anonymous-submission-acl2025 commited on
Commit
56c465b
·
1 Parent(s): 91d0f84
15/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1743cc1849a316d1594269f98be8b02d786a7e8610e5c3071b0ac6e735e96441
3
+ size 1119339
15/replication_package/Codebook_Nov16.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eab99176e7b61019a070a45b32a37e412fed67d15b3cd67a8235a5fa91d195a5
3
+ size 113844
15/replication_package/Molina-Garzon et al.2020_Nov16.do ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *************************************************************************************************
2
+ ********************************* Molina-Garzon, Grillos, Zarychta and Andersson *********************
3
+ *************************************** Public Good Game **************************************
4
+ *************************************************************************************************
5
+
6
+ ** Table 2. Results with clustered standard errors by individual
7
+ /* The following commands construct table 3. Names of the variables are adjusted manually
8
+ */
9
+
10
+ global yourlocation "/Users/adrianamolina/Documents/CU-Boulder/2017-Fall/QualifierP/Data_Analysis"
11
+ use `"${yourlocation}/publicgoodgame_dataAug27.dta"'
12
+
13
+ global xlistfinal decentralized i.p_type communication round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
14
+ global xlistfinal2 i.decentralized##i.communication i.p_type round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
15
+
16
+ quiet reg contribution $xlistfinal [pweight = weights_games_full_scaled], vce(cluster publicid)
17
+ quiet estat ic
18
+ mat es_ic = r(S)
19
+ local AIC : display %4.1f es_ic[1,5]
20
+ outreg2 using `"${yourlocation}/table3.doc"', ctitle(Main Model) addstat(AIC, `AIC') replace
21
+ quiet reg contribution $xlistfinal2 [pweight = weights_games_full_scaled], vce(cluster publicid)
22
+ quiet estat ic
23
+ mat es_ic = r(S)
24
+ local AIC : display %4.1f es_ic[1,5]
25
+ outreg2 using `"${yourlocation}/table3.doc"', ctitle(Model with Communication Interaction) addstat(AIC, `AIC') append
26
+
27
+
28
+ ** Figure 3. Decentralization is Associated with Increased Cooperation by Public Servants when they are able to Communicate with Each Other
29
+
30
+ twoway (rcap highconf_ols_2 lowconf_ols_2 round if decentralized==1, lcolor(black) legend(label(1 "CI"))) (line outcome_ols_2 round if decentralized==1, xlabel(1(1)10) lpattern(solid) lcolor(black) legend(label(2 "Decentralized municipalities"))) ///
31
+ (rcap highconf_ols_2 lowconf_ols_2 round if decentralized==0, lcolor(gray) legend(label(3 "CI"))) (line outcome_ols_2 round if decentralized==0, lpattern(dash) lcolor(gray) legend(label(4 "Centrally-admin. municipalities"))), ///
32
+ graphregion(fcolor(white) ifcolor(white))
33
+
34
+ graph save Graph `"${yourlocation}/Figure3_cooperation by admin type.gph"'
35
+
36
+
37
+ ***** Supplementary appendix
38
+
39
+ *Table SA1. Main cooperation model with reduced sample weights
40
+ quiet metobit contribution $xlistfinal [pweight = weights_games_reduced_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
41
+ quiet estat ic
42
+ mat es_ic = r(S)
43
+ local AIC : display %4.1f es_ic[1,5]
44
+ outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
45
+ quiet metobit contribution $xlistfinal2 [pweight = weights_games_reduced_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
46
+ quiet estat ic
47
+ mat es_ic = r(S)
48
+ local AIC : display %4.1f es_ic[1,5]
49
+ outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model B) addstat(AIC, `AIC') append
50
+ quiet reg contribution $xlistfinal [pweight = weights_games_reduced_scaled], vce(cluster publicid)
51
+ quiet estat ic
52
+ mat es_ic = r(S)
53
+ local AIC : display %4.1f es_ic[1,5]
54
+ outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model C) addstat(AIC, `AIC') append
55
+ quiet reg contribution $xlistfinal2 [pweight = weights_games_reduced_scaled], vce(cluster publicid)
56
+ quiet estat ic
57
+ mat es_ic = r(S)
58
+ local AIC : display %4.1f es_ic[1,5]
59
+ outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model D) addstat(AIC, `AIC') append
60
+
61
+
62
+ *Table SA3. Alternative cooperation model, Multilevel Tobit specification
63
+
64
+ quiet metobit contribution $xlistfinal [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
65
+ quiet estat ic
66
+ mat es_ic = r(S)
67
+ local AIC : display %4.1f es_ic[1,5]
68
+ outreg2 using `"${yourlocation}/tableSA5.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
69
+ quiet metobit contribution $xlistfinal2 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
70
+ quiet estat ic
71
+ mat es_ic = r(S)
72
+ local AIC : display %4.1f es_ic[1,5]
73
+ outreg2 using `"${yourlocation}/tableSA5.doc"', ctitle(Model B) addstat(AIC, `AIC') append
74
+
75
+
76
+ * Figure SA1: Raw data distribution for public good game results
77
+ sort decentralized round
78
+ twoway (line averagecont round if decentralized==1, ylabel(0(1)10) xlabel(1(1)10) lcolor(black) lpattern(solid) legend(label(1 "Decentralized municipalities"))) (line averagecont round if decentralized==0, lcolor(gray) lpattern(dash) legend(label(2 "Centrally-admin. municipalities"))), ///
79
+ graphregion(fcolor(white) ifcolor(white))
80
+
81
+ graph save Graph `"${yourlocation}/FigureSA3.gph"'
82
+
83
+ * SA I- Table SA 15. Analysis by types of intermediary organizations
84
+
85
+ global xlistfinal4 i.dec_orgtype i.p_type communication round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
86
+ global xlistfinal5 i.dec_orgtype##i.communication i.p_type round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
87
+
88
+ quiet metobit contribution $xlistfinal4 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
89
+ quiet estat ic
90
+ mat es_ic = r(S)
91
+ local AIC : display %4.1f es_ic[1,5]
92
+ outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
93
+ quiet metobit contribution $xlistfinal5 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
94
+ quiet estat ic
95
+ mat es_ic = r(S)
96
+ local AIC : display %4.1f es_ic[1,5]
97
+ outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model B) addstat(AIC, `AIC') append
98
+ quiet reg contribution $xlistfinal4 [pweight = weights_games_full_scaled], vce(cluster publicid)
99
+ quiet estat ic
100
+ mat es_ic = r(S)
101
+ local AIC : display %4.1f es_ic[1,5]
102
+ outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model C) addstat(AIC, `AIC') append
103
+ quiet reg contribution $xlistfinal5 [pweight = weights_games_full_scaled], vce(cluster publicid)
104
+ quiet estat ic
105
+ mat es_ic = r(S)
106
+ local AIC : display %4.1f es_ic[1,5]
107
+ outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model D) addstat(AIC, `AIC') append
108
+
109
+
110
+ * Table SA 16. Regression analysis explaining perceived improvements in health outcomes
111
+ * This table requires a different dataset
112
+
113
+ clear
114
+
115
+ global yourlocation "/Users/adrianamolina/Documents/CU-Boulder/2017-Fall/QualifierP/Data_Analysis"
116
+ use `"${yourlocation}/healthperception_Aug2020"'
117
+
118
+ quiet reg HealthChange_Mun contribution [pweight = weights_games_full_scaled]
119
+ quiet estat ic
120
+ mat es_ic = r(S)
121
+ local AIC : display %4.1f es_ic[1,5]
122
+ outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
123
+ quiet reg HealthChange_Mun decentralized [pweight = weights_games_full_scaled]
124
+ quiet estat ic
125
+ mat es_ic = r(S)
126
+ local AIC : display %4.1f es_ic[1,5]
127
+ outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model B) addstat(AIC, `AIC') append
128
+ quiet reg HealthChange_Mun contribution decentralized [pweight = weights_games_full_scaled]
129
+ quiet estat ic
130
+ mat es_ic = r(S)
131
+ local AIC : display %4.1f es_ic[1,5]
132
+ outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model C) addstat(AIC, `AIC') append
133
+
134
+ * Figure SA 4. Contribution to the public good game and perception of change in the health provision during the past five years
135
+
136
+ set scheme s1mono
137
+ twoway (scatter HealthChange_Mun0 contribution) (scatter HealthChange_Mun1 contribution) ///
138
+ (lfit HealthChange_Mun contribution), ///
139
+ ytitle(Health change in last 5 years) ///
140
+ legen(order(1 "Centralized admin." 2 "Decentralized admin." 3 "Fit line"))
141
+
142
+
143
+ graph save Graph `"${yourlocation}/FigureSA6.gph"'
144
+
145
+
146
+
15/replication_package/README_MolinaGarzon et al.2020_Nov16.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f83cc5352adfeb310835435ad28c75affe2f7291b8539d65829e74c895bd475
3
+ size 50410
15/replication_package/clanalysis_anondata_vNov16.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f60f980a1516aaede36627593e056c9f1d5964f54cba7c58700369133874fc83
3
+ size 23956
15/replication_package/clanalysis_replication_vNov16.R ADDED
@@ -0,0 +1,882 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #####Replication File for cross-level ties analysis in, "Decentralization can Increase Cooperation Among Public Officials"
2
+
3
+ #Adriana Molina-Garz?n, University of Colorado Boulder, [email protected]
4
+ #Tara Grillos, Purdue University, [email protected]
5
+ #Alan Zarychta, University of Chicago, [email protected]
6
+ #Krister P. Andersson, University of Colorado Boulder, Institute of Behavioral Science, [email protected]
7
+
8
+
9
+
10
+
11
+
12
+ #Suggested citation for replication data:
13
+
14
+ #Molina-Garz?n A., Grillos T., Zarychta A., and Andersson K.P., 2020, "Replication Data for: Decentralization can Increase Cooperation Among Public Officials", https://doi.org/10.7910/DVN/ZLHYSZ .
15
+
16
+
17
+ #Suggested citations for study design and full original data collection:
18
+
19
+ #Zarychta, A., Andersson, K.P., Root, E. D., Menken, J., & Grillos, T. (2019a). Assessing the impacts of governance reforms on health services delivery: A quasi-experimental, multi-method, and participatory approach. Health Services and Outcomes Research Methodology, 19(4), 241-258. https://doi.org/10.1007/s10742-019-00201-8
20
+
21
+ #Zarychta, A, Andersson, KP, Root, ED, Menken J, Grillos T. (2019b). Supplemental Appendix for "Assessing the impacts of governance reforms on health services delivery: a quasi-experimental, multi-method, and participatory approach." Health Services and Outcomes Research Methodology, 19(4), https://static-content.springer.com/esm/art%3A10.1007%2Fs10742-019-00201-8/MediaObjects/10742_2019_201_MOESM1_ESM.docx
22
+
23
+
24
+
25
+
26
+
27
+ ##### Computing Environment
28
+
29
+ ##R version 3.6.1 (2019-07-05) -- "Action of the Toes"
30
+ ##Copyright (C) 2019 The R Foundation for Statistical Computing
31
+ ##Platform: x86_64-w64-mingw32/x64 (64-bit)
32
+
33
+
34
+
35
+
36
+
37
+ ##### Packages Needed
38
+
39
+ install.packages("PACKAGE NAME HERE") #to download packages if needed
40
+
41
+ library(sandwich)
42
+ library(lmtest)
43
+ library(zoo)
44
+ library(texreg)
45
+ library(multiwayvcov)
46
+ library(MASS)
47
+ library(plyr)
48
+ library(Hmisc)
49
+ library(reporttools)
50
+ library(readstata13)
51
+ library(plyr)
52
+ library(survey)
53
+ library(tableone)
54
+
55
+
56
+
57
+
58
+
59
+ ##### Additional Functions
60
+
61
+
62
+ #clustered standard errors
63
+
64
+ clse.f <- function(dat,fm, cluster){
65
+ require(sandwich)
66
+ require(lmtest)
67
+ not <- attr(fm$model,"na.action")
68
+ if( ! is.null(not)){
69
+ cluster <- cluster[-not]
70
+ dat <- dat[-not,]
71
+ }
72
+
73
+ with(dat,{
74
+ M <- length(unique(cluster))
75
+ N <- length(cluster)
76
+ K <- fm$rank
77
+ dfc <- (M/(M-1))*((N-1)/(N-K))
78
+ uj <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum));
79
+ vcovCL <- dfc*sandwich(fm, meat=crossprod(uj)/N)
80
+ coeftest(fm, vcovCL)
81
+ }
82
+ )
83
+ }
84
+
85
+
86
+ #CIs for bar graphs
87
+
88
+ error.bar <- function(x, y, upper, lower, length=0.1,...){
89
+ if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper))
90
+ stop("vectors must be same length")
91
+ arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...)
92
+ }
93
+
94
+
95
+
96
+
97
+
98
+ ##### Global Options
99
+
100
+ options(scipen=999)
101
+ options(digits=6)
102
+ setwd("C:/FOLDER LOCATION WHERE DATA FILE IS SAVED GOES HERE/...")
103
+
104
+
105
+
106
+
107
+
108
+ ##### Load data file
109
+
110
+ data <- read.csv("clanalysis_anondata_vNov16.csv")
111
+ names(data)
112
+
113
+
114
+
115
+
116
+
117
+ ##### Main Paper
118
+
119
+
120
+
121
+
122
+
123
+ ##### Table 1: Weighted descriptive statistics by administration form for all participants
124
+
125
+ data.pg <- read.dta13("publicgoodgame_dataAug27.dta")
126
+ data.pg <- data.pg[which(data.pg$contribution>=0), ]
127
+
128
+
129
+ #collapse individual-round data to individual
130
+
131
+ data.agg <- aggregate(data.pg[c("num_players", "knownpeople", "Q5_Trust1Base")], by=list(data.pg$publicid), FUN=mean)
132
+ names(data.agg)[names(data.agg)=="Group.1"] <- "publicid"
133
+
134
+ data.mrg <- merge(data, data.agg, by="publicid", all.y=FALSE)
135
+
136
+
137
+ #collapse individual data to municipality
138
+
139
+ data.mun <- aggregate(data.mrg[c("decentralized", "num_players")], by=list(data.mrg$publicid_muni), FUN=max)
140
+ names(data.mun)[names(data.mun)=="Group.1"] <- "publicid_muni"
141
+
142
+ data.munw <- aggregate(data.mrg[c("weights_games_full_scaled")], by=list(data.mrg$publicid_muni), FUN=sum)
143
+ names(data.munw)[names(data.munw)=="Group.1"] <- "publicid_muni"
144
+
145
+ data.mun <- merge(data.mun, data.munw, by="publicid_muni", all.y=FALSE)
146
+
147
+
148
+ #make table
149
+
150
+
151
+ #rows 1 and 2 of the table
152
+
153
+ table(data.mun$decentralized)
154
+ table(data.mrg$decentralized)
155
+
156
+
157
+ #remaining rows of the table (excluding p-value column)
158
+
159
+ vars <- c("Mujer", "Q2_Educacion", "Q1_Edad", "Q3_YrsSalud", "CargoAdministrador", "CargoMedico" , "CargoEnfermero" , "CargoPromotor" , "CargoAlcaldia", "num_players" , "knownpeople" , "Q5_Trust1Base")
160
+
161
+ names(data.mrg)
162
+ data.test <- svydesign(ids = ~ 1, data = data.mrg, weights = ~ data.mrg$weights_games_full_scaled)
163
+ tab.test <- svyCreateTableOne(vars = vars, strata = "decentralized", data = data.test, test = FALSE)
164
+ addmargins(table(ExtractSmd(tab.test) > 0.25))
165
+ tab.test <- print(tab.test, smd = TRUE)
166
+ tab.test <- tab.test[-1,]
167
+ xtable(tab.test, caption=c("Weighted All Participants Sample Balance Table by Decentralized"))
168
+
169
+
170
+ #p-value column for all relevant rows of the table
171
+
172
+ diffmeans.mujer <- lm(Mujer~decentralized, data=data.mrg, weights=weights_games_full_scaled)
173
+ summary(diffmeans.mujer)
174
+ diffmeans.mujer.cse <- clse.f(data.mrg, diffmeans.mujer, data.mrg$publicid_muni)
175
+ diffmeans.mujer.cse
176
+ diffmeans.mujer.cse[2,4] #pvalue on decentralized
177
+
178
+
179
+ diffmeans.educ <- lm(Q2_Educacion~decentralized, data=data.mrg, weights=weights_games_full_scaled)
180
+ summary(diffmeans.educ)
181
+ diffmeans.educ.cse <- clse.f(data.mrg, diffmeans.educ, data.mrg$publicid_muni)
182
+ diffmeans.educ.cse
183
+ diffmeans.educ.cse[2,4] #pvalue on decentralized
184
+
185
+
186
+ diffmeans.edad <- lm(Q1_Edad~decentralized, data=data.mrg, weights=weights_games_full_scaled)
187
+ summary(diffmeans.edad)
188
+ diffmeans.edad.cse <- clse.f(data.mrg, diffmeans.edad, data.mrg$publicid_muni)
189
+ diffmeans.edad.cse
190
+ diffmeans.edad.cse[2,4] #pvalue on decentralized
191
+
192
+
193
+ diffmeans.yrssalud <- lm(Q3_YrsSalud~decentralized, data=data.mrg, weights=weights_games_full_scaled)
194
+ summary(diffmeans.yrssalud)
195
+ diffmeans.yrssalud.cse <- clse.f(data.mrg, diffmeans.yrssalud, data.mrg$publicid_muni)
196
+ diffmeans.yrssalud.cse
197
+ diffmeans.yrssalud.cse[2,4] #pvalue on decentralized
198
+
199
+
200
+ diffmeans.tab <- lm(CargoAdministrador~decentralized, data=data.mrg, weights=weights_games_full_scaled)
201
+ summary(diffmeans.tab)
202
+ diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
203
+ diffmeans.tab.cse
204
+ diffmeans.tab.cse[2,4] #pvalue on decentralized
205
+
206
+
207
+ diffmeans.tab <- lm(CargoMedico~decentralized, data=data.mrg, weights=weights_games_full_scaled)
208
+ summary(diffmeans.tab)
209
+ diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
210
+ diffmeans.tab.cse
211
+ diffmeans.tab.cse[2,4] #pvalue on decentralized
212
+
213
+
214
+ diffmeans.tab <- lm(CargoEnfermero~decentralized, data=data.mrg, weights=weights_games_full_scaled)
215
+ summary(diffmeans.tab)
216
+ diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
217
+ diffmeans.tab.cse
218
+ diffmeans.tab.cse[2,4] #pvalue on decentralized
219
+
220
+
221
+ diffmeans.tab <- lm(CargoPromotor~decentralized, data=data.mrg, weights=weights_games_full_scaled)
222
+ summary(diffmeans.tab)
223
+ diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
224
+ diffmeans.tab.cse
225
+ diffmeans.tab.cse[2,4] #pvalue on decentralized
226
+
227
+
228
+ diffmeans.tab <- lm(CargoAlcaldia~decentralized, data=data.mrg, weights=weights_games_full_scaled)
229
+ summary(diffmeans.tab)
230
+ diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
231
+ diffmeans.tab.cse
232
+ diffmeans.tab.cse[2,4] #pvalue on decentralized
233
+
234
+
235
+ diffmeans.num <- lm(num_players~decentralized, data=data.mun, weights=weights_games_full_scaled)
236
+ summary(diffmeans.num)
237
+ diffmeans.num.sum <- summary(diffmeans.num)
238
+ diffmeans.num.sum[[5]][2,4] #pvalue on decentralized
239
+
240
+
241
+ diffmeans.known <- lm(knownpeople~decentralized, data=data.mrg, weights=weights_games_full_scaled)
242
+ summary(diffmeans.known)
243
+ diffmeans.known.cse <- clse.f(data.mrg, diffmeans.known, data.mrg$publicid_muni)
244
+ diffmeans.known.cse
245
+ diffmeans.known.cse[2,4] #pvalue on decentralized
246
+
247
+
248
+ diffmeans.trust <- lm(Q5_Trust1Base~decentralized, data=data.mrg, weights=weights_games_full_scaled)
249
+ summary(diffmeans.trust)
250
+ diffmeans.trust.cse <- clse.f(data.mrg, diffmeans.trust, data.mrg$publicid_muni)
251
+ diffmeans.trust.cse
252
+ diffmeans.trust.cse[2,4] #pvalue on decentralized
253
+
254
+
255
+
256
+
257
+
258
+ ##### Table 3. How Decentralization Influences Cross-level Network Capital
259
+
260
+
261
+ ## model proportions by decentralized alone
262
+
263
+ mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown ~ decentralized + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
264
+ summary(mod.crosslevel.propknown.base)
265
+ mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
266
+ mod.crosslevel.propknown.base.cse
267
+
268
+ mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends ~ decentralized + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
269
+ summary(mod.crosslevel.propfriends.base)
270
+ mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
271
+ mod.crosslevel.propfriends.base.cse
272
+
273
+
274
+ ## model proportions by decentralized plus individual characteristics with participant types
275
+
276
+ mod.crosslevel.propknown.fullpt <- glm(net_crosslevel_propnumknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
277
+ summary(mod.crosslevel.propknown.fullpt)
278
+ mod.crosslevel.propknown.fullpt.cse <- clse.f(data, mod.crosslevel.propknown.fullpt, data$publicid_muni)
279
+ mod.crosslevel.propknown.fullpt.cse
280
+
281
+ mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
282
+ summary(mod.crosslevel.propfriends.fullpt)
283
+ mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
284
+ mod.crosslevel.propfriends.fullpt.cse
285
+
286
+
287
+ #crosslevel ties, binary, player type controls table
288
+
289
+ texreg(list(mod.crosslevel.propknown.base,
290
+ mod.crosslevel.propknown.fullpt,
291
+ mod.crosslevel.propfriends.base,
292
+ mod.crosslevel.propfriends.fullpt),
293
+ stars=c(0.01, 0.05, 0.10),
294
+ caption="Explaining Cross-level Network Capital (Prop. Known) by Decentralization",
295
+ dcolumn=FALSE,
296
+ custom.model.names=c("Prop. Known Base", "Prop. Known Fullpt", "Prop. Friends Base", "Prop. Friends Fullpt"),
297
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
298
+ override.se=list(mod.crosslevel.propknown.base.cse[,2],
299
+ mod.crosslevel.propknown.fullpt.cse[,2],
300
+ mod.crosslevel.propfriends.base.cse[,2],
301
+ mod.crosslevel.propfriends.fullpt.cse[,2]),
302
+ override.pval=list(mod.crosslevel.propknown.base.cse[,4],
303
+ mod.crosslevel.propknown.fullpt.cse[,4],
304
+ mod.crosslevel.propfriends.base.cse[,4],
305
+ mod.crosslevel.propfriends.fullpt.cse[,4]),
306
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
307
+ caption.above=TRUE)
308
+
309
+
310
+
311
+
312
+
313
+ ##### Figure 4. Expected Proportion of Strong Cross-level Ties Realized for a Typical Public Servant, Centrally-Administered versus Decentralized Systems
314
+
315
+
316
+ ## decent_propfriends_fullpt, full strong ties model from Table 4
317
+
318
+ mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
319
+ summary(mod.crosslevel.propfriends.fullpt)
320
+ mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
321
+ mod.crosslevel.propfriends.fullpt.cse
322
+
323
+
324
+ ## Simulate Coefficients ##
325
+ # Seed and number of repetitions
326
+ set.seed(19850824)
327
+ m <- 100000
328
+
329
+
330
+ # Simulate coefficients from a multivariate normal
331
+ betas <- mod.crosslevel.propfriends.fullpt$coef
332
+ vcv <- cluster.vcov(mod.crosslevel.propfriends.fullpt, data$publicid_muni)
333
+ sim.betas <- mvrnorm(m, betas, vcv)
334
+
335
+
336
+ # Compare simulated coefficients with real results
337
+ round(mod.crosslevel.propfriends.fullpt$coef, digits = 2)
338
+ round(head(sim.betas, 10), digits = 2)
339
+ data.frame(sim.means = apply(sim.betas, 2, mean), betas = betas, sim.sd = apply(sim.betas, 2, sd), se = sqrt(diag(vcv)))
340
+
341
+
342
+ # Create hypothetical independent variable profiles
343
+ decent.data <- data.frame(intercept=1, decentralized=1, Mujer = median(na.omit(data$Mujer)), Q2_Educacion = mean(na.omit(data$Q2_Educacion)), Q1_Edad = mean(na.omit(data$Q1_Edad)), Q3_YrsSalud = mean(na.omit(data$Q3_YrsSalud)), gen_trust = mean(na.omit(data$gen_trust)), Participant_C=1, Participant_G=0, Participant_R=0)
344
+
345
+ centadmin.data <- data.frame(intercept=1, decentralized=0, Mujer = median(na.omit(data$Mujer)), Q2_Educacion = mean(na.omit(data$Q2_Educacion)), Q1_Edad = mean(na.omit(data$Q1_Edad)), Q3_YrsSalud = mean(na.omit(data$Q3_YrsSalud)), gen_trust = mean(na.omit(data$gen_trust)), Participant_C=1, Participant_G=0, Participant_R=0)
346
+
347
+
348
+ # Compute the expected counts and confidence intervals using the simulated coefficients
349
+ ec.sim <- matrix(NA, nrow = m, ncol = 1)
350
+
351
+ for(i in 1:m){
352
+ ec.sim[i, ] <- exp(as.matrix(decent.data)%*%sim.betas[i, ])
353
+ }
354
+
355
+ pe.decent <- apply(ec.sim, 2, mean)
356
+ lo.decent <- apply(ec.sim, 2, quantile, prob = .025)
357
+ hi.decent <- apply(ec.sim, 2, quantile, prob = .975)
358
+
359
+
360
+ ec.sim <- matrix(NA, nrow = m, ncol = 1)
361
+
362
+ for(i in 1:m){
363
+ ec.sim[i, ] <- exp(as.matrix(centadmin.data)%*%sim.betas[i, ])
364
+ }
365
+
366
+ pe.centadmin <- apply(ec.sim, 2, mean)
367
+ lo.centadmin <- apply(ec.sim, 2, quantile, prob = .025)
368
+ hi.centadmin <- apply(ec.sim, 2, quantile, prob = .975)
369
+
370
+
371
+ # Expected values for central admin and decent
372
+
373
+ pe.decent
374
+ pe.centadmin
375
+
376
+ admin.pe <- matrix(c(pe.centadmin, pe.decent),2,1,byrow=TRUE)
377
+
378
+ admin.lo <- matrix(c(lo.centadmin, lo.decent),2,1,byrow=TRUE)
379
+ admin.hi <- matrix(c(hi.centadmin, hi.decent),2,1, byrow=TRUE)
380
+
381
+ admin.lower <- admin.pe-admin.lo
382
+ admin.upper <- admin.hi-admin.pe
383
+
384
+
385
+ # Make barplot
386
+
387
+ par(mar = c(2.3, 4.3, 1, .1))
388
+
389
+ bplot.admin <- barplot(admin.pe, beside=TRUE, space=0.3, ylim=c(0,0.4), ylab="Expected Prop. of Strong Cross-level Ties Realized", names.arg=c("Centrally-Admin.", "Decentralized"), cex.lab=1.1, cex.names=1.2, col=c("gray75","gray45"), border=c("gray75","gray45"), args.legend=list(x="top", bty="n", horiz=TRUE, border=c(c("gray75","gray45"))))
390
+
391
+ error.bar(bplot.admin, admin.pe, admin.upper, admin.lower)
392
+
393
+
394
+ dev.off()
395
+
396
+
397
+
398
+
399
+
400
+ ##### Supplemental Appendix
401
+
402
+
403
+
404
+
405
+
406
+ ##### Table SA2. Descriptive Statistics for the Sample of Public Servants Participating in the Public Goods Game
407
+
408
+
409
+ #row 1 of the table
410
+ descripvars.cont <- c("contribution")
411
+ tableContinuous(vars=data.pg[descripvars.cont], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
412
+
413
+
414
+ #all remaining rows except "Number players"
415
+
416
+ descripvars.mrg <- c("Mujer", "Q2_Educacion", "Q1_Edad", "Q3_YrsSalud", "CargoAdministrador", "CargoMedico" , "CargoEnfermero" , "CargoPromotor" , "CargoAlcaldia", "knownpeople", "Q5_Trust1Base")
417
+ tableContinuous(vars=data.mrg[descripvars.mrg], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
418
+
419
+
420
+ #"Number players" row
421
+
422
+ descripvars.mun <- c("num_players")
423
+ tableContinuous(vars=data.mun[descripvars.mun], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
424
+
425
+
426
+
427
+
428
+
429
+ ##### Table SA4. Descriptive Statistics for Cross-level Network Variables (all levels)
430
+
431
+ descripvars <- c("net_crosslevel_propknown", "net_crosslevel_propfriends", "net_crosslevel_propnumknown", "net_crosslevel_propnumfriends", "net_crosslevel_hoursrcknown", "net_crosslevel_hoursrcfriends")
432
+
433
+ tableContinuous(vars=data[descripvars], cap="Descriptive Statisitics for Cross-level Network Variables (all levels)", prec=2, longtable=FALSE)
434
+
435
+
436
+
437
+
438
+
439
+ ##### Figure SA2. Histograms of the Cross-level Relational Capital Dependent Variables (all levels)
440
+
441
+ par(mar = c(4.1, 4, 0, 0.2))
442
+ hist(data$net_crosslevel_propknown, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized", main=NULL)
443
+
444
+ par(mar = c(4.1, 4, 0, 0.2))
445
+ hist(data$net_crosslevel_propfriends, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized as Strong Ties", main=NULL)
446
+
447
+
448
+
449
+
450
+
451
+ ##### Table SA5. Averages of Cross-level Network Variables (all levels)
452
+
453
+ round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propknown=wtd.mean(x$net_crosslevel_propknown, x$weights_games_full_scaled, na.rm=TRUE))), 2)
454
+
455
+ round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propfriends=wtd.mean(x$net_crosslevel_propfriends, x$weights_games_full_scaled, na.rm=TRUE))),2)
456
+
457
+
458
+
459
+
460
+
461
+ ##### Table SA6. How Decentralization Influences Cross-level Network Capital, Hours, Player Type Controls
462
+
463
+
464
+ ## model HOURS RC by decentralization alone
465
+
466
+ mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
467
+ summary(mod.crosslevel.hoursrcknown.base)
468
+ mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
469
+ mod.crosslevel.hoursrcknown.base.cse
470
+
471
+ mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
472
+ summary(mod.crosslevel.hoursrcfriends.base)
473
+ mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
474
+ mod.crosslevel.hoursrcfriends.base.cse
475
+
476
+
477
+ ## model HOURS RC by decentralized plus individual characteristics with participant types
478
+
479
+ mod.crosslevel.hoursrcknown.fullpt <- glm(net_crosslevel_hoursrcknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
480
+ summary(mod.crosslevel.hoursrcknown.fullpt)
481
+ mod.crosslevel.hoursrcknown.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcknown.fullpt, data$publicid_muni)
482
+ mod.crosslevel.hoursrcknown.fullpt.cse
483
+
484
+ mod.crosslevel.hoursrcfriends.fullpt <- glm(net_crosslevel_hoursrcfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
485
+ summary(mod.crosslevel.hoursrcfriends.fullpt)
486
+ mod.crosslevel.hoursrcfriends.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.fullpt, data$publicid_muni)
487
+ mod.crosslevel.hoursrcfriends.fullpt.cse
488
+
489
+
490
+ #crosslevel ties, hours, player type controls table
491
+
492
+ texreg(list(mod.crosslevel.hoursrcknown.base,
493
+ mod.crosslevel.hoursrcknown.fullpt,
494
+ mod.crosslevel.hoursrcfriends.base,
495
+ mod.crosslevel.hoursrcfriends.fullpt),
496
+ stars=c(0.01, 0.05, 0.10),
497
+ caption="Explaining Cross-level Network Capital (Hours) by Decentralization",
498
+ dcolumn=FALSE,
499
+ custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
500
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
501
+ override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
502
+ mod.crosslevel.hoursrcknown.fullpt.cse[,2],
503
+ mod.crosslevel.hoursrcfriends.base.cse[,2],
504
+ mod.crosslevel.hoursrcfriends.fullpt.cse[,2]),
505
+ override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
506
+ mod.crosslevel.hoursrcknown.fullpt.cse[,4],
507
+ mod.crosslevel.hoursrcfriends.base.cse[,4],
508
+ mod.crosslevel.hoursrcfriends.fullpt.cse[,4]),
509
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
510
+ caption.above=TRUE)
511
+
512
+
513
+
514
+
515
+
516
+ ##### Table SA7. How Decentralization Influences Cross-level Network Capital, Binary, Role Type Controls
517
+
518
+
519
+ ## model proportions by decentralized alone
520
+
521
+ mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown ~ decentralized + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
522
+ summary(mod.crosslevel.propknown.base)
523
+ mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
524
+ mod.crosslevel.propknown.base.cse
525
+
526
+ mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends ~ decentralized + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
527
+ summary(mod.crosslevel.propfriends.base)
528
+ mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
529
+ mod.crosslevel.propfriends.base.cse
530
+
531
+
532
+ ## model proportions by decentralized plus individual characteristics
533
+
534
+ mod.crosslevel.propknown.full <- glm(net_crosslevel_propnumknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
535
+ summary(mod.crosslevel.propknown.full)
536
+ mod.crosslevel.propknown.full.cse <- clse.f(data, mod.crosslevel.propknown.full, data$publicid_muni)
537
+ mod.crosslevel.propknown.full.cse
538
+
539
+ mod.crosslevel.propfriends.full <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
540
+ summary(mod.crosslevel.propfriends.full)
541
+ mod.crosslevel.propfriends.full.cse <- clse.f(data, mod.crosslevel.propfriends.full, data$publicid_muni)
542
+ mod.crosslevel.propfriends.full.cse
543
+
544
+
545
+ #crosslevel ties, binary, role type controls table
546
+
547
+ texreg(list(mod.crosslevel.propknown.base,
548
+ mod.crosslevel.propknown.full,
549
+ mod.crosslevel.propfriends.base,
550
+ mod.crosslevel.propfriends.full),
551
+ stars=c(0.01, 0.05, 0.10),
552
+ caption="Explaining Cross-level Network Capital (Prop. Known) by Decentralization",
553
+ dcolumn=FALSE,
554
+ custom.model.names=c("Prop. Known Base", "Prop. Known Full", "Prop. Friends Base", "Prop. Friends Full"),
555
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
556
+ override.se=list(mod.crosslevel.propknown.base.cse[,2],
557
+ mod.crosslevel.propknown.full.cse[,2],
558
+ mod.crosslevel.propfriends.base.cse[,2],
559
+ mod.crosslevel.propfriends.full.cse[,2]),
560
+ override.pval=list(mod.crosslevel.propknown.base.cse[,4],
561
+ mod.crosslevel.propknown.full.cse[,4],
562
+ mod.crosslevel.propfriends.base.cse[,4],
563
+ mod.crosslevel.propfriends.full.cse[,4]),
564
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
565
+ caption.above=TRUE)
566
+
567
+
568
+
569
+
570
+
571
+ ##### Table SA8. How Decentralization Influences Cross-level Network Capital, Hours, Role Type Controls
572
+
573
+
574
+ ## model proportions by decentralized alone
575
+
576
+ mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
577
+ summary(mod.crosslevel.hoursrcknown.base)
578
+ mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
579
+ mod.crosslevel.hoursrcknown.base.cse
580
+
581
+ mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
582
+ summary(mod.crosslevel.hoursrcfriends.base)
583
+ mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
584
+ mod.crosslevel.hoursrcfriends.base.cse
585
+
586
+
587
+ ## model HOURS RC by decentralized plus individual characteristics
588
+
589
+ mod.crosslevel.hoursrcknown.full <- glm(net_crosslevel_hoursrcknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
590
+ summary(mod.crosslevel.hoursrcknown.full)
591
+ mod.crosslevel.hoursrcknown.full.cse <- clse.f(data, mod.crosslevel.hoursrcknown.full, data$publicid_muni)
592
+ mod.crosslevel.hoursrcknown.full.cse
593
+
594
+ mod.crosslevel.hoursrcfriends.full <- glm(net_crosslevel_hoursrcfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
595
+ summary(mod.crosslevel.hoursrcfriends.full)
596
+ mod.crosslevel.hoursrcfriends.full.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.full, data$publicid_muni)
597
+ mod.crosslevel.hoursrcfriends.full.cse
598
+
599
+
600
+ #crosslevel ties, hours, role type controls table
601
+
602
+ texreg(list(mod.crosslevel.hoursrcknown.base,
603
+ mod.crosslevel.hoursrcknown.full,
604
+ mod.crosslevel.hoursrcfriends.base,
605
+ mod.crosslevel.hoursrcfriends.full),
606
+ stars=c(0.01, 0.05, 0.10),
607
+ caption="Explaining Cross-level Network Capital (Hours) by Decentralization",
608
+ dcolumn=FALSE,
609
+ custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
610
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
611
+ override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
612
+ mod.crosslevel.hoursrcknown.full.cse[,2],
613
+ mod.crosslevel.hoursrcfriends.base.cse[,2],
614
+ mod.crosslevel.hoursrcfriends.full.cse[,2]),
615
+ override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
616
+ mod.crosslevel.hoursrcknown.full.cse[,4],
617
+ mod.crosslevel.hoursrcfriends.base.cse[,4],
618
+ mod.crosslevel.hoursrcfriends.full.cse[,4]),
619
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
620
+ caption.above=TRUE)
621
+
622
+
623
+
624
+
625
+
626
+ ##### Table SA9. Descriptive Statistics for Cross-level Network Variables (collapsed levels)
627
+
628
+ descripvars.col <- c("net_crosslevel_propknown_col", "net_crosslevel_propfriends_col", "net_crosslevel_propnumknown_col", "net_crosslevel_propnumfriends_col", "net_crosslevel_hoursrcknown_col", "net_crosslevel_hoursrcfriends_col")
629
+
630
+ tableContinuous(vars=data[descripvars.col], cap="Descriptive Statisitics for Cross-level Network Variables (collapsed levels)", prec=2, longtable=FALSE)
631
+
632
+
633
+
634
+
635
+
636
+ ##### Figure SA3. Histograms of the Cross-level Relational Capital Dependent Variables (collapsed levels)
637
+
638
+ par(mar = c(4.1, 4, 0, 0.2))
639
+ hist(data$net_crosslevel_propknown_col, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized (Levels Collapsed)", main=NULL)
640
+
641
+ par(mar = c(4.1, 4, 0, 0.2))
642
+ hist(data$net_crosslevel_propfriends_col, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized as Strong Ties (Levels Collapsed)", main=NULL)
643
+
644
+
645
+
646
+
647
+
648
+ ##### Table SA 10. Averages of Cross-level Network Variables (collapsed levels)
649
+
650
+ round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propknown_col=wtd.mean(x$net_crosslevel_propknown_col, x$weights_games_full_scaled, na.rm=TRUE))), 2)
651
+
652
+ round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propfriends_col=wtd.mean(x$net_crosslevel_propfriends_col, x$weights_games_full_scaled, na.rm=TRUE))),2)
653
+
654
+
655
+
656
+
657
+
658
+ ##### Table SA 11. How Decentralization Influences Cross-level Network Capital (collapsed levels), Binary, Player Type Controls
659
+
660
+
661
+ ## model proportions by decentralized alone
662
+
663
+ mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown_col ~ decentralized + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
664
+ summary(mod.crosslevel.propknown.base)
665
+ mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
666
+ mod.crosslevel.propknown.base.cse
667
+
668
+ mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends_col ~ decentralized + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
669
+ summary(mod.crosslevel.propfriends.base)
670
+ mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
671
+ mod.crosslevel.propfriends.base.cse
672
+
673
+
674
+ ## model proportions by decentralized plus individual characteristics with participant types
675
+
676
+ mod.crosslevel.propknown.fullpt <- glm(net_crosslevel_propnumknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
677
+ summary(mod.crosslevel.propknown.fullpt)
678
+ mod.crosslevel.propknown.fullpt.cse <- clse.f(data, mod.crosslevel.propknown.fullpt, data$publicid_muni)
679
+ mod.crosslevel.propknown.fullpt.cse
680
+
681
+ mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
682
+ summary(mod.crosslevel.propfriends.fullpt)
683
+ mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
684
+ mod.crosslevel.propfriends.fullpt.cse
685
+
686
+
687
+ #crosslevel ties, binary, player type controls table, collapsed levels
688
+
689
+ texreg(list(mod.crosslevel.propknown.base,
690
+ mod.crosslevel.propknown.fullpt,
691
+ mod.crosslevel.propfriends.base,
692
+ mod.crosslevel.propfriends.fullpt),
693
+ stars=c(0.01, 0.05, 0.10),
694
+ caption="Explaining Cross-level Network Capital (Prop. Known), Collapsed Levels, by Decentralization",
695
+ dcolumn=FALSE,
696
+ custom.model.names=c("Prop. Known Base", "Prop. Known Fullpt", "Prop. Friends Base", "Prop. Friends Fullpt"),
697
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
698
+ override.se=list(mod.crosslevel.propknown.base.cse[,2],
699
+ mod.crosslevel.propknown.fullpt.cse[,2],
700
+ mod.crosslevel.propfriends.base.cse[,2],
701
+ mod.crosslevel.propfriends.fullpt.cse[,2]),
702
+ override.pval=list(mod.crosslevel.propknown.base.cse[,4],
703
+ mod.crosslevel.propknown.fullpt.cse[,4],
704
+ mod.crosslevel.propfriends.base.cse[,4],
705
+ mod.crosslevel.propfriends.fullpt.cse[,4]),
706
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
707
+ caption.above=TRUE)
708
+
709
+
710
+
711
+
712
+
713
+ ##### Table SA 12. How Decentralization Influences Cross-level Network Capital (collapsed levels), Hours, Player Type Controls
714
+
715
+
716
+ ## model HOURS RC by decentralization alone
717
+
718
+ mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
719
+ summary(mod.crosslevel.hoursrcknown.base)
720
+ mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
721
+ mod.crosslevel.hoursrcknown.base.cse
722
+
723
+ mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
724
+ summary(mod.crosslevel.hoursrcfriends.base)
725
+ mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
726
+ mod.crosslevel.hoursrcfriends.base.cse
727
+
728
+
729
+ ## model HOURS RC by decentralized plus individual characteristics with participant types
730
+
731
+ mod.crosslevel.hoursrcknown.fullpt <- glm(net_crosslevel_hoursrcknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
732
+ summary(mod.crosslevel.hoursrcknown.fullpt)
733
+ mod.crosslevel.hoursrcknown.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcknown.fullpt, data$publicid_muni)
734
+ mod.crosslevel.hoursrcknown.fullpt.cse
735
+
736
+ mod.crosslevel.hoursrcfriends.fullpt <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
737
+ summary(mod.crosslevel.hoursrcfriends.fullpt)
738
+ mod.crosslevel.hoursrcfriends.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.fullpt, data$publicid_muni)
739
+ mod.crosslevel.hoursrcfriends.fullpt.cse
740
+
741
+
742
+ #crosslevel ties, hours, player type controls table, collapsed levels
743
+
744
+ texreg(list(mod.crosslevel.hoursrcknown.base,
745
+ mod.crosslevel.hoursrcknown.fullpt,
746
+ mod.crosslevel.hoursrcfriends.base,
747
+ mod.crosslevel.hoursrcfriends.fullpt),
748
+ stars=c(0.01, 0.05, 0.10),
749
+ caption="Explaining Cross-level Network Capital (Hours), Collapsed Levels, by Decentralization",
750
+ dcolumn=FALSE,
751
+ custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
752
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
753
+ override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
754
+ mod.crosslevel.hoursrcknown.fullpt.cse[,2],
755
+ mod.crosslevel.hoursrcfriends.base.cse[,2],
756
+ mod.crosslevel.hoursrcfriends.fullpt.cse[,2]),
757
+ override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
758
+ mod.crosslevel.hoursrcknown.fullpt.cse[,4],
759
+ mod.crosslevel.hoursrcfriends.base.cse[,4],
760
+ mod.crosslevel.hoursrcfriends.fullpt.cse[,4]),
761
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
762
+ caption.above=TRUE)
763
+
764
+
765
+
766
+
767
+
768
+ ##### Table SA 13. How Decentralization Influences Cross-level Network Capital (collapsed levels), Binary, Role Type Controls
769
+
770
+
771
+ ## model proportions by decentralized alone
772
+
773
+ mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown_col ~ decentralized + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
774
+ summary(mod.crosslevel.propknown.base)
775
+ mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
776
+ mod.crosslevel.propknown.base.cse
777
+
778
+ mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends_col ~ decentralized + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
779
+ summary(mod.crosslevel.propfriends.base)
780
+ mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
781
+ mod.crosslevel.propfriends.base.cse
782
+
783
+
784
+ ## model proportions by decentralized plus individual characteristics
785
+
786
+ mod.crosslevel.propknown.full <- glm(net_crosslevel_propnumknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
787
+ summary(mod.crosslevel.propknown.full)
788
+ mod.crosslevel.propknown.full.cse <- clse.f(data, mod.crosslevel.propknown.full, data$publicid_muni)
789
+ mod.crosslevel.propknown.full.cse
790
+
791
+ mod.crosslevel.propfriends.full <- glm(net_crosslevel_propnumfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
792
+ summary(mod.crosslevel.propfriends.full)
793
+ mod.crosslevel.propfriends.full.cse <- clse.f(data, mod.crosslevel.propfriends.full, data$publicid_muni)
794
+ mod.crosslevel.propfriends.full.cse
795
+
796
+
797
+ #crosslevel ties, binary, role type controls table, collapsed levels
798
+
799
+ texreg(list(mod.crosslevel.propknown.base,
800
+ mod.crosslevel.propknown.full,
801
+ mod.crosslevel.propfriends.base,
802
+ mod.crosslevel.propfriends.full),
803
+ stars=c(0.01, 0.05, 0.10),
804
+ caption="Explaining Cross-level Network Capital (Prop. Known), Collapsed Levels, by Decentralization",
805
+ dcolumn=FALSE,
806
+ custom.model.names=c("Prop. Known Base", "Prop. Known Full", "Prop. Friends Base", "Prop. Friends Full"),
807
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
808
+ override.se=list(mod.crosslevel.propknown.base.cse[,2],
809
+ mod.crosslevel.propknown.full.cse[,2],
810
+ mod.crosslevel.propfriends.base.cse[,2],
811
+ mod.crosslevel.propfriends.full.cse[,2]),
812
+ override.pval=list(mod.crosslevel.propknown.base.cse[,4],
813
+ mod.crosslevel.propknown.full.cse[,4],
814
+ mod.crosslevel.propfriends.base.cse[,4],
815
+ mod.crosslevel.propfriends.full.cse[,4]),
816
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
817
+ caption.above=TRUE)
818
+
819
+
820
+
821
+
822
+
823
+ ##### Table SA 14. How Decentralization Influences Cross-level Network Capital (collapsed levels), Hours, Player Type Controls
824
+
825
+
826
+ ## model proportions by decentralized alone
827
+
828
+ mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
829
+ summary(mod.crosslevel.hoursrcknown.base)
830
+ mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
831
+ mod.crosslevel.hoursrcknown.base.cse
832
+
833
+ mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
834
+ summary(mod.crosslevel.hoursrcfriends.base)
835
+ mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
836
+ mod.crosslevel.hoursrcfriends.base.cse
837
+
838
+
839
+ ## model HOURS RC by decentralized plus individual characteristics
840
+
841
+ mod.crosslevel.hoursrcknown.full <- glm(net_crosslevel_hoursrcknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
842
+ summary(mod.crosslevel.hoursrcknown.full)
843
+ mod.crosslevel.hoursrcknown.full.cse <- clse.f(data, mod.crosslevel.hoursrcknown.full, data$publicid_muni)
844
+ mod.crosslevel.hoursrcknown.full.cse
845
+
846
+ mod.crosslevel.hoursrcfriends.full <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
847
+ summary(mod.crosslevel.hoursrcfriends.full)
848
+ mod.crosslevel.hoursrcfriends.full.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.full, data$publicid_muni)
849
+ mod.crosslevel.hoursrcfriends.full.cse
850
+
851
+
852
+ #crosslevel ties, hours, role type controls table, collapsed levels
853
+
854
+ texreg(list(mod.crosslevel.hoursrcknown.base,
855
+ mod.crosslevel.hoursrcknown.full,
856
+ mod.crosslevel.hoursrcfriends.base,
857
+ mod.crosslevel.hoursrcfriends.full),
858
+ stars=c(0.01, 0.05, 0.10),
859
+ caption="Explaining Cross-level Network Capital (Hours), Collapsed Levels, by Decentralization",
860
+ dcolumn=FALSE,
861
+ custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
862
+ custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
863
+ override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
864
+ mod.crosslevel.hoursrcknown.full.cse[,2],
865
+ mod.crosslevel.hoursrcfriends.base.cse[,2],
866
+ mod.crosslevel.hoursrcfriends.full.cse[,2]),
867
+ override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
868
+ mod.crosslevel.hoursrcknown.full.cse[,4],
869
+ mod.crosslevel.hoursrcfriends.base.cse[,4],
870
+ mod.crosslevel.hoursrcfriends.full.cse[,4]),
871
+ reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
872
+ caption.above=TRUE)
873
+
874
+
875
+
876
+
877
+
878
+ ##### END
879
+
880
+
881
+
882
+
15/replication_package/healthperception_Aug2020.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df2fc3a15238dd2824b849f8021f425787aebb5cc9f39f5f94b17c5337d5e210
3
+ size 6414
15/replication_package/publicgoodgame_dataAug27.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5fd6cb34bab699050f280016d3f09ceda803d793b0a65fe89aae492618ce7a6
3
+ size 333952
15/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:699a4a07f9a0e3c46515b28b5dc25444b4eabc05d6df0a7688c39700f2f80acd
3
+ size 33