Commit
·
d552dff
1
Parent(s):
a98ffee
add 105
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 105/paper.pdf +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_gov_bonds.csv +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_liabilities.csv +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Asset_Details.csv +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Safe_Liabilities.csv +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/Government_Safe_Liabilities.csv +3 -0
- 105/replication_package/Financial balance sheets non consolidated SNA 2008/Total liabilities.csv +3 -0
- 105/replication_package/GDP/GDP_current_prices.csv +3 -0
- 105/replication_package/GENERAL_IES/Parameters.m +22 -0
- 105/replication_package/GENERAL_IES/Table_6_theta_half.m +100 -0
- 105/replication_package/GENERAL_IES/Table_6_theta_two.m +100 -0
- 105/replication_package/GENERAL_IES/correct_params.m +45 -0
- 105/replication_package/GENERAL_IES/define_model.m +152 -0
- 105/replication_package/GENERAL_IES/make_Table_6_part_1.m +44 -0
- 105/replication_package/GENERAL_IES/simulate_with_disasters.m +19 -0
- 105/replication_package/GENERAL_IES/solve_and_simulate.m +84 -0
- 105/replication_package/GENERAL_IES/summarize_results.m +61 -0
- 105/replication_package/Make_OECD_data.do +684 -0
- 105/replication_package/ReadMe.pdf +3 -0
- 105/replication_package/Replicate_Empirical_Results.do +16 -0
- 105/replication_package/Replicate_Simulation_Results.m +40 -0
- 105/replication_package/UNIT_IES/Disaster_IRF.m +46 -0
- 105/replication_package/UNIT_IES/Parameters.m +22 -0
- 105/replication_package/UNIT_IES/Table_6_MU.m +94 -0
- 105/replication_package/UNIT_IES/Table_6_NU.m +94 -0
- 105/replication_package/UNIT_IES/Table_6_P.m +94 -0
- 105/replication_package/UNIT_IES/Tranquility.m +51 -0
- 105/replication_package/UNIT_IES/correct_params.m +45 -0
- 105/replication_package/UNIT_IES/define_model.m +139 -0
- 105/replication_package/UNIT_IES/make_Table_5.m +210 -0
- 105/replication_package/UNIT_IES/make_Table_6_part_2.m +60 -0
- 105/replication_package/UNIT_IES/rep_agent.m +66 -0
- 105/replication_package/UNIT_IES/simulate_with_disasters.m +19 -0
- 105/replication_package/UNIT_IES/solve_and_simulate.m +84 -0
- 105/replication_package/UNIT_IES/summarize_results.m +56 -0
- 105/replication_package/User Guide.pdf +3 -0
- 105/replication_package/Variable_Disaster_Size/Parameters.m +46 -0
- 105/replication_package/Variable_Disaster_Size/correct_params.m +45 -0
- 105/replication_package/Variable_Disaster_Size/define_model.m +142 -0
- 105/replication_package/Variable_Disaster_Size/make_Table_7.m +200 -0
- 105/replication_package/Variable_Disaster_Size/simulate_with_disasters.m +19 -0
- 105/replication_package/Variable_Disaster_Size/solve_and_simulate.m +84 -0
- 105/replication_package/Variable_Disaster_Size/summarize_results.m +55 -0
- 105/replication_package/examples/rbc/prepare_model.m +69 -0
- 105/replication_package/examples/rbc/prepare_model_auxiliary_functions.m +127 -0
- 105/replication_package/examples/rbc/solve_continuation.m +102 -0
- 105/replication_package/examples/rbc/solve_model.m +160 -0
- 105/replication_package/examples/rbc_EZ/prepare_model.m +88 -0
- 105/replication_package/examples/rbc_EZ/prepare_model_auxiliary_functions.m +106 -0
- 105/replication_package/examples/rbc_EZ/solve_model.m +104 -0
105/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f400ea5e7ad9695850fedeb786911509bc15785d2f93f9c5077b3a67df043325
|
3 |
+
size 881387
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_gov_bonds.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:847836042b8c20655ccefa8b019995882e1407948b594372a66b0056aadea271
|
3 |
+
size 502130
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/CentralBank_liabilities.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e64747220749fe3eae333298ff678591438ae19a9f08a1aa651c306bc9158853
|
3 |
+
size 1153426
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Asset_Details.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:447da03cd373c357bdca599308266247fbe3a3115951d965cb6679dcce8a2df5
|
3 |
+
size 1092238
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/Financial_Safe_Liabilities.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df4d6cfbfc9415b11754089a1e9a6278d0da1dbeb76ab85e09e8ddfda1572ac
|
3 |
+
size 1996412
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/Government_Safe_Liabilities.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f230d212c89375d7252466681a17d53e570673cd976d3e36dfc755d65ff4c431
|
3 |
+
size 1268435
|
105/replication_package/Financial balance sheets non consolidated SNA 2008/Total liabilities.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea484dee1a87689447c1987f5b337acc86f23a02197c833105c8aa49ffe96393
|
3 |
+
size 6614345
|
105/replication_package/GDP/GDP_current_prices.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cea81d95092d1b07bfa92d0b08aa4c802192558d27c10848f3fc24b9cc9ae6d1
|
3 |
+
size 803870
|
105/replication_package/GENERAL_IES/Parameters.m
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
period_length = 0.25;
|
2 |
+
|
3 |
+
P = 1 - exp(-.04*period_length); % disaster probability
|
4 |
+
|
5 |
+
B = -log(1 - .32); % disaster size
|
6 |
+
|
7 |
+
meanB = B;
|
8 |
+
|
9 |
+
G = 0.025*period_length; % drift of log output
|
10 |
+
|
11 |
+
RHO = 0.04*period_length; % time preference rate
|
12 |
+
|
13 |
+
NU = 0.02*period_length; % replacement rate
|
14 |
+
|
15 |
+
MU = 0.05; % popoulation share of agent 1
|
16 |
+
|
17 |
+
ALPHA = 1/3; % capital share in output
|
18 |
+
|
19 |
+
TAU = 0; % bond duration - short-term bonds
|
20 |
+
|
21 |
+
GAMMA1 = 1.000001; % start with unit risk aversion
|
22 |
+
GAMMA2 = GAMMA1;
|
105/replication_package/GENERAL_IES/Table_6_theta_half.m
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% THETA = 0.5
|
2 |
+
|
3 |
+
load('model')
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
Parameters;
|
7 |
+
THETA = 0.9999; % start with THETA close to 1, for which we have a good initial guess
|
8 |
+
|
9 |
+
% make the vector of parameters
|
10 |
+
params = eval(symparams);
|
11 |
+
|
12 |
+
% distribution of hatyp
|
13 |
+
nodes = exp([G,G-B]); % hatyp
|
14 |
+
weights = [1-P,P]; % corresponding probabilities
|
15 |
+
|
16 |
+
T = 2000/period_length; % simulate 2000 years
|
17 |
+
|
18 |
+
% disaster shock
|
19 |
+
rng('default')
|
20 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
21 |
+
|
22 |
+
GAMMA1 = 2.6;
|
23 |
+
GAMMA2 = GAMMA1;
|
24 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
26 |
+
|
27 |
+
% tolerance for the Newton solver
|
28 |
+
tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
|
29 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
30 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
31 |
+
|
32 |
+
solve_and_simulate;
|
33 |
+
|
34 |
+
%% Change THETA to 0.5
|
35 |
+
|
36 |
+
THETA = 0.5;
|
37 |
+
newparams = params;
|
38 |
+
newparams(logical(symparams==sym('THETA'))) = THETA;
|
39 |
+
burn=1;
|
40 |
+
|
41 |
+
correct_params;
|
42 |
+
|
43 |
+
%%
|
44 |
+
|
45 |
+
GAMMA1 = 2.6;
|
46 |
+
GAMMA2 = 4.15;
|
47 |
+
|
48 |
+
newparams = params;
|
49 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
50 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
51 |
+
|
52 |
+
burn=1;
|
53 |
+
|
54 |
+
correct_params;
|
55 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
56 |
+
summarize_results;
|
57 |
+
|
58 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
59 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
60 |
+
Table_vol = [vol_roe,vol_rb];
|
61 |
+
|
62 |
+
%%%%%%%%%%%%%%%%%%%%%%%%
|
63 |
+
|
64 |
+
GAMMA1=2.5;
|
65 |
+
GAMMA2=4.29;
|
66 |
+
|
67 |
+
burn=1;
|
68 |
+
newparams=params;
|
69 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
70 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
71 |
+
|
72 |
+
correct_params;
|
73 |
+
|
74 |
+
simulate_with_disasters;
|
75 |
+
|
76 |
+
summarize_results;
|
77 |
+
|
78 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
79 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
80 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
81 |
+
|
82 |
+
%%%%%%%%%%%%%%%%%%%%%
|
83 |
+
GAMMA1=2.4;
|
84 |
+
GAMMA2=4.54;
|
85 |
+
|
86 |
+
newparams=params;
|
87 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
88 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
89 |
+
|
90 |
+
correct_params;
|
91 |
+
|
92 |
+
simulate_with_disasters;
|
93 |
+
|
94 |
+
summarize_results;
|
95 |
+
|
96 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
97 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
98 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
99 |
+
|
100 |
+
save('Table_6_theta_half','Table*')
|
105/replication_package/GENERAL_IES/Table_6_theta_two.m
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% THETA = 0.5
|
2 |
+
|
3 |
+
load('model')
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
Parameters;
|
7 |
+
THETA = 0.9999; % start with THETA close to 1, for which we have a good initial guess
|
8 |
+
|
9 |
+
% make the vector of parameters
|
10 |
+
params = eval(symparams);
|
11 |
+
|
12 |
+
% distribution of hatyp
|
13 |
+
nodes = exp([G,G-B]); % hatyp
|
14 |
+
weights = [1-P,P]; % corresponding probabilities
|
15 |
+
|
16 |
+
T = 2000/period_length; % simulate 2000 years
|
17 |
+
|
18 |
+
% disaster shock
|
19 |
+
rng('default')
|
20 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
21 |
+
|
22 |
+
GAMMA1 = 2.6;
|
23 |
+
GAMMA2 = GAMMA1;
|
24 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
26 |
+
|
27 |
+
% tolerance for the Newton solver
|
28 |
+
tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
|
29 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
30 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
31 |
+
|
32 |
+
solve_and_simulate;
|
33 |
+
|
34 |
+
%% Change THETA to 0.5
|
35 |
+
|
36 |
+
THETA = 2;
|
37 |
+
newparams = params;
|
38 |
+
newparams(logical(symparams==sym('THETA'))) = THETA;
|
39 |
+
burn=1;
|
40 |
+
|
41 |
+
correct_params;
|
42 |
+
|
43 |
+
%%
|
44 |
+
|
45 |
+
GAMMA1 = 2.6;
|
46 |
+
GAMMA2 = 4.15;
|
47 |
+
|
48 |
+
newparams = params;
|
49 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
50 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
51 |
+
|
52 |
+
burn=1;
|
53 |
+
|
54 |
+
correct_params;
|
55 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
56 |
+
summarize_results;
|
57 |
+
|
58 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
59 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
60 |
+
Table_vol = [vol_roe,vol_rb];
|
61 |
+
|
62 |
+
%%%%%%%%%%%%%%%%%%%%%%%%
|
63 |
+
|
64 |
+
GAMMA1=2.5;
|
65 |
+
GAMMA2=4.29;
|
66 |
+
|
67 |
+
burn=1;
|
68 |
+
newparams=params;
|
69 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
70 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
71 |
+
|
72 |
+
correct_params;
|
73 |
+
|
74 |
+
simulate_with_disasters;
|
75 |
+
|
76 |
+
summarize_results;
|
77 |
+
|
78 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
79 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
80 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
81 |
+
|
82 |
+
%%%%%%%%%%%%%%%%%%%%%
|
83 |
+
GAMMA1=2.4;
|
84 |
+
GAMMA2=4.54;
|
85 |
+
|
86 |
+
newparams=params;
|
87 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
88 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
89 |
+
|
90 |
+
correct_params;
|
91 |
+
|
92 |
+
simulate_with_disasters;
|
93 |
+
|
94 |
+
summarize_results;
|
95 |
+
|
96 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
97 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
98 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
99 |
+
|
100 |
+
save('Table_6_theta_two','Table*')
|
105/replication_package/GENERAL_IES/correct_params.m
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file changes the parameters gradually from their initival value to
|
2 |
+
% the target value
|
3 |
+
|
4 |
+
solve = 1;
|
5 |
+
stop = 0;
|
6 |
+
t = 0;
|
7 |
+
|
8 |
+
xt = state0;
|
9 |
+
params0 = params;
|
10 |
+
while stop==0
|
11 |
+
t = t + 1;
|
12 |
+
|
13 |
+
if t<=burn
|
14 |
+
factor = t/burn;
|
15 |
+
params = (1 - factor)*params0 + factor*newparams;
|
16 |
+
end
|
17 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
18 |
+
|
19 |
+
% if residuals are too large solve again
|
20 |
+
if norm(R(:))>testF && solve==1
|
21 |
+
t
|
22 |
+
[coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
23 |
+
|
24 |
+
% evaluate the new solution
|
25 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
26 |
+
end
|
27 |
+
|
28 |
+
newxt = nPhi(:,1); % assume no realized disasters
|
29 |
+
|
30 |
+
if t>burn+10 % after 10 periods start checking for convergence
|
31 |
+
if max(abs(newxt-xt))<1e-7
|
32 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
33 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
34 |
+
|
35 |
+
newxt = nPhi(:,1);
|
36 |
+
if max(abs(newxt-xt))<1e-7
|
37 |
+
stop = 1;
|
38 |
+
state0 = xt; % solution point
|
39 |
+
coeffs0 = coeffs;
|
40 |
+
end
|
41 |
+
end
|
42 |
+
end
|
43 |
+
xt = newxt;
|
44 |
+
end
|
45 |
+
|
105/replication_package/GENERAL_IES/define_model.m
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%-------------------------------------------------------------------------
|
2 |
+
% The model: Safe Assets - the case of general IES (THETA not equal 1)
|
3 |
+
%
|
4 |
+
% This file defines the model (see Appendix for the full derivation).
|
5 |
+
% Bonds are perfectly safe short-term assets.
|
6 |
+
%
|
7 |
+
% Variables are denoted by small letters and
|
8 |
+
% parameters by capital letters. Future values are denoted by suffix p.
|
9 |
+
%-------------------------------------------------------------------------
|
10 |
+
|
11 |
+
clear,clc
|
12 |
+
|
13 |
+
%% Symbolic variables
|
14 |
+
|
15 |
+
syms RHO GAMMA1 GAMMA2 NU MU THETA real
|
16 |
+
syms f1 f2 f1p f2p x1 x2 x1p x2p real
|
17 |
+
syms logq logqp tilp tilpp real
|
18 |
+
syms state1 state1p state2 state2p hatyp k1 tilb1 real
|
19 |
+
syms tila1 tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
|
20 |
+
syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p u1p_power u2p_power u1p u2p logf1 logf1p logf2 logf2p real
|
21 |
+
syms term1p term2p invr1p invr2p real
|
22 |
+
|
23 |
+
%% Parameters
|
24 |
+
|
25 |
+
symparams = [RHO,GAMMA1,GAMMA2,NU,MU,THETA];
|
26 |
+
|
27 |
+
%% State variables
|
28 |
+
|
29 |
+
state = [state1,state2]; % current period
|
30 |
+
statep = [state1p,state2p]; % future period
|
31 |
+
|
32 |
+
%% Control variables
|
33 |
+
|
34 |
+
control = [f1,f2,x1,x2,logq,tilp]; % current period
|
35 |
+
controlp = [f1p,f2p,x1p,x2p,logqp,tilpp]; % future period
|
36 |
+
|
37 |
+
%% shocks
|
38 |
+
|
39 |
+
shocks = hatyp;
|
40 |
+
|
41 |
+
%% auxiliary variables
|
42 |
+
|
43 |
+
logc1p = log(c1p);
|
44 |
+
logc2p = log(c2p);
|
45 |
+
|
46 |
+
invf1_ = 1/f1;
|
47 |
+
invf2_ = 1/f2;
|
48 |
+
|
49 |
+
logf1p_ = log(f1p);
|
50 |
+
logf2p_ = log(f2p);
|
51 |
+
|
52 |
+
invr1p_ = 1/r1p;
|
53 |
+
invr2p_ = 1/r2p;
|
54 |
+
|
55 |
+
q_ = exp(logq);
|
56 |
+
qp_ = exp(logqp);
|
57 |
+
|
58 |
+
invtila1_ = 1/tila1;
|
59 |
+
invtila2_ = 1/tila2;
|
60 |
+
|
61 |
+
rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
|
62 |
+
rbp_ = 1/q; % return on bond
|
63 |
+
|
64 |
+
%% MODEL CONDITIONS
|
65 |
+
|
66 |
+
invc1_ = 1 + 1/RHO*f1^(1 - THETA);
|
67 |
+
|
68 |
+
c1_ = 1/invc1;
|
69 |
+
|
70 |
+
invc1p_ = 1 + 1/RHO*f1p^(1 - THETA);
|
71 |
+
|
72 |
+
c1p_ = 1/invc1p;
|
73 |
+
|
74 |
+
invc2_ = 1 + 1/RHO*f2^(1-THETA);
|
75 |
+
|
76 |
+
c2_ = 1/invc2;
|
77 |
+
|
78 |
+
invc2p_ = 1 + 1/RHO*f2p^(1 - THETA);
|
79 |
+
|
80 |
+
c2p_ = 1/invc2p;
|
81 |
+
|
82 |
+
tila1_ = (1 + tilp)*state1 + state2;
|
83 |
+
|
84 |
+
tila2_ = tilp + 1 - tila1;
|
85 |
+
|
86 |
+
k1_ = x1*(1 - c1)*tila1/tilp;
|
87 |
+
|
88 |
+
eq0 = -(1 - k1) + x2*(1 - c2)*tila2/tilp;
|
89 |
+
|
90 |
+
tilb1_ = (1 - x1)*(1 - c1)*tila1;
|
91 |
+
|
92 |
+
eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
|
93 |
+
|
94 |
+
r1p_ = x1*rep + (1 - x1)*rbp;
|
95 |
+
|
96 |
+
r2p_ = x2*rep + (1 - x2)*rbp;
|
97 |
+
|
98 |
+
term1p_ = ((invc1 - 1)*r1p*invf1)^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
|
99 |
+
+ NU*(1 - MU)*u2p^(1 - GAMMA1));
|
100 |
+
|
101 |
+
term2p_ = ((invc2 - 1)*r2p*invf2)^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
|
102 |
+
+ NU*MU*u1p^(1 - GAMMA2));
|
103 |
+
|
104 |
+
eq2 = -1 + term1p;
|
105 |
+
|
106 |
+
eq3 = -1 + term2p;
|
107 |
+
|
108 |
+
u1p_power_ = RHO/(1 + RHO)*c1p^(1 - THETA) + 1/(1 + RHO)*c1p^(1 - THETA)*f1p^(1 - THETA);
|
109 |
+
|
110 |
+
u2p_power_ = RHO/(1 + RHO)*c2p^(1 - THETA) + 1/(1 + RHO)*c2p^(1 - THETA)*f2p^(1 - THETA);
|
111 |
+
|
112 |
+
u1p_ = u1p_power^(1/(1 - THETA));
|
113 |
+
|
114 |
+
u2p_ = u2p_power^(1/(1 - THETA));
|
115 |
+
|
116 |
+
eq4 = (rep - rbp)*term1p*invr1p;
|
117 |
+
|
118 |
+
eq5 = (rep - rbp)*term2p*invr2p;
|
119 |
+
|
120 |
+
%% Function f (Ef = 0 imposes model conditions)
|
121 |
+
|
122 |
+
f_fun = [eq0;eq1;eq2;eq3;eq4;eq5];
|
123 |
+
|
124 |
+
%% law of motion of state variables
|
125 |
+
|
126 |
+
Phi_fun = [k1 - NU*(k1 - MU); % law of motion of state1p
|
127 |
+
(1 - NU)*tilb1/(hatyp*q)]; % law of motion of state2p
|
128 |
+
|
129 |
+
%% collect auxiliary variables and functions
|
130 |
+
|
131 |
+
allvars=who;
|
132 |
+
auxfuns=[];
|
133 |
+
auxvars=[];
|
134 |
+
for i=1:length(allvars)
|
135 |
+
if strcmp(allvars{i}(end),'_')
|
136 |
+
eval(['tempfun=' allvars{i} ';'])
|
137 |
+
eval(['tempvar=' allvars{i}(1:end-1) ';'])
|
138 |
+
auxfuns=[auxfuns;tempfun];
|
139 |
+
auxvars=[auxvars;tempvar];
|
140 |
+
end
|
141 |
+
end
|
142 |
+
|
143 |
+
%% Approximation order (<=4)
|
144 |
+
|
145 |
+
order = 4;
|
146 |
+
|
147 |
+
%% Preprocess model and save
|
148 |
+
|
149 |
+
model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
|
150 |
+
|
151 |
+
save('model')
|
152 |
+
|
105/replication_package/GENERAL_IES/make_Table_6_part_1.m
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Table_6_theta_half;
|
2 |
+
Table_6_theta_two;
|
3 |
+
|
4 |
+
%% Display Table 6 (part 1)
|
5 |
+
clc
|
6 |
+
homefolder = pwd;
|
7 |
+
cd ..
|
8 |
+
|
9 |
+
diary on
|
10 |
+
|
11 |
+
disp('********** Table 6 **********')
|
12 |
+
|
13 |
+
load([homefolder '\Table_6_theta_half'])
|
14 |
+
|
15 |
+
Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
|
16 |
+
|
17 |
+
disp('THETA = 0.5')
|
18 |
+
disp(Table_6(3,:))
|
19 |
+
|
20 |
+
load([homefolder '\Table_6_theta_two'])
|
21 |
+
|
22 |
+
Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
|
23 |
+
|
24 |
+
disp('THETA = 2')
|
25 |
+
disp(Table_6(3,:))
|
26 |
+
|
27 |
+
%% Accuracy Measures
|
28 |
+
disp('Appendix Table 2: Accuracy Measures for Table 6')
|
29 |
+
|
30 |
+
load([homefolder '\Table_6_theta_half'])
|
31 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
32 |
+
|
33 |
+
disp('THETA = 0.5')
|
34 |
+
disp(Accuarcy(3,2:end))
|
35 |
+
|
36 |
+
load([homefolder '\Table_6_theta_two'])
|
37 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
38 |
+
|
39 |
+
disp('THETA = 2')
|
40 |
+
disp(Accuarcy(3,2:end))
|
41 |
+
|
42 |
+
diary off
|
43 |
+
|
44 |
+
cd(homefolder)
|
105/replication_package/GENERAL_IES/simulate_with_disasters.m
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Simulate with disasters
|
2 |
+
y_results = zeros(model.n_y,T+1);
|
3 |
+
x_results = zeros(model.n_x,T+1);
|
4 |
+
R_results = zeros(model.n_f,T+1);
|
5 |
+
|
6 |
+
x_results(:,1) = state0;
|
7 |
+
|
8 |
+
for t = 1:T
|
9 |
+
t
|
10 |
+
xt = x_results(:,t);
|
11 |
+
|
12 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
13 |
+
|
14 |
+
% store results
|
15 |
+
R_results(:,t) = R;
|
16 |
+
y_results(:,t) = g;
|
17 |
+
|
18 |
+
x_results(:,t+1) = nPhi(:,disaster(t+1));
|
19 |
+
end
|
105/replication_package/GENERAL_IES/solve_and_simulate.m
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file performs the following:
|
2 |
+
% 1. Solve the model by Taylor projection at the initial state.
|
3 |
+
% 2. Simulate the model without realized disasters.
|
4 |
+
|
5 |
+
%% make initial guess for a deterministic version of the model
|
6 |
+
|
7 |
+
% in a deterministic economy, the following variables are constant:
|
8 |
+
|
9 |
+
x1 = 1; % agents invests only in equity
|
10 |
+
x2 = 1;
|
11 |
+
tilp = 1/RHO; % price/earning ratio
|
12 |
+
hatyp = exp(G-meanB*P); % average growth
|
13 |
+
haty = hatyp;
|
14 |
+
rep = (1+tilp)/tilp*hatyp; % asset return
|
15 |
+
logq = log(1/rep); % price of bond
|
16 |
+
c1 = RHO/(1+RHO); % consumption/wealth ratio
|
17 |
+
c2 = c1;
|
18 |
+
logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
|
19 |
+
u1 = exp(logu1);
|
20 |
+
logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
|
21 |
+
u2 = exp(logu2);
|
22 |
+
f1 = (rep*u1);
|
23 |
+
f2 = (rep*u2);
|
24 |
+
|
25 |
+
k1 = MU;
|
26 |
+
|
27 |
+
tila1 = k1*(1+tilp);
|
28 |
+
|
29 |
+
state0 = [k1;0];
|
30 |
+
c0 = state0;
|
31 |
+
|
32 |
+
derivs0 = [f1;f2;x1;x2;logq;tilp];
|
33 |
+
|
34 |
+
derivs1 = zeros(model.n_f,model.n_x);
|
35 |
+
derivs2 = zeros(model.n_f,model.n_x^2);
|
36 |
+
derivs3 = zeros(model.n_f,model.n_x^3);
|
37 |
+
derivs4 = zeros(model.n_f,model.n_x^4);
|
38 |
+
|
39 |
+
if order==1
|
40 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
|
41 |
+
elseif order==2
|
42 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
|
43 |
+
elseif order==3
|
44 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
|
45 |
+
elseif order==4
|
46 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
|
47 |
+
end
|
48 |
+
|
49 |
+
%% solve the model
|
50 |
+
|
51 |
+
[coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
52 |
+
|
53 |
+
%% simulate the model
|
54 |
+
|
55 |
+
solve = 1;
|
56 |
+
stop = 0;
|
57 |
+
t = 0;
|
58 |
+
xt = state0;
|
59 |
+
while stop==0
|
60 |
+
t = t+1;
|
61 |
+
% evaluate the previous solution at the new point xt
|
62 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
63 |
+
|
64 |
+
% if residuals are too large solve again
|
65 |
+
if norm(R(:))>testF && solve==1
|
66 |
+
t
|
67 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
68 |
+
|
69 |
+
% evaluate the new solution
|
70 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
71 |
+
end
|
72 |
+
|
73 |
+
newxt = nPhi(:,disaster(t+1)); % new state
|
74 |
+
|
75 |
+
if t>=10 % after 10 periods start checking for convergence
|
76 |
+
if max(abs(newxt-xt))<1e-7
|
77 |
+
stop = 1;
|
78 |
+
state0 = xt;
|
79 |
+
coeffs0 = coeffs;
|
80 |
+
end
|
81 |
+
end
|
82 |
+
xt = newxt;
|
83 |
+
end
|
84 |
+
|
105/replication_package/GENERAL_IES/summarize_results.m
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
normal = logical(disaster==1); % normal periods
|
3 |
+
d = logical(disaster>1); % disaster periods
|
4 |
+
|
5 |
+
state1 = x_results(1,1:T);
|
6 |
+
state2 = x_results(2,1:T);
|
7 |
+
|
8 |
+
f1 = y_results(1,1:T);
|
9 |
+
x1 = y_results(3,1:T);
|
10 |
+
logq = y_results(5,1:T);
|
11 |
+
tilp=y_results(6,1:T);
|
12 |
+
|
13 |
+
invc1 = 1 + 1/RHO*f1.^(1 - THETA);
|
14 |
+
c1 = 1./invc1;
|
15 |
+
|
16 |
+
q = exp(logq);
|
17 |
+
|
18 |
+
tila1 = (1 + tilp).*state1(1:T) + state2(1:T);
|
19 |
+
|
20 |
+
k1 = x1.*(1 - c1).*tila1./tilp;
|
21 |
+
tilb1 = (1 - x1).*(1 - c1).*tila1;
|
22 |
+
|
23 |
+
|
24 |
+
W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
|
25 |
+
equity = k1 - NU*(k1 - MU);
|
26 |
+
|
27 |
+
debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
|
28 |
+
debt_to_GDP = -(1 - NU)*tilb1*period_length;
|
29 |
+
|
30 |
+
haty = nodes(1,double(disaster(1:T)));
|
31 |
+
|
32 |
+
% compute means by iterated expectations
|
33 |
+
|
34 |
+
roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
|
35 |
+
mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
|
36 |
+
|
37 |
+
period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
|
38 |
+
period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
|
39 |
+
vol_roe = sqrt(period_var_roe/period_length);
|
40 |
+
|
41 |
+
rb = log(1./q(1:T-1))/period_length; % this is log return on bonds
|
42 |
+
mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
|
43 |
+
|
44 |
+
Rb = 1./q(2:T-1);
|
45 |
+
period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
|
46 |
+
period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
|
47 |
+
vol_rb = sqrt(period_var_rb/period_length);
|
48 |
+
|
49 |
+
mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
|
50 |
+
mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
|
51 |
+
mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
|
52 |
+
mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
|
53 |
+
|
54 |
+
% mean_W1_share_excluding_labor = mean_W1_share*(1+L) - MU*L;
|
55 |
+
% mean_debt_to_assets_excluding_labor = mean_debt_to_assets*(1+L);
|
56 |
+
% mean_debt_to_GDP_including_labor = mean_debt_to_GDP/(1+L);
|
57 |
+
% mean_equity_excluding_labor = mean_equity*(1+L) - MU*L;
|
58 |
+
|
59 |
+
mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
|
60 |
+
mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
|
61 |
+
mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
|
105/replication_package/Make_OECD_data.do
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clear
|
2 |
+
|
3 |
+
*set matsize 3000
|
4 |
+
set matsize 800
|
5 |
+
clear mata
|
6 |
+
set mem 500m
|
7 |
+
set more off
|
8 |
+
set logtype text
|
9 |
+
capture log close
|
10 |
+
*set linesize 255
|
11 |
+
|
12 |
+
// IMPORTANT!!! change working directory to the folder of this file
|
13 |
+
|
14 |
+
* cd "folder name"
|
15 |
+
|
16 |
+
// GDP current prices
|
17 |
+
clear
|
18 |
+
|
19 |
+
local folder="GDP"
|
20 |
+
|
21 |
+
insheet using "`folder'\GDP_current_prices.csv", n c case
|
22 |
+
|
23 |
+
des
|
24 |
+
|
25 |
+
tab PowerCode /* all number in millions */
|
26 |
+
tab Measure /* two types of measures - current price and ppp */
|
27 |
+
tab Transaction
|
28 |
+
|
29 |
+
keep if Measure=="Current prices"
|
30 |
+
|
31 |
+
keep Country Year Value
|
32 |
+
|
33 |
+
rename Value GDP
|
34 |
+
|
35 |
+
rename Country country
|
36 |
+
rename Year year
|
37 |
+
|
38 |
+
|
39 |
+
label var GDP "GDP current prices, Million of national currency"
|
40 |
+
|
41 |
+
save GDP, replace
|
42 |
+
|
43 |
+
|
44 |
+
// Step 1: make dataset.dta
|
45 |
+
|
46 |
+
clear
|
47 |
+
|
48 |
+
local folder="Financial balance sheets non consolidated SNA 2008"
|
49 |
+
|
50 |
+
* Total liabilities - all sectors
|
51 |
+
|
52 |
+
insheet using "`folder'\Total liabilities.csv", n c case
|
53 |
+
|
54 |
+
des
|
55 |
+
|
56 |
+
tab PowerCode /* all number in millions */
|
57 |
+
tab Measure /* two types of measures - national currency and USD */
|
58 |
+
tab Transaction
|
59 |
+
|
60 |
+
keep if Measure=="National currency, current prices"
|
61 |
+
|
62 |
+
keep Country Sector Time Value
|
63 |
+
|
64 |
+
rename Time Year
|
65 |
+
rename Value totliab
|
66 |
+
|
67 |
+
gen Sec=""
|
68 |
+
|
69 |
+
replace Sec="Total" if Sector=="Total economy"
|
70 |
+
replace Sec="World" if Sector=="Rest of the world"
|
71 |
+
replace Sec="Households" if Sector=="Households and NPISH"
|
72 |
+
replace Sec="Financials" if Sector=="Financial corporations"
|
73 |
+
replace Sec="nonFinancials" if Sector=="Non-financial corporations"
|
74 |
+
replace Sec="Gov" if Sector=="General Government"
|
75 |
+
|
76 |
+
keep if Sec~=""
|
77 |
+
|
78 |
+
keep Country Year Sec totliab
|
79 |
+
|
80 |
+
rename Country country
|
81 |
+
rename Year year
|
82 |
+
rename Sec sector
|
83 |
+
rename totliab totliab_
|
84 |
+
|
85 |
+
reshape wide totliab_, i(country year) j(sector) string
|
86 |
+
|
87 |
+
label var totliab_Total "Tota Liabilities - Total Economy"
|
88 |
+
label var totliab_World "Tota Liabilities - Rest of the World"
|
89 |
+
label var totliab_Households "Tota Liabilities - Households and NPISH"
|
90 |
+
label var totliab_Financials "Tota Liabilities - Financial corporations"
|
91 |
+
label var totliab_nonFinancials "Tota Liabilities - Non-financial corporations"
|
92 |
+
|
93 |
+
save total_liabilities, replace
|
94 |
+
|
95 |
+
|
96 |
+
//* Financial Corporations - safe liabilities
|
97 |
+
clear
|
98 |
+
|
99 |
+
insheet using "`folder'\Financial_Safe_Liabilities.csv", n c case
|
100 |
+
|
101 |
+
des
|
102 |
+
|
103 |
+
tab PowerCode /* all number in millions */
|
104 |
+
tab Measure /* two types of measures - national currency and USD */
|
105 |
+
tab Transaction
|
106 |
+
tab Sector /* only financial corporations */
|
107 |
+
|
108 |
+
keep if Measure=="National currency, current prices" & Sector=="Financial corporations"
|
109 |
+
|
110 |
+
keep Country Time Transaction Value
|
111 |
+
|
112 |
+
gen tran=""
|
113 |
+
|
114 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
115 |
+
replace tran="secur" if Transaction=="Debt securities"
|
116 |
+
replace tran="loan" if Transaction=="Loans"
|
117 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
118 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
119 |
+
|
120 |
+
drop if tran==""
|
121 |
+
|
122 |
+
keep Country Time tran Value
|
123 |
+
rename Country country
|
124 |
+
rename Time year
|
125 |
+
rename Value fin_
|
126 |
+
|
127 |
+
reshape wide fin_, i(country year) j(tran) string
|
128 |
+
|
129 |
+
label var fin_dep "Currency and deposits - Financial corporations"
|
130 |
+
label var fin_secur "Debt securities - Financial corporations"
|
131 |
+
label var fin_loan "Loans - Financial corporations"
|
132 |
+
label var fin_mmf "Money market fund shares /units - Financial corporations"
|
133 |
+
label var fin_trade "Trade credits and advances - Financial corporations"
|
134 |
+
|
135 |
+
|
136 |
+
save financials_safe_items, replace
|
137 |
+
|
138 |
+
|
139 |
+
//* General Government - safe liabilities
|
140 |
+
|
141 |
+
clear
|
142 |
+
|
143 |
+
insheet using "`folder'\Government_Safe_Liabilities.csv", n c case
|
144 |
+
|
145 |
+
des
|
146 |
+
|
147 |
+
tab PowerCode /* all number in millions */
|
148 |
+
tab Measure /* two types of measures - national currency and USD */
|
149 |
+
tab Transaction
|
150 |
+
tab Sector /* only general government */
|
151 |
+
|
152 |
+
keep if Measure=="National currency, current prices" & Sector=="General Government"
|
153 |
+
|
154 |
+
keep Country Time Transaction Value
|
155 |
+
|
156 |
+
gen tran=""
|
157 |
+
|
158 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
159 |
+
replace tran="secur" if Transaction=="Debt securities"
|
160 |
+
replace tran="loan" if Transaction=="Loans"
|
161 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
162 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
163 |
+
|
164 |
+
drop if tran==""
|
165 |
+
|
166 |
+
keep Country Time tran Value
|
167 |
+
rename Country country
|
168 |
+
rename Time year
|
169 |
+
rename Value gov_
|
170 |
+
|
171 |
+
reshape wide gov_, i(country year) j(tran) string
|
172 |
+
|
173 |
+
|
174 |
+
label var gov_dep "Currency and deposits - General Government"
|
175 |
+
label var gov_secur "Debt securities - General Government"
|
176 |
+
label var gov_loan "Loans - General Government"
|
177 |
+
label var gov_mmf "Money market fund shares /units - General Government"
|
178 |
+
label var gov_trade "Trade credits and advances - General Government"
|
179 |
+
|
180 |
+
save government_safe_items, replace
|
181 |
+
|
182 |
+
//* Central bank holdings of bonds (assume most of these holdings are government bonds)
|
183 |
+
|
184 |
+
clear
|
185 |
+
|
186 |
+
insheet using "`folder'\CentralBank_gov_bonds.csv", n c case
|
187 |
+
|
188 |
+
des
|
189 |
+
|
190 |
+
tab PowerCode /* all number in millions */
|
191 |
+
tab Measure /* two types of measures - national currency and USD */
|
192 |
+
tab Transaction
|
193 |
+
tab Sector /* only general government */
|
194 |
+
|
195 |
+
keep if Measure=="National currency, current prices" & Sector=="Central Bank"
|
196 |
+
|
197 |
+
keep Country Time Transaction Value
|
198 |
+
|
199 |
+
gen tran=""
|
200 |
+
|
201 |
+
replace tran="lbond" if Transaction=="Long-term debt securities"
|
202 |
+
replace tran="sbond" if Transaction=="Short-term debt securities"
|
203 |
+
|
204 |
+
|
205 |
+
drop if tran==""
|
206 |
+
|
207 |
+
keep Country Time tran Value
|
208 |
+
rename Country country
|
209 |
+
rename Time year
|
210 |
+
rename Value cb_
|
211 |
+
|
212 |
+
reshape wide cb_, i(country year) j(tran) string
|
213 |
+
|
214 |
+
save central_bank_bonds, replace
|
215 |
+
|
216 |
+
//* Central bank - safe and total liabilities
|
217 |
+
|
218 |
+
clear
|
219 |
+
|
220 |
+
insheet using "`folder'\CentralBank_liabilities.csv", n c case
|
221 |
+
|
222 |
+
des
|
223 |
+
|
224 |
+
tab PowerCode /* all number in millions */
|
225 |
+
tab Measure /* two types of measures - national currency and USD */
|
226 |
+
tab Transaction
|
227 |
+
tab Sector /* only Central Bank */
|
228 |
+
|
229 |
+
keep if Measure=="National currency, current prices" & Sector=="Central Bank"
|
230 |
+
|
231 |
+
keep Country Time Transaction Value
|
232 |
+
|
233 |
+
gen tran=""
|
234 |
+
|
235 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
236 |
+
replace tran="secur" if Transaction=="Debt securities"
|
237 |
+
replace tran="loan" if Transaction=="Loans"
|
238 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
239 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
240 |
+
replace tran="totliab_Total" if Transaction=="Financial liabilities"
|
241 |
+
|
242 |
+
drop if tran==""
|
243 |
+
|
244 |
+
keep Country Time tran Value
|
245 |
+
rename Country country
|
246 |
+
rename Time year
|
247 |
+
rename Value cb_
|
248 |
+
|
249 |
+
reshape wide cb_, i(country year) j(tran) string
|
250 |
+
|
251 |
+
|
252 |
+
label var cb_dep "Currency and deposits - Central Bank"
|
253 |
+
label var cb_secur "Debt securities - Central Bank"
|
254 |
+
label var cb_loan "Loans - Central Bank"
|
255 |
+
label var cb_mmf "Money market fund shares /units - Central Bank"
|
256 |
+
label var cb_trade "Trade credits and advances - Central Bank"
|
257 |
+
label var cb_totliab_Total "Financial liabilities - Central Bank"
|
258 |
+
|
259 |
+
save cb_safe_items, replace
|
260 |
+
|
261 |
+
clear
|
262 |
+
|
263 |
+
use total_liabilities, replace
|
264 |
+
|
265 |
+
joinby country year using financials_safe_items, unmatched(both)
|
266 |
+
cap drop _merge
|
267 |
+
|
268 |
+
joinby country year using government_safe_items, unmatched(both)
|
269 |
+
cap drop _merge
|
270 |
+
|
271 |
+
joinby country year using central_bank_bonds, unmatched(both)
|
272 |
+
cap drop _merge
|
273 |
+
|
274 |
+
joinby country year using GDP, unmatched(master)
|
275 |
+
cap drop _merge
|
276 |
+
|
277 |
+
joinby country year using cb_safe_items, unmatched(master)
|
278 |
+
cap drop _merge
|
279 |
+
|
280 |
+
* replace missing values with zeros
|
281 |
+
foreach var of varlist fin_* gov_* cb_* {
|
282 |
+
replace `var'=0 if `var'==.
|
283 |
+
}
|
284 |
+
|
285 |
+
label var cb_lbond "Long-term debt securities held by the central bank"
|
286 |
+
label var cb_sbond "Short-term debt securities held by the central bank"
|
287 |
+
|
288 |
+
|
289 |
+
encode country, gen(countrys)
|
290 |
+
|
291 |
+
drop country
|
292 |
+
rename countrys country
|
293 |
+
|
294 |
+
tsset country year
|
295 |
+
|
296 |
+
save dataset, replace
|
297 |
+
|
298 |
+
//* Compute variables in USD
|
299 |
+
* Total liabilities - all sectors
|
300 |
+
|
301 |
+
clear
|
302 |
+
|
303 |
+
insheet using "`folder'\Total liabilities.csv", n c case
|
304 |
+
|
305 |
+
des
|
306 |
+
|
307 |
+
tab PowerCode /* all number in millions */
|
308 |
+
tab Measure /* two types of measures - national currency and USD */
|
309 |
+
tab Transaction
|
310 |
+
|
311 |
+
|
312 |
+
*keep if Measure=="National currency, current prices"
|
313 |
+
keep if Measure=="US $, current prices, current exchange rates, end of period"
|
314 |
+
|
315 |
+
keep Country Sector Time Value
|
316 |
+
|
317 |
+
rename Time Year
|
318 |
+
rename Value totliab
|
319 |
+
|
320 |
+
gen Sec=""
|
321 |
+
|
322 |
+
replace Sec="Total" if Sector=="Total economy"
|
323 |
+
replace Sec="World" if Sector=="Rest of the world"
|
324 |
+
replace Sec="Households" if Sector=="Households and NPISH"
|
325 |
+
replace Sec="Financials" if Sector=="Financial corporations"
|
326 |
+
replace Sec="nonFinancials" if Sector=="Non-financial corporations"
|
327 |
+
replace Sec="Gov" if Sector=="General Government"
|
328 |
+
|
329 |
+
keep if Sec~=""
|
330 |
+
|
331 |
+
keep Country Year Sec totliab
|
332 |
+
|
333 |
+
rename Country country
|
334 |
+
rename Year year
|
335 |
+
rename Sec sector
|
336 |
+
rename totliab totliab_
|
337 |
+
|
338 |
+
reshape wide totliab_, i(country year) j(sector) string
|
339 |
+
|
340 |
+
label var totliab_Total "Tota Liabilities - Total Economy"
|
341 |
+
label var totliab_World "Tota Liabilities - Rest of the World"
|
342 |
+
label var totliab_Households "Tota Liabilities - Households and NPISH"
|
343 |
+
label var totliab_Financials "Tota Liabilities - Financial corporations"
|
344 |
+
label var totliab_nonFinancials "Tota Liabilities - Non-financial corporations"
|
345 |
+
|
346 |
+
save total_liabilitiesUSD, replace
|
347 |
+
|
348 |
+
*/
|
349 |
+
|
350 |
+
//* Financial Corporations - safe liabilities
|
351 |
+
clear
|
352 |
+
|
353 |
+
insheet using "`folder'\Financial_Safe_Liabilities.csv", n c case
|
354 |
+
|
355 |
+
des
|
356 |
+
|
357 |
+
tab PowerCode /* all number in millions */
|
358 |
+
tab Measure /* two types of measures - national currency and USD */
|
359 |
+
tab Transaction
|
360 |
+
tab Sector /* only financial corporations */
|
361 |
+
|
362 |
+
*keep if Measure=="National currency, current prices" & Sector=="Financial corporations"
|
363 |
+
keep if Measure=="US $, current prices, current exchange rates, end of period"
|
364 |
+
|
365 |
+
keep Country Time Transaction Value
|
366 |
+
|
367 |
+
gen tran=""
|
368 |
+
|
369 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
370 |
+
replace tran="secur" if Transaction=="Debt securities"
|
371 |
+
replace tran="loan" if Transaction=="Loans"
|
372 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
373 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
374 |
+
|
375 |
+
drop if tran==""
|
376 |
+
|
377 |
+
keep Country Time tran Value
|
378 |
+
rename Country country
|
379 |
+
rename Time year
|
380 |
+
rename Value fin_
|
381 |
+
|
382 |
+
reshape wide fin_, i(country year) j(tran) string
|
383 |
+
|
384 |
+
label var fin_dep "Currency and deposits - Financial corporations"
|
385 |
+
label var fin_secur "Debt securities - Financial corporations"
|
386 |
+
label var fin_loan "Loans - Financial corporations"
|
387 |
+
label var fin_mmf "Money market fund shares /units - Financial corporations"
|
388 |
+
label var fin_trade "Trade credits and advances - Financial corporations"
|
389 |
+
|
390 |
+
|
391 |
+
save financials_safe_itemsUSD, replace
|
392 |
+
|
393 |
+
//* General Government - safe liabilities
|
394 |
+
|
395 |
+
clear
|
396 |
+
|
397 |
+
insheet using "`folder'\Government_Safe_Liabilities.csv", n c case
|
398 |
+
|
399 |
+
des
|
400 |
+
|
401 |
+
tab PowerCode /* all number in millions */
|
402 |
+
tab Measure /* two types of measures - national currency and USD */
|
403 |
+
tab Transaction
|
404 |
+
tab Sector /* only general government */
|
405 |
+
|
406 |
+
*keep if Measure=="National currency, current prices" & Sector=="General Government"
|
407 |
+
keep if Measure=="US $, current prices, current exchange rates, end of period"
|
408 |
+
|
409 |
+
keep Country Time Transaction Value
|
410 |
+
|
411 |
+
gen tran=""
|
412 |
+
|
413 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
414 |
+
replace tran="secur" if Transaction=="Debt securities"
|
415 |
+
replace tran="loan" if Transaction=="Loans"
|
416 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
417 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
418 |
+
|
419 |
+
drop if tran==""
|
420 |
+
|
421 |
+
keep Country Time tran Value
|
422 |
+
rename Country country
|
423 |
+
rename Time year
|
424 |
+
rename Value gov_
|
425 |
+
|
426 |
+
reshape wide gov_, i(country year) j(tran) string
|
427 |
+
|
428 |
+
|
429 |
+
label var gov_dep "Currency and deposits - General Government"
|
430 |
+
label var gov_secur "Debt securities - General Government"
|
431 |
+
label var gov_loan "Loans - General Government"
|
432 |
+
label var gov_mmf "Money market fund shares /units - General Government"
|
433 |
+
label var gov_trade "Trade credits and advances - General Government"
|
434 |
+
|
435 |
+
save government_safe_itemsUSD, replace
|
436 |
+
|
437 |
+
|
438 |
+
//* Central bank holdings of bonds (assume most of these holdings are government bonds)
|
439 |
+
|
440 |
+
clear
|
441 |
+
|
442 |
+
insheet using "`folder'\CentralBank_gov_bonds.csv", n c case
|
443 |
+
|
444 |
+
des
|
445 |
+
|
446 |
+
tab PowerCode /* all number in millions */
|
447 |
+
tab Measure /* two types of measures - national currency and USD */
|
448 |
+
tab Transaction
|
449 |
+
tab Sector /* only general government */
|
450 |
+
|
451 |
+
*keep if Measure=="National currency, current prices" & Sector=="Central Bank"
|
452 |
+
keep if Measure=="US $, current prices, current exchange rates, end of period"
|
453 |
+
|
454 |
+
keep Country Time Transaction Value
|
455 |
+
|
456 |
+
gen tran=""
|
457 |
+
|
458 |
+
replace tran="lbond" if Transaction=="Long-term debt securities"
|
459 |
+
replace tran="sbond" if Transaction=="Short-term debt securities"
|
460 |
+
|
461 |
+
|
462 |
+
drop if tran==""
|
463 |
+
|
464 |
+
keep Country Time tran Value
|
465 |
+
rename Country country
|
466 |
+
rename Time year
|
467 |
+
rename Value cb_
|
468 |
+
|
469 |
+
reshape wide cb_, i(country year) j(tran) string
|
470 |
+
|
471 |
+
save central_bank_bondsUSD, replace
|
472 |
+
|
473 |
+
|
474 |
+
//* Central bank - safe and total liabilities
|
475 |
+
|
476 |
+
clear
|
477 |
+
|
478 |
+
insheet using "`folder'\CentralBank_liabilities.csv", n c case
|
479 |
+
|
480 |
+
des
|
481 |
+
|
482 |
+
tab PowerCode /* all number in millions */
|
483 |
+
tab Measure /* two types of measures - national currency and USD */
|
484 |
+
tab Transaction
|
485 |
+
tab Sector /* only Central Bank */
|
486 |
+
|
487 |
+
*keep if Measure=="National currency, current prices" & Sector=="Central Bank"
|
488 |
+
keep if Measure=="US $, current prices, current exchange rates, end of period"
|
489 |
+
|
490 |
+
keep Country Time Transaction Value
|
491 |
+
|
492 |
+
gen tran=""
|
493 |
+
|
494 |
+
replace tran="dep" if Transaction=="Currency and deposits"
|
495 |
+
replace tran="secur" if Transaction=="Debt securities"
|
496 |
+
replace tran="loan" if Transaction=="Loans"
|
497 |
+
replace tran="mmf" if Transaction=="Money market fund shares /units"
|
498 |
+
replace tran="trade" if Transaction=="Trade credits and advances"
|
499 |
+
replace tran="totliab_Total" if Transaction=="Financial liabilities"
|
500 |
+
|
501 |
+
drop if tran==""
|
502 |
+
|
503 |
+
keep Country Time tran Value
|
504 |
+
rename Country country
|
505 |
+
rename Time year
|
506 |
+
rename Value cb_
|
507 |
+
|
508 |
+
reshape wide cb_, i(country year) j(tran) string
|
509 |
+
|
510 |
+
|
511 |
+
label var cb_dep "Currency and deposits - Central Bank"
|
512 |
+
label var cb_secur "Debt securities - Central Bank"
|
513 |
+
label var cb_loan "Loans - Central Bank"
|
514 |
+
label var cb_mmf "Money market fund shares /units - Central Bank"
|
515 |
+
label var cb_trade "Trade credits and advances - Central Bank"
|
516 |
+
label var cb_totliab_Total "Financial liabilities - Central Bank"
|
517 |
+
|
518 |
+
save cb_safe_itemsUSD, replace
|
519 |
+
|
520 |
+
***
|
521 |
+
|
522 |
+
clear
|
523 |
+
|
524 |
+
use total_liabilitiesUSD, replace
|
525 |
+
|
526 |
+
joinby country year using financials_safe_itemsUSD, unmatched(both)
|
527 |
+
cap drop _merge
|
528 |
+
|
529 |
+
joinby country year using government_safe_itemsUSD, unmatched(both)
|
530 |
+
cap drop _merge
|
531 |
+
|
532 |
+
joinby country year using central_bank_bondsUSD, unmatched(both)
|
533 |
+
cap drop _merge
|
534 |
+
|
535 |
+
joinby country year using cb_safe_itemsUSD, unmatched(both)
|
536 |
+
cap drop _merge
|
537 |
+
|
538 |
+
|
539 |
+
* replace missing values with zeros
|
540 |
+
foreach var of varlist fin_* gov_* cb_* {
|
541 |
+
replace `var'=0 if `var'==.
|
542 |
+
}
|
543 |
+
|
544 |
+
label var cb_lbond "Long-term debt securities held by the central bank"
|
545 |
+
label var cb_sbond "Short-term debt securities held by the central bank"
|
546 |
+
|
547 |
+
|
548 |
+
encode country, gen(countrys)
|
549 |
+
|
550 |
+
drop country
|
551 |
+
rename countrys country
|
552 |
+
|
553 |
+
tsset country year
|
554 |
+
|
555 |
+
save datasetUSD, replace
|
556 |
+
|
557 |
+
*** do USD aggregates
|
558 |
+
|
559 |
+
use datasetUSD, clear
|
560 |
+
|
561 |
+
|
562 |
+
gen fin_safeUSD=fin_dep+fin_loan+fin_mmf+fin_secur // remove trade credit and advances - it's a small part of financial debt and seems unrelated
|
563 |
+
gen cb_safeUSD=cb_dep+cb_loan+cb_mmf+cb_secur // remove trade credit and advances - it's a small part of financial debt and seems unrelated
|
564 |
+
|
565 |
+
|
566 |
+
gen gov_safeUSD=gov_dep+gov_loan+gov_mmf+gov_secur // remove trade credit and advnaces
|
567 |
+
|
568 |
+
|
569 |
+
rename totliab_Total totliab_TotalUSD
|
570 |
+
|
571 |
+
keep country year fin_safeUSD gov_safeUSD cb_safeUSD totliab_TotalUSD
|
572 |
+
|
573 |
+
sort country year
|
574 |
+
tsset country year
|
575 |
+
|
576 |
+
|
577 |
+
save safeUSD, replace
|
578 |
+
|
579 |
+
// Make world table
|
580 |
+
|
581 |
+
use safeUSD, clear
|
582 |
+
|
583 |
+
gen tempvar=fin_safeUSD+gov_safeUSD+totliab_TotalUSD
|
584 |
+
|
585 |
+
bysort country: egen minyear=min(year) if tempvar<.
|
586 |
+
bysort country: egen maxyear=max(year) if tempvar<.
|
587 |
+
|
588 |
+
keep if minyear<=1995
|
589 |
+
keep if year>=1995
|
590 |
+
|
591 |
+
keep if maxyear>=2017
|
592 |
+
keep if year<=2017
|
593 |
+
|
594 |
+
sort country year
|
595 |
+
tsset country year // panel is balanced
|
596 |
+
|
597 |
+
|
598 |
+
if r(balanced)!="strongly balanced" {
|
599 |
+
di "WARNING!!!! panel is not balanced"
|
600 |
+
}
|
601 |
+
|
602 |
+
preserve
|
603 |
+
|
604 |
+
keep if year==2017
|
605 |
+
|
606 |
+
keep country
|
607 |
+
|
608 |
+
gen OECD=1
|
609 |
+
|
610 |
+
save OECD, replace
|
611 |
+
|
612 |
+
restore
|
613 |
+
|
614 |
+
|
615 |
+
decode country, g(country_name)
|
616 |
+
|
617 |
+
bysort year: egen fin_safeWorld=total(fin_safeUSD)
|
618 |
+
bysort year: egen gov_safeWorld=total(gov_safeUSD)
|
619 |
+
bysort year: egen new_totalWorld=total(totliab_TotalUSD)
|
620 |
+
|
621 |
+
bysort year: egen cb_safeWorld=total(cb_safeUSD)
|
622 |
+
|
623 |
+
gen fin_shareWorld=fin_safeWorld/new_totalWorld
|
624 |
+
gen gov_shareWorld=gov_safeWorld/new_totalWorld
|
625 |
+
gen shareWorld=fin_shareWorld+gov_shareWorld
|
626 |
+
|
627 |
+
gen cb_shareWorld=cb_safeWorld/new_totalWorld
|
628 |
+
|
629 |
+
bysort year: egen fin_safeNonUS=total(fin_safeUSD) if country_name!="United States"
|
630 |
+
bysort year: egen gov_safeNonUS=total(gov_safeUSD) if country_name!="United States"
|
631 |
+
bysort year: egen new_totalNonUS=total(totliab_TotalUSD) if country_name!="United States"
|
632 |
+
|
633 |
+
bysort year: egen cb_safeNonUS=total(cb_safeUSD) if country_name!="United States"
|
634 |
+
|
635 |
+
gen fin_shareNonUS=fin_safeNonUS/new_totalNonUS
|
636 |
+
gen gov_shareNonUS=gov_safeNonUS/new_totalNonUS
|
637 |
+
gen shareNonUS=fin_shareNonUS+gov_shareNonUS
|
638 |
+
|
639 |
+
gen cb_shareNonUS=cb_safeNonUS/new_totalNonUS
|
640 |
+
|
641 |
+
sort country year
|
642 |
+
|
643 |
+
keep if country==country[1]
|
644 |
+
|
645 |
+
keep fin_shareWorld gov_shareWorld shareWorld cb_shareWorld fin_shareNonUS gov_shareNonUS shareNonUS cb_shareNonUS year
|
646 |
+
|
647 |
+
|
648 |
+
keep year fin_shareWorld gov_shareWorld shareWorld cb_shareWorld fin_shareNonUS gov_shareNonUS shareNonUS cb_shareNonUS
|
649 |
+
|
650 |
+
save World, replace
|
651 |
+
|
652 |
+
|
653 |
+
// Make final dataset
|
654 |
+
|
655 |
+
use dataset // non-consolidated data
|
656 |
+
|
657 |
+
joinby country year using safeUSD, unmatched(both)
|
658 |
+
cap drop _merge
|
659 |
+
|
660 |
+
joinby year using World, unmatched(both)
|
661 |
+
cap drop _merge
|
662 |
+
|
663 |
+
joinby country using OECD, unmatched(both)
|
664 |
+
cap drop _merge
|
665 |
+
|
666 |
+
cap drop fin_safe
|
667 |
+
cap drop cb_safe
|
668 |
+
|
669 |
+
label var gov_safeUSD "government safe liabilities in USD"
|
670 |
+
label var fin_shareWorld "financial liabilities (as share of total assets) for the whole world"
|
671 |
+
label var gov_shareWorld "government liabilities (as share of total assets) for the whole world"
|
672 |
+
label var cb_shareWorld "central bank liabilities (as share of total assets) for the whole world"
|
673 |
+
label var shareWorld "safe liabilities (as share of total assets) for the whole world"
|
674 |
+
|
675 |
+
label var fin_shareNonUS "financial liabilities (as share of total assets) for non-US sample"
|
676 |
+
label var gov_shareNonUS "government liabilities (as share of total assets) for non-US sample"
|
677 |
+
label var cb_shareNonUS "central bank liabilities (as share of total assets) for non-US sample"
|
678 |
+
label var shareNonUS "safe liabilities (as share of total assets) for non-US sample"
|
679 |
+
|
680 |
+
label var totliab_Gov "Tota Liabilities - Government"
|
681 |
+
label var OECD "dummy for OECD countries"
|
682 |
+
|
683 |
+
save OECD_data, replace
|
684 |
+
|
105/replication_package/ReadMe.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9068400c5ca91682b0dd81943ea676402c4cd3e4a0083709b46a65c0d502af1f
|
3 |
+
size 42724
|
105/replication_package/Replicate_Empirical_Results.do
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*************************************************************************************************************
|
2 |
+
* Replicate Tables 1-4 and Figures 1-2 of "Safe Assets" by Barro, Fernandez-Villaverde, Levintal and Mollerus
|
3 |
+
*************************************************************************************************************
|
4 |
+
|
5 |
+
clear all
|
6 |
+
|
7 |
+
clear mata
|
8 |
+
set mem 500m
|
9 |
+
set maxvar 32767
|
10 |
+
set more off
|
11 |
+
set linesize 255
|
12 |
+
cap log close
|
13 |
+
|
14 |
+
do make_Tables_1_to_3_Figures_1_and_2
|
15 |
+
|
16 |
+
do make_Table_4
|
105/replication_package/Replicate_Simulation_Results.m
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2 |
+
% Replicate Tables 5-7 and Figure 3 of "Safe Assets" by Barro, Fernandez-Villaverde, Levintal and Mollerus
|
3 |
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
4 |
+
|
5 |
+
clear
|
6 |
+
|
7 |
+
%% open diary file
|
8 |
+
|
9 |
+
FID = fopen('Tables_5_to_7.txt','w');
|
10 |
+
fclose(FID);
|
11 |
+
|
12 |
+
diary Tables_5_to_7.txt
|
13 |
+
diary off
|
14 |
+
|
15 |
+
%% add folders to search path
|
16 |
+
homefolder = pwd;
|
17 |
+
|
18 |
+
addpath(genpath([homefolder '\solution_methods']));
|
19 |
+
|
20 |
+
%% define models
|
21 |
+
|
22 |
+
run('UNIT_IES\define_model'); % THETA = 1
|
23 |
+
run('GENERAL_IES\define_model'); % THETA ~= 1
|
24 |
+
run('Variable_Disaster_Size\define_model'); % THETA = 1, variable disaster size, defaultable long-term bonds
|
25 |
+
|
26 |
+
|
27 |
+
%% replicate Table 5
|
28 |
+
run('UNIT_IES\make_Table_5.m')
|
29 |
+
|
30 |
+
%% replicate Table 6
|
31 |
+
run('GENERAL_IES\make_Table_6_part_1.m')
|
32 |
+
run('UNIT_IES\make_Table_6_part_2.m')
|
33 |
+
|
34 |
+
%% replicate Table 7
|
35 |
+
run('Variable_Disaster_Size\make_Table_7.m')
|
36 |
+
|
37 |
+
%% replicate Figure 3
|
38 |
+
run('UNIT_IES\Disaster_IRF.m')
|
39 |
+
|
40 |
+
|
105/replication_package/UNIT_IES/Disaster_IRF.m
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Disaster Impulse response function
|
2 |
+
|
3 |
+
clear,clc,close all
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
load('benchmark')
|
7 |
+
|
8 |
+
state0 = mean(tila1);
|
9 |
+
mean_W1_share0 = mean_W1_share;
|
10 |
+
|
11 |
+
T = 10/period_length + 1;
|
12 |
+
|
13 |
+
disaster = ones(1,T+1);
|
14 |
+
disaster(2) = 2;
|
15 |
+
|
16 |
+
simulate_with_disasters;
|
17 |
+
summarize_results;
|
18 |
+
|
19 |
+
W1_share = [mean_W1_share0;W1_share(:)];
|
20 |
+
|
21 |
+
% adjust for human capital
|
22 |
+
equity = equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
|
23 |
+
debt_to_assets = debt_to_assets/ALPHA;
|
24 |
+
W1_share = W1_share/ALPHA - (1 - ALPHA)/ALPHA*MU;
|
25 |
+
|
26 |
+
set(0, 'defaultFigurePaperPosition', [0 0 20 21.5]*30);
|
27 |
+
h = figure('color', [1 1 1], 'PaperType', 'A4');
|
28 |
+
|
29 |
+
subplot(2,2,1);
|
30 |
+
plot(W1_share);
|
31 |
+
title('W1/W')
|
32 |
+
|
33 |
+
subplot(2,2,2)
|
34 |
+
plot(rb);
|
35 |
+
title('rf')
|
36 |
+
|
37 |
+
subplot(2,2,3)
|
38 |
+
plot(equity);
|
39 |
+
title('K1')
|
40 |
+
|
41 |
+
subplot(2,2,4)
|
42 |
+
plot(debt_to_assets);
|
43 |
+
title('B1/assets')
|
44 |
+
|
45 |
+
cd ..
|
46 |
+
saveas(h,'Figure_3','jpg')
|
105/replication_package/UNIT_IES/Parameters.m
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
period_length = 0.25;
|
2 |
+
|
3 |
+
P = 1 - exp(-.04*period_length); % disaster probability
|
4 |
+
|
5 |
+
B = -log(1 - .32); % disaster size
|
6 |
+
|
7 |
+
meanB = B;
|
8 |
+
|
9 |
+
G = 0.025*period_length; % drift of log output
|
10 |
+
|
11 |
+
RHO = 0.04*period_length; % time preference rate
|
12 |
+
|
13 |
+
NU = 0.02*period_length; % replacement rate
|
14 |
+
|
15 |
+
MU = 0.05; % popoulation share of agent 1
|
16 |
+
|
17 |
+
ALPHA = 1/3; % capital share in output
|
18 |
+
|
19 |
+
TAU = 0; % bond duration - short-term bonds
|
20 |
+
|
21 |
+
GAMMA1 = 1.000001; % start with unit risk aversion
|
22 |
+
GAMMA2 = GAMMA1;
|
105/replication_package/UNIT_IES/Table_6_MU.m
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% MU = 0.1
|
2 |
+
|
3 |
+
load('model')
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
Parameters;
|
7 |
+
MU = 0.1; % popoulation share of agent 1
|
8 |
+
|
9 |
+
% make the vector of parameters
|
10 |
+
params = eval(symparams);
|
11 |
+
|
12 |
+
% distribution of hatyp
|
13 |
+
nodes = exp([G,G-B]); % hatyp
|
14 |
+
weights = [1-P,P]; % corresponding probabilities
|
15 |
+
|
16 |
+
T = 2000/period_length; % simulate 2000 years
|
17 |
+
|
18 |
+
% disaster shock
|
19 |
+
rng('default')
|
20 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
21 |
+
|
22 |
+
GAMMA1 = 2.6;
|
23 |
+
GAMMA2 = GAMMA1;
|
24 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
26 |
+
|
27 |
+
% tolerance for the Newton solver
|
28 |
+
tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
|
29 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
30 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
31 |
+
|
32 |
+
solve_and_simulate;
|
33 |
+
|
34 |
+
%%%%%%%%%%%%%%%%%
|
35 |
+
|
36 |
+
GAMMA1 = 2.6;
|
37 |
+
GAMMA2 = 4.15;
|
38 |
+
|
39 |
+
newparams = params;
|
40 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
41 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
42 |
+
|
43 |
+
burn=1;
|
44 |
+
|
45 |
+
correct_params;
|
46 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
47 |
+
summarize_results;
|
48 |
+
|
49 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
50 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
51 |
+
Table_vol = [vol_roe,vol_rb];
|
52 |
+
|
53 |
+
%%%%%%%%%%%%%%%%%%%%%%%%
|
54 |
+
|
55 |
+
GAMMA1=2.5;
|
56 |
+
GAMMA2=4.29;
|
57 |
+
|
58 |
+
burn=1;
|
59 |
+
newparams=params;
|
60 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
61 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
62 |
+
|
63 |
+
correct_params;
|
64 |
+
|
65 |
+
simulate_with_disasters;
|
66 |
+
|
67 |
+
summarize_results;
|
68 |
+
|
69 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
70 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
71 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
72 |
+
|
73 |
+
%%%%%%%%%%%%%%%%%%%%%
|
74 |
+
GAMMA1=2.4;
|
75 |
+
GAMMA2=4.54;
|
76 |
+
|
77 |
+
newparams=params;
|
78 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
79 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
80 |
+
|
81 |
+
params=newparams;
|
82 |
+
xt=max(x_results);
|
83 |
+
[coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
84 |
+
|
85 |
+
simulate_with_disasters;
|
86 |
+
|
87 |
+
summarize_results;
|
88 |
+
|
89 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
90 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
91 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
92 |
+
|
93 |
+
save('Table_6_MU','Table*')
|
94 |
+
|
105/replication_package/UNIT_IES/Table_6_NU.m
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% NU = .03
|
2 |
+
|
3 |
+
load('model')
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
Parameters;
|
7 |
+
NU = 0.03*period_length; % replacement rate
|
8 |
+
|
9 |
+
% make the vector of parameters
|
10 |
+
params = eval(symparams);
|
11 |
+
|
12 |
+
% distribution of hatyp
|
13 |
+
nodes = exp([G,G-B]); % hatyp
|
14 |
+
weights = [1-P,P]; % corresponding probabilities
|
15 |
+
|
16 |
+
T = 2000/period_length; % simulate 2000 years
|
17 |
+
|
18 |
+
% disaster shock
|
19 |
+
rng('default')
|
20 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
21 |
+
|
22 |
+
GAMMA1 = 2.6;
|
23 |
+
GAMMA2 = GAMMA1;
|
24 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
26 |
+
|
27 |
+
% tolerance for the Newton solver
|
28 |
+
tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
|
29 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
30 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
31 |
+
|
32 |
+
solve_and_simulate;
|
33 |
+
|
34 |
+
%%%%%%%%%%%%%%%%%
|
35 |
+
|
36 |
+
GAMMA1 = 2.6;
|
37 |
+
GAMMA2 = 4.15;
|
38 |
+
|
39 |
+
newparams = params;
|
40 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
41 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
42 |
+
|
43 |
+
burn=1;
|
44 |
+
|
45 |
+
correct_params;
|
46 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
47 |
+
summarize_results;
|
48 |
+
|
49 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
50 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
51 |
+
Table_vol = [vol_roe,vol_rb];
|
52 |
+
|
53 |
+
%%%%%%%%%%%%%%%%%%%%%%%%
|
54 |
+
|
55 |
+
GAMMA1=2.5;
|
56 |
+
GAMMA2=4.29;
|
57 |
+
|
58 |
+
burn=1;
|
59 |
+
newparams=params;
|
60 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
61 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
62 |
+
|
63 |
+
correct_params;
|
64 |
+
|
65 |
+
simulate_with_disasters;
|
66 |
+
|
67 |
+
summarize_results;
|
68 |
+
|
69 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
70 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
71 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
72 |
+
|
73 |
+
%%%%%%%%%%%%%%%%%%%%%
|
74 |
+
GAMMA1=2.4;
|
75 |
+
GAMMA2=4.54;
|
76 |
+
|
77 |
+
newparams=params;
|
78 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
79 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
80 |
+
|
81 |
+
params=newparams;
|
82 |
+
xt=max(x_results);
|
83 |
+
[coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
84 |
+
|
85 |
+
simulate_with_disasters;
|
86 |
+
|
87 |
+
summarize_results;
|
88 |
+
|
89 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
90 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
91 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
92 |
+
|
93 |
+
|
94 |
+
save('Table_6_NU','Table*')
|
105/replication_package/UNIT_IES/Table_6_P.m
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% P = .02
|
2 |
+
|
3 |
+
load('model')
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
Parameters;
|
7 |
+
P = 1 - exp(-.02*period_length); % disaster probability
|
8 |
+
|
9 |
+
% make the vector of parameters
|
10 |
+
params = eval(symparams);
|
11 |
+
|
12 |
+
% distribution of hatyp
|
13 |
+
nodes = exp([G,G-B]); % hatyp
|
14 |
+
weights = [1-P,P]; % corresponding probabilities
|
15 |
+
|
16 |
+
T = 2000/period_length; % simulate 2000 years
|
17 |
+
|
18 |
+
% disaster shock
|
19 |
+
rng('default')
|
20 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
21 |
+
|
22 |
+
GAMMA1 = 2.6;
|
23 |
+
GAMMA2 = GAMMA1;
|
24 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
26 |
+
|
27 |
+
% tolerance for the Newton solver
|
28 |
+
tolX=1e-7; tolF=1e-7; maxiter=10; testF=1e-5;
|
29 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
30 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
31 |
+
|
32 |
+
solve_and_simulate;
|
33 |
+
|
34 |
+
%%%%%%%%%%%%%%%%%
|
35 |
+
|
36 |
+
GAMMA1 = 2.6;
|
37 |
+
GAMMA2 = 4.15;
|
38 |
+
|
39 |
+
newparams = params;
|
40 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
41 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
42 |
+
|
43 |
+
burn=1;
|
44 |
+
|
45 |
+
correct_params;
|
46 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
47 |
+
summarize_results;
|
48 |
+
|
49 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
50 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
51 |
+
Table_vol = [vol_roe,vol_rb];
|
52 |
+
|
53 |
+
%%%%%%%%%%%%%%%%%%%%%%%%
|
54 |
+
|
55 |
+
GAMMA1=2.5;
|
56 |
+
GAMMA2=4.29;
|
57 |
+
|
58 |
+
burn=1;
|
59 |
+
newparams=params;
|
60 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
61 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
62 |
+
|
63 |
+
correct_params;
|
64 |
+
|
65 |
+
simulate_with_disasters;
|
66 |
+
|
67 |
+
summarize_results;
|
68 |
+
|
69 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
70 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
71 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
72 |
+
|
73 |
+
%%%%%%%%%%%%%%%%%%%%%
|
74 |
+
GAMMA1=2.4;
|
75 |
+
GAMMA2=4.54;
|
76 |
+
|
77 |
+
newparams=params;
|
78 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
79 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
80 |
+
|
81 |
+
params=newparams;
|
82 |
+
xt=max(x_results);
|
83 |
+
[coeffs,model]=tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
84 |
+
|
85 |
+
simulate_with_disasters;
|
86 |
+
|
87 |
+
summarize_results;
|
88 |
+
|
89 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
90 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
91 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
92 |
+
|
93 |
+
save('Table_6_P','Table*')
|
94 |
+
|
105/replication_package/UNIT_IES/Tranquility.m
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% 40 years of tranquility
|
2 |
+
|
3 |
+
clear,clc,close all
|
4 |
+
addpath('files')
|
5 |
+
|
6 |
+
load('benchmark')
|
7 |
+
|
8 |
+
state0 = mean(tila1);
|
9 |
+
mean_W1_share0 = mean_W1_share;
|
10 |
+
|
11 |
+
T40 = 40/period_length+1;
|
12 |
+
T = 2000;
|
13 |
+
|
14 |
+
disaster = ones(1,T+1);
|
15 |
+
|
16 |
+
simulate_with_disasters;
|
17 |
+
summarize_results;
|
18 |
+
|
19 |
+
W1_share = [mean_W1_share0;W1_share(:)];
|
20 |
+
|
21 |
+
% adjust for human capital
|
22 |
+
equity = equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
|
23 |
+
debt_to_assets = debt_to_assets/ALPHA;
|
24 |
+
W1_share = W1_share/ALPHA - (1 - ALPHA)/ALPHA*MU;
|
25 |
+
|
26 |
+
[W1_share(end),rb(end),equity(end),debt_to_assets(end)]
|
27 |
+
|
28 |
+
W1_share = W1_share(1:T40);
|
29 |
+
rf = rb(1:T40);
|
30 |
+
equity = equity(1:T40);
|
31 |
+
debt_to_assets = debt_to_assets(1:T40);
|
32 |
+
|
33 |
+
set(0, 'defaultFigurePaperPosition', [0 0 20 21.5]*30);
|
34 |
+
h = figure('color', [1 1 1], 'PaperType', 'A4');
|
35 |
+
|
36 |
+
subplot(2,2,1);
|
37 |
+
plot(W1_share);
|
38 |
+
title('W1/W')
|
39 |
+
|
40 |
+
subplot(2,2,2)
|
41 |
+
plot(rf);
|
42 |
+
title('rf')
|
43 |
+
|
44 |
+
subplot(2,2,3)
|
45 |
+
plot(equity);
|
46 |
+
title('K1')
|
47 |
+
|
48 |
+
subplot(2,2,4)
|
49 |
+
plot(debt_to_assets);
|
50 |
+
title('B1/assets')
|
51 |
+
|
105/replication_package/UNIT_IES/correct_params.m
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file changes the parameters gradually from their initival value to
|
2 |
+
% the target value
|
3 |
+
|
4 |
+
solve = 1;
|
5 |
+
stop = 0;
|
6 |
+
t = 0;
|
7 |
+
|
8 |
+
xt = state0;
|
9 |
+
params0 = params;
|
10 |
+
while stop==0
|
11 |
+
t = t + 1;
|
12 |
+
|
13 |
+
if t<=burn
|
14 |
+
factor = t/burn;
|
15 |
+
params = (1 - factor)*params0 + factor*newparams;
|
16 |
+
end
|
17 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
18 |
+
|
19 |
+
% if residuals are too large solve again
|
20 |
+
if norm(R(:))>testF && solve==1
|
21 |
+
t
|
22 |
+
[coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
23 |
+
|
24 |
+
% evaluate the new solution
|
25 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
26 |
+
end
|
27 |
+
|
28 |
+
newxt = nPhi(:,1); % assume no realized disasters
|
29 |
+
|
30 |
+
if t>burn+10 % after 10 periods start checking for convergence
|
31 |
+
if max(abs(newxt-xt))<1e-7
|
32 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
33 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
34 |
+
|
35 |
+
newxt = nPhi(:,1);
|
36 |
+
if max(abs(newxt-xt))<1e-7
|
37 |
+
stop = 1;
|
38 |
+
state0 = xt; % solution point
|
39 |
+
coeffs0 = coeffs;
|
40 |
+
end
|
41 |
+
end
|
42 |
+
end
|
43 |
+
xt = newxt;
|
44 |
+
end
|
45 |
+
|
105/replication_package/UNIT_IES/define_model.m
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%-------------------------------------------------------------------------
|
2 |
+
% The model: Safe Assets - the case of unit IES (THETA = 1)
|
3 |
+
%
|
4 |
+
% This file defines the baseline model (see Appendix for the full derivation).
|
5 |
+
% Bonds are short term perfectly safe.
|
6 |
+
%
|
7 |
+
% Variables are denoted by small letters and
|
8 |
+
% parameters by capital letters. Future values are denoted by suffix p.
|
9 |
+
%-------------------------------------------------------------------------
|
10 |
+
|
11 |
+
clear,clc
|
12 |
+
|
13 |
+
%% Symbolic variables
|
14 |
+
|
15 |
+
syms RHO GAMMA1 GAMMA2 NU MU TAU real
|
16 |
+
syms f1 f2 f1p f2p x1 x2 x1p x2p real
|
17 |
+
syms logq logqp tilp tilpp real
|
18 |
+
syms state1 state1p state2 state2p hatyp deltap k1 tilb1 real
|
19 |
+
syms tila1 tila1p tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
|
20 |
+
syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p logu1p logu2p u1p u2p logf1 logf1p logf2 logf2p real
|
21 |
+
syms term1p term2p invr1p invr2p real
|
22 |
+
|
23 |
+
%% Parameters
|
24 |
+
|
25 |
+
symparams = [RHO,GAMMA1,GAMMA2,NU,MU];
|
26 |
+
|
27 |
+
%% State variables
|
28 |
+
|
29 |
+
state = [tila1]; % current period
|
30 |
+
statep = [tila1p]; % future period
|
31 |
+
|
32 |
+
%% Control variables
|
33 |
+
|
34 |
+
control = [f1,f2,x1,x2,logq]; % current period
|
35 |
+
controlp = [f1p,f2p,x1p,x2p,logqp]; % future period
|
36 |
+
|
37 |
+
%% shocks
|
38 |
+
|
39 |
+
shocks = [hatyp];
|
40 |
+
|
41 |
+
%% auxiliary variables
|
42 |
+
|
43 |
+
tilp = 1/RHO; % price-dividend ratio for unit IES
|
44 |
+
tilpp = tilp; % next period
|
45 |
+
|
46 |
+
c1 = RHO/(1 + RHO); % consumption/wealth ratio of agent 1 for unit IES
|
47 |
+
c1p = c1; % next period
|
48 |
+
|
49 |
+
c2 = c1; % consumption/wealth ratio of agent 2 for unit IES
|
50 |
+
c2p = c2; % next period
|
51 |
+
|
52 |
+
logc1p = log(c1p);
|
53 |
+
logc2p = log(c2p);
|
54 |
+
|
55 |
+
invf1_ = 1/f1;
|
56 |
+
invf2_ = 1/f2;
|
57 |
+
|
58 |
+
logf1p_ = log(f1p);
|
59 |
+
logf2p_ = log(f2p);
|
60 |
+
|
61 |
+
invr1p_ = 1/r1p;
|
62 |
+
invr2p_ = 1/r2p;
|
63 |
+
|
64 |
+
q_ = exp(logq);
|
65 |
+
qp_ = exp(logqp);
|
66 |
+
|
67 |
+
invtila1_ = 1/tila1;
|
68 |
+
invtila2_ = 1/tila2;
|
69 |
+
|
70 |
+
rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
|
71 |
+
rbp_ = 1/q; % return on bond
|
72 |
+
|
73 |
+
u1p_ = exp(logu1p);
|
74 |
+
u2p_ = exp(logu2p);
|
75 |
+
|
76 |
+
%% MODEL CONDITIONS
|
77 |
+
|
78 |
+
tila2_ = tilp + 1 - tila1;
|
79 |
+
|
80 |
+
k1_ = x1*(1 - c1)*tila1/tilp;
|
81 |
+
|
82 |
+
tilb1_ = (1 - x1)*(1 - c1)*tila1;
|
83 |
+
|
84 |
+
eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
|
85 |
+
|
86 |
+
r1p_ = x1*rep + (1 - x1)*rbp;
|
87 |
+
|
88 |
+
r2p_ = x2*rep + (1 - x2)*rbp;
|
89 |
+
|
90 |
+
term1p_ = r1p^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
|
91 |
+
+ NU*(1 - MU)*u2p^(1 - GAMMA1))*invf1^(1 - GAMMA1);
|
92 |
+
|
93 |
+
term2p_ = r2p^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
|
94 |
+
+NU*MU*u1p^(1 - GAMMA2))*invf2^(1 - GAMMA2);
|
95 |
+
|
96 |
+
eq2 = -1 + term1p; % define f1 = (E(r1p*u1p)^(1-GAMMA1))^(1/(1-GAMMA1))
|
97 |
+
|
98 |
+
eq3 = -1 + term2p; % define f2 similarly
|
99 |
+
|
100 |
+
logu1p_ = RHO/(1 + RHO)*logc1p + 1/(1 + RHO)*log(1 - c1p) + 1/(1 + RHO)*logf1p;
|
101 |
+
|
102 |
+
logu2p_ = RHO/(1 + RHO)*logc2p + 1/(1 + RHO)*log(1 - c2p) + 1/(1 + RHO)*logf2p;
|
103 |
+
|
104 |
+
eq4 = (rep - rbp)*term1p*invr1p;
|
105 |
+
|
106 |
+
eq5 = (rep - rbp)*term2p*invr2p;
|
107 |
+
|
108 |
+
%% Function f (Ef = 0 imposes model conditions)
|
109 |
+
|
110 |
+
f_fun = [eq1;eq2;eq3;eq4;eq5];
|
111 |
+
|
112 |
+
%% law of motion of state variables
|
113 |
+
|
114 |
+
Phi_fun = (1 + tilp)*(k1 - NU*(k1 - MU)) + (1 - NU)*tilb1/(hatyp*q); % law of motion of tila1
|
115 |
+
|
116 |
+
%% collect auxiliary variables and functions
|
117 |
+
|
118 |
+
allvars=who;
|
119 |
+
auxfuns=[];
|
120 |
+
auxvars=[];
|
121 |
+
for i=1:length(allvars)
|
122 |
+
if strcmp(allvars{i}(end),'_')
|
123 |
+
eval(['tempfun=' allvars{i} ';'])
|
124 |
+
eval(['tempvar=' allvars{i}(1:end-1) ';'])
|
125 |
+
auxfuns=[auxfuns;tempfun];
|
126 |
+
auxvars=[auxvars;tempvar];
|
127 |
+
end
|
128 |
+
end
|
129 |
+
|
130 |
+
%% Approximation order (<=4)
|
131 |
+
|
132 |
+
order = 4;
|
133 |
+
|
134 |
+
%% Preprocess model and save
|
135 |
+
|
136 |
+
model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
|
137 |
+
|
138 |
+
save('model')
|
139 |
+
|
105/replication_package/UNIT_IES/make_Table_5.m
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Table 5
|
2 |
+
|
3 |
+
clear,clc
|
4 |
+
|
5 |
+
load('model')
|
6 |
+
addpath('files')
|
7 |
+
|
8 |
+
Parameters;
|
9 |
+
|
10 |
+
% make the vector of parameters
|
11 |
+
params = eval(symparams);
|
12 |
+
|
13 |
+
% distribution of hatyp
|
14 |
+
nodes = exp([G,G-B]); % hatyp
|
15 |
+
weights = [1-P,P]; % corresponding probabilities
|
16 |
+
|
17 |
+
T = 2000/period_length; % simulate 2000 years
|
18 |
+
|
19 |
+
% disaster shock
|
20 |
+
rng('default')
|
21 |
+
disaster = double(rand(1,T+1)<P) + 1; % 1 for normal, 2 for disaster
|
22 |
+
|
23 |
+
GAMMA1 = 3.85;
|
24 |
+
GAMMA2 = GAMMA1;
|
25 |
+
params(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
26 |
+
params(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
27 |
+
|
28 |
+
step_size=1;
|
29 |
+
|
30 |
+
% tolerance for the Newton solver
|
31 |
+
tolX = 1e-5; tolF = 1e-5; maxiter = 10; testF = 1e-5;
|
32 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
33 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
34 |
+
|
35 |
+
solve_and_simulate;
|
36 |
+
|
37 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
38 |
+
|
39 |
+
summarize_results;
|
40 |
+
|
41 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
42 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
43 |
+
Table_vol = [vol_roe,vol_rb];
|
44 |
+
|
45 |
+
%%
|
46 |
+
GAMMA1 = 3.3;
|
47 |
+
GAMMA2 = 3.89;
|
48 |
+
|
49 |
+
burn=1;
|
50 |
+
newparams = params;
|
51 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
52 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
53 |
+
|
54 |
+
correct_params;
|
55 |
+
simulate_with_disasters;
|
56 |
+
summarize_results;
|
57 |
+
|
58 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
59 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
60 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
61 |
+
|
62 |
+
%%
|
63 |
+
GAMMA1 = 2.9;
|
64 |
+
GAMMA2 = 3.98;
|
65 |
+
|
66 |
+
burn=5;
|
67 |
+
|
68 |
+
newparams = params;
|
69 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
70 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
71 |
+
|
72 |
+
correct_params;
|
73 |
+
simulate_with_disasters;
|
74 |
+
summarize_results;
|
75 |
+
|
76 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
77 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
78 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
79 |
+
|
80 |
+
%%
|
81 |
+
GAMMA1 = 2.8;
|
82 |
+
GAMMA2 = 4.02;
|
83 |
+
|
84 |
+
burn = 5;
|
85 |
+
|
86 |
+
newparams = params;
|
87 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
88 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
89 |
+
|
90 |
+
correct_params;
|
91 |
+
simulate_with_disasters;
|
92 |
+
summarize_results;
|
93 |
+
|
94 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
95 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
96 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
97 |
+
|
98 |
+
%%
|
99 |
+
GAMMA1 = 2.7;
|
100 |
+
GAMMA2 = 4.07;
|
101 |
+
|
102 |
+
burn = 5;
|
103 |
+
|
104 |
+
newparams = params;
|
105 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
106 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
107 |
+
|
108 |
+
correct_params;
|
109 |
+
simulate_with_disasters;
|
110 |
+
summarize_results;
|
111 |
+
|
112 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
113 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
114 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
115 |
+
|
116 |
+
%%
|
117 |
+
GAMMA1 = 2.6;
|
118 |
+
GAMMA2 = 4.15;
|
119 |
+
|
120 |
+
burn = 5;
|
121 |
+
|
122 |
+
newparams = params;
|
123 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
124 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
125 |
+
|
126 |
+
correct_params;
|
127 |
+
simulate_with_disasters;
|
128 |
+
summarize_results;
|
129 |
+
|
130 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
131 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
132 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
133 |
+
|
134 |
+
%%
|
135 |
+
GAMMA1 = 2.5;
|
136 |
+
GAMMA2 = 4.29;
|
137 |
+
|
138 |
+
burn=5;
|
139 |
+
|
140 |
+
newparams = params;
|
141 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
142 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
143 |
+
|
144 |
+
correct_params;
|
145 |
+
simulate_with_disasters;
|
146 |
+
summarize_results;
|
147 |
+
|
148 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
149 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
150 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
151 |
+
|
152 |
+
%%
|
153 |
+
|
154 |
+
GAMMA1 = 2.4;
|
155 |
+
GAMMA2 = 4.54;
|
156 |
+
|
157 |
+
burn=5;
|
158 |
+
|
159 |
+
newparams = params;
|
160 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
161 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
162 |
+
|
163 |
+
correct_params;
|
164 |
+
simulate_with_disasters;
|
165 |
+
summarize_results;
|
166 |
+
|
167 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
168 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
169 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
170 |
+
|
171 |
+
save('benchmark')
|
172 |
+
|
173 |
+
%%
|
174 |
+
GAMMA1 = 2.3;
|
175 |
+
GAMMA2 = 5.50;
|
176 |
+
|
177 |
+
burn=5;
|
178 |
+
|
179 |
+
newparams = params;
|
180 |
+
newparams(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
181 |
+
newparams(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
182 |
+
|
183 |
+
correct_params;
|
184 |
+
simulate_with_disasters;
|
185 |
+
summarize_results;
|
186 |
+
|
187 |
+
Table = [Table;GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
188 |
+
Table_labor = [Table_labor;GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
189 |
+
Table_vol = [Table_vol;vol_roe,vol_rb];
|
190 |
+
|
191 |
+
%% display Table 5
|
192 |
+
clc
|
193 |
+
|
194 |
+
homefolder = pwd;
|
195 |
+
cd ..
|
196 |
+
diary on
|
197 |
+
|
198 |
+
disp('********** Table 5 **********')
|
199 |
+
|
200 |
+
Table_5 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)]
|
201 |
+
|
202 |
+
|
203 |
+
%% display accuracy measure
|
204 |
+
disp('Appendix Table 1: Accuracy Measures for Table 5')
|
205 |
+
|
206 |
+
Accuracy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)]
|
207 |
+
|
208 |
+
diary off
|
209 |
+
|
210 |
+
cd(homefolder)
|
105/replication_package/UNIT_IES/make_Table_6_part_2.m
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Table_6_NU;
|
2 |
+
Table_6_P;
|
3 |
+
Table_6_MU;
|
4 |
+
|
5 |
+
%% Display Table 6 (part 2)
|
6 |
+
clc
|
7 |
+
homefolder = pwd;
|
8 |
+
cd ..
|
9 |
+
diary on
|
10 |
+
|
11 |
+
disp('********** Table 6 (continued) **********')
|
12 |
+
|
13 |
+
load([homefolder '\Table_6_NU'],'Table*')
|
14 |
+
|
15 |
+
Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
|
16 |
+
|
17 |
+
disp('nu = 0.03')
|
18 |
+
disp(Table_6(3,:))
|
19 |
+
|
20 |
+
load([homefolder '\Table_6_P'],'Table*')
|
21 |
+
|
22 |
+
Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
|
23 |
+
|
24 |
+
disp('p = 0.02')
|
25 |
+
disp(Table_6(3,:))
|
26 |
+
|
27 |
+
load([homefolder '\Table_6_MU'],'Table*')
|
28 |
+
|
29 |
+
Table_6 = [round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)];
|
30 |
+
|
31 |
+
disp('mu = 0.1')
|
32 |
+
disp(Table_6(3,:))
|
33 |
+
|
34 |
+
%% Accuracy Measures
|
35 |
+
disp('Appendix Table 2 (continued): Accuarcy Measures for Table 6')
|
36 |
+
|
37 |
+
load([homefolder '\Table_6_NU'],'Table*')
|
38 |
+
|
39 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
40 |
+
|
41 |
+
disp('nu = 0.03')
|
42 |
+
disp(Accuarcy(3,2:end))
|
43 |
+
|
44 |
+
load([homefolder '\Table_6_P'],'Table*')
|
45 |
+
|
46 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
47 |
+
|
48 |
+
disp('p = 0.02')
|
49 |
+
disp(Accuarcy(3,2:end))
|
50 |
+
|
51 |
+
load([homefolder '\Table_6_MU'],'Table*')
|
52 |
+
|
53 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
54 |
+
|
55 |
+
disp('mu = 0.1')
|
56 |
+
disp(Accuarcy(3,2:end))
|
57 |
+
|
58 |
+
diary off
|
59 |
+
|
60 |
+
cd(homefolder)
|
105/replication_package/UNIT_IES/rep_agent.m
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Table 5
|
2 |
+
|
3 |
+
clear,clc
|
4 |
+
|
5 |
+
load('model')
|
6 |
+
|
7 |
+
addpath('files')
|
8 |
+
|
9 |
+
Parameters;
|
10 |
+
|
11 |
+
% make the vector of parameters
|
12 |
+
params = eval(symparams);
|
13 |
+
|
14 |
+
% distribution of hatyp and deltap
|
15 |
+
nodes = exp([G,G-B]); % hatyp
|
16 |
+
weights = [1-P,P]; % corresponding probabilities
|
17 |
+
|
18 |
+
rng('default')
|
19 |
+
|
20 |
+
T = 10; % for rep agent simulate for 10 periods only
|
21 |
+
|
22 |
+
% disaster shock
|
23 |
+
rng('default')
|
24 |
+
|
25 |
+
disaster = ones(1,T+1); % 1 for normal
|
26 |
+
disaster(ceil(T/2)) = 2; % 2 for disaster
|
27 |
+
|
28 |
+
% tolerance for the Newton solver
|
29 |
+
tolX = 1e-5; tolF = 1e-5; maxiter = 10; testF = 1e-5;
|
30 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
31 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
32 |
+
|
33 |
+
%%%%%%%%%%%%%%%%%
|
34 |
+
|
35 |
+
GAMMA1=1.000001;
|
36 |
+
GAMMA2=GAMMA1;
|
37 |
+
params(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
38 |
+
params(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
39 |
+
|
40 |
+
solve_and_simulate;
|
41 |
+
|
42 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
43 |
+
|
44 |
+
summarize_results;
|
45 |
+
|
46 |
+
Table = [GAMMA1,GAMMA2,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
47 |
+
|
48 |
+
%%
|
49 |
+
|
50 |
+
for GAMMA1 = [1.5,2,2.4,2.5:.5:6]
|
51 |
+
GAMMA2 = GAMMA1;
|
52 |
+
|
53 |
+
% update parameter values and solve the model for the new parameters
|
54 |
+
params(logical(symparams==sym('GAMMA1'))) = GAMMA1;
|
55 |
+
params(logical(symparams==sym('GAMMA2'))) = GAMMA2;
|
56 |
+
[coeffs,model] = tpsolve(coeffs,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
57 |
+
|
58 |
+
simulate_with_disasters; % This file simulates the model with disasters.
|
59 |
+
|
60 |
+
summarize_results;
|
61 |
+
|
62 |
+
Table = [Table;GAMMA1,GAMMA2,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
63 |
+
end
|
64 |
+
|
65 |
+
Table_5 = round(Table(:,[1,3,4]),3)
|
66 |
+
|
105/replication_package/UNIT_IES/simulate_with_disasters.m
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Simulate with disasters
|
2 |
+
y_results = zeros(model.n_y,T+1);
|
3 |
+
x_results = zeros(model.n_x,T+1);
|
4 |
+
R_results = zeros(model.n_f,T+1);
|
5 |
+
|
6 |
+
x_results(:,1) = state0;
|
7 |
+
|
8 |
+
for t = 1:T
|
9 |
+
t
|
10 |
+
xt = x_results(:,t);
|
11 |
+
|
12 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
13 |
+
|
14 |
+
% store results
|
15 |
+
R_results(:,t) = R;
|
16 |
+
y_results(:,t) = g;
|
17 |
+
|
18 |
+
x_results(:,t+1) = nPhi(:,disaster(t+1));
|
19 |
+
end
|
105/replication_package/UNIT_IES/solve_and_simulate.m
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file performs the following:
|
2 |
+
% 1. Solve the model by Taylor projection at the initial state.
|
3 |
+
% 2. Simulate the model without realized disasters.
|
4 |
+
|
5 |
+
%% make initial guess for a deterministic version of the model
|
6 |
+
|
7 |
+
% in a deterministic economy, the following variables are constant:
|
8 |
+
|
9 |
+
x1 = 1; % agents invests only in equity
|
10 |
+
x2 = 1;
|
11 |
+
tilp = 1/RHO; % price/earning ratio
|
12 |
+
hatyp = exp(G-meanB*P); % average growth
|
13 |
+
haty = hatyp;
|
14 |
+
rep = (1+tilp)/tilp*hatyp; % asset return
|
15 |
+
logq = log(1/rep); % price of bond
|
16 |
+
c1 = RHO/(1+RHO); % consumption/wealth ratio
|
17 |
+
c2 = c1;
|
18 |
+
logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
|
19 |
+
u1 = exp(logu1);
|
20 |
+
logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
|
21 |
+
u2 = exp(logu2);
|
22 |
+
f1 = (rep*u1);
|
23 |
+
f2 = (rep*u2);
|
24 |
+
|
25 |
+
k1 = MU;
|
26 |
+
|
27 |
+
tila1 = k1*(1+tilp);
|
28 |
+
|
29 |
+
state0 = tila1;
|
30 |
+
c0 = state0;
|
31 |
+
|
32 |
+
derivs0 = [f1;f2;x1;x2;logq];
|
33 |
+
|
34 |
+
derivs1 = zeros(model.n_f,model.n_x);
|
35 |
+
derivs2 = zeros(model.n_f,model.n_x^2);
|
36 |
+
derivs3 = zeros(model.n_f,model.n_x^3);
|
37 |
+
derivs4 = zeros(model.n_f,model.n_x^4);
|
38 |
+
|
39 |
+
if order==1
|
40 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
|
41 |
+
elseif order==2
|
42 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
|
43 |
+
elseif order==3
|
44 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
|
45 |
+
elseif order==4
|
46 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
|
47 |
+
end
|
48 |
+
|
49 |
+
%% solve the model
|
50 |
+
|
51 |
+
[coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
52 |
+
|
53 |
+
%% simulate the model
|
54 |
+
|
55 |
+
solve = 1;
|
56 |
+
stop = 0;
|
57 |
+
t = 0;
|
58 |
+
xt = state0;
|
59 |
+
while stop==0
|
60 |
+
t = t+1;
|
61 |
+
% evaluate the previous solution at the new point xt
|
62 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
63 |
+
|
64 |
+
% if residuals are too large solve again
|
65 |
+
if norm(R(:))>testF && solve==1
|
66 |
+
t
|
67 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
68 |
+
|
69 |
+
% evaluate the new solution
|
70 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
71 |
+
end
|
72 |
+
|
73 |
+
newxt = nPhi(:,disaster(t+1)); % new state
|
74 |
+
|
75 |
+
if t>=10 % after 10 periods start checking for convergence
|
76 |
+
if max(abs(newxt-xt))<1e-7
|
77 |
+
stop = 1;
|
78 |
+
state0 = xt;
|
79 |
+
coeffs0 = coeffs;
|
80 |
+
end
|
81 |
+
end
|
82 |
+
xt = newxt;
|
83 |
+
end
|
84 |
+
|
105/replication_package/UNIT_IES/summarize_results.m
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
normal = logical(disaster==1); % normal periods
|
3 |
+
d = logical(disaster>1); % disaster periods
|
4 |
+
|
5 |
+
tila1 = x_results(1,1:T);
|
6 |
+
|
7 |
+
x1 = y_results(3,1:T);
|
8 |
+
logq = y_results(5,1:T);
|
9 |
+
|
10 |
+
c1 = RHO/(1+RHO);
|
11 |
+
tilp = 1/RHO;
|
12 |
+
tilp = repmat(tilp,1,T);
|
13 |
+
q = exp(logq);
|
14 |
+
|
15 |
+
k1 = x1.*(1 - c1).*tila1./tilp;
|
16 |
+
tilb1 = (1 - x1).*(1 - c1).*tila1;
|
17 |
+
|
18 |
+
|
19 |
+
W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
|
20 |
+
equity = k1 - NU*(k1 - MU);
|
21 |
+
|
22 |
+
debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
|
23 |
+
debt_to_GDP = -(1 - NU)*tilb1*period_length;
|
24 |
+
|
25 |
+
haty = nodes(1,double(disaster(1:T)));
|
26 |
+
|
27 |
+
% compute means by iterated expectations
|
28 |
+
|
29 |
+
roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
|
30 |
+
mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
|
31 |
+
|
32 |
+
period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
|
33 |
+
period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
|
34 |
+
vol_roe = sqrt(period_var_roe/period_length);
|
35 |
+
|
36 |
+
rb = log(1./q(1:T-1))/period_length; % this is log return on bonds
|
37 |
+
mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
|
38 |
+
|
39 |
+
Rb = 1./q(2:T-1);
|
40 |
+
period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
|
41 |
+
period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
|
42 |
+
vol_rb = sqrt(period_var_rb/period_length);
|
43 |
+
|
44 |
+
mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
|
45 |
+
mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
|
46 |
+
mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
|
47 |
+
mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
|
48 |
+
|
49 |
+
% mean_W1_share_excluding_labor = mean_W1_share*(1+L) - MU*L;
|
50 |
+
% mean_debt_to_assets_excluding_labor = mean_debt_to_assets*(1+L);
|
51 |
+
% mean_debt_to_GDP_including_labor = mean_debt_to_GDP/(1+L);
|
52 |
+
% mean_equity_excluding_labor = mean_equity*(1+L) - MU*L;
|
53 |
+
|
54 |
+
mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
|
55 |
+
mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
|
56 |
+
mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
|
105/replication_package/User Guide.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ae3ea65d6ead2e1e273aabe94a8a1f913ec926e7b77f7f75784b25d6db4748f
|
3 |
+
size 161394
|
105/replication_package/Variable_Disaster_Size/Parameters.m
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
period_length = 0.25;
|
2 |
+
|
3 |
+
P = 1 - exp(-.04*period_length); % disaster probability
|
4 |
+
|
5 |
+
% variable disaster size
|
6 |
+
B = -log(1 - [0.1384074;
|
7 |
+
0.2375926;
|
8 |
+
0.335;
|
9 |
+
0.4331111;
|
10 |
+
0.5516667;
|
11 |
+
0.653]);
|
12 |
+
|
13 |
+
% distribution of disaster size
|
14 |
+
probB = [0.6;
|
15 |
+
0.2;
|
16 |
+
0.088888889;
|
17 |
+
0.066666667;
|
18 |
+
0.022222222;
|
19 |
+
0.022222222];
|
20 |
+
|
21 |
+
|
22 |
+
meanB = B(:)'*probB;
|
23 |
+
|
24 |
+
Size = 1 - exp(-B(:)');
|
25 |
+
meanSize = Size*probB;
|
26 |
+
sdSize = sqrt((Size - meanSize).^2*probB(:));
|
27 |
+
|
28 |
+
G = 0.021*period_length; % drift of log output
|
29 |
+
|
30 |
+
RHO = 0.04*period_length; % time preference rate
|
31 |
+
|
32 |
+
NU = 0.02*period_length; % replacement rate
|
33 |
+
|
34 |
+
MU = 0.05; % popoulation share of agent 1
|
35 |
+
|
36 |
+
ALPHA = 1/3; % capital share in output
|
37 |
+
|
38 |
+
TAU = 0; % bond duration - start with short-term bonds
|
39 |
+
|
40 |
+
GAMMA1 = 1.000001; % start with unit risk aversion
|
41 |
+
GAMMA2 = GAMMA1;
|
42 |
+
|
43 |
+
delta_prob = 0.4; % default probability
|
44 |
+
delta_size = 0; % default size
|
45 |
+
|
46 |
+
|
105/replication_package/Variable_Disaster_Size/correct_params.m
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file changes the parameters gradually from their initival value to
|
2 |
+
% the target value
|
3 |
+
|
4 |
+
solve = 1;
|
5 |
+
stop = 0;
|
6 |
+
t = 0;
|
7 |
+
|
8 |
+
xt = state0;
|
9 |
+
params0 = params;
|
10 |
+
while stop==0
|
11 |
+
t = t + 1;
|
12 |
+
|
13 |
+
if t<=burn
|
14 |
+
factor = t/burn;
|
15 |
+
params = (1 - factor)*params0 + factor*newparams;
|
16 |
+
end
|
17 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
18 |
+
|
19 |
+
% if residuals are too large solve again
|
20 |
+
if norm(R(:))>testF && solve==1
|
21 |
+
t
|
22 |
+
[coeffs,model] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
23 |
+
|
24 |
+
% evaluate the new solution
|
25 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
26 |
+
end
|
27 |
+
|
28 |
+
newxt = nPhi(:,1); % assume no realized disasters
|
29 |
+
|
30 |
+
if t>burn+10 % after 10 periods start checking for convergence
|
31 |
+
if max(abs(newxt-xt))<1e-7
|
32 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
33 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
34 |
+
|
35 |
+
newxt = nPhi(:,1);
|
36 |
+
if max(abs(newxt-xt))<1e-7
|
37 |
+
stop = 1;
|
38 |
+
state0 = xt; % solution point
|
39 |
+
coeffs0 = coeffs;
|
40 |
+
end
|
41 |
+
end
|
42 |
+
end
|
43 |
+
xt = newxt;
|
44 |
+
end
|
45 |
+
|
105/replication_package/Variable_Disaster_Size/define_model.m
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%-------------------------------------------------------------------------
|
2 |
+
% The model: Safe Assets - the case of unit IES (THETA = 1)
|
3 |
+
% Bonds are long term and subject to a default shock deltap
|
4 |
+
%
|
5 |
+
% This file defines the model (see Appendix for the full derivation).
|
6 |
+
%
|
7 |
+
% Variables are denoted by small letters and
|
8 |
+
% parameters by capital letters. Future values are denoted by suffix p.
|
9 |
+
%-------------------------------------------------------------------------
|
10 |
+
|
11 |
+
clear,clc
|
12 |
+
|
13 |
+
%% Symbolic variables
|
14 |
+
|
15 |
+
syms RHO GAMMA1 GAMMA2 NU MU TAU real
|
16 |
+
syms f1 f2 f1p f2p x1 x2 x1p x2p real
|
17 |
+
syms logq logqp tilp tilpp real
|
18 |
+
syms state1 state1p state2 state2p hatyp deltap k1 tilb1 real
|
19 |
+
syms tila1 tila2 invtila1 invtila2 invtilp rbp rep c1 c2 c1p c2p q qp real
|
20 |
+
syms invc1 invc1p invc2 invc2p invf1 invf2 r1p r2p logu1p logu2p u1p u2p logf1 logf1p logf2 logf2p real
|
21 |
+
syms term1p term2p invr1p invr2p real
|
22 |
+
|
23 |
+
%% Parameters
|
24 |
+
|
25 |
+
symparams = [RHO,GAMMA1,GAMMA2,NU,MU,TAU];
|
26 |
+
|
27 |
+
%% State variables
|
28 |
+
|
29 |
+
state = [state1,state2]; % current period
|
30 |
+
statep = [state1p,state2p]; % future period
|
31 |
+
|
32 |
+
%% Control variables
|
33 |
+
|
34 |
+
control = [f1,f2,x1,x2,logq]; % current period
|
35 |
+
controlp = [f1p,f2p,x1p,x2p,logqp]; % future period
|
36 |
+
|
37 |
+
%% shocks
|
38 |
+
|
39 |
+
shocks = [hatyp,deltap];
|
40 |
+
|
41 |
+
%% auxiliary variables
|
42 |
+
|
43 |
+
tilp = 1/RHO; % price-dividend ratio for unit IES
|
44 |
+
tilpp = tilp; % next period
|
45 |
+
|
46 |
+
c1 = RHO/(1 + RHO); % consumption/wealth ratio of agent 1 for unit IES
|
47 |
+
c1p = c1; % next period
|
48 |
+
|
49 |
+
c2 = c1; % consumption/wealth ratio of agent 2 for unit IES
|
50 |
+
c2p = c2; % next period
|
51 |
+
|
52 |
+
logc1p = log(c1p);
|
53 |
+
logc2p = log(c2p);
|
54 |
+
|
55 |
+
invf1_ = 1/f1;
|
56 |
+
invf2_ = 1/f2;
|
57 |
+
|
58 |
+
logf1p_ = log(f1p);
|
59 |
+
logf2p_ = log(f2p);
|
60 |
+
|
61 |
+
invr1p_ = 1/r1p;
|
62 |
+
invr2p_ = 1/r2p;
|
63 |
+
|
64 |
+
q_ = exp(logq);
|
65 |
+
qp_ = exp(logqp);
|
66 |
+
|
67 |
+
invtila1_ = 1/tila1;
|
68 |
+
invtila2_ = 1/tila2;
|
69 |
+
|
70 |
+
rep_ = (1 + tilpp)/tilp*hatyp; % return on equity
|
71 |
+
rbp_ = (1 + TAU*qp)/q*(1 - deltap); % return on bond
|
72 |
+
|
73 |
+
u1p_ = exp(logu1p);
|
74 |
+
u2p_ = exp(logu2p);
|
75 |
+
|
76 |
+
%% MODEL CONDITIONS
|
77 |
+
|
78 |
+
tila1_ = (1 + tilp)*state1 + state2*(1 + TAU*q);
|
79 |
+
|
80 |
+
tila2_ = tilp + 1 - tila1;
|
81 |
+
|
82 |
+
k1_ = x1*(1 - c1)*tila1/tilp;
|
83 |
+
|
84 |
+
tilb1_ = (1 - x1)*(1 - c1)*tila1;
|
85 |
+
|
86 |
+
eq1 = tilb1*invtila2 + (1 - x2)*(1 - c2);
|
87 |
+
|
88 |
+
r1p_ = x1*rep + (1 - x1)*rbp;
|
89 |
+
|
90 |
+
r2p_ = x2*rep + (1 - x2)*rbp;
|
91 |
+
|
92 |
+
term1p_ = r1p^(1 - GAMMA1)*((1 - NU*(1 - MU))*u1p^(1 - GAMMA1)...
|
93 |
+
+ NU*(1 - MU)*u2p^(1 - GAMMA1))*invf1^(1 - GAMMA1);
|
94 |
+
|
95 |
+
term2p_ = r2p^(1 - GAMMA2)*((1 - NU*MU)*u2p^(1 - GAMMA2)...
|
96 |
+
+NU*MU*u1p^(1 - GAMMA2))*invf2^(1 - GAMMA2);
|
97 |
+
|
98 |
+
eq2 = -1 + term1p; % define f1 = (E(r1p*u1p)^(1-GAMMA1))^(1/(1-GAMMA1))
|
99 |
+
|
100 |
+
eq3 = -1 + term2p; % define f2 similarly
|
101 |
+
|
102 |
+
logu1p_ = RHO/(1 + RHO)*logc1p + 1/(1 + RHO)*log(1 - c1p) + 1/(1 + RHO)*logf1p;
|
103 |
+
|
104 |
+
logu2p_ = RHO/(1 + RHO)*logc2p + 1/(1 + RHO)*log(1 - c2p) + 1/(1 + RHO)*logf2p;
|
105 |
+
|
106 |
+
eq4 = (rep - rbp)*term1p*invr1p;
|
107 |
+
|
108 |
+
eq5 = (rep - rbp)*term2p*invr2p;
|
109 |
+
|
110 |
+
%% Function f (Ef = 0 imposes model conditions)
|
111 |
+
|
112 |
+
f_fun = [eq1;eq2;eq3;eq4;eq5];
|
113 |
+
|
114 |
+
%% law of motion of state variables
|
115 |
+
|
116 |
+
Phi_fun = [k1 - NU*(k1 - MU); % law of motion of state1p
|
117 |
+
(1 - NU)*tilb1*(1 - deltap)/(hatyp*q)]; % law of motion of state2p
|
118 |
+
|
119 |
+
%% collect auxiliary variables and functions
|
120 |
+
|
121 |
+
allvars=who;
|
122 |
+
auxfuns=[];
|
123 |
+
auxvars=[];
|
124 |
+
for i=1:length(allvars)
|
125 |
+
if strcmp(allvars{i}(end),'_')
|
126 |
+
eval(['tempfun=' allvars{i} ';'])
|
127 |
+
eval(['tempvar=' allvars{i}(1:end-1) ';'])
|
128 |
+
auxfuns=[auxfuns;tempfun];
|
129 |
+
auxvars=[auxvars;tempvar];
|
130 |
+
end
|
131 |
+
end
|
132 |
+
|
133 |
+
%% Approximation order (<=4)
|
134 |
+
|
135 |
+
order = 4;
|
136 |
+
|
137 |
+
%% Preprocess model and save
|
138 |
+
|
139 |
+
model = prepare_tp(f_fun,Phi_fun,controlp,control,statep,state,shocks,symparams,order,auxfuns,auxvars);
|
140 |
+
|
141 |
+
save('model')
|
142 |
+
|
105/replication_package/Variable_Disaster_Size/make_Table_7.m
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Variable disaster size, long-term bonds, default probability
|
2 |
+
|
3 |
+
clear,clc
|
4 |
+
|
5 |
+
load('model')
|
6 |
+
addpath('files')
|
7 |
+
|
8 |
+
Parameters;
|
9 |
+
|
10 |
+
% make the vector of parameters
|
11 |
+
params = eval(symparams);
|
12 |
+
|
13 |
+
% distribution of hatyp and deltap
|
14 |
+
nodes = [exp([G,kron(G-B(:)',ones(1,2))]);
|
15 |
+
0,kron(ones(1,numel(B)),[0,delta_size])];% realizations
|
16 |
+
|
17 |
+
weights = [1-P,P*kron(probB(:)',[1-delta_prob,delta_prob])]; % corresponding probabilities
|
18 |
+
|
19 |
+
rng('default')
|
20 |
+
|
21 |
+
T = 1e5;
|
22 |
+
|
23 |
+
N_disasters = ceil(T*P);
|
24 |
+
ptr = 1 + round(cumsum([0;probB(:)])*N_disasters);
|
25 |
+
disaster_state = zeros(1,N_disasters);
|
26 |
+
for i = 1:numel(probB)
|
27 |
+
disaster_state(ptr(i):ptr(i+1)-1) = i;
|
28 |
+
end
|
29 |
+
randorder = rand(1,N_disasters);
|
30 |
+
[~,I] = sort(randorder);
|
31 |
+
disaster_state = disaster_state(I);
|
32 |
+
|
33 |
+
% disaster shock (normal = 1, disaster>1)
|
34 |
+
|
35 |
+
disaster = zeros(1,T+1);
|
36 |
+
disaster(randperm(T,N_disasters)) = 1;
|
37 |
+
|
38 |
+
default = double(rand(1,T+1)<delta_prob);
|
39 |
+
|
40 |
+
n = 1;
|
41 |
+
for t = 1:T+1
|
42 |
+
if disaster(t)==1
|
43 |
+
disaster(t) = 1 + 2*disaster_state(n) - (1 - default(t));
|
44 |
+
n = n + 1;
|
45 |
+
end
|
46 |
+
end
|
47 |
+
disaster(disaster==0) = 1;
|
48 |
+
|
49 |
+
GAMMA1=1.46;
|
50 |
+
GAMMA2=GAMMA1;
|
51 |
+
params(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
52 |
+
params(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
53 |
+
|
54 |
+
step_size=1;
|
55 |
+
|
56 |
+
% tolerance for the Newton solver
|
57 |
+
tolX=1e-5; tolF=1e-5; maxiter=10; testF=1e-5;
|
58 |
+
% tolerance for the least squares solver (if a simple Newton fails)
|
59 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',100,'display','iter-detailed'); % use lsqnonlin if a simple Newton algorithm fails
|
60 |
+
|
61 |
+
solve_and_simulate;
|
62 |
+
simulate_with_disasters;
|
63 |
+
summarize_results;
|
64 |
+
|
65 |
+
%%
|
66 |
+
GAMMA1=1.46;
|
67 |
+
GAMMA2=4.13;
|
68 |
+
|
69 |
+
burn=10;
|
70 |
+
newparams=params;
|
71 |
+
newparams(logical(symparams==sym('GAMMA1')))=GAMMA1;
|
72 |
+
newparams(logical(symparams==sym('GAMMA2')))=GAMMA2;
|
73 |
+
|
74 |
+
correct_params;
|
75 |
+
simulate_with_disasters;
|
76 |
+
summarize_results;
|
77 |
+
|
78 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
79 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
80 |
+
Table_vol = [vol_roe,vol_rb];
|
81 |
+
|
82 |
+
save('VariableDisasterSize')
|
83 |
+
|
84 |
+
%% add default
|
85 |
+
|
86 |
+
for delta_size = .05:.05:.2
|
87 |
+
nodes(2,:) = [0,kron(ones(1,numel(B)),[0,delta_size])];
|
88 |
+
|
89 |
+
correct_params;
|
90 |
+
simulate_with_disasters;
|
91 |
+
summarize_results;
|
92 |
+
|
93 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
94 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
95 |
+
Table_vol = [vol_roe,vol_rb];
|
96 |
+
end
|
97 |
+
|
98 |
+
save('ShortDefault')
|
99 |
+
|
100 |
+
%% change duration
|
101 |
+
|
102 |
+
load('VariableDisasterSize')
|
103 |
+
|
104 |
+
for TAU = [0.1:.1:.85,.9,.91:.01:.97,.975]
|
105 |
+
|
106 |
+
burn=5;
|
107 |
+
|
108 |
+
newparams = params;
|
109 |
+
newparams(logical(symparams==sym('TAU'))) = TAU;
|
110 |
+
|
111 |
+
correct_params;
|
112 |
+
simulate_with_disasters;
|
113 |
+
summarize_results;
|
114 |
+
|
115 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
116 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
117 |
+
Table_vol = [vol_roe,vol_rb];
|
118 |
+
|
119 |
+
if TAU==.95
|
120 |
+
save('Duration5')
|
121 |
+
end
|
122 |
+
|
123 |
+
end
|
124 |
+
|
125 |
+
%% add default
|
126 |
+
|
127 |
+
load('Duration5')
|
128 |
+
for delta_size = .05:.05:.2
|
129 |
+
nodes(2,:) = [0,kron(ones(1,numel(B)),[0,delta_size])];
|
130 |
+
|
131 |
+
correct_params;
|
132 |
+
simulate_with_disasters;
|
133 |
+
summarize_results;
|
134 |
+
|
135 |
+
Table = [GAMMA1,GAMMA2,RHO,mean_roe,mean_rb,mean_equity,mean_W1_share,mean_debt_to_assets,mean_debt_to_GDP,mean(abs(R_results(:))),max(abs(R_results(:)))];
|
136 |
+
Table_labor = [GAMMA1,GAMMA2,mean_equity_excluding_labor,mean_W1_share_excluding_labor,mean_debt_to_assets_excluding_labor,mean_debt_to_GDP];
|
137 |
+
Table_vol = [vol_roe,vol_rb];
|
138 |
+
end
|
139 |
+
|
140 |
+
save('LongDefault')
|
141 |
+
|
142 |
+
%% show results
|
143 |
+
clc
|
144 |
+
|
145 |
+
homefolder = pwd;
|
146 |
+
cd ..
|
147 |
+
diary on
|
148 |
+
|
149 |
+
disp('********** Table 7 **********')
|
150 |
+
|
151 |
+
load([homefolder '\VariableDisasterSize'])
|
152 |
+
|
153 |
+
disp('variable disaster size')
|
154 |
+
disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
|
155 |
+
|
156 |
+
load([homefolder '\ShortDefault'])
|
157 |
+
|
158 |
+
disp('default probability')
|
159 |
+
disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
|
160 |
+
|
161 |
+
load([homefolder '\Duration5'])
|
162 |
+
|
163 |
+
disp('long term bonds, no default')
|
164 |
+
disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
|
165 |
+
|
166 |
+
load([homefolder '\LongDefault'])
|
167 |
+
|
168 |
+
disp('long term bonds with default')
|
169 |
+
disp([round(Table(:,[1,2,4,5]),3),Table_vol,round(Table_labor(:,[3,4,5]),3),round(Table_labor(:,[6]),2)])
|
170 |
+
|
171 |
+
%% accuracy measures
|
172 |
+
disp('Appendix Table 3: Accuracy Measures for Table 7')
|
173 |
+
|
174 |
+
load([homefolder '\VariableDisasterSize'])
|
175 |
+
|
176 |
+
disp('variable disaster size')
|
177 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
178 |
+
disp(Accuarcy)
|
179 |
+
|
180 |
+
load([homefolder '\ShortDefault'])
|
181 |
+
|
182 |
+
disp('default probability')
|
183 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
184 |
+
disp(Accuarcy)
|
185 |
+
|
186 |
+
load([homefolder '\Duration5'])
|
187 |
+
|
188 |
+
disp('long term bonds, no default')
|
189 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
190 |
+
disp(Accuarcy)
|
191 |
+
|
192 |
+
load([homefolder '\LongDefault'])
|
193 |
+
|
194 |
+
disp('long term bonds with default')
|
195 |
+
Accuarcy = [round(Table(:,1),3),round(log10(Table(:,end-1:end)),1)];
|
196 |
+
disp(Accuarcy)
|
197 |
+
|
198 |
+
diary off
|
199 |
+
|
200 |
+
cd(homefolder)
|
105/replication_package/Variable_Disaster_Size/simulate_with_disasters.m
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Simulate with disasters
|
2 |
+
y_results = zeros(model.n_y,T+1);
|
3 |
+
x_results = zeros(model.n_x,T+1);
|
4 |
+
R_results = zeros(model.n_f,T+1);
|
5 |
+
|
6 |
+
x_results(:,1) = state0;
|
7 |
+
|
8 |
+
for t = 1:T
|
9 |
+
t
|
10 |
+
xt = x_results(:,t);
|
11 |
+
|
12 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
13 |
+
|
14 |
+
% store results
|
15 |
+
R_results(:,t) = R;
|
16 |
+
y_results(:,t) = g;
|
17 |
+
|
18 |
+
x_results(:,t+1) = nPhi(:,disaster(t+1));
|
19 |
+
end
|
105/replication_package/Variable_Disaster_Size/solve_and_simulate.m
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% This file performs the following:
|
2 |
+
% 1. Solve the model by Taylor projection at the initial state.
|
3 |
+
% 2. Simulate the model without realized disasters.
|
4 |
+
|
5 |
+
%% make initial guess for a deterministic version of the model
|
6 |
+
|
7 |
+
% in a deterministic economy, the following variables are constant:
|
8 |
+
|
9 |
+
x1 = 1; % agents invests only in equity
|
10 |
+
x2 = 1;
|
11 |
+
tilp = 1/RHO; % price/earning ratio
|
12 |
+
hatyp = exp(G-meanB*P); % average growth
|
13 |
+
haty = hatyp;
|
14 |
+
rep = (1+tilp)/tilp*hatyp; % asset return
|
15 |
+
logq = log(1/rep); % price of bond
|
16 |
+
c1 = RHO/(1+RHO); % consumption/wealth ratio
|
17 |
+
c2 = c1;
|
18 |
+
logu1 = (RHO*log(c1)+log(1-c1)+log(rep))/RHO;
|
19 |
+
u1 = exp(logu1);
|
20 |
+
logu2 = (RHO*log(c2)+log(1-c2)+log(rep))/RHO;
|
21 |
+
u2 = exp(logu2);
|
22 |
+
f1 = (rep*u1);
|
23 |
+
f2 = (rep*u2);
|
24 |
+
|
25 |
+
k1 = MU;
|
26 |
+
|
27 |
+
tila1 = k1*(1+tilp);
|
28 |
+
|
29 |
+
state0 = [k1;0];
|
30 |
+
c0 = state0;
|
31 |
+
|
32 |
+
derivs0 = [f1;f2;x1;x2;logq];
|
33 |
+
|
34 |
+
derivs1 = zeros(model.n_f,model.n_x);
|
35 |
+
derivs2 = zeros(model.n_f,model.n_x^2);
|
36 |
+
derivs3 = zeros(model.n_f,model.n_x^3);
|
37 |
+
derivs4 = zeros(model.n_f,model.n_x^4);
|
38 |
+
|
39 |
+
if order==1
|
40 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1 );
|
41 |
+
elseif order==2
|
42 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2);
|
43 |
+
elseif order==3
|
44 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3 );
|
45 |
+
elseif order==4
|
46 |
+
[ initial_guess ] = derivs2coeffs( model,derivs0,derivs1,derivs2,derivs3,derivs4 );
|
47 |
+
end
|
48 |
+
|
49 |
+
%% solve the model
|
50 |
+
|
51 |
+
[coeffs,model] = tpsolve(initial_guess,state0,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
52 |
+
|
53 |
+
%% simulate the model
|
54 |
+
|
55 |
+
solve = 1;
|
56 |
+
stop = 0;
|
57 |
+
t = 0;
|
58 |
+
xt = state0;
|
59 |
+
while stop==0
|
60 |
+
t = t+1;
|
61 |
+
% evaluate the previous solution at the new point xt
|
62 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
63 |
+
|
64 |
+
% if residuals are too large solve again
|
65 |
+
if norm(R(:))>testF && solve==1
|
66 |
+
t
|
67 |
+
[coeffs] = tpsolve(coeffs,xt,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % solve
|
68 |
+
|
69 |
+
% evaluate the new solution
|
70 |
+
[R,g,nPhi] = residual(coeffs,xt,params,c0,nodes,weights);
|
71 |
+
end
|
72 |
+
|
73 |
+
newxt = nPhi(:,disaster(t+1)); % new state
|
74 |
+
|
75 |
+
if t>=10 % after 10 periods start checking for convergence
|
76 |
+
if max(abs(newxt-xt))<1e-7
|
77 |
+
stop = 1;
|
78 |
+
state0 = xt;
|
79 |
+
coeffs0 = coeffs;
|
80 |
+
end
|
81 |
+
end
|
82 |
+
xt = newxt;
|
83 |
+
end
|
84 |
+
|
105/replication_package/Variable_Disaster_Size/summarize_results.m
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
normal = logical(disaster==1); % normal periods
|
3 |
+
d = logical(disaster>1); % disaster periods
|
4 |
+
|
5 |
+
state1 = x_results(1,1:T);
|
6 |
+
state2 = x_results(2,1:T);
|
7 |
+
|
8 |
+
x1 = y_results(3,1:T);
|
9 |
+
logq = y_results(5,1:T);
|
10 |
+
|
11 |
+
c1 = RHO/(1+RHO);
|
12 |
+
tilp = 1/RHO;
|
13 |
+
tilp = repmat(tilp,1,T);
|
14 |
+
q = exp(logq);
|
15 |
+
|
16 |
+
tila1 = (1 + tilp).*state1 + state2.*(1 + TAU*q);
|
17 |
+
|
18 |
+
k1 = x1.*(1 - c1).*tila1./tilp;
|
19 |
+
tilb1 = (1 - x1).*(1 - c1).*tila1;
|
20 |
+
|
21 |
+
|
22 |
+
W1_share = k1 - NU*(k1 - MU) + (1 - NU)*tilb1./tilp; % wealth share after type changes
|
23 |
+
equity = k1 - NU*(k1 - MU);
|
24 |
+
|
25 |
+
debt_to_assets = -(1 - NU)*tilb1./tilp; % debt ratio (after type changes)
|
26 |
+
debt_to_GDP = -(1 - NU)*tilb1*period_length;
|
27 |
+
|
28 |
+
haty = nodes(1,double(disaster(1:T)));
|
29 |
+
delta = nodes(2,double(disaster(1:T)));
|
30 |
+
|
31 |
+
% compute means by iterated expectations
|
32 |
+
|
33 |
+
roe = ((1 + tilp(2:T))./tilp(1:T-1).*haty(2:T)); % this is actual return from t to t+1.
|
34 |
+
mean_roe = 1/period_length*log((1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)))); % mean return
|
35 |
+
|
36 |
+
period_mean_roe = (1-P)*mean(roe(normal(2:T)))+P*mean(roe(d(2:T)));
|
37 |
+
period_var_roe = (1-P)*mean((roe(normal(2:T)) - period_mean_roe).^2)+P*mean((roe(d(2:T)) - period_mean_roe).^2);
|
38 |
+
vol_roe = sqrt(period_var_roe/period_length);
|
39 |
+
|
40 |
+
rb = log((1 + TAU*q(2:T))./q(1:T-1)).*(1 - delta(2:T))/period_length; % this is log return on bonds
|
41 |
+
mean_rb = (1-P)*mean(rb(normal(1:T-1)))+P*mean(rb(d(1:T-1)));
|
42 |
+
|
43 |
+
Rb = (1 + TAU*q(3:T))./q(2:T-1).*(1 - delta(3:T));
|
44 |
+
period_mean_rb = (1-P)*mean(Rb(normal(2:T-1)))+P*mean(Rb(d(2:T-1)));
|
45 |
+
period_var_rb = (1-P)*mean((Rb(normal(2:T-1)) - period_mean_rb).^2)+P*mean((Rb(d(2:T-1)) - period_mean_rb).^2);
|
46 |
+
vol_rb = sqrt(period_var_rb/period_length);
|
47 |
+
|
48 |
+
mean_equity = (1-P)*mean(equity(normal(1:T))) + P*mean(equity(d(1:T)));
|
49 |
+
mean_debt_to_assets = (1-P)*mean(debt_to_assets(normal(1:T))) + P*mean(debt_to_assets(d(1:T)));
|
50 |
+
mean_debt_to_GDP = (1-P)*mean(debt_to_GDP(normal(1:T))) + P*mean(debt_to_GDP(d(1:T)));
|
51 |
+
mean_W1_share = (1-P)*mean(W1_share(normal(1:T))) + P*mean(W1_share(d(1:T)));
|
52 |
+
|
53 |
+
mean_equity_excluding_labor = mean_equity/ALPHA - MU*(1 - ALPHA)/ALPHA;
|
54 |
+
mean_debt_to_assets_excluding_labor = mean_debt_to_assets/ALPHA;
|
55 |
+
mean_W1_share_excluding_labor = mean_equity_excluding_labor - mean_debt_to_assets_excluding_labor;
|
105/replication_package/examples/rbc/prepare_model.m
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%------------------------------------------------------------------
|
2 |
+
% This script shows how to solve the RBC model by Taylor projection
|
3 |
+
%------------------------------------------------------------------
|
4 |
+
|
5 |
+
clear,clc
|
6 |
+
|
7 |
+
%-----------------------------------------
|
8 |
+
% Define symbolic variables and parameters
|
9 |
+
%-----------------------------------------
|
10 |
+
|
11 |
+
syms k kp c cp z zp epsp real
|
12 |
+
syms BETA GAMMA ALPHA RHO DELTA SIGMA real
|
13 |
+
|
14 |
+
%-------------------------------------------------
|
15 |
+
% Function f (Euler condition) in a unit-free form
|
16 |
+
%-------------------------------------------------
|
17 |
+
|
18 |
+
f_fun=BETA*(c/cp)^GAMMA*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
|
19 |
+
|
20 |
+
%-------------------------------------------------------
|
21 |
+
% Function Phi (law of motion of capital and technology)
|
22 |
+
%-------------------------------------------------------
|
23 |
+
|
24 |
+
Phi_fun=[exp(z)*k^ALPHA+(1-DELTA)*k-c;
|
25 |
+
RHO*z+SIGMA*epsp];
|
26 |
+
|
27 |
+
%--------------------------
|
28 |
+
% Vector of state variables
|
29 |
+
%--------------------------
|
30 |
+
|
31 |
+
x=[k,z]; % current period
|
32 |
+
xp=[kp,zp]; % future period
|
33 |
+
|
34 |
+
%----------------------------
|
35 |
+
% Vector of control variables
|
36 |
+
%----------------------------
|
37 |
+
|
38 |
+
y=[c]; % current period
|
39 |
+
yp=[cp]; % future period
|
40 |
+
|
41 |
+
%-----------------
|
42 |
+
% Vector of shocks
|
43 |
+
%-----------------
|
44 |
+
|
45 |
+
shocks=[epsp];
|
46 |
+
|
47 |
+
%---------------------
|
48 |
+
% Vector of parameters
|
49 |
+
%---------------------
|
50 |
+
|
51 |
+
symparams=[BETA,GAMMA,ALPHA,RHO,DELTA,SIGMA];
|
52 |
+
|
53 |
+
%--------------------
|
54 |
+
% Approximation order
|
55 |
+
%--------------------
|
56 |
+
|
57 |
+
order=4; % fourth order is the maximum possible
|
58 |
+
|
59 |
+
%----------------
|
60 |
+
% Call prepare_tp
|
61 |
+
%----------------
|
62 |
+
|
63 |
+
model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order);
|
64 |
+
|
65 |
+
%-----------
|
66 |
+
% Save model
|
67 |
+
%-----------
|
68 |
+
|
69 |
+
save('model') % you will need this later
|
105/replication_package/examples/rbc/prepare_model_auxiliary_functions.m
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%----------------------------------------------
|
2 |
+
% RBC model with auxiliary functions
|
3 |
+
%----------------------------------------------
|
4 |
+
|
5 |
+
clear,clc
|
6 |
+
|
7 |
+
%-----------------------------------------
|
8 |
+
% Define symbolic variables and parameters
|
9 |
+
%-----------------------------------------
|
10 |
+
|
11 |
+
syms k kp c cp z zp epsp real
|
12 |
+
syms BETA GAMMA ALPHA RHO DELTA SIGMA real
|
13 |
+
|
14 |
+
%-------------------------------
|
15 |
+
% Define the auxiliary functions
|
16 |
+
%-------------------------------
|
17 |
+
|
18 |
+
% Logs of consumption and capital.
|
19 |
+
syms logc logcp logk logkp real
|
20 |
+
logc_=log(c);
|
21 |
+
logcp_=log(cp);
|
22 |
+
logk_=log(k);
|
23 |
+
logkp_=log(kp);
|
24 |
+
|
25 |
+
% Log and level of future mpk.
|
26 |
+
syms mpkp logmpkp real
|
27 |
+
logmpkp_=log(ALPHA)+zp+(ALPHA-1)*logkp;
|
28 |
+
mpkp_=exp(logmpkp);
|
29 |
+
|
30 |
+
% Log and level of stochastic discount factor.
|
31 |
+
syms mp logmp real
|
32 |
+
logmp_=log(BETA)+GAMMA*(logc-logcp);
|
33 |
+
mp_=exp(logmp);
|
34 |
+
|
35 |
+
% Log and level of output.
|
36 |
+
syms logoutput output real
|
37 |
+
logoutput_=z+ALPHA*logk;
|
38 |
+
output_=exp(logoutput);
|
39 |
+
|
40 |
+
%-----------------------------
|
41 |
+
% Function f (Euler condition)
|
42 |
+
%-----------------------------
|
43 |
+
f_fun=mp*(mpkp+1-DELTA)-1;
|
44 |
+
|
45 |
+
%-------------------------------------------------------
|
46 |
+
% Function Phi (law of motion of capital and technology)
|
47 |
+
%-------------------------------------------------------
|
48 |
+
|
49 |
+
Phi_fun=[output+(1-DELTA)*k-c;
|
50 |
+
RHO*z+SIGMA*epsp];
|
51 |
+
|
52 |
+
%--------------------------
|
53 |
+
% Vector of state variables
|
54 |
+
%--------------------------
|
55 |
+
x=[k,z]; % current period
|
56 |
+
xp=[kp,zp]; % future period
|
57 |
+
|
58 |
+
%----------------------------
|
59 |
+
% Vector of control variables
|
60 |
+
%----------------------------
|
61 |
+
y=[c]; % current period
|
62 |
+
yp=[cp]; % future period
|
63 |
+
|
64 |
+
%-----------------
|
65 |
+
% Vector of shocks
|
66 |
+
%-----------------
|
67 |
+
shocks=[epsp];
|
68 |
+
|
69 |
+
%---------------------
|
70 |
+
% Vector of parameters
|
71 |
+
%---------------------
|
72 |
+
symparams=[BETA,GAMMA,ALPHA,RHO,DELTA,SIGMA];
|
73 |
+
|
74 |
+
%-----------------------------------------------------------
|
75 |
+
% Vectors of auxiliary functions and corresponding variables
|
76 |
+
%-----------------------------------------------------------
|
77 |
+
|
78 |
+
% you can do it manually:
|
79 |
+
|
80 |
+
% auxfuns=[logc_;logcp_;logk_;logkp_;logmp_;logmpkp_;logoutput_;mp_;mpkp_;output_];
|
81 |
+
% auxvars=[logc;logcp;logk;logkp;logmp;logmpkp;logoutput;mp;mpkp;output];
|
82 |
+
|
83 |
+
|
84 |
+
% or automatically by the following code (the names of the
|
85 |
+
% auxiliary functions must be the same as the auxiliary variables with an
|
86 |
+
% underscore suffix):
|
87 |
+
|
88 |
+
allvars=who;
|
89 |
+
auxfuns=[];
|
90 |
+
auxvars=[];
|
91 |
+
for i=1:length(allvars)
|
92 |
+
if strcmp(allvars{i}(end),'_')
|
93 |
+
eval(['tempfun=' allvars{i} ';'])
|
94 |
+
eval(['tempvar=' allvars{i}(1:end-1) ';'])
|
95 |
+
auxfuns=[auxfuns(:);tempfun(:)];
|
96 |
+
auxvars=[auxvars(:);tempvar(:)];
|
97 |
+
end
|
98 |
+
end
|
99 |
+
|
100 |
+
% Note that f is a function of the model variables and the auxiliary
|
101 |
+
% variables. To get f as a function of the model variables only, use the
|
102 |
+
% function subsf:
|
103 |
+
|
104 |
+
f_noaux = subsf( f_fun,auxvars,auxfuns );
|
105 |
+
|
106 |
+
% Compare f with f_noaux
|
107 |
+
|
108 |
+
f_fun,f_noaux
|
109 |
+
|
110 |
+
% Display the auxiliary equations:
|
111 |
+
|
112 |
+
[auxvars,auxfuns]
|
113 |
+
|
114 |
+
%--------------------
|
115 |
+
% Approximation order
|
116 |
+
%--------------------
|
117 |
+
order=4; % fourth order is the maximum possible
|
118 |
+
|
119 |
+
%----------------
|
120 |
+
% Call prepare_tp
|
121 |
+
%----------------
|
122 |
+
model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order,auxfuns,auxvars);
|
123 |
+
|
124 |
+
%-----------
|
125 |
+
% Save model
|
126 |
+
%-----------
|
127 |
+
save('model') % you will need this later
|
105/replication_package/examples/rbc/solve_continuation.m
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%--------------------------------------------
|
2 |
+
% Solve the RBC model by continuation method
|
3 |
+
%--------------------------------------------
|
4 |
+
|
5 |
+
clear,clc
|
6 |
+
|
7 |
+
%---------------------------------------------------------
|
8 |
+
% Add folder 'files' to the search path and load the model
|
9 |
+
%---------------------------------------------------------
|
10 |
+
addpath('files');
|
11 |
+
load('model')
|
12 |
+
|
13 |
+
%----------------------------------------------------------------------------
|
14 |
+
% Provide nodes and weights for the quadrature that approximates expectations
|
15 |
+
%----------------------------------------------------------------------------
|
16 |
+
n_e=1; % number of shocks.
|
17 |
+
[n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
|
18 |
+
nodes=nodes'; % transpose to n_e-by-n_nodes
|
19 |
+
|
20 |
+
%----------------------------------------------------
|
21 |
+
% Choose parameter values with a closed-form solution
|
22 |
+
%----------------------------------------------------
|
23 |
+
BETA=.96; GAMMA=1; ALPHA=.3; RHO=.8; DELTA=1; SIGMA=.02;
|
24 |
+
params=eval(symparams);
|
25 |
+
|
26 |
+
%-----------------------------------------------------------------------
|
27 |
+
% The closed-form solution for the case GAMMA=1, DELTA=1 for consumption
|
28 |
+
%-----------------------------------------------------------------------
|
29 |
+
|
30 |
+
g=(1-ALPHA*BETA)*exp(z)*k^ALPHA;
|
31 |
+
|
32 |
+
%---------------------------------------------------------
|
33 |
+
% Use the closed-form solution to produce an initial guess
|
34 |
+
%---------------------------------------------------------
|
35 |
+
|
36 |
+
% differentiate the closed-form solution up to fourth order
|
37 |
+
gx=jacobian(g,x);
|
38 |
+
gxx=jacobian(gx(:),x);
|
39 |
+
gxxx=jacobian(gxx(:),x);
|
40 |
+
gxxxx=jacobian(gxxx(:),x);
|
41 |
+
|
42 |
+
% choose some arbitrary state - I use the steady state of the model of
|
43 |
+
% interest (with DELTA=.1)
|
44 |
+
|
45 |
+
k0=((1/BETA-1+.1)/ALPHA)^(1/(ALPHA-1));
|
46 |
+
z0=0;
|
47 |
+
|
48 |
+
x0=[k0;z0];
|
49 |
+
|
50 |
+
% compute g(x) and its derivatives at x0
|
51 |
+
|
52 |
+
g0=double(subs(g,x(:),x0));
|
53 |
+
gx0=double(subs(gx,x(:),x0));
|
54 |
+
gxx0=double(subs(gxx,x(:),x0));
|
55 |
+
gxxx0=double(subs(gxxx,x(:),x0));
|
56 |
+
gxxxx0=double(subs(gxxxx,x(:),x0));
|
57 |
+
|
58 |
+
% transform the derivatives into a vector of coefficients
|
59 |
+
|
60 |
+
[ initial_guess ] = derivs2coeffs(model,g0,gx0,gxx0,gxxx0,gxxxx0);
|
61 |
+
|
62 |
+
% this is for order=4. for lower orders include only the relevant
|
63 |
+
% derivatives, e.g. derivs2coeffs(model,g0,gx0,gxx0) is for second order.
|
64 |
+
|
65 |
+
% define the center of the initial guess (this is the point at which we computed
|
66 |
+
% the derivatives)
|
67 |
+
|
68 |
+
c0=x0;
|
69 |
+
|
70 |
+
% now we have the initial guess, and we can proceed to solve the model by
|
71 |
+
% continuation
|
72 |
+
|
73 |
+
%-------------------------------------------------------------------------------
|
74 |
+
% solve by Taylor projection and change the parameters gradually to the
|
75 |
+
% required level
|
76 |
+
%-------------------------------------------------------------------------------
|
77 |
+
tolX=1e-6;
|
78 |
+
tolF=1e-6;
|
79 |
+
maxiter=10;
|
80 |
+
|
81 |
+
[coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
|
82 |
+
|
83 |
+
% Now change the parameters GAMMA and DELTA gradually to their required levels:
|
84 |
+
|
85 |
+
GAMMA_original=GAMMA;
|
86 |
+
GAMMA_target=2;
|
87 |
+
|
88 |
+
DELTA_original=DELTA;
|
89 |
+
DELTA_target=.1;
|
90 |
+
|
91 |
+
for h=0:.1:1 % this is the homotopy parameter
|
92 |
+
GAMMA=(1-h)*GAMMA_original+h*GAMMA_target;
|
93 |
+
DELTA=(1-h)*DELTA_original+h*DELTA_target;
|
94 |
+
|
95 |
+
disp(['GAMMA=' num2str(GAMMA) ' DELTA=' num2str(DELTA)])
|
96 |
+
|
97 |
+
params(2)=GAMMA;
|
98 |
+
params(5)=DELTA;
|
99 |
+
[coeffs,model]=tpsolve(coeffs,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
|
100 |
+
|
101 |
+
end
|
102 |
+
|
105/replication_package/examples/rbc/solve_model.m
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clear,clc
|
2 |
+
|
3 |
+
%---------------------------------------------------------
|
4 |
+
% Add folder 'files' to the search path and load the model
|
5 |
+
%---------------------------------------------------------
|
6 |
+
addpath('files');
|
7 |
+
load('model')
|
8 |
+
|
9 |
+
%----------------------------------------------------------------------------
|
10 |
+
% Provide nodes and weights for the quadrature that approximates expectations
|
11 |
+
%----------------------------------------------------------------------------
|
12 |
+
n_e=1; % number of shocks.
|
13 |
+
[n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
|
14 |
+
nodes=nodes'; % transpose to n_e-by-n_nodes
|
15 |
+
|
16 |
+
%----------------------------------
|
17 |
+
% Make a vector of parameter values
|
18 |
+
%----------------------------------
|
19 |
+
BETA=.96; GAMMA=2; ALPHA=.3; RHO=.8; DELTA=.1; SIGMA=.02;
|
20 |
+
params=eval(symparams);
|
21 |
+
|
22 |
+
%----------------------------------------------------------------------
|
23 |
+
% Prepare an initial guess - in this case I use a perturbation solution
|
24 |
+
%----------------------------------------------------------------------
|
25 |
+
|
26 |
+
% Steady state values
|
27 |
+
|
28 |
+
kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1));
|
29 |
+
zss=0;
|
30 |
+
css=kss^ALPHA-DELTA*kss;
|
31 |
+
|
32 |
+
nxss=[kss;zss];
|
33 |
+
nyss=css;
|
34 |
+
|
35 |
+
% Cross moments of the shocks
|
36 |
+
|
37 |
+
M=get_moments(nodes,weights,model.order(2));
|
38 |
+
|
39 |
+
% Compute the perturbation solution (keep the 4 outputs):
|
40 |
+
|
41 |
+
[derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss);
|
42 |
+
|
43 |
+
% Explanation of outputs:
|
44 |
+
% derivs=structure with the perturbation solution as explained in Levintal
|
45 |
+
% (2017): "Fifth-Order Perturbation Solution to DSGE Models".
|
46 |
+
% stoch_pert=the perturbation solution in the form of unique polynomial coefficients.
|
47 |
+
% nonstoch_pert=same as stoch_pert but without correction for the model volatility (i.e. this is a perturbation solution of a deterministic version of the model)
|
48 |
+
|
49 |
+
%-------------------------------------
|
50 |
+
% Solve the model by Taylor projection
|
51 |
+
%-------------------------------------
|
52 |
+
|
53 |
+
x0=nxss; % the approximation point (here we use the steady state, but it could be any arbitrary state)
|
54 |
+
c0=nxss; % the center of the initial guess
|
55 |
+
|
56 |
+
% tolerance parameters for the Newton solver
|
57 |
+
tolX=1e-6;
|
58 |
+
tolF=1e-6;
|
59 |
+
maxiter=10;
|
60 |
+
|
61 |
+
% model.jacobian='exact'; % this is the default
|
62 |
+
% model.jacobian='approximate'; % for large models try the approximate jacobian.
|
63 |
+
|
64 |
+
initial_guess=stoch_pert;
|
65 |
+
[coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
|
66 |
+
|
67 |
+
%------------------------------------------------------------------
|
68 |
+
% Compute the residual function and the model variables at point x0
|
69 |
+
%------------------------------------------------------------------
|
70 |
+
|
71 |
+
[R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
|
72 |
+
|
73 |
+
% R_fun0 is the residual function at x0.
|
74 |
+
% g_fun0 is the control variables at x0, namely, g(x0).
|
75 |
+
% Phi_fun0 is the function Phi at x0 and each future node, namely, Phi(x0,g(x0),epsp), for each node of the quadrature.
|
76 |
+
% auxvars0 is the auxiliary functions at x0 and each future node.
|
77 |
+
|
78 |
+
% compute the function g(x) at x0
|
79 |
+
y0=evalg(x0,coeffs,c0);
|
80 |
+
|
81 |
+
% compute the function Phi(x,y,epsp) at x0, y0 and epsp0
|
82 |
+
epsp0=.02;
|
83 |
+
xp0=evalPhi(x0,y0,epsp0,params);
|
84 |
+
|
85 |
+
%---------------------------------
|
86 |
+
% simulate the model for T periods
|
87 |
+
%---------------------------------
|
88 |
+
T=100;
|
89 |
+
shocks=randn(1,T+1); % draw shocks
|
90 |
+
|
91 |
+
% preallocate
|
92 |
+
x_simul=zeros(model.n_x,T+1);
|
93 |
+
y_simul=zeros(model.n_y,T);
|
94 |
+
R_simul=zeros(model.n_y,T);
|
95 |
+
|
96 |
+
x_simul(:,1)=x0;
|
97 |
+
|
98 |
+
% option=1; % compute only simulated variables
|
99 |
+
option=2; % compute model residuals
|
100 |
+
|
101 |
+
for t=1:T
|
102 |
+
xt=x_simul(:,t);
|
103 |
+
epsp=shocks(t+1);
|
104 |
+
|
105 |
+
% Option 1 - compute only the simulated variables
|
106 |
+
if option==1
|
107 |
+
yt=evalg(xt,coeffs,c0);
|
108 |
+
|
109 |
+
y_simul(:,t)=yt;
|
110 |
+
x_simul(:,t+1)=evalPhi(xt,yt,epsp,params);
|
111 |
+
else
|
112 |
+
% Option 2 - compute also model residuals
|
113 |
+
[Rt,yt]=residual(coeffs,xt,params,c0,nodes,weights);
|
114 |
+
|
115 |
+
y_simul(:,t)=yt;
|
116 |
+
x_simul(:,t+1)=evalPhi(xt,yt,epsp,params);
|
117 |
+
R_simul(:,t)=Rt;
|
118 |
+
end
|
119 |
+
end
|
120 |
+
|
121 |
+
%-------------------------------------------
|
122 |
+
% Solve the model again at a different state
|
123 |
+
%-------------------------------------------
|
124 |
+
% This is useful when the long run domain of the model is far from the
|
125 |
+
% initial state, so we need to approximate the solution at the long run state
|
126 |
+
% (e.g. the risky steady state or the mean of the ergodic distribution)
|
127 |
+
% rather than the steady state.
|
128 |
+
|
129 |
+
x1=x0*1.1; % take some arbitrary state
|
130 |
+
[coeffs1,model]=tpsolve(coeffs,x1,model,params,c0,nodes,weights,tolX,tolF,maxiter); % solve at x1
|
131 |
+
|
132 |
+
%-----------------------
|
133 |
+
% Use a different solver
|
134 |
+
%-----------------------
|
135 |
+
|
136 |
+
% The function tpsolve uses the Newton method for up to maxiter iterations. If it fails, it
|
137 |
+
% switches automatically to fsolve for another maxiter iterations. You can
|
138 |
+
% control the parameters of the second solver by optimoptions. The
|
139 |
+
% supported solvers are fsolve and lsqnonlin.
|
140 |
+
|
141 |
+
% For example, do one Newton iteration and switch to lsqnonlin:
|
142 |
+
|
143 |
+
x2=x1*1.1;
|
144 |
+
maxiter=1; % one Newton iteration
|
145 |
+
OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by lsqnonlin
|
146 |
+
|
147 |
+
[coeffs2,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
148 |
+
|
149 |
+
|
150 |
+
% or switch to fsolve:
|
151 |
+
|
152 |
+
maxiter=1; % one Newton iteration
|
153 |
+
OPTIONS = optimoptions('fsolve','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by fsolve
|
154 |
+
|
155 |
+
[coeffs3,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
105/replication_package/examples/rbc_EZ/prepare_model.m
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%------------------------------------------------------------------
|
2 |
+
% RBC model with Epstein-Zin preferences
|
3 |
+
%------------------------------------------------------------------
|
4 |
+
|
5 |
+
clear,clc
|
6 |
+
|
7 |
+
%-----------------------------------------
|
8 |
+
% Define symbolic variables and parameters
|
9 |
+
%-----------------------------------------
|
10 |
+
|
11 |
+
syms logk logkp logc logcp z zp logxi logxip logq logqp epsp real
|
12 |
+
syms BETA GAMMA PSI ALPHA RHO DELTA SIGMA real
|
13 |
+
|
14 |
+
|
15 |
+
%----------------------
|
16 |
+
% Substituted variables
|
17 |
+
%----------------------
|
18 |
+
|
19 |
+
c=exp(logc); cp=exp(logcp);
|
20 |
+
|
21 |
+
k=exp(logk); kp=exp(logkp);
|
22 |
+
|
23 |
+
xi=exp(logxi); xip=exp(logxip);
|
24 |
+
|
25 |
+
q=exp(logq);
|
26 |
+
|
27 |
+
Vpowerp=(1-BETA)*cp^(1-PSI)+BETA*xip^(1-PSI); % this is Vp^(1-PSI)
|
28 |
+
|
29 |
+
logVp=1/(1-PSI)*log( Vpowerp );
|
30 |
+
|
31 |
+
Vp=exp(logVp);
|
32 |
+
|
33 |
+
logmp=log(BETA)+PSI*(logc-logcp)+(PSI-GAMMA)*(logVp-logxi);
|
34 |
+
|
35 |
+
mp=exp(logmp);
|
36 |
+
|
37 |
+
%-----------------------
|
38 |
+
% Equilibrium conditions
|
39 |
+
%-----------------------
|
40 |
+
f1=mp*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
|
41 |
+
f2=xi^(GAMMA-1)*Vp^(1-GAMMA)-1;
|
42 |
+
f3=mp/q-1;
|
43 |
+
|
44 |
+
f_fun=[f1;f2;f3];
|
45 |
+
|
46 |
+
%-------------------------------------------------------
|
47 |
+
% Function Phi (law of motion of log capital and technology)
|
48 |
+
%-------------------------------------------------------
|
49 |
+
|
50 |
+
Phi_fun=[log(exp(z)*k^ALPHA+(1-DELTA)*k-c);
|
51 |
+
RHO*z+SIGMA*epsp];
|
52 |
+
|
53 |
+
%--------------------------
|
54 |
+
% Vector of state variables
|
55 |
+
%--------------------------
|
56 |
+
x=[logk,z]; % current period
|
57 |
+
xp=[logkp,zp]; % future period
|
58 |
+
|
59 |
+
%----------------------------
|
60 |
+
% Vector of control variables
|
61 |
+
%----------------------------
|
62 |
+
y=[logc,logxi,logq]; % current period
|
63 |
+
yp=[logcp,logxip,logqp]; % future period
|
64 |
+
|
65 |
+
%-----------------
|
66 |
+
% Vector of shocks
|
67 |
+
%-----------------
|
68 |
+
shocks=[epsp];
|
69 |
+
|
70 |
+
%---------------------
|
71 |
+
% Vector of parameters
|
72 |
+
%---------------------
|
73 |
+
symparams=[BETA,GAMMA,PSI,ALPHA,RHO,DELTA,SIGMA];
|
74 |
+
|
75 |
+
%--------------------
|
76 |
+
% Approximation order
|
77 |
+
%--------------------
|
78 |
+
order=3; % fourth order is the maximum possible
|
79 |
+
|
80 |
+
%----------------
|
81 |
+
% Call prepare_tp
|
82 |
+
%----------------
|
83 |
+
model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order);
|
84 |
+
|
85 |
+
%-----------
|
86 |
+
% Save model
|
87 |
+
%-----------
|
88 |
+
save('model') % you will need this later
|
105/replication_package/examples/rbc_EZ/prepare_model_auxiliary_functions.m
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%------------------------------------------------------------------
|
2 |
+
% RBC model with Epstein-Zin preferences
|
3 |
+
%------------------------------------------------------------------
|
4 |
+
|
5 |
+
clear,clc
|
6 |
+
|
7 |
+
%-----------------------------------------
|
8 |
+
% Define symbolic variables and parameters
|
9 |
+
%-----------------------------------------
|
10 |
+
|
11 |
+
syms logk logkp logc logcp z zp logxi logxip logq logqp epsp real
|
12 |
+
syms BETA GAMMA PSI ALPHA RHO DELTA SIGMA real
|
13 |
+
|
14 |
+
|
15 |
+
%-----------------------------------------------------
|
16 |
+
% Substituted variables defined by auxiliary functions
|
17 |
+
%-----------------------------------------------------
|
18 |
+
|
19 |
+
syms c cp k kp xi xip q Vpowerp logVp Vp logmp mp real
|
20 |
+
|
21 |
+
c_=exp(logc); cp_=exp(logcp);
|
22 |
+
|
23 |
+
k_=exp(logk); kp_=exp(logkp);
|
24 |
+
|
25 |
+
xi_=exp(logxi); xip_=exp(logxip);
|
26 |
+
|
27 |
+
q_=exp(logq);
|
28 |
+
|
29 |
+
Vpowerp_=(1-BETA)*cp^(1-PSI)+BETA*xip^(1-PSI); % this is Vp^(1-PSI)
|
30 |
+
|
31 |
+
logVp_=1/(1-PSI)*log( Vpowerp );
|
32 |
+
|
33 |
+
Vp_=exp(logVp);
|
34 |
+
|
35 |
+
logmp_=log(BETA)+PSI*(logc-logcp)+(PSI-GAMMA)*(logVp-logxi);
|
36 |
+
|
37 |
+
mp_=exp(logmp);
|
38 |
+
|
39 |
+
%-----------------------
|
40 |
+
% Equilibrium conditions
|
41 |
+
%-----------------------
|
42 |
+
f1=mp*(ALPHA*exp(zp)*kp^(ALPHA-1)+1-DELTA)-1;
|
43 |
+
f2=xi^(GAMMA-1)*Vp^(1-GAMMA)-1;
|
44 |
+
f3=mp/q-1;
|
45 |
+
|
46 |
+
f_fun=[f1;f2;f3];
|
47 |
+
|
48 |
+
%-------------------------------------------------------
|
49 |
+
% Function Phi (law of motion of log capital and technology)
|
50 |
+
%-------------------------------------------------------
|
51 |
+
|
52 |
+
Phi_fun=[log(exp(z)*k^ALPHA+(1-DELTA)*k-c);
|
53 |
+
RHO*z+SIGMA*epsp];
|
54 |
+
|
55 |
+
%--------------------------
|
56 |
+
% Vector of state variables
|
57 |
+
%--------------------------
|
58 |
+
x=[logk,z]; % current period
|
59 |
+
xp=[logkp,zp]; % future period
|
60 |
+
|
61 |
+
%----------------------------
|
62 |
+
% Vector of control variables
|
63 |
+
%----------------------------
|
64 |
+
y=[logc,logxi,logq]; % current period
|
65 |
+
yp=[logcp,logxip,logqp]; % future period
|
66 |
+
|
67 |
+
%-----------------
|
68 |
+
% Vector of shocks
|
69 |
+
%-----------------
|
70 |
+
shocks=[epsp];
|
71 |
+
|
72 |
+
%---------------------
|
73 |
+
% Vector of parameters
|
74 |
+
%---------------------
|
75 |
+
symparams=[BETA,GAMMA,PSI,ALPHA,RHO,DELTA,SIGMA];
|
76 |
+
|
77 |
+
%------------------------------------------
|
78 |
+
% Collect auxiliary functions and variables
|
79 |
+
%------------------------------------------
|
80 |
+
|
81 |
+
allvars=who;
|
82 |
+
auxfuns=[];
|
83 |
+
auxvars=[];
|
84 |
+
for i=1:length(allvars)
|
85 |
+
if strcmp(allvars{i}(end),'_')
|
86 |
+
eval(['tempfun=' allvars{i} ';'])
|
87 |
+
eval(['tempvar=' allvars{i}(1:end-1) ';'])
|
88 |
+
auxfuns=[auxfuns(:);tempfun(:)];
|
89 |
+
auxvars=[auxvars(:);tempvar(:)];
|
90 |
+
end
|
91 |
+
end
|
92 |
+
|
93 |
+
%--------------------
|
94 |
+
% Approximation order
|
95 |
+
%--------------------
|
96 |
+
order=4; % fourth order is the maximum possible
|
97 |
+
|
98 |
+
%----------------
|
99 |
+
% Call prepare_tp
|
100 |
+
%----------------
|
101 |
+
model=prepare_tp(f_fun,Phi_fun,yp,y,xp,x,shocks,symparams,order,auxfuns,auxvars);
|
102 |
+
|
103 |
+
%-----------
|
104 |
+
% Save model
|
105 |
+
%-----------
|
106 |
+
save('model') % you will need this later
|
105/replication_package/examples/rbc_EZ/solve_model.m
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clear,clc
|
2 |
+
|
3 |
+
%---------------------------------------------------------
|
4 |
+
% Add folder 'files' to the search path and load the model
|
5 |
+
%---------------------------------------------------------
|
6 |
+
addpath('files');
|
7 |
+
load('model')
|
8 |
+
|
9 |
+
%----------------------------------------------------------------------------
|
10 |
+
% Provide nodes and weights for the quadrature that approximates expectations
|
11 |
+
%----------------------------------------------------------------------------
|
12 |
+
n_e=length(shocks); % number of shocks.
|
13 |
+
[n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014).
|
14 |
+
nodes=nodes'; % transpose to n_e-by-n_nodes
|
15 |
+
|
16 |
+
%----------------------------------
|
17 |
+
% Make a vector of parameter values
|
18 |
+
%----------------------------------
|
19 |
+
BETA=.96; GAMMA=2; PSI=1.5; ALPHA=.3; RHO=.8; DELTA=.1; SIGMA=.08;
|
20 |
+
params=eval(symparams);
|
21 |
+
|
22 |
+
%----------------------------------------------------------------------
|
23 |
+
% Prepare an initial guess - in this case I use a perturbation solution
|
24 |
+
%----------------------------------------------------------------------
|
25 |
+
|
26 |
+
% Steady state values
|
27 |
+
|
28 |
+
kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1));
|
29 |
+
zss=0;
|
30 |
+
css=kss^ALPHA-DELTA*kss;
|
31 |
+
vss=css;
|
32 |
+
xiss=vss;
|
33 |
+
qss=BETA;
|
34 |
+
|
35 |
+
nxss=[log(kss);zss];
|
36 |
+
nyss=[log(css);log(xiss);log(qss)];
|
37 |
+
|
38 |
+
% Cross moments of the shocks
|
39 |
+
|
40 |
+
M=get_moments(nodes,weights,model.order(2));
|
41 |
+
|
42 |
+
% Compute the perturbation solution (keep the 4 outputs):
|
43 |
+
|
44 |
+
[derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss);
|
45 |
+
|
46 |
+
% Explanation of outputs:
|
47 |
+
% derivs=structure with the perturbation solution as explained in Levintal
|
48 |
+
% (2017): "Fifth-Order Perturbation Solution to DSGE Models".
|
49 |
+
% stoch_pert=the perturbation solution in the form of unique polynomial coefficients.
|
50 |
+
% nonstoch_pert=same as stoch_pert but without correction for the model volatility (i.e. this is a perturbation solution of a deterministic version of the model)
|
51 |
+
|
52 |
+
%-------------------------------------
|
53 |
+
% Solve the model by Taylor projection
|
54 |
+
%-------------------------------------
|
55 |
+
|
56 |
+
x0=nxss; % the approximation point (here we use the steady state, but it could be any arbitrary state)
|
57 |
+
c0=nxss; % the center of the initial guess
|
58 |
+
|
59 |
+
% tolerance parameters for the Newton solver
|
60 |
+
tolX=1e-6;
|
61 |
+
tolF=1e-6;
|
62 |
+
maxiter=10;
|
63 |
+
|
64 |
+
% model.jacobian='exact'; % this is the default
|
65 |
+
% model.jacobian='approximate'; % for large models try the approximate jacobian.
|
66 |
+
|
67 |
+
initial_guess=stoch_pert;
|
68 |
+
[coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
|
69 |
+
|
70 |
+
%------------------------------------------------------------------
|
71 |
+
% Compute the residual function and the model variables at point x0
|
72 |
+
%------------------------------------------------------------------
|
73 |
+
|
74 |
+
[R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
|
75 |
+
|
76 |
+
%------------------------
|
77 |
+
% Check the interest rate
|
78 |
+
%------------------------
|
79 |
+
|
80 |
+
logq=g_fun0(3);
|
81 |
+
Rf=exp(-logq)-1
|
82 |
+
|
83 |
+
%----------------------------------------------------------------------------
|
84 |
+
% Increase risk aversion (gradually) and see how the interest rate falls
|
85 |
+
%----------------------------------------------------------------------------
|
86 |
+
|
87 |
+
GAMMAvec=2:4:82;
|
88 |
+
|
89 |
+
Rfvec=zeros(size(GAMMAvec));
|
90 |
+
|
91 |
+
i=0;
|
92 |
+
for GAMMA=GAMMAvec
|
93 |
+
i=i+1;
|
94 |
+
params(2)=GAMMA;
|
95 |
+
[coeffs,model]=tpsolve(coeffs,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter);
|
96 |
+
[R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights);
|
97 |
+
logq=g_fun0(3);
|
98 |
+
Rfvec(i)=exp(-logq)-1;
|
99 |
+
end
|
100 |
+
|
101 |
+
|
102 |
+
plot(GAMMAvec,Rfvec)
|
103 |
+
xlabel('Risk aversion (GAMMA)')
|
104 |
+
ylabel('Risk-free interest rate (Rf)')
|