Commit
·
56c465b
1
Parent(s):
91d0f84
add 15
Browse files- 15/paper.pdf +3 -0
- 15/replication_package/Codebook_Nov16.pdf +3 -0
- 15/replication_package/Molina-Garzon et al.2020_Nov16.do +146 -0
- 15/replication_package/README_MolinaGarzon et al.2020_Nov16.pdf +3 -0
- 15/replication_package/clanalysis_anondata_vNov16.csv +3 -0
- 15/replication_package/clanalysis_replication_vNov16.R +882 -0
- 15/replication_package/healthperception_Aug2020.dta +3 -0
- 15/replication_package/publicgoodgame_dataAug27.dta +3 -0
- 15/should_reproduce.txt +3 -0
15/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1743cc1849a316d1594269f98be8b02d786a7e8610e5c3071b0ac6e735e96441
|
3 |
+
size 1119339
|
15/replication_package/Codebook_Nov16.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab99176e7b61019a070a45b32a37e412fed67d15b3cd67a8235a5fa91d195a5
|
3 |
+
size 113844
|
15/replication_package/Molina-Garzon et al.2020_Nov16.do
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*************************************************************************************************
|
2 |
+
********************************* Molina-Garzon, Grillos, Zarychta and Andersson *********************
|
3 |
+
*************************************** Public Good Game **************************************
|
4 |
+
*************************************************************************************************
|
5 |
+
|
6 |
+
** Table 2. Results with clustered standard errors by individual
|
7 |
+
/* The following commands construct table 3. Names of the variables are adjusted manually
|
8 |
+
*/
|
9 |
+
|
10 |
+
global yourlocation "/Users/adrianamolina/Documents/CU-Boulder/2017-Fall/QualifierP/Data_Analysis"
|
11 |
+
use `"${yourlocation}/publicgoodgame_dataAug27.dta"'
|
12 |
+
|
13 |
+
global xlistfinal decentralized i.p_type communication round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
|
14 |
+
global xlistfinal2 i.decentralized##i.communication i.p_type round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
|
15 |
+
|
16 |
+
quiet reg contribution $xlistfinal [pweight = weights_games_full_scaled], vce(cluster publicid)
|
17 |
+
quiet estat ic
|
18 |
+
mat es_ic = r(S)
|
19 |
+
local AIC : display %4.1f es_ic[1,5]
|
20 |
+
outreg2 using `"${yourlocation}/table3.doc"', ctitle(Main Model) addstat(AIC, `AIC') replace
|
21 |
+
quiet reg contribution $xlistfinal2 [pweight = weights_games_full_scaled], vce(cluster publicid)
|
22 |
+
quiet estat ic
|
23 |
+
mat es_ic = r(S)
|
24 |
+
local AIC : display %4.1f es_ic[1,5]
|
25 |
+
outreg2 using `"${yourlocation}/table3.doc"', ctitle(Model with Communication Interaction) addstat(AIC, `AIC') append
|
26 |
+
|
27 |
+
|
28 |
+
** Figure 3. Decentralization is Associated with Increased Cooperation by Public Servants when they are able to Communicate with Each Other
|
29 |
+
|
30 |
+
twoway (rcap highconf_ols_2 lowconf_ols_2 round if decentralized==1, lcolor(black) legend(label(1 "CI"))) (line outcome_ols_2 round if decentralized==1, xlabel(1(1)10) lpattern(solid) lcolor(black) legend(label(2 "Decentralized municipalities"))) ///
|
31 |
+
(rcap highconf_ols_2 lowconf_ols_2 round if decentralized==0, lcolor(gray) legend(label(3 "CI"))) (line outcome_ols_2 round if decentralized==0, lpattern(dash) lcolor(gray) legend(label(4 "Centrally-admin. municipalities"))), ///
|
32 |
+
graphregion(fcolor(white) ifcolor(white))
|
33 |
+
|
34 |
+
graph save Graph `"${yourlocation}/Figure3_cooperation by admin type.gph"'
|
35 |
+
|
36 |
+
|
37 |
+
***** Supplementary appendix
|
38 |
+
|
39 |
+
*Table SA1. Main cooperation model with reduced sample weights
|
40 |
+
quiet metobit contribution $xlistfinal [pweight = weights_games_reduced_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
41 |
+
quiet estat ic
|
42 |
+
mat es_ic = r(S)
|
43 |
+
local AIC : display %4.1f es_ic[1,5]
|
44 |
+
outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
|
45 |
+
quiet metobit contribution $xlistfinal2 [pweight = weights_games_reduced_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
46 |
+
quiet estat ic
|
47 |
+
mat es_ic = r(S)
|
48 |
+
local AIC : display %4.1f es_ic[1,5]
|
49 |
+
outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model B) addstat(AIC, `AIC') append
|
50 |
+
quiet reg contribution $xlistfinal [pweight = weights_games_reduced_scaled], vce(cluster publicid)
|
51 |
+
quiet estat ic
|
52 |
+
mat es_ic = r(S)
|
53 |
+
local AIC : display %4.1f es_ic[1,5]
|
54 |
+
outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model C) addstat(AIC, `AIC') append
|
55 |
+
quiet reg contribution $xlistfinal2 [pweight = weights_games_reduced_scaled], vce(cluster publicid)
|
56 |
+
quiet estat ic
|
57 |
+
mat es_ic = r(S)
|
58 |
+
local AIC : display %4.1f es_ic[1,5]
|
59 |
+
outreg2 using `"${yourlocation}/tableSA3.doc"', ctitle(Model D) addstat(AIC, `AIC') append
|
60 |
+
|
61 |
+
|
62 |
+
*Table SA3. Alternative cooperation model, Multilevel Tobit specification
|
63 |
+
|
64 |
+
quiet metobit contribution $xlistfinal [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
65 |
+
quiet estat ic
|
66 |
+
mat es_ic = r(S)
|
67 |
+
local AIC : display %4.1f es_ic[1,5]
|
68 |
+
outreg2 using `"${yourlocation}/tableSA5.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
|
69 |
+
quiet metobit contribution $xlistfinal2 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
70 |
+
quiet estat ic
|
71 |
+
mat es_ic = r(S)
|
72 |
+
local AIC : display %4.1f es_ic[1,5]
|
73 |
+
outreg2 using `"${yourlocation}/tableSA5.doc"', ctitle(Model B) addstat(AIC, `AIC') append
|
74 |
+
|
75 |
+
|
76 |
+
* Figure SA1: Raw data distribution for public good game results
|
77 |
+
sort decentralized round
|
78 |
+
twoway (line averagecont round if decentralized==1, ylabel(0(1)10) xlabel(1(1)10) lcolor(black) lpattern(solid) legend(label(1 "Decentralized municipalities"))) (line averagecont round if decentralized==0, lcolor(gray) lpattern(dash) legend(label(2 "Centrally-admin. municipalities"))), ///
|
79 |
+
graphregion(fcolor(white) ifcolor(white))
|
80 |
+
|
81 |
+
graph save Graph `"${yourlocation}/FigureSA3.gph"'
|
82 |
+
|
83 |
+
* SA I- Table SA 15. Analysis by types of intermediary organizations
|
84 |
+
|
85 |
+
global xlistfinal4 i.dec_orgtype i.p_type communication round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
|
86 |
+
global xlistfinal5 i.dec_orgtype##i.communication i.p_type round lag_groupcontribution num_players knownpeople Q2_female Q1_Edad Q2_Educacion Q3_YrsSalud Q5_Trust1Base
|
87 |
+
|
88 |
+
quiet metobit contribution $xlistfinal4 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
89 |
+
quiet estat ic
|
90 |
+
mat es_ic = r(S)
|
91 |
+
local AIC : display %4.1f es_ic[1,5]
|
92 |
+
outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
|
93 |
+
quiet metobit contribution $xlistfinal5 [pweight = weights_games_full_scaled] || publicid_muni: || publicid:, ul(10) ll(0)
|
94 |
+
quiet estat ic
|
95 |
+
mat es_ic = r(S)
|
96 |
+
local AIC : display %4.1f es_ic[1,5]
|
97 |
+
outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model B) addstat(AIC, `AIC') append
|
98 |
+
quiet reg contribution $xlistfinal4 [pweight = weights_games_full_scaled], vce(cluster publicid)
|
99 |
+
quiet estat ic
|
100 |
+
mat es_ic = r(S)
|
101 |
+
local AIC : display %4.1f es_ic[1,5]
|
102 |
+
outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model C) addstat(AIC, `AIC') append
|
103 |
+
quiet reg contribution $xlistfinal5 [pweight = weights_games_full_scaled], vce(cluster publicid)
|
104 |
+
quiet estat ic
|
105 |
+
mat es_ic = r(S)
|
106 |
+
local AIC : display %4.1f es_ic[1,5]
|
107 |
+
outreg2 using `"${yourlocation}/table-SA17.doc"', ctitle(Model D) addstat(AIC, `AIC') append
|
108 |
+
|
109 |
+
|
110 |
+
* Table SA 16. Regression analysis explaining perceived improvements in health outcomes
|
111 |
+
* This table requires a different dataset
|
112 |
+
|
113 |
+
clear
|
114 |
+
|
115 |
+
global yourlocation "/Users/adrianamolina/Documents/CU-Boulder/2017-Fall/QualifierP/Data_Analysis"
|
116 |
+
use `"${yourlocation}/healthperception_Aug2020"'
|
117 |
+
|
118 |
+
quiet reg HealthChange_Mun contribution [pweight = weights_games_full_scaled]
|
119 |
+
quiet estat ic
|
120 |
+
mat es_ic = r(S)
|
121 |
+
local AIC : display %4.1f es_ic[1,5]
|
122 |
+
outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model A) addstat(AIC, `AIC') replace
|
123 |
+
quiet reg HealthChange_Mun decentralized [pweight = weights_games_full_scaled]
|
124 |
+
quiet estat ic
|
125 |
+
mat es_ic = r(S)
|
126 |
+
local AIC : display %4.1f es_ic[1,5]
|
127 |
+
outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model B) addstat(AIC, `AIC') append
|
128 |
+
quiet reg HealthChange_Mun contribution decentralized [pweight = weights_games_full_scaled]
|
129 |
+
quiet estat ic
|
130 |
+
mat es_ic = r(S)
|
131 |
+
local AIC : display %4.1f es_ic[1,5]
|
132 |
+
outreg2 using `"${yourlocation}/tableSA18.doc"', ctitle(Model C) addstat(AIC, `AIC') append
|
133 |
+
|
134 |
+
* Figure SA 4. Contribution to the public good game and perception of change in the health provision during the past five years
|
135 |
+
|
136 |
+
set scheme s1mono
|
137 |
+
twoway (scatter HealthChange_Mun0 contribution) (scatter HealthChange_Mun1 contribution) ///
|
138 |
+
(lfit HealthChange_Mun contribution), ///
|
139 |
+
ytitle(Health change in last 5 years) ///
|
140 |
+
legen(order(1 "Centralized admin." 2 "Decentralized admin." 3 "Fit line"))
|
141 |
+
|
142 |
+
|
143 |
+
graph save Graph `"${yourlocation}/FigureSA6.gph"'
|
144 |
+
|
145 |
+
|
146 |
+
|
15/replication_package/README_MolinaGarzon et al.2020_Nov16.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f83cc5352adfeb310835435ad28c75affe2f7291b8539d65829e74c895bd475
|
3 |
+
size 50410
|
15/replication_package/clanalysis_anondata_vNov16.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f60f980a1516aaede36627593e056c9f1d5964f54cba7c58700369133874fc83
|
3 |
+
size 23956
|
15/replication_package/clanalysis_replication_vNov16.R
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#####Replication File for cross-level ties analysis in, "Decentralization can Increase Cooperation Among Public Officials"
|
2 |
+
|
3 |
+
#Adriana Molina-Garz?n, University of Colorado Boulder, [email protected]
|
4 |
+
#Tara Grillos, Purdue University, [email protected]
|
5 |
+
#Alan Zarychta, University of Chicago, [email protected]
|
6 |
+
#Krister P. Andersson, University of Colorado Boulder, Institute of Behavioral Science, [email protected]
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
#Suggested citation for replication data:
|
13 |
+
|
14 |
+
#Molina-Garz?n A., Grillos T., Zarychta A., and Andersson K.P., 2020, "Replication Data for: Decentralization can Increase Cooperation Among Public Officials", https://doi.org/10.7910/DVN/ZLHYSZ .
|
15 |
+
|
16 |
+
|
17 |
+
#Suggested citations for study design and full original data collection:
|
18 |
+
|
19 |
+
#Zarychta, A., Andersson, K.P., Root, E. D., Menken, J., & Grillos, T. (2019a). Assessing the impacts of governance reforms on health services delivery: A quasi-experimental, multi-method, and participatory approach. Health Services and Outcomes Research Methodology, 19(4), 241-258. https://doi.org/10.1007/s10742-019-00201-8
|
20 |
+
|
21 |
+
#Zarychta, A, Andersson, KP, Root, ED, Menken J, Grillos T. (2019b). Supplemental Appendix for "Assessing the impacts of governance reforms on health services delivery: a quasi-experimental, multi-method, and participatory approach." Health Services and Outcomes Research Methodology, 19(4), https://static-content.springer.com/esm/art%3A10.1007%2Fs10742-019-00201-8/MediaObjects/10742_2019_201_MOESM1_ESM.docx
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
##### Computing Environment
|
28 |
+
|
29 |
+
##R version 3.6.1 (2019-07-05) -- "Action of the Toes"
|
30 |
+
##Copyright (C) 2019 The R Foundation for Statistical Computing
|
31 |
+
##Platform: x86_64-w64-mingw32/x64 (64-bit)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
##### Packages Needed
|
38 |
+
|
39 |
+
install.packages("PACKAGE NAME HERE") #to download packages if needed
|
40 |
+
|
41 |
+
library(sandwich)
|
42 |
+
library(lmtest)
|
43 |
+
library(zoo)
|
44 |
+
library(texreg)
|
45 |
+
library(multiwayvcov)
|
46 |
+
library(MASS)
|
47 |
+
library(plyr)
|
48 |
+
library(Hmisc)
|
49 |
+
library(reporttools)
|
50 |
+
library(readstata13)
|
51 |
+
library(plyr)
|
52 |
+
library(survey)
|
53 |
+
library(tableone)
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
##### Additional Functions
|
60 |
+
|
61 |
+
|
62 |
+
#clustered standard errors
|
63 |
+
|
64 |
+
clse.f <- function(dat,fm, cluster){
|
65 |
+
require(sandwich)
|
66 |
+
require(lmtest)
|
67 |
+
not <- attr(fm$model,"na.action")
|
68 |
+
if( ! is.null(not)){
|
69 |
+
cluster <- cluster[-not]
|
70 |
+
dat <- dat[-not,]
|
71 |
+
}
|
72 |
+
|
73 |
+
with(dat,{
|
74 |
+
M <- length(unique(cluster))
|
75 |
+
N <- length(cluster)
|
76 |
+
K <- fm$rank
|
77 |
+
dfc <- (M/(M-1))*((N-1)/(N-K))
|
78 |
+
uj <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum));
|
79 |
+
vcovCL <- dfc*sandwich(fm, meat=crossprod(uj)/N)
|
80 |
+
coeftest(fm, vcovCL)
|
81 |
+
}
|
82 |
+
)
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
#CIs for bar graphs
|
87 |
+
|
88 |
+
error.bar <- function(x, y, upper, lower, length=0.1,...){
|
89 |
+
if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper))
|
90 |
+
stop("vectors must be same length")
|
91 |
+
arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...)
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
##### Global Options
|
99 |
+
|
100 |
+
options(scipen=999)
|
101 |
+
options(digits=6)
|
102 |
+
setwd("C:/FOLDER LOCATION WHERE DATA FILE IS SAVED GOES HERE/...")
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
##### Load data file
|
109 |
+
|
110 |
+
data <- read.csv("clanalysis_anondata_vNov16.csv")
|
111 |
+
names(data)
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
##### Main Paper
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
##### Table 1: Weighted descriptive statistics by administration form for all participants
|
124 |
+
|
125 |
+
data.pg <- read.dta13("publicgoodgame_dataAug27.dta")
|
126 |
+
data.pg <- data.pg[which(data.pg$contribution>=0), ]
|
127 |
+
|
128 |
+
|
129 |
+
#collapse individual-round data to individual
|
130 |
+
|
131 |
+
data.agg <- aggregate(data.pg[c("num_players", "knownpeople", "Q5_Trust1Base")], by=list(data.pg$publicid), FUN=mean)
|
132 |
+
names(data.agg)[names(data.agg)=="Group.1"] <- "publicid"
|
133 |
+
|
134 |
+
data.mrg <- merge(data, data.agg, by="publicid", all.y=FALSE)
|
135 |
+
|
136 |
+
|
137 |
+
#collapse individual data to municipality
|
138 |
+
|
139 |
+
data.mun <- aggregate(data.mrg[c("decentralized", "num_players")], by=list(data.mrg$publicid_muni), FUN=max)
|
140 |
+
names(data.mun)[names(data.mun)=="Group.1"] <- "publicid_muni"
|
141 |
+
|
142 |
+
data.munw <- aggregate(data.mrg[c("weights_games_full_scaled")], by=list(data.mrg$publicid_muni), FUN=sum)
|
143 |
+
names(data.munw)[names(data.munw)=="Group.1"] <- "publicid_muni"
|
144 |
+
|
145 |
+
data.mun <- merge(data.mun, data.munw, by="publicid_muni", all.y=FALSE)
|
146 |
+
|
147 |
+
|
148 |
+
#make table
|
149 |
+
|
150 |
+
|
151 |
+
#rows 1 and 2 of the table
|
152 |
+
|
153 |
+
table(data.mun$decentralized)
|
154 |
+
table(data.mrg$decentralized)
|
155 |
+
|
156 |
+
|
157 |
+
#remaining rows of the table (excluding p-value column)
|
158 |
+
|
159 |
+
vars <- c("Mujer", "Q2_Educacion", "Q1_Edad", "Q3_YrsSalud", "CargoAdministrador", "CargoMedico" , "CargoEnfermero" , "CargoPromotor" , "CargoAlcaldia", "num_players" , "knownpeople" , "Q5_Trust1Base")
|
160 |
+
|
161 |
+
names(data.mrg)
|
162 |
+
data.test <- svydesign(ids = ~ 1, data = data.mrg, weights = ~ data.mrg$weights_games_full_scaled)
|
163 |
+
tab.test <- svyCreateTableOne(vars = vars, strata = "decentralized", data = data.test, test = FALSE)
|
164 |
+
addmargins(table(ExtractSmd(tab.test) > 0.25))
|
165 |
+
tab.test <- print(tab.test, smd = TRUE)
|
166 |
+
tab.test <- tab.test[-1,]
|
167 |
+
xtable(tab.test, caption=c("Weighted All Participants Sample Balance Table by Decentralized"))
|
168 |
+
|
169 |
+
|
170 |
+
#p-value column for all relevant rows of the table
|
171 |
+
|
172 |
+
diffmeans.mujer <- lm(Mujer~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
173 |
+
summary(diffmeans.mujer)
|
174 |
+
diffmeans.mujer.cse <- clse.f(data.mrg, diffmeans.mujer, data.mrg$publicid_muni)
|
175 |
+
diffmeans.mujer.cse
|
176 |
+
diffmeans.mujer.cse[2,4] #pvalue on decentralized
|
177 |
+
|
178 |
+
|
179 |
+
diffmeans.educ <- lm(Q2_Educacion~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
180 |
+
summary(diffmeans.educ)
|
181 |
+
diffmeans.educ.cse <- clse.f(data.mrg, diffmeans.educ, data.mrg$publicid_muni)
|
182 |
+
diffmeans.educ.cse
|
183 |
+
diffmeans.educ.cse[2,4] #pvalue on decentralized
|
184 |
+
|
185 |
+
|
186 |
+
diffmeans.edad <- lm(Q1_Edad~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
187 |
+
summary(diffmeans.edad)
|
188 |
+
diffmeans.edad.cse <- clse.f(data.mrg, diffmeans.edad, data.mrg$publicid_muni)
|
189 |
+
diffmeans.edad.cse
|
190 |
+
diffmeans.edad.cse[2,4] #pvalue on decentralized
|
191 |
+
|
192 |
+
|
193 |
+
diffmeans.yrssalud <- lm(Q3_YrsSalud~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
194 |
+
summary(diffmeans.yrssalud)
|
195 |
+
diffmeans.yrssalud.cse <- clse.f(data.mrg, diffmeans.yrssalud, data.mrg$publicid_muni)
|
196 |
+
diffmeans.yrssalud.cse
|
197 |
+
diffmeans.yrssalud.cse[2,4] #pvalue on decentralized
|
198 |
+
|
199 |
+
|
200 |
+
diffmeans.tab <- lm(CargoAdministrador~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
201 |
+
summary(diffmeans.tab)
|
202 |
+
diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
|
203 |
+
diffmeans.tab.cse
|
204 |
+
diffmeans.tab.cse[2,4] #pvalue on decentralized
|
205 |
+
|
206 |
+
|
207 |
+
diffmeans.tab <- lm(CargoMedico~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
208 |
+
summary(diffmeans.tab)
|
209 |
+
diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
|
210 |
+
diffmeans.tab.cse
|
211 |
+
diffmeans.tab.cse[2,4] #pvalue on decentralized
|
212 |
+
|
213 |
+
|
214 |
+
diffmeans.tab <- lm(CargoEnfermero~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
215 |
+
summary(diffmeans.tab)
|
216 |
+
diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
|
217 |
+
diffmeans.tab.cse
|
218 |
+
diffmeans.tab.cse[2,4] #pvalue on decentralized
|
219 |
+
|
220 |
+
|
221 |
+
diffmeans.tab <- lm(CargoPromotor~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
222 |
+
summary(diffmeans.tab)
|
223 |
+
diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
|
224 |
+
diffmeans.tab.cse
|
225 |
+
diffmeans.tab.cse[2,4] #pvalue on decentralized
|
226 |
+
|
227 |
+
|
228 |
+
diffmeans.tab <- lm(CargoAlcaldia~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
229 |
+
summary(diffmeans.tab)
|
230 |
+
diffmeans.tab.cse <- clse.f(data.mrg, diffmeans.tab, data.mrg$publicid_muni)
|
231 |
+
diffmeans.tab.cse
|
232 |
+
diffmeans.tab.cse[2,4] #pvalue on decentralized
|
233 |
+
|
234 |
+
|
235 |
+
diffmeans.num <- lm(num_players~decentralized, data=data.mun, weights=weights_games_full_scaled)
|
236 |
+
summary(diffmeans.num)
|
237 |
+
diffmeans.num.sum <- summary(diffmeans.num)
|
238 |
+
diffmeans.num.sum[[5]][2,4] #pvalue on decentralized
|
239 |
+
|
240 |
+
|
241 |
+
diffmeans.known <- lm(knownpeople~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
242 |
+
summary(diffmeans.known)
|
243 |
+
diffmeans.known.cse <- clse.f(data.mrg, diffmeans.known, data.mrg$publicid_muni)
|
244 |
+
diffmeans.known.cse
|
245 |
+
diffmeans.known.cse[2,4] #pvalue on decentralized
|
246 |
+
|
247 |
+
|
248 |
+
diffmeans.trust <- lm(Q5_Trust1Base~decentralized, data=data.mrg, weights=weights_games_full_scaled)
|
249 |
+
summary(diffmeans.trust)
|
250 |
+
diffmeans.trust.cse <- clse.f(data.mrg, diffmeans.trust, data.mrg$publicid_muni)
|
251 |
+
diffmeans.trust.cse
|
252 |
+
diffmeans.trust.cse[2,4] #pvalue on decentralized
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
##### Table 3. How Decentralization Influences Cross-level Network Capital
|
259 |
+
|
260 |
+
|
261 |
+
## model proportions by decentralized alone
|
262 |
+
|
263 |
+
mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown ~ decentralized + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
|
264 |
+
summary(mod.crosslevel.propknown.base)
|
265 |
+
mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
|
266 |
+
mod.crosslevel.propknown.base.cse
|
267 |
+
|
268 |
+
mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends ~ decentralized + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
|
269 |
+
summary(mod.crosslevel.propfriends.base)
|
270 |
+
mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
|
271 |
+
mod.crosslevel.propfriends.base.cse
|
272 |
+
|
273 |
+
|
274 |
+
## model proportions by decentralized plus individual characteristics with participant types
|
275 |
+
|
276 |
+
mod.crosslevel.propknown.fullpt <- glm(net_crosslevel_propnumknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
|
277 |
+
summary(mod.crosslevel.propknown.fullpt)
|
278 |
+
mod.crosslevel.propknown.fullpt.cse <- clse.f(data, mod.crosslevel.propknown.fullpt, data$publicid_muni)
|
279 |
+
mod.crosslevel.propknown.fullpt.cse
|
280 |
+
|
281 |
+
mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
|
282 |
+
summary(mod.crosslevel.propfriends.fullpt)
|
283 |
+
mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
|
284 |
+
mod.crosslevel.propfriends.fullpt.cse
|
285 |
+
|
286 |
+
|
287 |
+
#crosslevel ties, binary, player type controls table
|
288 |
+
|
289 |
+
texreg(list(mod.crosslevel.propknown.base,
|
290 |
+
mod.crosslevel.propknown.fullpt,
|
291 |
+
mod.crosslevel.propfriends.base,
|
292 |
+
mod.crosslevel.propfriends.fullpt),
|
293 |
+
stars=c(0.01, 0.05, 0.10),
|
294 |
+
caption="Explaining Cross-level Network Capital (Prop. Known) by Decentralization",
|
295 |
+
dcolumn=FALSE,
|
296 |
+
custom.model.names=c("Prop. Known Base", "Prop. Known Fullpt", "Prop. Friends Base", "Prop. Friends Fullpt"),
|
297 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
|
298 |
+
override.se=list(mod.crosslevel.propknown.base.cse[,2],
|
299 |
+
mod.crosslevel.propknown.fullpt.cse[,2],
|
300 |
+
mod.crosslevel.propfriends.base.cse[,2],
|
301 |
+
mod.crosslevel.propfriends.fullpt.cse[,2]),
|
302 |
+
override.pval=list(mod.crosslevel.propknown.base.cse[,4],
|
303 |
+
mod.crosslevel.propknown.fullpt.cse[,4],
|
304 |
+
mod.crosslevel.propfriends.base.cse[,4],
|
305 |
+
mod.crosslevel.propfriends.fullpt.cse[,4]),
|
306 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
|
307 |
+
caption.above=TRUE)
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
##### Figure 4. Expected Proportion of Strong Cross-level Ties Realized for a Typical Public Servant, Centrally-Administered versus Decentralized Systems
|
314 |
+
|
315 |
+
|
316 |
+
## decent_propfriends_fullpt, full strong ties model from Table 4
|
317 |
+
|
318 |
+
mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
|
319 |
+
summary(mod.crosslevel.propfriends.fullpt)
|
320 |
+
mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
|
321 |
+
mod.crosslevel.propfriends.fullpt.cse
|
322 |
+
|
323 |
+
|
324 |
+
## Simulate Coefficients ##
|
325 |
+
# Seed and number of repetitions
|
326 |
+
set.seed(19850824)
|
327 |
+
m <- 100000
|
328 |
+
|
329 |
+
|
330 |
+
# Simulate coefficients from a multivariate normal
|
331 |
+
betas <- mod.crosslevel.propfriends.fullpt$coef
|
332 |
+
vcv <- cluster.vcov(mod.crosslevel.propfriends.fullpt, data$publicid_muni)
|
333 |
+
sim.betas <- mvrnorm(m, betas, vcv)
|
334 |
+
|
335 |
+
|
336 |
+
# Compare simulated coefficients with real results
|
337 |
+
round(mod.crosslevel.propfriends.fullpt$coef, digits = 2)
|
338 |
+
round(head(sim.betas, 10), digits = 2)
|
339 |
+
data.frame(sim.means = apply(sim.betas, 2, mean), betas = betas, sim.sd = apply(sim.betas, 2, sd), se = sqrt(diag(vcv)))
|
340 |
+
|
341 |
+
|
342 |
+
# Create hypothetical independent variable profiles
|
343 |
+
decent.data <- data.frame(intercept=1, decentralized=1, Mujer = median(na.omit(data$Mujer)), Q2_Educacion = mean(na.omit(data$Q2_Educacion)), Q1_Edad = mean(na.omit(data$Q1_Edad)), Q3_YrsSalud = mean(na.omit(data$Q3_YrsSalud)), gen_trust = mean(na.omit(data$gen_trust)), Participant_C=1, Participant_G=0, Participant_R=0)
|
344 |
+
|
345 |
+
centadmin.data <- data.frame(intercept=1, decentralized=0, Mujer = median(na.omit(data$Mujer)), Q2_Educacion = mean(na.omit(data$Q2_Educacion)), Q1_Edad = mean(na.omit(data$Q1_Edad)), Q3_YrsSalud = mean(na.omit(data$Q3_YrsSalud)), gen_trust = mean(na.omit(data$gen_trust)), Participant_C=1, Participant_G=0, Participant_R=0)
|
346 |
+
|
347 |
+
|
348 |
+
# Compute the expected counts and confidence intervals using the simulated coefficients
|
349 |
+
ec.sim <- matrix(NA, nrow = m, ncol = 1)
|
350 |
+
|
351 |
+
for(i in 1:m){
|
352 |
+
ec.sim[i, ] <- exp(as.matrix(decent.data)%*%sim.betas[i, ])
|
353 |
+
}
|
354 |
+
|
355 |
+
pe.decent <- apply(ec.sim, 2, mean)
|
356 |
+
lo.decent <- apply(ec.sim, 2, quantile, prob = .025)
|
357 |
+
hi.decent <- apply(ec.sim, 2, quantile, prob = .975)
|
358 |
+
|
359 |
+
|
360 |
+
ec.sim <- matrix(NA, nrow = m, ncol = 1)
|
361 |
+
|
362 |
+
for(i in 1:m){
|
363 |
+
ec.sim[i, ] <- exp(as.matrix(centadmin.data)%*%sim.betas[i, ])
|
364 |
+
}
|
365 |
+
|
366 |
+
pe.centadmin <- apply(ec.sim, 2, mean)
|
367 |
+
lo.centadmin <- apply(ec.sim, 2, quantile, prob = .025)
|
368 |
+
hi.centadmin <- apply(ec.sim, 2, quantile, prob = .975)
|
369 |
+
|
370 |
+
|
371 |
+
# Expected values for central admin and decent
|
372 |
+
|
373 |
+
pe.decent
|
374 |
+
pe.centadmin
|
375 |
+
|
376 |
+
admin.pe <- matrix(c(pe.centadmin, pe.decent),2,1,byrow=TRUE)
|
377 |
+
|
378 |
+
admin.lo <- matrix(c(lo.centadmin, lo.decent),2,1,byrow=TRUE)
|
379 |
+
admin.hi <- matrix(c(hi.centadmin, hi.decent),2,1, byrow=TRUE)
|
380 |
+
|
381 |
+
admin.lower <- admin.pe-admin.lo
|
382 |
+
admin.upper <- admin.hi-admin.pe
|
383 |
+
|
384 |
+
|
385 |
+
# Make barplot
|
386 |
+
|
387 |
+
par(mar = c(2.3, 4.3, 1, .1))
|
388 |
+
|
389 |
+
bplot.admin <- barplot(admin.pe, beside=TRUE, space=0.3, ylim=c(0,0.4), ylab="Expected Prop. of Strong Cross-level Ties Realized", names.arg=c("Centrally-Admin.", "Decentralized"), cex.lab=1.1, cex.names=1.2, col=c("gray75","gray45"), border=c("gray75","gray45"), args.legend=list(x="top", bty="n", horiz=TRUE, border=c(c("gray75","gray45"))))
|
390 |
+
|
391 |
+
error.bar(bplot.admin, admin.pe, admin.upper, admin.lower)
|
392 |
+
|
393 |
+
|
394 |
+
dev.off()
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
##### Supplemental Appendix
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
##### Table SA2. Descriptive Statistics for the Sample of Public Servants Participating in the Public Goods Game
|
407 |
+
|
408 |
+
|
409 |
+
#row 1 of the table
|
410 |
+
descripvars.cont <- c("contribution")
|
411 |
+
tableContinuous(vars=data.pg[descripvars.cont], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
|
412 |
+
|
413 |
+
|
414 |
+
#all remaining rows except "Number players"
|
415 |
+
|
416 |
+
descripvars.mrg <- c("Mujer", "Q2_Educacion", "Q1_Edad", "Q3_YrsSalud", "CargoAdministrador", "CargoMedico" , "CargoEnfermero" , "CargoPromotor" , "CargoAlcaldia", "knownpeople", "Q5_Trust1Base")
|
417 |
+
tableContinuous(vars=data.mrg[descripvars.mrg], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
|
418 |
+
|
419 |
+
|
420 |
+
#"Number players" row
|
421 |
+
|
422 |
+
descripvars.mun <- c("num_players")
|
423 |
+
tableContinuous(vars=data.mun[descripvars.mun], cap="Descriptive Statisitics, All Participants", prec=2, longtable=FALSE)
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
|
429 |
+
##### Table SA4. Descriptive Statistics for Cross-level Network Variables (all levels)
|
430 |
+
|
431 |
+
descripvars <- c("net_crosslevel_propknown", "net_crosslevel_propfriends", "net_crosslevel_propnumknown", "net_crosslevel_propnumfriends", "net_crosslevel_hoursrcknown", "net_crosslevel_hoursrcfriends")
|
432 |
+
|
433 |
+
tableContinuous(vars=data[descripvars], cap="Descriptive Statisitics for Cross-level Network Variables (all levels)", prec=2, longtable=FALSE)
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
##### Figure SA2. Histograms of the Cross-level Relational Capital Dependent Variables (all levels)
|
440 |
+
|
441 |
+
par(mar = c(4.1, 4, 0, 0.2))
|
442 |
+
hist(data$net_crosslevel_propknown, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized", main=NULL)
|
443 |
+
|
444 |
+
par(mar = c(4.1, 4, 0, 0.2))
|
445 |
+
hist(data$net_crosslevel_propfriends, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized as Strong Ties", main=NULL)
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
##### Table SA5. Averages of Cross-level Network Variables (all levels)
|
452 |
+
|
453 |
+
round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propknown=wtd.mean(x$net_crosslevel_propknown, x$weights_games_full_scaled, na.rm=TRUE))), 2)
|
454 |
+
|
455 |
+
round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propfriends=wtd.mean(x$net_crosslevel_propfriends, x$weights_games_full_scaled, na.rm=TRUE))),2)
|
456 |
+
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
|
461 |
+
##### Table SA6. How Decentralization Influences Cross-level Network Capital, Hours, Player Type Controls
|
462 |
+
|
463 |
+
|
464 |
+
## model HOURS RC by decentralization alone
|
465 |
+
|
466 |
+
mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
467 |
+
summary(mod.crosslevel.hoursrcknown.base)
|
468 |
+
mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
|
469 |
+
mod.crosslevel.hoursrcknown.base.cse
|
470 |
+
|
471 |
+
mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
472 |
+
summary(mod.crosslevel.hoursrcfriends.base)
|
473 |
+
mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
|
474 |
+
mod.crosslevel.hoursrcfriends.base.cse
|
475 |
+
|
476 |
+
|
477 |
+
## model HOURS RC by decentralized plus individual characteristics with participant types
|
478 |
+
|
479 |
+
mod.crosslevel.hoursrcknown.fullpt <- glm(net_crosslevel_hoursrcknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
|
480 |
+
summary(mod.crosslevel.hoursrcknown.fullpt)
|
481 |
+
mod.crosslevel.hoursrcknown.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcknown.fullpt, data$publicid_muni)
|
482 |
+
mod.crosslevel.hoursrcknown.fullpt.cse
|
483 |
+
|
484 |
+
mod.crosslevel.hoursrcfriends.fullpt <- glm(net_crosslevel_hoursrcfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
|
485 |
+
summary(mod.crosslevel.hoursrcfriends.fullpt)
|
486 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.fullpt, data$publicid_muni)
|
487 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse
|
488 |
+
|
489 |
+
|
490 |
+
#crosslevel ties, hours, player type controls table
|
491 |
+
|
492 |
+
texreg(list(mod.crosslevel.hoursrcknown.base,
|
493 |
+
mod.crosslevel.hoursrcknown.fullpt,
|
494 |
+
mod.crosslevel.hoursrcfriends.base,
|
495 |
+
mod.crosslevel.hoursrcfriends.fullpt),
|
496 |
+
stars=c(0.01, 0.05, 0.10),
|
497 |
+
caption="Explaining Cross-level Network Capital (Hours) by Decentralization",
|
498 |
+
dcolumn=FALSE,
|
499 |
+
custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
|
500 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
|
501 |
+
override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
|
502 |
+
mod.crosslevel.hoursrcknown.fullpt.cse[,2],
|
503 |
+
mod.crosslevel.hoursrcfriends.base.cse[,2],
|
504 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse[,2]),
|
505 |
+
override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
|
506 |
+
mod.crosslevel.hoursrcknown.fullpt.cse[,4],
|
507 |
+
mod.crosslevel.hoursrcfriends.base.cse[,4],
|
508 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse[,4]),
|
509 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
|
510 |
+
caption.above=TRUE)
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
##### Table SA7. How Decentralization Influences Cross-level Network Capital, Binary, Role Type Controls
|
517 |
+
|
518 |
+
|
519 |
+
## model proportions by decentralized alone
|
520 |
+
|
521 |
+
mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown ~ decentralized + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
|
522 |
+
summary(mod.crosslevel.propknown.base)
|
523 |
+
mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
|
524 |
+
mod.crosslevel.propknown.base.cse
|
525 |
+
|
526 |
+
mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends ~ decentralized + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
|
527 |
+
summary(mod.crosslevel.propfriends.base)
|
528 |
+
mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
|
529 |
+
mod.crosslevel.propfriends.base.cse
|
530 |
+
|
531 |
+
|
532 |
+
## model proportions by decentralized plus individual characteristics
|
533 |
+
|
534 |
+
mod.crosslevel.propknown.full <- glm(net_crosslevel_propnumknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomknown)), family="poisson", weights=weights_games_full_scaled, data=data)
|
535 |
+
summary(mod.crosslevel.propknown.full)
|
536 |
+
mod.crosslevel.propknown.full.cse <- clse.f(data, mod.crosslevel.propknown.full, data$publicid_muni)
|
537 |
+
mod.crosslevel.propknown.full.cse
|
538 |
+
|
539 |
+
mod.crosslevel.propfriends.full <- glm(net_crosslevel_propnumfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomfriends)), family="poisson", weights=weights_games_full_scaled, data=data)
|
540 |
+
summary(mod.crosslevel.propfriends.full)
|
541 |
+
mod.crosslevel.propfriends.full.cse <- clse.f(data, mod.crosslevel.propfriends.full, data$publicid_muni)
|
542 |
+
mod.crosslevel.propfriends.full.cse
|
543 |
+
|
544 |
+
|
545 |
+
#crosslevel ties, binary, role type controls table
|
546 |
+
|
547 |
+
texreg(list(mod.crosslevel.propknown.base,
|
548 |
+
mod.crosslevel.propknown.full,
|
549 |
+
mod.crosslevel.propfriends.base,
|
550 |
+
mod.crosslevel.propfriends.full),
|
551 |
+
stars=c(0.01, 0.05, 0.10),
|
552 |
+
caption="Explaining Cross-level Network Capital (Prop. Known) by Decentralization",
|
553 |
+
dcolumn=FALSE,
|
554 |
+
custom.model.names=c("Prop. Known Base", "Prop. Known Full", "Prop. Friends Base", "Prop. Friends Full"),
|
555 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
|
556 |
+
override.se=list(mod.crosslevel.propknown.base.cse[,2],
|
557 |
+
mod.crosslevel.propknown.full.cse[,2],
|
558 |
+
mod.crosslevel.propfriends.base.cse[,2],
|
559 |
+
mod.crosslevel.propfriends.full.cse[,2]),
|
560 |
+
override.pval=list(mod.crosslevel.propknown.base.cse[,4],
|
561 |
+
mod.crosslevel.propknown.full.cse[,4],
|
562 |
+
mod.crosslevel.propfriends.base.cse[,4],
|
563 |
+
mod.crosslevel.propfriends.full.cse[,4]),
|
564 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
|
565 |
+
caption.above=TRUE)
|
566 |
+
|
567 |
+
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
##### Table SA8. How Decentralization Influences Cross-level Network Capital, Hours, Role Type Controls
|
572 |
+
|
573 |
+
|
574 |
+
## model proportions by decentralized alone
|
575 |
+
|
576 |
+
mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
577 |
+
summary(mod.crosslevel.hoursrcknown.base)
|
578 |
+
mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
|
579 |
+
mod.crosslevel.hoursrcknown.base.cse
|
580 |
+
|
581 |
+
mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
582 |
+
summary(mod.crosslevel.hoursrcfriends.base)
|
583 |
+
mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
|
584 |
+
mod.crosslevel.hoursrcfriends.base.cse
|
585 |
+
|
586 |
+
|
587 |
+
## model HOURS RC by decentralized plus individual characteristics
|
588 |
+
|
589 |
+
mod.crosslevel.hoursrcknown.full <- glm(net_crosslevel_hoursrcknown ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
|
590 |
+
summary(mod.crosslevel.hoursrcknown.full)
|
591 |
+
mod.crosslevel.hoursrcknown.full.cse <- clse.f(data, mod.crosslevel.hoursrcknown.full, data$publicid_muni)
|
592 |
+
mod.crosslevel.hoursrcknown.full.cse
|
593 |
+
|
594 |
+
mod.crosslevel.hoursrcfriends.full <- glm(net_crosslevel_hoursrcfriends ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
|
595 |
+
summary(mod.crosslevel.hoursrcfriends.full)
|
596 |
+
mod.crosslevel.hoursrcfriends.full.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.full, data$publicid_muni)
|
597 |
+
mod.crosslevel.hoursrcfriends.full.cse
|
598 |
+
|
599 |
+
|
600 |
+
#crosslevel ties, hours, role type controls table
|
601 |
+
|
602 |
+
texreg(list(mod.crosslevel.hoursrcknown.base,
|
603 |
+
mod.crosslevel.hoursrcknown.full,
|
604 |
+
mod.crosslevel.hoursrcfriends.base,
|
605 |
+
mod.crosslevel.hoursrcfriends.full),
|
606 |
+
stars=c(0.01, 0.05, 0.10),
|
607 |
+
caption="Explaining Cross-level Network Capital (Hours) by Decentralization",
|
608 |
+
dcolumn=FALSE,
|
609 |
+
custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
|
610 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
|
611 |
+
override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
|
612 |
+
mod.crosslevel.hoursrcknown.full.cse[,2],
|
613 |
+
mod.crosslevel.hoursrcfriends.base.cse[,2],
|
614 |
+
mod.crosslevel.hoursrcfriends.full.cse[,2]),
|
615 |
+
override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
|
616 |
+
mod.crosslevel.hoursrcknown.full.cse[,4],
|
617 |
+
mod.crosslevel.hoursrcfriends.base.cse[,4],
|
618 |
+
mod.crosslevel.hoursrcfriends.full.cse[,4]),
|
619 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
|
620 |
+
caption.above=TRUE)
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
##### Table SA9. Descriptive Statistics for Cross-level Network Variables (collapsed levels)
|
627 |
+
|
628 |
+
descripvars.col <- c("net_crosslevel_propknown_col", "net_crosslevel_propfriends_col", "net_crosslevel_propnumknown_col", "net_crosslevel_propnumfriends_col", "net_crosslevel_hoursrcknown_col", "net_crosslevel_hoursrcfriends_col")
|
629 |
+
|
630 |
+
tableContinuous(vars=data[descripvars.col], cap="Descriptive Statisitics for Cross-level Network Variables (collapsed levels)", prec=2, longtable=FALSE)
|
631 |
+
|
632 |
+
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
##### Figure SA3. Histograms of the Cross-level Relational Capital Dependent Variables (collapsed levels)
|
637 |
+
|
638 |
+
par(mar = c(4.1, 4, 0, 0.2))
|
639 |
+
hist(data$net_crosslevel_propknown_col, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized (Levels Collapsed)", main=NULL)
|
640 |
+
|
641 |
+
par(mar = c(4.1, 4, 0, 0.2))
|
642 |
+
hist(data$net_crosslevel_propfriends_col, breaks=30, xlab="Proportion of Possible Cross-level Ties Realized as Strong Ties (Levels Collapsed)", main=NULL)
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
##### Table SA 10. Averages of Cross-level Network Variables (collapsed levels)
|
649 |
+
|
650 |
+
round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propknown_col=wtd.mean(x$net_crosslevel_propknown_col, x$weights_games_full_scaled, na.rm=TRUE))), 2)
|
651 |
+
|
652 |
+
round(ddply(data, .(decentralized), function(x) data.frame(net_crosslevel_propfriends_col=wtd.mean(x$net_crosslevel_propfriends_col, x$weights_games_full_scaled, na.rm=TRUE))),2)
|
653 |
+
|
654 |
+
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
##### Table SA 11. How Decentralization Influences Cross-level Network Capital (collapsed levels), Binary, Player Type Controls
|
659 |
+
|
660 |
+
|
661 |
+
## model proportions by decentralized alone
|
662 |
+
|
663 |
+
mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown_col ~ decentralized + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
664 |
+
summary(mod.crosslevel.propknown.base)
|
665 |
+
mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
|
666 |
+
mod.crosslevel.propknown.base.cse
|
667 |
+
|
668 |
+
mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends_col ~ decentralized + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
669 |
+
summary(mod.crosslevel.propfriends.base)
|
670 |
+
mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
|
671 |
+
mod.crosslevel.propfriends.base.cse
|
672 |
+
|
673 |
+
|
674 |
+
## model proportions by decentralized plus individual characteristics with participant types
|
675 |
+
|
676 |
+
mod.crosslevel.propknown.fullpt <- glm(net_crosslevel_propnumknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
677 |
+
summary(mod.crosslevel.propknown.fullpt)
|
678 |
+
mod.crosslevel.propknown.fullpt.cse <- clse.f(data, mod.crosslevel.propknown.fullpt, data$publicid_muni)
|
679 |
+
mod.crosslevel.propknown.fullpt.cse
|
680 |
+
|
681 |
+
mod.crosslevel.propfriends.fullpt <- glm(net_crosslevel_propnumfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
682 |
+
summary(mod.crosslevel.propfriends.fullpt)
|
683 |
+
mod.crosslevel.propfriends.fullpt.cse <- clse.f(data, mod.crosslevel.propfriends.fullpt, data$publicid_muni)
|
684 |
+
mod.crosslevel.propfriends.fullpt.cse
|
685 |
+
|
686 |
+
|
687 |
+
#crosslevel ties, binary, player type controls table, collapsed levels
|
688 |
+
|
689 |
+
texreg(list(mod.crosslevel.propknown.base,
|
690 |
+
mod.crosslevel.propknown.fullpt,
|
691 |
+
mod.crosslevel.propfriends.base,
|
692 |
+
mod.crosslevel.propfriends.fullpt),
|
693 |
+
stars=c(0.01, 0.05, 0.10),
|
694 |
+
caption="Explaining Cross-level Network Capital (Prop. Known), Collapsed Levels, by Decentralization",
|
695 |
+
dcolumn=FALSE,
|
696 |
+
custom.model.names=c("Prop. Known Base", "Prop. Known Fullpt", "Prop. Friends Base", "Prop. Friends Fullpt"),
|
697 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
|
698 |
+
override.se=list(mod.crosslevel.propknown.base.cse[,2],
|
699 |
+
mod.crosslevel.propknown.fullpt.cse[,2],
|
700 |
+
mod.crosslevel.propfriends.base.cse[,2],
|
701 |
+
mod.crosslevel.propfriends.fullpt.cse[,2]),
|
702 |
+
override.pval=list(mod.crosslevel.propknown.base.cse[,4],
|
703 |
+
mod.crosslevel.propknown.fullpt.cse[,4],
|
704 |
+
mod.crosslevel.propfriends.base.cse[,4],
|
705 |
+
mod.crosslevel.propfriends.fullpt.cse[,4]),
|
706 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
|
707 |
+
caption.above=TRUE)
|
708 |
+
|
709 |
+
|
710 |
+
|
711 |
+
|
712 |
+
|
713 |
+
##### Table SA 12. How Decentralization Influences Cross-level Network Capital (collapsed levels), Hours, Player Type Controls
|
714 |
+
|
715 |
+
|
716 |
+
## model HOURS RC by decentralization alone
|
717 |
+
|
718 |
+
mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
719 |
+
summary(mod.crosslevel.hoursrcknown.base)
|
720 |
+
mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
|
721 |
+
mod.crosslevel.hoursrcknown.base.cse
|
722 |
+
|
723 |
+
mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
724 |
+
summary(mod.crosslevel.hoursrcfriends.base)
|
725 |
+
mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
|
726 |
+
mod.crosslevel.hoursrcfriends.base.cse
|
727 |
+
|
728 |
+
|
729 |
+
## model HOURS RC by decentralized plus individual characteristics with participant types
|
730 |
+
|
731 |
+
mod.crosslevel.hoursrcknown.fullpt <- glm(net_crosslevel_hoursrcknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
|
732 |
+
summary(mod.crosslevel.hoursrcknown.fullpt)
|
733 |
+
mod.crosslevel.hoursrcknown.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcknown.fullpt, data$publicid_muni)
|
734 |
+
mod.crosslevel.hoursrcknown.fullpt.cse
|
735 |
+
|
736 |
+
mod.crosslevel.hoursrcfriends.fullpt <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + Participant_C + Participant_G + Participant_R, family="poisson", weights=weights_games_full_scaled, data=data)
|
737 |
+
summary(mod.crosslevel.hoursrcfriends.fullpt)
|
738 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.fullpt, data$publicid_muni)
|
739 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse
|
740 |
+
|
741 |
+
|
742 |
+
#crosslevel ties, hours, player type controls table, collapsed levels
|
743 |
+
|
744 |
+
texreg(list(mod.crosslevel.hoursrcknown.base,
|
745 |
+
mod.crosslevel.hoursrcknown.fullpt,
|
746 |
+
mod.crosslevel.hoursrcfriends.base,
|
747 |
+
mod.crosslevel.hoursrcfriends.fullpt),
|
748 |
+
stars=c(0.01, 0.05, 0.10),
|
749 |
+
caption="Explaining Cross-level Network Capital (Hours), Collapsed Levels, by Decentralization",
|
750 |
+
dcolumn=FALSE,
|
751 |
+
custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
|
752 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Player HC (Ref: Player M)", "Player AI (Ref: Player M)", "Player R (Ref: Player M)"),
|
753 |
+
override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
|
754 |
+
mod.crosslevel.hoursrcknown.fullpt.cse[,2],
|
755 |
+
mod.crosslevel.hoursrcfriends.base.cse[,2],
|
756 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse[,2]),
|
757 |
+
override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
|
758 |
+
mod.crosslevel.hoursrcknown.fullpt.cse[,4],
|
759 |
+
mod.crosslevel.hoursrcfriends.base.cse[,4],
|
760 |
+
mod.crosslevel.hoursrcfriends.fullpt.cse[,4]),
|
761 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,1),
|
762 |
+
caption.above=TRUE)
|
763 |
+
|
764 |
+
|
765 |
+
|
766 |
+
|
767 |
+
|
768 |
+
##### Table SA 13. How Decentralization Influences Cross-level Network Capital (collapsed levels), Binary, Role Type Controls
|
769 |
+
|
770 |
+
|
771 |
+
## model proportions by decentralized alone
|
772 |
+
|
773 |
+
mod.crosslevel.propknown.base <- glm(net_crosslevel_propnumknown_col ~ decentralized + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
774 |
+
summary(mod.crosslevel.propknown.base)
|
775 |
+
mod.crosslevel.propknown.base.cse <- clse.f(data, mod.crosslevel.propknown.base, data$publicid_muni)
|
776 |
+
mod.crosslevel.propknown.base.cse
|
777 |
+
|
778 |
+
mod.crosslevel.propfriends.base <- glm(net_crosslevel_propnumfriends_col ~ decentralized + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
779 |
+
summary(mod.crosslevel.propfriends.base)
|
780 |
+
mod.crosslevel.propfriends.base.cse <- clse.f(data, mod.crosslevel.propfriends.base, data$publicid_muni)
|
781 |
+
mod.crosslevel.propfriends.base.cse
|
782 |
+
|
783 |
+
|
784 |
+
## model proportions by decentralized plus individual characteristics
|
785 |
+
|
786 |
+
mod.crosslevel.propknown.full <- glm(net_crosslevel_propnumknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomknown_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
787 |
+
summary(mod.crosslevel.propknown.full)
|
788 |
+
mod.crosslevel.propknown.full.cse <- clse.f(data, mod.crosslevel.propknown.full, data$publicid_muni)
|
789 |
+
mod.crosslevel.propknown.full.cse
|
790 |
+
|
791 |
+
mod.crosslevel.propfriends.full <- glm(net_crosslevel_propnumfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor + offset(log(net_crosslevel_propdenomfriends_col)), family="poisson", weights=weights_games_full_scaled, data=data)
|
792 |
+
summary(mod.crosslevel.propfriends.full)
|
793 |
+
mod.crosslevel.propfriends.full.cse <- clse.f(data, mod.crosslevel.propfriends.full, data$publicid_muni)
|
794 |
+
mod.crosslevel.propfriends.full.cse
|
795 |
+
|
796 |
+
|
797 |
+
#crosslevel ties, binary, role type controls table, collapsed levels
|
798 |
+
|
799 |
+
texreg(list(mod.crosslevel.propknown.base,
|
800 |
+
mod.crosslevel.propknown.full,
|
801 |
+
mod.crosslevel.propfriends.base,
|
802 |
+
mod.crosslevel.propfriends.full),
|
803 |
+
stars=c(0.01, 0.05, 0.10),
|
804 |
+
caption="Explaining Cross-level Network Capital (Prop. Known), Collapsed Levels, by Decentralization",
|
805 |
+
dcolumn=FALSE,
|
806 |
+
custom.model.names=c("Prop. Known Base", "Prop. Known Full", "Prop. Friends Base", "Prop. Friends Full"),
|
807 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
|
808 |
+
override.se=list(mod.crosslevel.propknown.base.cse[,2],
|
809 |
+
mod.crosslevel.propknown.full.cse[,2],
|
810 |
+
mod.crosslevel.propfriends.base.cse[,2],
|
811 |
+
mod.crosslevel.propfriends.full.cse[,2]),
|
812 |
+
override.pval=list(mod.crosslevel.propknown.base.cse[,4],
|
813 |
+
mod.crosslevel.propknown.full.cse[,4],
|
814 |
+
mod.crosslevel.propfriends.base.cse[,4],
|
815 |
+
mod.crosslevel.propfriends.full.cse[,4]),
|
816 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
|
817 |
+
caption.above=TRUE)
|
818 |
+
|
819 |
+
|
820 |
+
|
821 |
+
|
822 |
+
|
823 |
+
##### Table SA 14. How Decentralization Influences Cross-level Network Capital (collapsed levels), Hours, Player Type Controls
|
824 |
+
|
825 |
+
|
826 |
+
## model proportions by decentralized alone
|
827 |
+
|
828 |
+
mod.crosslevel.hoursrcknown.base <- glm(net_crosslevel_hoursrcknown_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
829 |
+
summary(mod.crosslevel.hoursrcknown.base)
|
830 |
+
mod.crosslevel.hoursrcknown.base.cse <- clse.f(data, mod.crosslevel.hoursrcknown.base, data$publicid_muni)
|
831 |
+
mod.crosslevel.hoursrcknown.base.cse
|
832 |
+
|
833 |
+
mod.crosslevel.hoursrcfriends.base <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized, family="poisson", weights=weights_games_full_scaled, data=data)
|
834 |
+
summary(mod.crosslevel.hoursrcfriends.base)
|
835 |
+
mod.crosslevel.hoursrcfriends.base.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.base, data$publicid_muni)
|
836 |
+
mod.crosslevel.hoursrcfriends.base.cse
|
837 |
+
|
838 |
+
|
839 |
+
## model HOURS RC by decentralized plus individual characteristics
|
840 |
+
|
841 |
+
mod.crosslevel.hoursrcknown.full <- glm(net_crosslevel_hoursrcknown_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
|
842 |
+
summary(mod.crosslevel.hoursrcknown.full)
|
843 |
+
mod.crosslevel.hoursrcknown.full.cse <- clse.f(data, mod.crosslevel.hoursrcknown.full, data$publicid_muni)
|
844 |
+
mod.crosslevel.hoursrcknown.full.cse
|
845 |
+
|
846 |
+
mod.crosslevel.hoursrcfriends.full <- glm(net_crosslevel_hoursrcfriends_col ~ decentralized + Mujer + Q2_Educacion + Q1_Edad + Q3_YrsSalud + gen_trust + CargoMedico + CargoEnfermero + CargoAlcaldia + CargoPromotor, family="poisson", weights=weights_games_full_scaled, data=data)
|
847 |
+
summary(mod.crosslevel.hoursrcfriends.full)
|
848 |
+
mod.crosslevel.hoursrcfriends.full.cse <- clse.f(data, mod.crosslevel.hoursrcfriends.full, data$publicid_muni)
|
849 |
+
mod.crosslevel.hoursrcfriends.full.cse
|
850 |
+
|
851 |
+
|
852 |
+
#crosslevel ties, hours, role type controls table, collapsed levels
|
853 |
+
|
854 |
+
texreg(list(mod.crosslevel.hoursrcknown.base,
|
855 |
+
mod.crosslevel.hoursrcknown.full,
|
856 |
+
mod.crosslevel.hoursrcfriends.base,
|
857 |
+
mod.crosslevel.hoursrcfriends.full),
|
858 |
+
stars=c(0.01, 0.05, 0.10),
|
859 |
+
caption="Explaining Cross-level Network Capital (Hours), Collapsed Levels, by Decentralization",
|
860 |
+
dcolumn=FALSE,
|
861 |
+
custom.model.names=c("Hours RC Known Base", "Hours RC Known Full", "Hours RC Friends Base", "Hours RC Friends Full"),
|
862 |
+
custom.coef.names=c("Constant", "Decentralized", "Female", "Education", "Age", "Years Working in Health", "Generalized Trust", "Doctor", "Nurse", "Municipal Official", "Social Worker"),
|
863 |
+
override.se=list(mod.crosslevel.hoursrcknown.base.cse[,2],
|
864 |
+
mod.crosslevel.hoursrcknown.full.cse[,2],
|
865 |
+
mod.crosslevel.hoursrcfriends.base.cse[,2],
|
866 |
+
mod.crosslevel.hoursrcfriends.full.cse[,2]),
|
867 |
+
override.pval=list(mod.crosslevel.hoursrcknown.base.cse[,4],
|
868 |
+
mod.crosslevel.hoursrcknown.full.cse[,4],
|
869 |
+
mod.crosslevel.hoursrcfriends.base.cse[,4],
|
870 |
+
mod.crosslevel.hoursrcfriends.full.cse[,4]),
|
871 |
+
reorder.coef=c(2,3,4,5,6,7,8,9,10,11,1),
|
872 |
+
caption.above=TRUE)
|
873 |
+
|
874 |
+
|
875 |
+
|
876 |
+
|
877 |
+
|
878 |
+
##### END
|
879 |
+
|
880 |
+
|
881 |
+
|
882 |
+
|
15/replication_package/healthperception_Aug2020.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df2fc3a15238dd2824b849f8021f425787aebb5cc9f39f5f94b17c5337d5e210
|
3 |
+
size 6414
|
15/replication_package/publicgoodgame_dataAug27.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5fd6cb34bab699050f280016d3f09ceda803d793b0a65fe89aae492618ce7a6
|
3 |
+
size 333952
|
15/should_reproduce.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:699a4a07f9a0e3c46515b28b5dc25444b4eabc05d6df0a7688c39700f2f80acd
|
3 |
+
size 33
|