,P]; % corresponding probabilities
17
+
18
+ rng('default')
19
+
20
+ T = 10; % for rep agent simulate for 10 periods only
21
+
22
+ % disaster shock
23
+ rng('default')
24
+
25
+ disaster = ones(1,T+1); % 1 for normal
26
+ disaster(ceil(T/2)) = 2; % 2 for disaster
27
+
28
+ % tolerance for the Newton solver
29
+ tolX = 1e-5; tolF = 1e-5; maxiter = 10; testF = 1e-5;
30
+ % tolerance for the least squares solver (if a simple Newton fails)
31
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
32
+
33
+ %%%%%%%%%%%%%%%%%
34
+
35
+ GAMMA1=1.000001;
36
+ GAMMA2=GAMMA1;
37
+ params(logical(symparams==sym('GAMMA1')))=GAMMA1;
38
+ params(logical(symparams==sym('GAMMA2')))=GAMMA2;
39
+
40
+ solve_and_simulate;
41
+
42
+ simulate_with_disasters; % This file simulates the model with disasters.
43
+
44
+ summarize_results;
45
+
46
+ Table = [GAMMA1,GAMMA2,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
47
+
48
+ %%
49
+
50
+ for GAMMA1 = [1.5,2,2.4,2.5:.5:6]
51
+ GAMMA2 = GAMMA1;
52
+
53
+ % update parameter values and solve the model for the new parameters
54
+ params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
55
+ params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
56
+ [coeffs,model] = tpsolve(coeffs,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
57
+
58
+ simulate_with_disasters; % This file simulates the model with disasters.
59
+
60
+ summarize_results;
61
+
62
+ Table = [Table;GAMMA1,GAMMA2,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
63
+ end
64
+
65
+ Table_5 = round(Table(:,[1,3,4]),3)
66
+
105/replication_package/UNIT_IES/simulate_with_disasters.m ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Simulate with disasters
2
+ y_results = zeros(model.n_y,T+1);
3
+ x_results = zeros(model.n_x,T+1);
4
+ R_results = zeros(model.n_f,T+1);
5
+
6
+ x_results(:,1) = state0;
7
+
8
+ for t = 1:T
9
+ t
10
+ xt = x_results(:,t);
11
+
12
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
13
+
14
+ % store results
15
+ R_results(:,t) = R;
16
+ y_results(:,t) = g;
17
+
18
+ x_results(:,t+1) = nPhi(:,disaster(t+1));
19
+ end
105/replication_package/UNIT_IES/solve_and_simulate.m ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file performs the following:
2
+ % 1. Solve the model by Taylor projection at the initial state.
3
+ % 2. Simulate the model without realized disasters.
4
+
5
+ %% make initial guess for a deterministic version of the model
6
+
7
+ % in a deterministic economy, the following variables are constant:
8
+
9
+ x1 = 1; % agents invests only in equity
10
+ x2 = 1;
11
+ tilp = 1/RHO; % price/earning ratio
12
+ hatyp = exp(G-meanB*P); % average growth
13
+ haty = hatyp;
14
+ rep = (1+tilp)/tilp*hatyp; % asset return
15
+ logq = log(1/rep); % price of bond
16
+ c1 = RHO/(1+RHO); % consumption/wealth ratio
17
+ c2 = c1;
18
+ logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
19
+ u1 = exp(logu1);
20
+ logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
21
+ u2 = exp(logu2);
22
+ f1 = (rep*u1);
23
+ f2 = (rep*u2);
24
+
25
+ k1 = MU;
26
+
27
+ tila1 = k1*(1+tilp);
28
+
29
+ state0 = tila1;
30
+ c0 = state0;
31
+
32
+ derivs0 = [f1;f2;x1;x2;logq];
33
+
34
+ derivs1 = zeros(model.n_f,model.n_x);
35
+ derivs2 = zeros(model.n_f,model.n_x^2);
36
+ derivs3 = zeros(model.n_f,model.n_x^3);
37
+ derivs4 = zeros(model.n_f,model.n_x^4);
38
+
39
+ if order==1
40
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
41
+ elseif order==2
42
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
43
+ elseif order==3
44
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
45
+ elseif order==4
46
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
47
+ end
48
+
49
+ %% solve the model
50
+
51
+ [coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
52
+
53
+ %% simulate the model
54
+
55
+ solve = 1;
56
+ stop = 0;
57
+ t = 0;
58
+ xt = state0;
59
+ while stop==0
60
+ t = t+1;
61
+ % evaluate the previous solution at the new point xt
62
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
63
+
64
+ % if residuals are too large solve again
65
+ if norm(R(:))>testF && solve==1
66
+ t
67
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
68
+
69
+ % evaluate the new solution
70
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
71
+ end
72
+
73
+ newxt = nPhi(:,disaster(t+1)); % new state
74
+
75
+ if t>=10 % after 10 periods start checking for convergence
76
+ if max(abs(newxt-xt))<1e-7
77
+ stop = 1;
78
+ state0 = xt;
79
+ coeffs0 = coeffs;
80
+ end
81
+ end
82
+ xt = newxt;
83
+ end
84
+
105/replication_package/UNIT_IES/summarize_results.m ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ normal = logical(disaster==1); % normal periods
3
+ d = logical(disaster>1); % disaster periods
4
+
5
+ tila1 = x_results(1,1:T);
6
+
7
+ x1 = y_results(3,1:T);
8
+ logq = y_results(5,1:T);
9
+
10
+ c1 = RHO/(1+RHO);
11
+ tilp = 1/RHO;
12
+ tilp = repmat(tilp,1,T);
13
+ q = exp(logq);
14
+
15
+ k1 = x1.*(1 - c1).*tila1./tilp;
16
+ tilb1 = (1 - x1).*(1 - c1).*tila1;
17
+
18
+
19
+ W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
20
+ equity = k1 - NU*(k1 - MU);
21
+
22
+ debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
23
+ debt_to_GDP = -(1 - NU)*tilb1*period_length;
24
+
25
+ haty = nodes(1,double(disaster(1:T)));
26
+
27
+ % compute means by iterated expectations
28
+
29
+ roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
30
+ mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
31
+
32
+ period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
33
+ period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
34
+ vol_roe = sqrt(period_var_roe/period_length);
35
+
36
+ rb = log(1./q(1:T-1))/period_length; % this is log return on bonds
37
+ mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
38
+
39
+ Rb = 1./q(2:T-1);
40
+ period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
41
+ period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
42
+ vol_rb = sqrt(period_var_rb/period_length);
43
+
44
+ mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
45
+ mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
46
+ mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
47
+ mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
48
+
49
+ % mean_W1_share_excluding_labor = mean_W1_share*(1+L) - MU*L;
50
+ % mean_debt_to_assets_excluding_labor = mean_debt_to_assets*(1+L);
51
+ % mean_debt_to_GDP_including_labor = mean_debt_to_GDP/(1+L);
52
+ % mean_equity_excluding_labor = mean_equity*(1+L) - MU*L;
53
+
54
+ mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
55
+ mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
56
+ mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
105/replication_package/User Guide.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae3ea65d6ead2e1e273aabe94a8a1f913ec926e7b77f7f75784b25d6db4748f
3
+ size 161394
105/replication_package/Variable_Disaster_Size/Parameters.m ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ period_length = 0.25;
2
+
3
+ P = 1 - exp(-.04*period_length); % disaster probability
4
+
5
+ % variable disaster size
6
+ B = -log(1 - [0.1384074;
7
+ 0.2375926;
8
+ 0.335;
9
+ 0.4331111;
10
+ 0.5516667;
11
+ 0.653]);
12
+
13
+ % distribution of disaster size
14
+ probB = [0.6;
15
+ 0.2;
16
+ 0.088888889;
17
+ 0.066666667;
18
+ 0.022222222;
19
+ 0.022222222];
20
+
21
+
22
+ meanB = B(:)'*probB;
23
+
24
+ Size = 1 - exp(-B(:)');
25
+ meanSize = Size*probB;
26
+ sdSize = sqrt((Size - meanSize).^2*probB(:));
27
+
28
+ G = 0.021*period_length; % drift of log output
29
+
30
+ RHO = 0.04*period_length; % time preference rate
31
+
32
+ NU = 0.02*period_length; % replacement rate
33
+
34
+ MU = 0.05; % popoulation share of agent 1
35
+
36
+ ALPHA = 1/3; % capital share in output
37
+
38
+ TAU = 0; % bond duration - start with short-term bonds
39
+
40
+ GAMMA1 = 1.000001; % start with unit risk aversion
41
+ GAMMA2 = GAMMA1;
42
+
43
+ delta_prob = 0.4; % default probability
44
+ delta_size = 0; % default size
45
+
46
+
105/replication_package/Variable_Disaster_Size/correct_params.m ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file changes the parameters gradually from their initival value to
2
+ % the target value
3
+
4
+ solve = 1;
5
+ stop = 0;
6
+ t = 0;
7
+
8
+ xt = state0;
9
+ params0 = params;
10
+ while stop==0
11
+ t = t + 1;
12
+
13
+ if t<=burn
14
+ factor = t/burn;
15
+ params = (1 - factor)*params0 + factor*newparams;
16
+ end
17
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
18
+
19
+ % if residuals are too large solve again
20
+ if norm(R(:))>testF && solve==1
21
+ t
22
+ [coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
23
+
24
+ % evaluate the new solution
25
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
26
+ end
27
+
28
+ newxt = nPhi(:,1); % assume no realized disasters
29
+
30
+ if t>burn+10 % after 10 periods start checking for convergence
31
+ if max(abs(newxt-xt))<1e-7
32
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
33
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
34
+
35
+ newxt = nPhi(:,1);
36
+ if max(abs(newxt-xt))<1e-7
37
+ stop = 1;
38
+ state0 = xt; % solution point
39
+ coeffs0 = coeffs;
40
+ end
41
+ end
42
+ end
43
+ xt = newxt;
44
+ end
45
+
105/replication_package/Variable_Disaster_Size/define_model.m ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %-------------------------------------------------------------------------
2
+ % The model: Safe Assets - the case of unit IES (THETA = 1)
3
+ % Bonds are long term and subject to a default shock deltap
4
+ %
5
+ % This file defines the model (see Appendix for the full derivation).
6
+ %
7
+ % Variables are denoted by small letters and
8
+ % parameters by capital letters. Future values are denoted by suffix p.
9
+ %-------------------------------------------------------------------------
10
+
11
+ clear,clc
12
+
13
+ %% Symbolic variables
14
+
15
+ syms RHO GAMMA1 GAMMA2 NU MU TAU real
16
+ syms f1 f2 f1p f2p x1 x2 x1p x2p real
17
+ syms logq logqp tilp tilpp real
18
+ syms state1 state1p state2 state2p hatyp deltap k1 tilb1 real
19
+ syms tila1 tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
20
+ syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p logu1p logu2p u1p u2p logf1 logf1p logf2 logf2p real
21
+ syms term1p term2p invr1p invr2p real
22
+
23
+ %% Parameters
24
+
25
+ symparams = [RHO,GAMMA1,GAMMA2,NU,MU,TAU];
26
+
27
+ %% State variables
28
+
29
+ state = [state1,state2]; % current period
30
+ statep = [state1p,state2p]; % future period
31
+
32
+ %% Control variables
33
+
34
+ control = [f1,f2,x1,x2,logq]; % current period
35
+ controlp = [f1p,f2p,x1p,x2p,logqp]; % future period
36
+
37
+ %% shocks
38
+
39
+ shocks = [hatyp,deltap];
40
+
41
+ %% auxiliary variables
42
+
43
+ tilp = 1/RHO; % price-dividend ratio for unit IES
44
+ tilpp = tilp; % next period
45
+
46
+ c1 = RHO/(1 + RHO); % consumption/wealth ratio of agent 1 for unit IES
47
+ c1p = c1; % next period
48
+
49
+ c2 = c1; % consumption/wealth ratio of agent 2 for unit IES
50
+ c2p = c2; % next period
51
+
52
+ logc1p = log(c1p);
53
+ logc2p = log(c2p);
54
+
55
+ invf1_ = 1/f1;
56
+ invf2_ = 1/f2;
57
+
58
+ logf1p_ = log(f1p);
59
+ logf2p_ = log(f2p);
60
+
61
+ invr1p_ = 1/r1p;
62
+ invr2p_ = 1/r2p;
63
+
64
+ q_ = exp(logq);
65
+ qp_ = exp(logqp);
66
+
67
+ invtila1_ = 1/tila1;
68
+ invtila2_ = 1/tila2;
69
+
70
+ rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
71
+ rbp_ = (1 + TAU*qp)/q*(1 - deltap); % return on bond
72
+
73
+ u1p_ = exp(logu1p);
74
+ u2p_ = exp(logu2p);
75
+
76
+ %% MODEL CONDITIONS
77
+
78
+ tila1_ = (1 + tilp)*state1 + state2*(1 + TAU*q);
79
+
80
+ tila2_ = tilp + 1 - tila1;
81
+
82
+ k1_ = x1*(1 - c1)*tila1/tilp;
83
+
84
+ tilb1_ = (1 - x1)*(1 - c1)*tila1;
85
+
86
+ eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
87
+
88
+ r1p_ = x1*rep + (1 - x1)*rbp;
89
+
90
+ r2p_ = x2*rep + (1 - x2)*rbp;
91
+
92
+ term1p_ = r1p^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
93
+ + NU*(1 - MU)*u2p^(1 - GAMMA1))*invf1^(1 - GAMMA1);
94
+
95
+ term2p_ = r2p^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
96
+ +NU*MU*u1p^(1 - GAMMA2))*invf2^(1 - GAMMA2);
97
+
98
+ eq2 = -1 + term1p; % define f1 = (E(r1p*u1p)^(1-GAMMA1))^(1/(1-GAMMA1))
99
+
100
+ eq3 = -1 + term2p; % define f2 similarly
101
+
102
+ logu1p_ = RHO/(1 + RHO)*logc1p + 1/(1 + RHO)*log(1 - c1p) + 1/(1 + RHO)*logf1p;
103
+
104
+ logu2p_ = RHO/(1 + RHO)*logc2p + 1/(1 + RHO)*log(1 - c2p) + 1/(1 + RHO)*logf2p;
105
+
106
+ eq4 = (rep - rbp)*term1p*invr1p;
107
+
108
+ eq5 = (rep - rbp)*term2p*invr2p;
109
+
110
+ %% Function f (Ef = 0 imposes model conditions)
111
+
112
+ f_fun = [eq1;eq2;eq3;eq4;eq5];
113
+
114
+ %% law of motion of state variables
115
+
116
+ Phi_fun = [k1 - NU*(k1 - MU); % law of motion of state1p
117
+ (1 - NU)*tilb1*(1 - deltap)/(hatyp*q)]; % law of motion of state2p
118
+
119
+ %% collect auxiliary variables and functions
120
+
121
+ allvars=who;
122
+ auxfuns=[];
123
+ auxvars=[];
124
+ for i=1:length(allvars)
125
+ if strcmp(allvars{i}(end),'_')
126
+ eval(['tempfun=' allvars{i} ';'])
127
+ eval(['tempvar=' allvars{i}(1:end-1) ';'])
128
+ auxfuns=[auxfuns;tempfun];
129
+ auxvars=[auxvars;tempvar];
130
+ end
131
+ end
132
+
133
+ %% Approximation order (<=4)
134
+
135
+ order = 4;
136
+
137
+ %% Preprocess model and save
138
+
139
+ model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
140
+
141
+ save('model')
142
+
105/replication_package/Variable_Disaster_Size/make_Table_7.m ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Variable disaster size, long-term bonds, default probability
2
+
3
+ clear,clc
4
+
5
+ load('model')
6
+ addpath('files')
7
+
8
+ Parameters;
9
+
10
+ % make the vector of parameters
11
+ params = eval(symparams);
12
+
13
+ % distribution of hatyp and deltap
14
+ nodes = [exp([G,kron(G-B(:)',ones(1,2))]);
15
+ 0,kron(ones(1,numel(B)),[0,delta_size])];% realizations
16
+
17
+ weights = [1-P,P*kron(probB(:)',[1-delta_prob,delta_prob])]; % corresponding probabilities
18
+
19
+ rng('default')
20
+
21
+ T = 1e5;
22
+
23
+ N_disasters = ceil(T*P);
24
+ ptr = 1 + round(cumsum([0;probB(:)])*N_disasters);
25
+ disaster_state = zeros(1,N_disasters);
26
+ for i = 1:numel(probB)
27
+ disaster_state(ptr(i):ptr(i+1)-1) = i;
28
+ end
29
+ randorder = rand(1,N_disasters);
30
+ [~,I] = sort(randorder);
31
+ disaster_state = disaster_state(I);
32
+
33
+ % disaster shock (normal = 1, disaster>1)
34
+
35
+ disaster = zeros(1,T+1);
36
+ disaster(randperm(T,N_disasters)) = 1;
37
+
38
+ default = double(rand(1,T+1)<delta_prob);
39
+
40
+ n = 1;
41
+ for t = 1:T+1
42
+ if disaster(t)==1
43
+ disaster(t) = 1 + 2*disaster_state(n) - (1 - default(t));
44
+ n = n + 1;
45
+ end
46
+ end
47
+ disaster(disaster==0) = 1;
48
+
49
+ GAMMA1=1.46;
50
+ GAMMA2=GAMMA1;
51
+ params(logical(symparams==sym('GAMMA1')))=GAMMA1;
52
+ params(logical(symparams==sym('GAMMA2')))=GAMMA2;
53
+
54
+ step_size=1;
55
+
56
+ % tolerance for the Newton solver
57
+ tolX=1e-5; tolF=1e-5; maxiter=10; testF=1e-5;
58
+ % tolerance for the least squares solver (if a simple Newton fails)
59
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
60
+
61
+ solve_and_simulate;
62
+ simulate_with_disasters;
63
+ summarize_results;
64
+
65
+ %%
66
+ GAMMA1=1.46;
67
+ GAMMA2=4.13;
68
+
69
+ burn=10;
70
+ newparams=params;
71
+ newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
72
+ newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
73
+
74
+ correct_params;
75
+ simulate_with_disasters;
76
+ summarize_results;
77
+
78
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
79
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
80
+ Table_vol = [vol_roe,vol_rb];
81
+
82
+ save('VariableDisasterSize')
83
+
84
+ %% add default
85
+
86
+ for delta_size = .05:.05:.2
87
+ nodes(2,:) = [0,kron(ones(1,numel(B)),[0,delta_size])];
88
+
89
+ correct_params;
90
+ simulate_with_disasters;
91
+ summarize_results;
92
+
93
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
94
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
95
+ Table_vol = [vol_roe,vol_rb];
96
+ end
97
+
98
+ save('ShortDefault')
99
+
100
+ %% change duration
101
+
102
+ load('VariableDisasterSize')
103
+
104
+ for TAU = [0.1:.1:.85,.9,.91:.01:.97,.975]
105
+
106
+ burn=5;
107
+
108
+ newparams = params;
109
+ newparams(logical(symparams==sym('TAU'))) = TAU;
110
+
111
+ correct_params;
112
+ simulate_with_disasters;
113
+ summarize_results;
114
+
115
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
116
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
117
+ Table_vol = [vol_roe,vol_rb];
118
+
119
+ if TAU==.95
120
+ save('Duration5')
121
+ end
122
+
123
+ end
124
+
125
+ %% add default
126
+
127
+ load('Duration5')
128
+ for delta_size = .05:.05:.2
129
+ nodes(2,:) = [0,kron(ones(1,numel(B)),[0,delta_size])];
130
+
131
+ correct_params;
132
+ simulate_with_disasters;
133
+ summarize_results;
134
+
135
+ Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
136
+ Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
137
+ Table_vol = [vol_roe,vol_rb];
138
+ end
139
+
140
+ save('LongDefault')
141
+
142
+ %% show results
143
+ clc
144
+
145
+ homefolder = pwd;
146
+ cd ..
147
+ diary on
148
+
149
+ disp('********** Table 7 **********')
150
+
151
+ load([homefolder '\VariableDisasterSize'])
152
+
153
+ disp('variable disaster size')
154
+ disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
155
+
156
+ load([homefolder '\ShortDefault'])
157
+
158
+ disp('default probability')
159
+ disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
160
+
161
+ load([homefolder '\Duration5'])
162
+
163
+ disp('long term bonds, no default')
164
+ disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
165
+
166
+ load([homefolder '\LongDefault'])
167
+
168
+ disp('long term bonds with default')
169
+ disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
170
+
171
+ %% accuracy measures
172
+ disp('Appendix Table 3: Accuracy Measures for Table 7')
173
+
174
+ load([homefolder '\VariableDisasterSize'])
175
+
176
+ disp('variable disaster size')
177
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
178
+ disp(Accuarcy)
179
+
180
+ load([homefolder '\ShortDefault'])
181
+
182
+ disp('default probability')
183
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
184
+ disp(Accuarcy)
185
+
186
+ load([homefolder '\Duration5'])
187
+
188
+ disp('long term bonds, no default')
189
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
190
+ disp(Accuarcy)
191
+
192
+ load([homefolder '\LongDefault'])
193
+
194
+ disp('long term bonds with default')
195
+ Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
196
+ disp(Accuarcy)
197
+
198
+ diary off
199
+
200
+ cd(homefolder)
105/replication_package/Variable_Disaster_Size/simulate_with_disasters.m ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % Simulate with disasters
2
+ y_results = zeros(model.n_y,T+1);
3
+ x_results = zeros(model.n_x,T+1);
4
+ R_results = zeros(model.n_f,T+1);
5
+
6
+ x_results(:,1) = state0;
7
+
8
+ for t = 1:T
9
+ t
10
+ xt = x_results(:,t);
11
+
12
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
13
+
14
+ % store results
15
+ R_results(:,t) = R;
16
+ y_results(:,t) = g;
17
+
18
+ x_results(:,t+1) = nPhi(:,disaster(t+1));
19
+ end
105/replication_package/Variable_Disaster_Size/solve_and_simulate.m ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ % This file performs the following:
2
+ % 1. Solve the model by Taylor projection at the initial state.
3
+ % 2. Simulate the model without realized disasters.
4
+
5
+ %% make initial guess for a deterministic version of the model
6
+
7
+ % in a deterministic economy, the following variables are constant:
8
+
9
+ x1 = 1; % agents invests only in equity
10
+ x2 = 1;
11
+ tilp = 1/RHO; % price/earning ratio
12
+ hatyp = exp(G-meanB*P); % average growth
13
+ haty = hatyp;
14
+ rep = (1+tilp)/tilp*hatyp; % asset return
15
+ logq = log(1/rep); % price of bond
16
+ c1 = RHO/(1+RHO); % consumption/wealth ratio
17
+ c2 = c1;
18
+ logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
19
+ u1 = exp(logu1);
20
+ logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
21
+ u2 = exp(logu2);
22
+ f1 = (rep*u1);
23
+ f2 = (rep*u2);
24
+
25
+ k1 = MU;
26
+
27
+ tila1 = k1*(1+tilp);
28
+
29
+ state0 = [k1;0];
30
+ c0 = state0;
31
+
32
+ derivs0 = [f1;f2;x1;x2;logq];
33
+
34
+ derivs1 = zeros(model.n_f,model.n_x);
35
+ derivs2 = zeros(model.n_f,model.n_x^2);
36
+ derivs3 = zeros(model.n_f,model.n_x^3);
37
+ derivs4 = zeros(model.n_f,model.n_x^4);
38
+
39
+ if order==1
40
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
41
+ elseif order==2
42
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
43
+ elseif order==3
44
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
45
+ elseif order==4
46
+ [ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
47
+ end
48
+
49
+ %% solve the model
50
+
51
+ [coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
52
+
53
+ %% simulate the model
54
+
55
+ solve = 1;
56
+ stop = 0;
57
+ t = 0;
58
+ xt = state0;
59
+ while stop==0
60
+ t = t+1;
61
+ % evaluate the previous solution at the new point xt
62
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
63
+
64
+ % if residuals are too large solve again
65
+ if norm(R(:))>testF && solve==1
66
+ t
67
+ [coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
68
+
69
+ % evaluate the new solution
70
+ [R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
71
+ end
72
+
73
+ newxt = nPhi(:,disaster(t+1)); % new state
74
+
75
+ if t>=10 % after 10 periods start checking for convergence
76
+ if max(abs(newxt-xt))<1e-7
77
+ stop = 1;
78
+ state0 = xt;
79
+ coeffs0 = coeffs;
80
+ end
81
+ end
82
+ xt = newxt;
83
+ end
84
+
105/replication_package/Variable_Disaster_Size/summarize_results.m ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ normal = logical(disaster==1); % normal periods
3
+ d = logical(disaster>1); % disaster periods
4
+
5
+ state1 = x_results(1,1:T);
6
+ state2 = x_results(2,1:T);
7
+
8
+ x1 = y_results(3,1:T);
9
+ logq = y_results(5,1:T);
10
+
11
+ c1 = RHO/(1+RHO);
12
+ tilp = 1/RHO;
13
+ tilp = repmat(tilp,1,T);
14
+ q = exp(logq);
15
+
16
+ tila1 = (1 + tilp).*state1 + state2.*(1 + TAU*q);
17
+
18
+ k1 = x1.*(1 - c1).*tila1./tilp;
19
+ tilb1 = (1 - x1).*(1 - c1).*tila1;
20
+
21
+
22
+ W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
23
+ equity = k1 - NU*(k1 - MU);
24
+
25
+ debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
26
+ debt_to_GDP = -(1 - NU)*tilb1*period_length;
27
+
28
+ haty = nodes(1,double(disaster(1:T)));
29
+ delta = nodes(2,double(disaster(1:T)));
30
+
31
+ % compute means by iterated expectations
32
+
33
+ roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
34
+ mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
35
+
36
+ period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
37
+ period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
38
+ vol_roe = sqrt(period_var_roe/period_length);
39
+
40
+ rb = log((1 + TAU*q(2:T))./q(1:T-1)).*(1 - delta(2:T))/period_length; % this is log return on bonds
41
+ mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
42
+
43
+ Rb = (1 + TAU*q(3:T))./q(2:T-1).*(1 - delta(3:T));
44
+ period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
45
+ period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
46
+ vol_rb = sqrt(period_var_rb/period_length);
47
+
48
+ mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
49
+ mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
50
+ mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
51
+ mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
52
+
53
+ mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
54
+ mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
55
+ mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
105/replication_package/examples/rbc/prepare_model.m ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %------------------------------------------------------------------
2
+ % This script shows how to solve the RBC model by Taylor projection
3
+ %------------------------------------------------------------------
4
+
5
+ clear,clc
6
+
7
+ %-----------------------------------------
8
+ % Define symbolic variables and parameters
9
+ %-----------------------------------------
10
+
11
+ syms k kp c cp z zp epsp real
12
+ syms BETA GAMMA ALPHA RHO DELTA SIGMA real
13
+
14
+ %-------------------------------------------------
15
+ % Function f (Euler condition) in a unit-free form
16
+ %-------------------------------------------------
17
+
18
+ f_fun=BETA*(c/cp)^GAMMA*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
19
+
20
+ %-------------------------------------------------------
21
+ % Function Phi (law of motion of capital and technology)
22
+ %-------------------------------------------------------
23
+
24
+ Phi_fun=[exp(z)*k^ALPHA+(1-DELTA)*k-c;
25
+ RHO*z+SIGMA*epsp];
26
+
27
+ %--------------------------
28
+ % Vector of state variables
29
+ %--------------------------
30
+
31
+ x=[k,z]; % current period
32
+ xp=[kp,zp]; % future period
33
+
34
+ %----------------------------
35
+ % Vector of control variables
36
+ %----------------------------
37
+
38
+ y=[c]; % current period
39
+ yp=[cp]; % future period
40
+
41
+ %-----------------
42
+ % Vector of shocks
43
+ %-----------------
44
+
45
+ shocks=[epsp];
46
+
47
+ %---------------------
48
+ % Vector of parameters
49
+ %---------------------
50
+
51
+ symparams=[BETA,GAMMA,ALPHA,RHO,DELTA,SIGMA];
52
+
53
+ %--------------------
54
+ % Approximation order
55
+ %--------------------
56
+
57
+ order=4; % fourth order is the maximum possible
58
+
59
+ %----------------
60
+ % Call prepare_tp
61
+ %----------------
62
+
63
+ model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order);
64
+
65
+ %-----------
66
+ % Save model
67
+ %-----------
68
+
69
+ save('model') % you will need this later
105/replication_package/examples/rbc/prepare_model_auxiliary_functions.m ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %----------------------------------------------
2
+ % RBC model with auxiliary functions
3
+ %----------------------------------------------
4
+
5
+ clear,clc
6
+
7
+ %-----------------------------------------
8
+ % Define symbolic variables and parameters
9
+ %-----------------------------------------
10
+
11
+ syms k kp c cp z zp epsp real
12
+ syms BETA GAMMA ALPHA RHO DELTA SIGMA real
13
+
14
+ %-------------------------------
15
+ % Define the auxiliary functions
16
+ %-------------------------------
17
+
18
+ % Logs of consumption and capital.
19
+ syms logc logcp logk logkp real
20
+ logc_=log(c);
21
+ logcp_=log(cp);
22
+ logk_=log(k);
23
+ logkp_=log(kp);
24
+
25
+ % Log and level of future mpk.
26
+ syms mpkp logmpkp real
27
+ logmpkp_=log(ALPHA)+zp+(ALPHA-1)*logkp;
28
+ mpkp_=exp(logmpkp);
29
+
30
+ % Log and level of stochastic discount factor.
31
+ syms mp logmp real
32
+ logmp_=log(BETA)+GAMMA*(logc-logcp);
33
+ mp_=exp(logmp);
34
+
35
+ % Log and level of output.
36
+ syms logoutput output real
37
+ logoutput_=z+ALPHA*logk;
38
+ output_=exp(logoutput);
39
+
40
+ %-----------------------------
41
+ % Function f (Euler condition)
42
+ %-----------------------------
43
+ f_fun=mp*(mpkp+1-DELTA)-1;
44
+
45
+ %-------------------------------------------------------
46
+ % Function Phi (law of motion of capital and technology)
47
+ %-------------------------------------------------------
48
+
49
+ Phi_fun=[output+(1-DELTA)*k-c;
50
+ RHO*z+SIGMA*epsp];
51
+
52
+ %--------------------------
53
+ % Vector of state variables
54
+ %--------------------------
55
+ x=[k,z]; % current period
56
+ xp=[kp,zp]; % future period
57
+
58
+ %----------------------------
59
+ % Vector of control variables
60
+ %----------------------------
61
+ y=[c]; % current period
62
+ yp=[cp]; % future period
63
+
64
+ %-----------------
65
+ % Vector of shocks
66
+ %-----------------
67
+ shocks=[epsp];
68
+
69
+ %---------------------
70
+ % Vector of parameters
71
+ %---------------------
72
+ symparams=[BETA,GAMMA,ALPHA,RHO,DELTA,SIGMA];
73
+
74
+ %-----------------------------------------------------------
75
+ % Vectors of auxiliary functions and corresponding variables
76
+ %-----------------------------------------------------------
77
+
78
+ % you can do it manually:
79
+
80
+ % auxfuns=[logc_;logcp_;logk_;logkp_;logmp_;logmpkp_;logoutput_;mp_;mpkp_;output_];
81
+ % auxvars=[logc;logcp;logk;logkp;logmp;logmpkp;logoutput;mp;mpkp;output];
82
+
83
+
84
+ % or automatically by the following code (the names of the
85
+ % auxiliary functions must be the same as the auxiliary variables with an
86
+ % underscore suffix):
87
+
88
+ allvars=who;
89
+ auxfuns=[];
90
+ auxvars=[];
91
+ for i=1:length(allvars)
92
+ if strcmp(allvars{i}(end),'_')
93
+ eval(['tempfun=' allvars{i} ';'])
94
+ eval(['tempvar=' allvars{i}(1:end-1) ';'])
95
+ auxfuns=[auxfuns(:);tempfun(:)];
96
+ auxvars=[auxvars(:);tempvar(:)];
97
+ end
98
+ end
99
+
100
+ % Note that f is a function of the model variables and the auxiliary
101
+ % variables. To get f as a function of the model variables only, use the
102
+ % function subsf:
103
+
104
+ f_noaux = subsf( f_fun,auxvars,auxfuns );
105
+
106
+ % Compare f with f_noaux
107
+
108
+ f_fun,f_noaux
109
+
110
+ % Display the auxiliary equations:
111
+
112
+ [auxvars,auxfuns]
113
+
114
+ %--------------------
115
+ % Approximation order
116
+ %--------------------
117
+ order=4; % fourth order is the maximum possible
118
+
119
+ %----------------
120
+ % Call prepare_tp
121
+ %----------------
122
+ model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order,auxfuns,auxvars);
123
+
124
+ %-----------
125
+ % Save model
126
+ %-----------
127
+ save('model') % you will need this later
105/replication_package/examples/rbc/solve_continuation.m ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %--------------------------------------------
2
+ % Solve the RBC model by continuation method
3
+ %--------------------------------------------
4
+
5
+ clear,clc
6
+
7
+ %---------------------------------------------------------
8
+ % Add folder 'files' to the search path and load the model
9
+ %---------------------------------------------------------
10
+ addpath('files');
11
+ load('model')
12
+
13
+ %----------------------------------------------------------------------------
14
+ % Provide nodes and weights for the quadrature that approximates expectations
15
+ %----------------------------------------------------------------------------
16
+ n_e=1; % number of shocks.
17
+ [n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
18
+ nodes=nodes'; % transpose to n_e-by-n_nodes
19
+
20
+ %----------------------------------------------------
21
+ % Choose parameter values with a closed-form solution
22
+ %----------------------------------------------------
23
+ BETA=.96; GAMMA=1; ALPHA=.3; RHO=.8; DELTA=1; SIGMA=.02;
24
+ params=eval(symparams);
25
+
26
+ %-----------------------------------------------------------------------
27
+ % The closed-form solution for the case GAMMA=1, DELTA=1 for consumption
28
+ %-----------------------------------------------------------------------
29
+
30
+ g=(1-ALPHA*BETA)*exp(z)*k^ALPHA;
31
+
32
+ %---------------------------------------------------------
33
+ % Use the closed-form solution to produce an initial guess
34
+ %---------------------------------------------------------
35
+
36
+ % differentiate the closed-form solution up to fourth order
37
+ gx=jacobian(g,x);
38
+ gxx=jacobian(gx(:),x);
39
+ gxxx=jacobian(gxx(:),x);
40
+ gxxxx=jacobian(gxxx(:),x);
41
+
42
+ % choose some arbitrary state - I use the steady state of the model of
43
+ % interest (with DELTA=.1)
44
+
45
+ k0=((1/BETA-1+.1)/ALPHA)^(1/(ALPHA-1));
46
+ z0=0;
47
+
48
+ x0=[k0;z0];
49
+
50
+ % compute g(x) and its derivatives at x0
51
+
52
+ g0=double(subs(g,x(:),x0));
53
+ gx0=double(subs(gx,x(:),x0));
54
+ gxx0=double(subs(gxx,x(:),x0));
55
+ gxxx0=double(subs(gxxx,x(:),x0));
56
+ gxxxx0=double(subs(gxxxx,x(:),x0));
57
+
58
+ % transform the derivatives into a vector of coefficients
59
+
60
+ [ initial_guess ] = derivs2coeffs(model,g0,gx0,gxx0,gxxx0,gxxxx0);
61
+
62
+ % this is for order=4. for lower orders include only the relevant
63
+ % derivatives, e.g. derivs2coeffs(model,g0,gx0,gxx0) is for second order.
64
+
65
+ % define the center of the initial guess (this is the point at which we computed
66
+ % the derivatives)
67
+
68
+ c0=x0;
69
+
70
+ % now we have the initial guess, and we can proceed to solve the model by
71
+ % continuation
72
+
73
+ %-------------------------------------------------------------------------------
74
+ % solve by Taylor projection and change the parameters gradually to the
75
+ % required level
76
+ %-------------------------------------------------------------------------------
77
+ tolX=1e-6;
78
+ tolF=1e-6;
79
+ maxiter=10;
80
+
81
+ [coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
82
+
83
+ % Now change the parameters GAMMA and DELTA gradually to their required levels:
84
+
85
+ GAMMA_original=GAMMA;
86
+ GAMMA_target=2;
87
+
88
+ DELTA_original=DELTA;
89
+ DELTA_target=.1;
90
+
91
+ for h=0:.1:1 % this is the homotopy parameter
92
+ GAMMA=(1-h)*GAMMA_original+h*GAMMA_target;
93
+ DELTA=(1-h)*DELTA_original+h*DELTA_target;
94
+
95
+ disp(['GAMMA=' num2str(GAMMA) ' DELTA=' num2str(DELTA)])
96
+
97
+ params(2)=GAMMA;
98
+ params(5)=DELTA;
99
+ [coeffs,model]=tpsolve(coeffs,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
100
+
101
+ end
102
+
105/replication_package/examples/rbc/solve_model.m ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ clear,clc
2
+
3
+ %---------------------------------------------------------
4
+ % Add folder 'files' to the search path and load the model
5
+ %---------------------------------------------------------
6
+ addpath('files');
7
+ load('model')
8
+
9
+ %----------------------------------------------------------------------------
10
+ % Provide nodes and weights for the quadrature that approximates expectations
11
+ %----------------------------------------------------------------------------
12
+ n_e=1; % number of shocks.
13
+ [n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
14
+ nodes=nodes'; % transpose to n_e-by-n_nodes
15
+
16
+ %----------------------------------
17
+ % Make a vector of parameter values
18
+ %----------------------------------
19
+ BETA=.96; GAMMA=2; ALPHA=.3; RHO=.8; DELTA=.1; SIGMA=.02;
20
+ params=eval(symparams);
21
+
22
+ %----------------------------------------------------------------------
23
+ % Prepare an initial guess - in this case I use a perturbation solution
24
+ %----------------------------------------------------------------------
25
+
26
+ % Steady state values
27
+
28
+ kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1));
29
+ zss=0;
30
+ css=kss^ALPHA-DELTA*kss;
31
+
32
+ nxss=[kss;zss];
33
+ nyss=css;
34
+
35
+ % Cross moments of the shocks
36
+
37
+ M=get_moments(nodes,weights,model.order(2));
38
+
39
+ % Compute the perturbation solution (keep the 4 outputs):
40
+
41
+ [derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss);
42
+
43
+ % Explanation of outputs:
44
+ % derivs=structure with the perturbation solution as explained in Levintal
45
+ % (2017): "Fifth-Order Perturbation Solution to DSGE Models".
46
+ % stoch_pert=the perturbation solution in the form of unique polynomial coefficients.
47
+ % nonstoch_pert=same as stoch_pert but without correction for the model volatility (i.e. this is a perturbation solution of a deterministic version of the model)
48
+
49
+ %-------------------------------------
50
+ % Solve the model by Taylor projection
51
+ %-------------------------------------
52
+
53
+ x0=nxss; % the approximation point (here we use the steady state, but it could be any arbitrary state)
54
+ c0=nxss; % the center of the initial guess
55
+
56
+ % tolerance parameters for the Newton solver
57
+ tolX=1e-6;
58
+ tolF=1e-6;
59
+ maxiter=10;
60
+
61
+ % model.jacobian='exact'; % this is the default
62
+ % model.jacobian='approximate'; % for large models try the approximate jacobian.
63
+
64
+ initial_guess=stoch_pert;
65
+ [coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
66
+
67
+ %------------------------------------------------------------------
68
+ % Compute the residual function and the model variables at point x0
69
+ %------------------------------------------------------------------
70
+
71
+ [R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
72
+
73
+ % R_fun0 is the residual function at x0.
74
+ % g_fun0 is the control variables at x0, namely, g(x0).
75
+ % Phi_fun0 is the function Phi at x0 and each future node, namely, Phi(x0,g(x0),epsp), for each node of the quadrature.
76
+ % auxvars0 is the auxiliary functions at x0 and each future node.
77
+
78
+ % compute the function g(x) at x0
79
+ y0=evalg(x0,coeffs,c0);
80
+
81
+ % compute the function Phi(x,y,epsp) at x0, y0 and epsp0
82
+ epsp0=.02;
83
+ xp0=evalPhi(x0,y0,epsp0,params);
84
+
85
+ %---------------------------------
86
+ % simulate the model for T periods
87
+ %---------------------------------
88
+ T=100;
89
+ shocks=randn(1,T+1); % draw shocks
90
+
91
+ % preallocate
92
+ x_simul=zeros(model.n_x,T+1);
93
+ y_simul=zeros(model.n_y,T);
94
+ R_simul=zeros(model.n_y,T);
95
+
96
+ x_simul(:,1)=x0;
97
+
98
+ % option=1; % compute only simulated variables
99
+ option=2; % compute model residuals
100
+
101
+ for t=1:T
102
+ xt=x_simul(:,t);
103
+ epsp=shocks(t+1);
104
+
105
+ % Option 1 - compute only the simulated variables
106
+ if option==1
107
+ yt=evalg(xt,coeffs,c0);
108
+
109
+ y_simul(:,t)=yt;
110
+ x_simul(:,t+1)=evalPhi(xt,yt,epsp,params);
111
+ else
112
+ % Option 2 - compute also model residuals
113
+ [Rt,yt]=residual(coeffs,xt,params,c0,nodes,weights);
114
+
115
+ y_simul(:,t)=yt;
116
+ x_simul(:,t+1)=evalPhi(xt,yt,epsp,params);
117
+ R_simul(:,t)=Rt;
118
+ end
119
+ end
120
+
121
+ %-------------------------------------------
122
+ % Solve the model again at a different state
123
+ %-------------------------------------------
124
+ % This is useful when the long run domain of the model is far from the
125
+ % initial state, so we need to approximate the solution at the long run state
126
+ % (e.g. the risky steady state or the mean of the ergodic distribution)
127
+ % rather than the steady state.
128
+
129
+ x1=x0*1.1; % take some arbitrary state
130
+ [coeffs1,model]=tpsolve(coeffs,x1,model,params,c0,nodes,weights,tolX,tolF,maxiter); % solve at x1
131
+
132
+ %-----------------------
133
+ % Use a different solver
134
+ %-----------------------
135
+
136
+ % The function tpsolve uses the Newton method for up to maxiter iterations. If it fails, it
137
+ % switches automatically to fsolve for another maxiter iterations. You can
138
+ % control the parameters of the second solver by optimoptions. The
139
+ % supported solvers are fsolve and lsqnonlin.
140
+
141
+ % For example, do one Newton iteration and switch to lsqnonlin:
142
+
143
+ x2=x1*1.1;
144
+ maxiter=1; % one Newton iteration
145
+ OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by lsqnonlin
146
+
147
+ [coeffs2,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
148
+
149
+
150
+ % or switch to fsolve:
151
+
152
+ maxiter=1; % one Newton iteration
153
+ OPTIONS = optimoptions('fsolve','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by fsolve
154
+
155
+ [coeffs3,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
156
+
157
+
158
+
159
+
160
+
105/replication_package/examples/rbc_EZ/prepare_model.m ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %------------------------------------------------------------------
2
+ % RBC model with Epstein-Zin preferences
3
+ %------------------------------------------------------------------
4
+
5
+ clear,clc
6
+
7
+ %-----------------------------------------
8
+ % Define symbolic variables and parameters
9
+ %-----------------------------------------
10
+
11
+ syms logk logkp logc logcp z zp logxi logxip logq logqp epsp real
12
+ syms BETA GAMMA PSI ALPHA RHO DELTA SIGMA real
13
+
14
+
15
+ %----------------------
16
+ % Substituted variables
17
+ %----------------------
18
+
19
+ c=exp(logc); cp=exp(logcp);
20
+
21
+ k=exp(logk); kp=exp(logkp);
22
+
23
+ xi=exp(logxi); xip=exp(logxip);
24
+
25
+ q=exp(logq);
26
+
27
+ Vpowerp=(1-BETA)*cp^(1-PSI)+BETA*xip^(1-PSI); % this is Vp^(1-PSI)
28
+
29
+ logVp=1/(1-PSI)*log( Vpowerp );
30
+
31
+ Vp=exp(logVp);
32
+
33
+ logmp=log(BETA)+PSI*(logc-logcp)+(PSI-GAMMA)*(logVp-logxi);
34
+
35
+ mp=exp(logmp);
36
+
37
+ %-----------------------
38
+ % Equilibrium conditions
39
+ %-----------------------
40
+ f1=mp*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
41
+ f2=xi^(GAMMA-1)*Vp^(1-GAMMA)-1;
42
+ f3=mp/q-1;
43
+
44
+ f_fun=[f1;f2;f3];
45
+
46
+ %-------------------------------------------------------
47
+ % Function Phi (law of motion of log capital and technology)
48
+ %-------------------------------------------------------
49
+
50
+ Phi_fun=[log(exp(z)*k^ALPHA+(1-DELTA)*k-c);
51
+ RHO*z+SIGMA*epsp];
52
+
53
+ %--------------------------
54
+ % Vector of state variables
55
+ %--------------------------
56
+ x=[logk,z]; % current period
57
+ xp=[logkp,zp]; % future period
58
+
59
+ %----------------------------
60
+ % Vector of control variables
61
+ %----------------------------
62
+ y=[logc,logxi,logq]; % current period
63
+ yp=[logcp,logxip,logqp]; % future period
64
+
65
+ %-----------------
66
+ % Vector of shocks
67
+ %-----------------
68
+ shocks=[epsp];
69
+
70
+ %---------------------
71
+ % Vector of parameters
72
+ %---------------------
73
+ symparams=[BETA,GAMMA,PSI,ALPHA,RHO,DELTA,SIGMA];
74
+
75
+ %--------------------
76
+ % Approximation order
77
+ %--------------------
78
+ order=3; % fourth order is the maximum possible
79
+
80
+ %----------------
81
+ % Call prepare_tp
82
+ %----------------
83
+ model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order);
84
+
85
+ %-----------
86
+ % Save model
87
+ %-----------
88
+ save('model') % you will need this later
105/replication_package/examples/rbc_EZ/prepare_model_auxiliary_functions.m ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %------------------------------------------------------------------
2
+ % RBC model with Epstein-Zin preferences
3
+ %------------------------------------------------------------------
4
+
5
+ clear,clc
6
+
7
+ %-----------------------------------------
8
+ % Define symbolic variables and parameters
9
+ %-----------------------------------------
10
+
11
+ syms logk logkp logc logcp z zp logxi logxip logq logqp epsp real
12
+ syms BETA GAMMA PSI ALPHA RHO DELTA SIGMA real
13
+
14
+
15
+ %-----------------------------------------------------
16
+ % Substituted variables defined by auxiliary functions
17
+ %-----------------------------------------------------
18
+
19
+ syms c cp k kp xi xip q Vpowerp logVp Vp logmp mp real
20
+
21
+ c_=exp(logc); cp_=exp(logcp);
22
+
23
+ k_=exp(logk); kp_=exp(logkp);
24
+
25
+ xi_=exp(logxi); xip_=exp(logxip);
26
+
27
+ q_=exp(logq);
28
+
29
+ Vpowerp_=(1-BETA)*cp^(1-PSI)+BETA*xip^(1-PSI); % this is Vp^(1-PSI)
30
+
31
+ logVp_=1/(1-PSI)*log( Vpowerp );
32
+
33
+ Vp_=exp(logVp);
34
+
35
+ logmp_=log(BETA)+PSI*(logc-logcp)+(PSI-GAMMA)*(logVp-logxi);
36
+
37
+ mp_=exp(logmp);
38
+
39
+ %-----------------------
40
+ % Equilibrium conditions
41
+ %-----------------------
42
+ f1=mp*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
43
+ f2=xi^(GAMMA-1)*Vp^(1-GAMMA)-1;
44
+ f3=mp/q-1;
45
+
46
+ f_fun=[f1;f2;f3];
47
+
48
+ %-------------------------------------------------------
49
+ % Function Phi (law of motion of log capital and technology)
50
+ %-------------------------------------------------------
51
+
52
+ Phi_fun=[log(exp(z)*k^ALPHA+(1-DELTA)*k-c);
53
+ RHO*z+SIGMA*epsp];
54
+
55
+ %--------------------------
56
+ % Vector of state variables
57
+ %--------------------------
58
+ x=[logk,z]; % current period
59
+ xp=[logkp,zp]; % future period
60
+
61
+ %----------------------------
62
+ % Vector of control variables
63
+ %----------------------------
64
+ y=[logc,logxi,logq]; % current period
65
+ yp=[logcp,logxip,logqp]; % future period
66
+
67
+ %-----------------
68
+ % Vector of shocks
69
+ %-----------------
70
+ shocks=[epsp];
71
+
72
+ %---------------------
73
+ % Vector of parameters
74
+ %---------------------
75
+ symparams=[BETA,GAMMA,PSI,ALPHA,RHO,DELTA,SIGMA];
76
+
77
+ %------------------------------------------
78
+ % Collect auxiliary functions and variables
79
+ %------------------------------------------
80
+
81
+ allvars=who;
82
+ auxfuns=[];
83
+ auxvars=[];
84
+ for i=1:length(allvars)
85
+ if strcmp(allvars{i}(end),'_')
86
+ eval(['tempfun=' allvars{i} ';'])
87
+ eval(['tempvar=' allvars{i}(1:end-1) ';'])
88
+ auxfuns=[auxfuns(:);tempfun(:)];
89
+ auxvars=[auxvars(:);tempvar(:)];
90
+ end
91
+ end
92
+
93
+ %--------------------
94
+ % Approximation order
95
+ %--------------------
96
+ order=4; % fourth order is the maximum possible
97
+
98
+ %----------------
99
+ % Call prepare_tp
100
+ %----------------
101
+ model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order,auxfuns,auxvars);
102
+
103
+ %-----------
104
+ % Save model
105
+ %-----------
106
+ save('model') % you will need this later
105/replication_package/examples/rbc_EZ/solve_model.m ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ clear,clc
2
+
3
+ %---------------------------------------------------------
4
+ % Add folder 'files' to the search path and load the model
5
+ %---------------------------------------------------------
6
+ addpath('files');
7
+ load('model')
8
+
9
+ %----------------------------------------------------------------------------
10
+ % Provide nodes and weights for the quadrature that approximates expectations
11
+ %----------------------------------------------------------------------------
12
+ n_e=length(shocks); % number of shocks.
13
+ [n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
14
+ nodes=nodes'; % transpose to n_e-by-n_nodes
15
+
16
+ %----------------------------------
17
+ % Make a vector of parameter values
18
+ %----------------------------------
19
+ BETA=.96; GAMMA=2; PSI=1.5; ALPHA=.3; RHO=.8; DELTA=.1; SIGMA=.08;
20
+ params=eval(symparams);
21
+
22
+ %----------------------------------------------------------------------
23
+ % Prepare an initial guess - in this case I use a perturbation solution
24
+ %----------------------------------------------------------------------
25
+
26
+ % Steady state values
27
+
28
+ kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1));
29
+ zss=0;
30
+ css=kss^ALPHA-DELTA*kss;
31
+ vss=css;
32
+ xiss=vss;
33
+ qss=BETA;
34
+
35
+ nxss=[log(kss);zss];
36
+ nyss=[log(css);log(xiss);log(qss)];
37
+
38
+ % Cross moments of the shocks
39
+
40
+ M=get_moments(nodes,weights,model.order(2));
41
+
42
+ % Compute the perturbation solution (keep the 4 outputs):
43
+
44
+ [derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss);
45
+
46
+ % Explanation of outputs:
47
+ % derivs=structure with the perturbation solution as explained in Levintal
48
+ % (2017): "Fifth-Order Perturbation Solution to DSGE Models".
49
+ % stoch_pert=the perturbation solution in the form of unique polynomial coefficients.
50
+ % nonstoch_pert=same as stoch_pert but without correction for the model volatility (i.e. this is a perturbation solution of a deterministic version of the model)
51
+
52
+ %-------------------------------------
53
+ % Solve the model by Taylor projection
54
+ %-------------------------------------
55
+
56
+ x0=nxss; % the approximation point (here we use the steady state, but it could be any arbitrary state)
57
+ c0=nxss; % the center of the initial guess
58
+
59
+ % tolerance parameters for the Newton solver
60
+ tolX=1e-6;
61
+ tolF=1e-6;
62
+ maxiter=10;
63
+
64
+ % model.jacobian='exact'; % this is the default
65
+ % model.jacobian='approximate'; % for large models try the approximate jacobian.
66
+
67
+ initial_guess=stoch_pert;
68
+ [coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
69
+
70
+ %------------------------------------------------------------------
71
+ % Compute the residual function and the model variables at point x0
72
+ %------------------------------------------------------------------
73
+
74
+ [R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
75
+
76
+ %------------------------
77
+ % Check the interest rate
78
+ %------------------------
79
+
80
+ logq=g_fun0(3);
81
+ Rf=exp(-logq)-1
82
+
83
+ %----------------------------------------------------------------------------
84
+ % Increase risk aversion (gradually) and see how the interest rate falls
85
+ %----------------------------------------------------------------------------
86
+
87
+ GAMMAvec=2:4:82;
88
+
89
+ Rfvec=zeros(size(GAMMAvec));
90
+
91
+ i=0;
92
+ for GAMMA=GAMMAvec
93
+ i=i+1;
94
+ params(2)=GAMMA;
95
+ [coeffs,model]=tpsolve(coeffs,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
96
+ [R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
97
+ logq=g_fun0(3);
98
+ Rfvec(i)=exp(-logq)-1;
99
+ end
100
+
101
+
102
+ plot(GAMMAvec,Rfvec)
103
+ xlabel('Risk aversion (GAMMA)')
104
+ ylabel('Risk-free interest rate (Rf)')