anonymous-submission-acl2025 commited on
Commit
91d0f84
·
1 Parent(s): 128a234
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 14/paper.pdf +3 -0
  2. 14/replication_package/README.pdf +3 -0
  3. 14/replication_package/Replication/Code/ESLR_AgHeterogeneity.do +156 -0
  4. 14/replication_package/Replication/Code/ESLR_Analysis_EHPM.do +113 -0
  5. 14/replication_package/Replication/Code/ESLR_Analysis_IVCenso.do +224 -0
  6. 14/replication_package/Replication/Code/ESLR_Analysis_IVCenso_Credit.do +110 -0
  7. 14/replication_package/Replication/Code/ESLR_Analysis_IVCenso_Other.do +163 -0
  8. 14/replication_package/Replication/Code/ESLR_Balance_PropLevel.R +503 -0
  9. 14/replication_package/Replication/Code/ESLR_CensusMigration.R +252 -0
  10. 14/replication_package/Replication/Code/ESLR_Digits.R +239 -0
  11. 14/replication_package/Replication/Code/ESLR_EHPM_Consumption.do +54 -0
  12. 14/replication_package/Replication/Code/ESLR_EHPM_Educ.do +49 -0
  13. 14/replication_package/Replication/Code/ESLR_EHPM_Mig.do +32 -0
  14. 14/replication_package/Replication/Code/ESLR_EHPM_PGs.do +52 -0
  15. 14/replication_package/Replication/Code/ESLR_EHPM_PGsCoefPlot.R +89 -0
  16. 14/replication_package/Replication/Code/ESLR_EHPM_Sensitivity.do +60 -0
  17. 14/replication_package/Replication/Code/ESLR_ESMap.R +64 -0
  18. 14/replication_package/Replication/Code/ESLR_IVCenso_Commercialization.do +77 -0
  19. 14/replication_package/Replication/Code/ESLR_IVCenso_RDRandInf.do +254 -0
  20. 14/replication_package/Replication/Code/ESLR_IVCenso_RDRobustness.do +192 -0
  21. 14/replication_package/Replication/Code/ESLR_IVCensus_AdditionalPlots.R +406 -0
  22. 14/replication_package/Replication/Code/ESLR_IVCensus_Controls.R +675 -0
  23. 14/replication_package/Replication/Code/ESLR_IVCensus_HetPlots.R +570 -0
  24. 14/replication_package/Replication/Code/ESLR_IVCensus_Matching.R +580 -0
  25. 14/replication_package/Replication/Code/ESLR_IVCensus_NonComplierPlot.R +112 -0
  26. 14/replication_package/Replication/Code/ESLR_IVCensus_Power.do +43 -0
  27. 14/replication_package/Replication/Code/ESLR_IVCensus_RDRobustnessPlots.R +386 -0
  28. 14/replication_package/Replication/Code/ESLR_LatAmMaps.R +174 -0
  29. 14/replication_package/Replication/Code/ESLR_Master.do +136 -0
  30. 14/replication_package/Replication/Code/ESLR_Prop_SummStats.do +105 -0
  31. 14/replication_package/Replication/Code/ESLR_RDPlots_AgCensus.do +174 -0
  32. 14/replication_package/Replication/Code/ESLR_RDPlots_NonShares.do +180 -0
  33. 14/replication_package/Replication/Code/ESLR_RDPlots_PropData.do +87 -0
  34. 14/replication_package/Replication/Code/ESLR_RDPlots_PropDataModern_Existence.do +142 -0
  35. 14/replication_package/Replication/Code/ESLR_RScripts.R +115 -0
  36. 14/replication_package/Replication/Code/ESLR_Robustness_Existence.R +156 -0
  37. 14/replication_package/Replication/Code/ESLR_TemporalEV.R +360 -0
  38. 14/replication_package/Replication/Code/ESLR_Unbalancedness.R +976 -0
  39. 14/replication_package/Replication/Code/ESLR_YieldsSampleSelection.R +294 -0
  40. 14/replication_package/Replication/Data/Codigos.csv +3 -0
  41. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.dbf +3 -0
  42. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.prj +1 -0
  43. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.sbn +0 -0
  44. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.sbx +0 -0
  45. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shp +3 -0
  46. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shp.xml +368 -0
  47. 14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shx +0 -0
  48. 14/replication_package/Replication/Data/LR_reform_existence.dta +3 -0
  49. 14/replication_package/Replication/Data/Prices/Consejo Salvadoreno del Cafe/PRECIOS PAGADOS A LOS CAFICULTORES DOLARES POR 46 KILOGRAMOS DE CAFe.csv +3 -0
  50. 14/replication_package/Replication/Data/Prices/Consejo Salvadoreno del Cafe/precio pagado productor 30 abril 2017.pdf +3 -0
14/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eecb922a14e4dd33fda0401aead2d84ae64a8974009a689105096abc05f6eb64
3
+ size 1234554
14/replication_package/README.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883d4adc6ee2d7559069cd993cb2e400fd5cfe0c7013d9f2aa4c949ff6e0b68b
3
+ size 144878
14/replication_package/Replication/Code/ESLR_AgHeterogeneity.do ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ********************************************************************************
2
+ ******************************** HETEROGENEITY *********************************
3
+ ********************************************************************************
4
+
5
+ use "/Users/eduardomontero/Dropbox/Research_ElSalvador_LandReform/R/Output/ag_census_wSegmCens_all.dta", clear
6
+ destring Expropretario_ISTA, replace
7
+ replace Expropretario_ISTA = agg_id if Expropretario_ISTA==.
8
+
9
+ gen mean_med = age_mean- age_median
10
+ keep age_iqr mean_med Above500 ln_agprod ln_agprod_pricew_crops CashCrop_Share StapleCrop_Share norm_dist own_amt Expropretario_ISTA reform
11
+
12
+ **********************
13
+ *** Label the Data ***
14
+ **********************
15
+
16
+ ** Label Variables for the output:
17
+ label variable ln_agprod_pricew_crops "Agricultural Revenues (ln($/ha))"
18
+ label variable ln_agprod "Agriculural Profits (ln($/ha))"
19
+ label variable CashCrop_Share "Share of Property for Cash Crops"
20
+ label variable StapleCrop_Share "Share of Property for Staple Crops"
21
+ label variable norm_dist "Distance to Reform Threshold (ha)"
22
+ label variable own_amt "Former Owner's Cumulative Landholdings (ha)"
23
+
24
+ *********************
25
+ *** Set RD Params ***
26
+ *********************
27
+
28
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
29
+ ** with ses clustered at propietor level.
30
+ ** Will also use two-sided MSE optimal bandwidth since big diff in density on
31
+ ** both sides.
32
+ ** Will use rdrobust package
33
+
34
+ local polynomial_level 1
35
+ local bandwidth_choice "mserd" // "mserd", "msecomb2" "msetwo"
36
+ local kernel_choice "tri" // "tri"
37
+ local cluster_level "Expropretario_ISTA"
38
+ local bw 100
39
+
40
+ *********************************************
41
+ *** OUTCOME - SEGM CENSALES HETEROGENEITY ***
42
+ *********************************************
43
+
44
+ ** AGE Heterogeneity:
45
+ local het_var age_iqr
46
+
47
+ sum `het_var', d
48
+ local mean_agesd = `r(p50)'
49
+ dis "`mean_agesd'"
50
+ replace mean_med =`het_var'
51
+
52
+ count if mean_med <`mean_agesd' | reform==0
53
+ count if mean_med >=`mean_agesd' | reform==0
54
+
55
+ gen abovemed_het = 0
56
+ replace abovemed_het=1 if (mean_med >=`mean_agesd' & mean_med!= .)
57
+
58
+ local bw 150
59
+ gen dis_meas = age_iqr //age_sd age_iqr
60
+ replace dis_meas=0 if dis_meas==.
61
+ reg ln_agprod Above500 c.Above500#c.dis_meas norm_dist c.Above500#c.norm_dist if abs(norm_dist) < 150, cluster(Expropretario_ISTA)
62
+
63
+
64
+ rdrobust ln_agprod_pricew_crops norm_dist if (mean_med >=`mean_agesd' & mean_med!= .) | reform==0, c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
65
+ * outreg results
66
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
67
+ local n_clust = `r(ndistinct)'
68
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
69
+ outreg2 using "Output/Table_SegmCens_AgeHet.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
70
+
71
+ rdrobust ln_agprod_pricew_crops norm_dist if mean_med <`mean_agesd' | reform==0, c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
72
+ * outreg results
73
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
74
+ local n_clust = `r(ndistinct)'
75
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
76
+ outreg2 using "Output/Table_SegmCens_AgeHet.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
77
+ */
78
+
79
+ rdrobust ln_agprod norm_dist if (mean_med >=`mean_agesd' & mean_med!= .) | reform==0, c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
80
+ * outreg results
81
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
82
+ local n_clust = `r(ndistinct)'
83
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
84
+ outreg2 using "Output/Table_SegmCens_AgeHet.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
85
+
86
+ rdrobust ln_agprod norm_dist if mean_med <`mean_agesd' | reform==0 , c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
87
+ * outreg results
88
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
89
+ local n_clust = `r(ndistinct)'
90
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
91
+ outreg2 using "Output/Table_SegmCens_AgeHet.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
92
+
93
+
94
+
95
+ *** TESTING COEFFICIENTS:
96
+ * 1 vs. 2:
97
+ local z = (-.430 - (-0.192))/sqrt(0.326^2 + 0.376^2)
98
+ dis 2*(1-normal(abs(`z')))
99
+
100
+ local z = (-.696 - (-0.255))/sqrt(0.411^2 + 0.504^2)
101
+ dis 2*(1-normal(abs(`z')))
102
+
103
+
104
+
105
+
106
+
107
+ /*gen group1 = abovemed_het ==1 // | reform==0
108
+ gen group1_Above500 = group1*Above50
109
+
110
+ reg ln_agprod_pricew_crops Above500 group1_Above500 norm_dist c.norm_dist#Above500 i.group1#c.norm_dist i.group1#c.norm_dist#Above500 if abs(norm_dist) < 150, vce(cluster Expropretario_ISTA)
111
+ lincom _b[Above500] - _b[group1_Above500]
112
+
113
+
114
+ reg ln_agprod Above500 group1_Above500 norm_dist c.norm_dist#Above500 if abs(norm_dist) < 150 , vce(cluster Expropretario_ISTA)
115
+ lincom _b[Above500] - _b[group1_Above500]*/
116
+
117
+ local bw 300
118
+ rdrobust CashCrop_Share norm_dist if mean_med >=`mean_agesd' | reform==0, c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
119
+ * outreg results
120
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
121
+ local n_clust = `r(ndistinct)'
122
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
123
+ outreg2 using "Output/Table_SegmCens_AgeHet2.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
124
+
125
+ rdrobust CashCrop_Share norm_dist if mean_med <`mean_agesd' | reform==0 , c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
126
+ * outreg results
127
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
128
+ local n_clust = `r(ndistinct)'
129
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
130
+ outreg2 using "Output/Table_SegmCens_AgeHet2.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
131
+
132
+
133
+ rdrobust StapleCrop_Share norm_dist if mean_med >=`mean_agesd' | reform==0, c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
134
+ * outreg results
135
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
136
+ local n_clust = `r(ndistinct)'
137
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
138
+ outreg2 using "Output/Table_SegmCens_AgeHet2.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
139
+
140
+ rdrobust StapleCrop_Share norm_dist if mean_med <`mean_agesd' | reform==0 , c(0) p(`polynomial_level') h(`bw' `bw') kernel(`kernel_choice') vce(cluster `cluster_level')
141
+ * outreg results
142
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
143
+ local n_clust = `r(ndistinct)'
144
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
145
+ outreg2 using "Output/Table_SegmCens_AgeHet2.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
146
+ */
147
+
148
+
149
+ ** Crop ones
150
+ * 1 vs. 2:
151
+ local z = (-0.493 - (-0.571))/sqrt(0.139^2 + 0.132^2)
152
+ dis 2*(1-normal(abs(`z')))
153
+
154
+ local z = (0.150 - (0.344))/sqrt(0.168^2 + 0.190^2)
155
+ dis 2*(1-normal(abs(`z')))
156
+
14/replication_package/Replication/Code/ESLR_Analysis_EHPM.do ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: EHPM Outcomes - RD Analysis - HH Survey ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ ** Set Workspace **
11
+ cd /Users/`c(username)'/Dropbox/Research_ElSalvador_LandReform/Replication/
12
+
13
+ *********************
14
+ *** Load the Data ***
15
+ *********************
16
+
17
+ use "./Data/ehpm_incomemodule_wreform.dta", clear
18
+
19
+ capture drop ln_hh_inc_pc hh_inc_pc_real ln_hh_inc_pc_real
20
+ gen ln_hh_inc_pc = log(hh_income_pc)
21
+ gen hh_inc_pc_real = (year==2000)*hh_income_pc*71.57/100 + ///
22
+ (year==2001)*hh_income_pc*74.25/100 + (year==2004)*hh_income_pc*80.68/100 + ///
23
+ (year==2005)*hh_income_pc*84.47/100 + (year==2006)*hh_income_pc*87.88/100 + ///
24
+ (year==2007)*hh_income_pc*91.90/100 + (year==2008)*hh_income_pc*98.06/100 + ///
25
+ (year==2009)*hh_income_pc*99.10/100 + (year==2011)*hh_income_pc*105.13/100 + ///
26
+ (year==2012)*hh_income_pc*106.95/100 + (year==2013)*hh_income_pc*107.79/100
27
+ gen ln_hh_inc_pc_real = log(hh_inc_pc_real )
28
+
29
+ *********************
30
+ *** Set RD Params ***
31
+ *********************
32
+
33
+ ** Baseline: Will use local linear rd with manual bandwidth (due to sample size)
34
+ ** with ses clustered at propietor level.
35
+ ** Will use rdrobust package
36
+
37
+ local polynomial_level 1
38
+ local cluster_level "Expropretario_ISTA"
39
+
40
+
41
+ ****************************************
42
+ *** OUTCOME 1a - HH INCOME PC LEVELS ***
43
+ ****************************************
44
+
45
+ ** Avg HH per capita income:
46
+
47
+ local bwidth = 300
48
+
49
+
50
+ local bwidth = 300
51
+ reg hh_inc_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* sex age age2 if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
52
+ sum hh_income_pc if abs(norm_dist)<`bwidth'
53
+
54
+ outreg2 using "./Output/Table_Earnings.tex", replace se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
55
+
56
+ local bwidth = 150
57
+ reg hh_inc_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* sex age age2 if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
58
+ sum hh_income_pc if abs(norm_dist)<`bwidth'
59
+ outreg2 using "./Output/Table_Earnings.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
60
+
61
+
62
+
63
+
64
+
65
+
66
+ *******************************************
67
+ *** OUTCOME 1b - WAGE INCOME COMPRESSION ***
68
+ *******************************************
69
+
70
+ ** IQR:
71
+ ** Reg:
72
+
73
+ preserve
74
+
75
+ collapse (iqr) hh_income_pc hh_inc_pc_real (mean) norm_dist Above500, by(match_id Expropretario_ISTA i_year*) cw
76
+ local bwidth =300
77
+
78
+ reg hh_inc_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
79
+ sum hh_income_pc if abs(norm_dist)<`bwidth'
80
+ outreg2 using "./Output/Table_Earnings.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
81
+
82
+ local bwidth = 150
83
+
84
+ reg hh_inc_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
85
+ sum hh_income_pc if abs(norm_dist)<`bwidth'
86
+ outreg2 using "./Output/Table_Earnings.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
87
+
88
+ restore
89
+
90
+
91
+ ****************************************
92
+ *** QUANTILE REGRESSION COEFFICIENT PLOT
93
+ ****************************************
94
+
95
+ gen Above500_QPlot = Above500
96
+ label var Above500_QPlot "Quantile Estimates for: Above 500 (ha)"
97
+
98
+ drop if num_members < 5
99
+ local bwidth =150
100
+ bsqreg ln_hh_inc_pc_real Above500_QPlot norm_dist norm_dist_Above i_year1-i_year8 i_year10-i_year11 if abs(norm_dist) < `bwidth' & hh_inc_pc >0, q(.50)
101
+ set scheme lean1
102
+ grqreg Above500_QPlot, ci reps(40) qstep(.2) seed(821)
103
+ graph export "./Output/EHPM_QuantilePlot_ln_hh_inc_pc_real.pdf", replace
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
14/replication_package/Replication/Code/ESLR_Analysis_IVCenso.do ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Analysis - Censo IV ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color
10
+
11
+ ** Set Workspace **
12
+ cd /Users/`c(username)'/Dropbox/Research_ElSalvador_LandReform/Replication
13
+
14
+ ** ssc install rdrobust; winsor2; outreg2; lpoly; cmogram; dm88_1; grqreg; gr0002_3; pdslasso; lassopack; univar; ietoolkit
15
+
16
+ *********************
17
+ *** Load the Data ***
18
+ *********************
19
+
20
+ use "Data/censo_ag_wreform.dta", clear
21
+
22
+ label var Above500 "Above 500 Ha"
23
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
24
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
25
+
26
+ *********************
27
+ *** Set RD Params ***
28
+ *********************
29
+
30
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
31
+ ** with ses clustered at propietor level.
32
+ ** Will use rdrobust package: net install rdrobust, from(https://sites.google.com/site/rdpackages/rdrobust/stata) replace
33
+
34
+ local polynomial_level 1
35
+ local bandwidth_choice "mserd"
36
+ local kernel_choice "tri"
37
+ local cluster_level "Expropretario_ISTA"
38
+
39
+ *********************************************
40
+ *** OUTCOME 1 - AGRICULTURAL PRODUCTIVITY ***
41
+ *********************************************
42
+
43
+
44
+ *Logs OF REVENUE:
45
+ rdrobust ln_agprod_pricew_crops norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
46
+ * outreg results
47
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
48
+ local n_clust = `r(ndistinct)'
49
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
50
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, N)
51
+
52
+ rdrobust ln_agprod_pricew_crops norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level') fuzzy(reform sharpbw)
53
+ * outreg results
54
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
55
+ local n_clust = `r(ndistinct)'
56
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
57
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, Y)
58
+ * rdpower ln_agprod_pricew_crops norm_dist, c(0) tau(1) vce(cluster Expropretario_ISTA ) plot
59
+
60
+ **** NET OF COSTS w/o Labor costs:
61
+ rdrobust ln_agprod norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
62
+ * outreg results
63
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
64
+ local n_clust = `r(ndistinct)'
65
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
66
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, N)
67
+
68
+ rdrobust ln_agprod norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level') fuzzy(reform sharpbw)
69
+ * outreg results
70
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
71
+ local n_clust = `r(ndistinct)'
72
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
73
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, Y)
74
+
75
+ **** TFP PRODUCTIVITY:
76
+ rdrobust ln_tfp_geo norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
77
+ * outreg results
78
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
79
+ local n_clust = `r(ndistinct)'
80
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
81
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, N)
82
+
83
+ rdrobust ln_tfp_geo norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level') fuzzy(reform sharpbw)
84
+ * outreg results
85
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
86
+ local n_clust = `r(ndistinct)'
87
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
88
+ outreg2 using "Output/Table4_LogProductivity_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Fuzzy RD, Y)
89
+
90
+
91
+
92
+ ******************************
93
+ *** OUTCOME 2 - CASH CROPS ***
94
+ ******************************
95
+
96
+ rdrobust CashCrop_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
97
+ * outreg results
98
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
99
+ local n_clust = `r(ndistinct)'
100
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
101
+ *outreg2 using "Output/Table2_CashCrops_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
102
+
103
+ rdrobust CashCrop_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
104
+ * outreg results
105
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
106
+ local n_clust = `r(ndistinct)'
107
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
108
+ outreg2 using "Output/Table2_CashCrops_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
109
+
110
+
111
+
112
+ ** Sugar Cane:
113
+ rdrobust SugarCane_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
114
+ * outreg results
115
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
116
+ local n_clust = `r(ndistinct)'
117
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
118
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
119
+
120
+ rdrobust SugarCane_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
121
+ * outreg results
122
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
123
+ local n_clust = `r(ndistinct)'
124
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
125
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
126
+
127
+ * Note: small sample means cannot compute optimal bw. Setting BW manually at level in previous regression:
128
+ rdrobust SugarCane_Yield norm_dist, c(0) p(`polynomial_level') h(`e(h_r)') b(`e(b_r)') kernel(`kernel_choice') vce(cluster `cluster_level')
129
+ * outreg results
130
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
131
+ local n_clust = `r(ndistinct)'
132
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
133
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
134
+
135
+ ** Coffee:
136
+ rdrobust Coffee_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
137
+ * outreg results
138
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
139
+ local n_clust = `r(ndistinct)'
140
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
141
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
142
+
143
+ rdrobust Coffee_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
144
+ * outreg results
145
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
146
+ local n_clust = `r(ndistinct)'
147
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
148
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
149
+
150
+ rdrobust Coffee_Yield norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
151
+ * outreg results
152
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
153
+ local n_clust = `r(ndistinct)'
154
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
155
+ outreg2 using "Output/Table2_CashCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
156
+
157
+
158
+ ********************************
159
+ *** OUTCOME 3 - STAPLE CROPS ***
160
+ ********************************
161
+
162
+ rdrobust ConsCrop_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
163
+ * outreg results
164
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
165
+ local n_clust = `r(ndistinct)'
166
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
167
+ *outreg2 using "Output/Table3_ConsCrops_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
168
+ rdrobust StapleCrop_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
169
+ * outreg results
170
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
171
+ local n_clust = `r(ndistinct)'
172
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
173
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
174
+
175
+ ** Maize:
176
+
177
+ rdrobust Maize_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
178
+ * Check this. Strange since rd plot is so strong.
179
+ * outreg results
180
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
181
+ local n_clust = `r(ndistinct)'
182
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
183
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
184
+
185
+ rdrobust Maize_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
186
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
187
+ local n_clust = `r(ndistinct)'
188
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
189
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
190
+
191
+ rdrobust Maize_Yield norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
192
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
193
+ local n_clust = `r(ndistinct)'
194
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
195
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
196
+
197
+ ** Beans:
198
+
199
+ rdrobust Beans_Indicator norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level') // fuzzy(reform)
200
+ * outreg results
201
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
202
+ local n_clust = `r(ndistinct)'
203
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
204
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
205
+
206
+ rdrobust Beans_Share norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level') // fuzzy(reform)
207
+ * outreg results
208
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
209
+ local n_clust = `r(ndistinct)'
210
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
211
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
212
+
213
+
214
+ * Note: Following Cannot Compute Optimal BW Above: rdrobust Beans_Yield norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
215
+ * Setting BW manually at level in previous regression:
216
+ rdrobust Beans_Yield norm_dist, c(0) p(`polynomial_level') b(`e(h_r)') h(`e(b_r)') kernel(`kernel_choice') vce(cluster `cluster_level')
217
+ * outreg results
218
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
219
+ local n_clust = `r(ndistinct)'
220
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
221
+ outreg2 using "Output/Table3_ConsCrops_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
222
+
223
+
224
+
14/replication_package/Replication/Code/ESLR_Analysis_IVCenso_Credit.do ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Analysis - Censo IV ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color
10
+
11
+ ** Set Workspace **
12
+ cd /Users/`c(username)'/Dropbox/Research_ElSalvador_LandReform/Replication
13
+
14
+ ** ssc install rdrobust; winsor2; outreg2; lpoly; cmogram; dm88_1; grqreg; gr0002_3; pdslasso; lassopack; univar; ietoolkit
15
+
16
+ *********************
17
+ *** Load the Data ***
18
+ *********************
19
+
20
+ use "Data/censo_ag_wreform.dta", clear
21
+
22
+ label var Above500 "Above 500 Ha"
23
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
24
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
25
+
26
+ *********************
27
+ *** Set RD Params ***
28
+ *********************
29
+
30
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
31
+ ** with ses clustered at propietor level.
32
+ ** Will use rdrobust package: net install rdrobust, from(https://sites.google.com/site/rdpackages/rdrobust/stata) replace
33
+
34
+ local polynomial_level 1
35
+ local bandwidth_choice "mserd" // "mserd", "msecomb2" "msetwo"
36
+ local kernel_choice "tri"
37
+ local cluster_level "Expropretario_ISTA"
38
+
39
+
40
+ ********************************************************************************
41
+ ******************************** CREDIT ACCESS *********************************
42
+ ********************************************************************************
43
+
44
+
45
+ *********************
46
+ *** CREDIT ACCESS ***
47
+ *********************
48
+
49
+ * S18A - Credit Indicator S18P01; Credit Approved S18P02; Oportuna Appoval S18P03
50
+ * S18B - Credit Source; Destino (type of production or capital)
51
+ merge 1:1 agg_id using "./Data/censo_ag_credit.dta", gen(S18A_merge) // S18A Vars.
52
+
53
+ ** Credit:
54
+ gen Credit_Applied = S18P01
55
+ rdrobust Credit_Applied norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
56
+ * outreg results
57
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
58
+ local n_clust = `r(ndistinct)'
59
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
60
+ outreg2 using "./Output/Table_Credit_agg.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
61
+
62
+
63
+ ** Credit Timely:
64
+ gen Credit_Timely = S18P03
65
+ replace Credit_Timely = . if S18P03==-2
66
+ rdrobust Credit_Timely norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
67
+ * outreg results
68
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
69
+ local n_clust = `r(ndistinct)'
70
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
71
+ outreg2 using "./Output/Table_Credit_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
72
+
73
+ ***************************
74
+ *** CREDIT SOURCE + USE ***
75
+ ***************************
76
+
77
+ merge 1:1 agg_id using "./Data/censo_ag_credittype.dta", gen(S18B_merge) // S18B Vars.
78
+
79
+ ** Credit From State Bank:
80
+ rdrobust S18BBANCOESTATAL norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
81
+ * outreg results
82
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
83
+ local n_clust = `r(ndistinct)'
84
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
85
+ outreg2 using "./Output/Table_Credit_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
86
+
87
+ ** Credit From Private Bank:
88
+ rdrobust S18BBANCOPRIVADO norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
89
+ * outreg results
90
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
91
+ local n_clust = `r(ndistinct)'
92
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
93
+ outreg2 using "./Output/Table_Credit_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
94
+
95
+ ** Credit From Credit Coop:
96
+ rdrobust S18BCOOPERATIVA norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
97
+ * outreg results
98
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
99
+ local n_clust = `r(ndistinct)'
100
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
101
+ outreg2 using "./Output/Table_Credit_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
102
+
103
+ ** Credit From ONG:
104
+ rdrobust S18BONG norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
105
+ * outreg results
106
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
107
+ local n_clust = `r(ndistinct)'
108
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
109
+ outreg2 using "./Output/Table_Credit_agg.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
110
+
14/replication_package/Replication/Code/ESLR_Analysis_IVCenso_Other.do ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ***************************************************************
2
+ ******* ESLR:Ag-Census-Plot-Level Outcomes-Extensions **********
3
+ ****************************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+
11
+ *********************
12
+ *** Load the Data ***
13
+ *********************
14
+
15
+ use "Data/censo_ag_wreform.dta", clear
16
+
17
+ **********************
18
+ *** Label the Data ***
19
+ **********************
20
+
21
+ ** Label Variables for the output:
22
+ label variable ln_agprod_pricew_crops "Agricultural Productivity (ln($/ha))"
23
+ label variable CashCrop_Share "Share of Property for Cash Crops"
24
+ label variable StapleCrop_Share "Share of Property for Staple Crops"
25
+ label variable norm_dist "Distance to Reform Threshold (ha)"
26
+ label variable own_amt "Former Owner's Cumulative Landholdings (ha)"
27
+
28
+ *********************
29
+ *** Set RD Params ***
30
+ *********************
31
+
32
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
33
+ ** with ses clustered at propietor level.
34
+
35
+ local polynomial_level 1
36
+ local bandwidth_choice "mserd"
37
+ local kernel_choice "tri"
38
+ local cluster_level "Expropretario_ISTA"
39
+
40
+
41
+ **********************
42
+ *** CAPITAL STOCKS ***
43
+ **********************
44
+
45
+ * S16A - MDSC - Type of Capital
46
+ capture drop S16*
47
+ merge 1:1 agg_id using "./Data/censo_ag_investments.dta", gen(cap_merge)
48
+
49
+ ** To Store Results:
50
+ global tflist ""
51
+ global modseq=0
52
+ global modid = 1
53
+
54
+ foreach dep_var of varlist S16A* {
55
+ dis "`dep_var'"
56
+ clear matrix
57
+ ** Coef Plots of Capital Stocks
58
+ global modseq=$modseq+1
59
+ tempfile tf$modseq
60
+ ** Run RD: (Indicator on Prob. of Having Particular Capital Unit:
61
+ capture rdrobust `dep_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
62
+ ** Store Results:
63
+ capture parmest, label idn($modseq) idstr("`dep_var'") saving(`tf$modseq',replace) flist(tflist)
64
+ }
65
+
66
+ preserve
67
+ dsconcat $tflist
68
+ sort idnum
69
+ outsheet using "./Output/Temp/CapitalStocks.csv", replace comma
70
+ restore
71
+
72
+
73
+ **********************
74
+ *** INPUT MEASURES ***
75
+ **********************
76
+
77
+ * S15B - MDSC - Type of Input
78
+ capture drop S15*
79
+ merge 1:1 agg_id using "./Data/censo_ag_inputs.dta", gen(S15B_merge)
80
+ ** To Store Results:
81
+ global tflist ""
82
+ global modseq=0
83
+ global modid = 1
84
+
85
+
86
+ foreach dep_var of varlist S15B* {
87
+ dis "`dep_var'"
88
+ clear matrix
89
+ ** For Coef Plots:
90
+ global modseq=$modseq+1
91
+ tempfile tf$modseq
92
+ ** Run RD: (Indicator on Prob. of Having Used Particular Input:
93
+ capture rdrobust `dep_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
94
+ ** Store Results:
95
+ capture parmest, label idn($modseq) idstr("`dep_var'") saving(`tf$modseq',replace) flist(tflist)
96
+ }
97
+
98
+ preserve
99
+ dsconcat $tflist
100
+ sort idnum
101
+ outsheet using "./Output/Temp/InputUse.csv", replace comma
102
+ restore
103
+ drop S15B*
104
+
105
+
106
+ ********************************************************************************
107
+ ******************************** OTHER PRODUCTS ********************************
108
+ ********************************************************************************
109
+
110
+ * S5B - MDSC - Minor Crops - Vegetables:
111
+ merge 1:1 agg_id using "./Data/censo_ag_minorcrops.dta", gen(S5B_merge)
112
+
113
+ ** INDICATORS:
114
+ ** To Store Results:
115
+ global tflist ""
116
+ global modseq=0
117
+ global modid = 1
118
+
119
+ foreach dep_var of varlist S5B* {
120
+ dis "`dep_var'"
121
+ clear matrix
122
+ ** For Coef Plots:
123
+ global modseq=$modseq+1
124
+ tempfile tf$modseq
125
+ ** Run RD: (Indicator on Prob. of Prod a Minor Crop:
126
+ capture rdrobust `dep_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
127
+ ** Store Results:
128
+ capture parmest, label idn($modseq) idstr("`dep_var'") saving(`tf$modseq',replace) flist(tflist)
129
+ }
130
+
131
+ preserve
132
+ dsconcat $tflist
133
+ sort idnum
134
+ outsheet using "./Output/Temp/MinorCropProduction.csv", replace comma
135
+ restore
136
+
137
+
138
+ * S5B - MDSC - Minor Crops - Fruits:
139
+ merge 1:1 agg_id using "./Data/censo_ag_minorfruits.dta", gen(S8B_merge)
140
+
141
+ ** INDICATORS:
142
+ ** To Store Results:
143
+ global tflist ""
144
+ global modseq=0
145
+ global modid = 1
146
+
147
+ foreach dep_var of varlist S8B* {
148
+ dis "`dep_var'"
149
+ clear matrix
150
+ ** For Coef Plots:
151
+ global modseq=$modseq+1
152
+ tempfile tf$modseq
153
+ ** Run RD: (Indicator on Prob. of Prod a Minor Crop:
154
+ capture rdrobust `dep_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
155
+ ** Store Results:
156
+ capture parmest, label idn($modseq) idstr("`dep_var'") saving(`tf$modseq',replace) flist(tflist)
157
+ }
158
+
159
+ preserve
160
+ dsconcat $tflist
161
+ sort idnum
162
+ outsheet using "./Output/Temp/MinorFruitProduction.csv", replace comma
163
+ restore
14/replication_package/Replication/Code/ESLR_Balance_PropLevel.R ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##################################################################
2
+ #### El Salvador - Land Reform - Prop Level Geographical Covs ####
3
+ ##################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+
8
+ require(foreign)
9
+ require(ggplot2)
10
+ require(rgdal)
11
+ require(rgeos)
12
+ require(RColorBrewer) # creates nice color schemes
13
+ require(maptools) # loads sp library too
14
+ require(scales) # customize scales
15
+ require(gridExtra) # mutiple plots
16
+ require(plyr) # join function
17
+ require(dplyr)
18
+ require(mapproj) # projection tools
19
+ require(raster) # raster tools
20
+ require(animation) # Saving GIFs
21
+ require(tidyr)
22
+ require(readstata13)
23
+ require(haven)
24
+ require(gstat) # interpolation tools
25
+ require(ncdf4)
26
+ require(Hmisc)
27
+ require(lubridate)
28
+ library(lmtest)
29
+ library(sandwich)
30
+ library(dotwhisker) # coef plots
31
+ library(broom)
32
+ require(stringr)
33
+ require(readxl)
34
+ require(rmapshaper)
35
+ require(extrafont)
36
+ require(ggmap)
37
+ require(exactextractr) # faster extract
38
+ require(sf) # faster extract
39
+ require(elevatr) # elevation data
40
+ require(rdrobust)
41
+ require(stringdist)
42
+
43
+ ############## LOAD DATA ################
44
+
45
+ ## Read in Data:
46
+
47
+ # Load the Property-Level Data:
48
+ prop_data <- read.dta(file="./Data/prop_data.dta")
49
+ # dta file Created in R, ESLR_CleanPropertyData.R
50
+
51
+ prop_data <- mutate(prop_data, norm_dist = Total_Propretario - 500.00,
52
+ Above500 = ifelse(norm_dist>0,1,0))
53
+
54
+
55
+ # Load the Canton Shapefile:
56
+ cantons <- readOGR(dsn="./Data/", layer="cantons_wCodigos")
57
+
58
+ ############## CALCULATE GEO COVS ###############
59
+
60
+ # Projections:
61
+ wgs84_proj <- "+proj=longlat +ellps=WGS84 +datum=WGS84" # WGS 1984
62
+ mercator <- "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs" # Project to mercator to calculate distance in meters
63
+
64
+ ## GEOGRAPHIC BALANCE:
65
+
66
+ # BUFFER SIZE:
67
+ buffer_size <- 2500
68
+
69
+ # PREP SHAPEFILES:
70
+ cantons_wCovariates <- as(cantons,"sf")
71
+ cantons_wCovariates <- st_transform(cantons_wCovariates, st_crs(mercator))
72
+
73
+ # SUITABILITY FOR DIFFERENT CROPS
74
+ # Export Crops: Coffee, Sugar Cane and Cotton (though cotton no longer produced there)
75
+ # Internal Crops: Maiz, Beans, Sorghum, maybe Rice
76
+ # COFFEE:
77
+ # Read in Rasters:
78
+ path_to_suit_coffee <- "./Data/crop_suit/coffeelo.tif"
79
+ coffee_suit <- raster(paste(path_to_suit_coffee,"",sep=""))
80
+
81
+ # Merge to CANTONS:
82
+
83
+ cantons_wCovariates$canton_coffee_suit <- exact_extract(coffee_suit,
84
+ cantons_wCovariates,
85
+ 'median')
86
+
87
+ # SUGAR CANE:
88
+ # Read in Rasters:
89
+ path_to_suit_sugarcane <- "./Data/crop_suit/sugarcanelo.tif"
90
+ sugarcane_suit <- raster(paste(path_to_suit_sugarcane,"",sep=""))
91
+
92
+ # Merge to CANTONS:
93
+ cantons_wCovariates$sugarcane_suit <- exact_extract(sugarcane_suit,
94
+ cantons_wCovariates,
95
+ 'median')
96
+ # COTTON:
97
+ # Read in Rasters:
98
+ path_to_suit_cotton <- "./Data/crop_suit/cottonlo.tif"
99
+ cotton_suit <- raster(paste(path_to_suit_cotton,"",sep=""))
100
+
101
+ # Merge to CANTONS:
102
+ cantons_wCovariates$cotton_suit <- exact_extract(cotton_suit,
103
+ cantons_wCovariates,
104
+ 'median')
105
+
106
+ # Non-Export:
107
+ # Maize:
108
+ # Read in Rasters:
109
+ path_to_suit_maiz <- "./Data/crop_suit/maizelo.tif"
110
+ miaze_suit <- raster(paste(path_to_suit_maiz,"",sep=""))
111
+
112
+
113
+ # Merge to CANTONS:
114
+ cantons_wCovariates$miaze_suit <- exact_extract(miaze_suit,
115
+ cantons_wCovariates,
116
+ 'median')
117
+
118
+ # Beans:
119
+ # Read in Rasters:
120
+ path_to_suit_beans <- "./Data/crop_suit/phaseolusbeanlo.tif"
121
+ bean_suit <- raster(paste(path_to_suit_beans,"",sep=""))
122
+
123
+
124
+ # Merge to CANTONS:
125
+ cantons_wCovariates$bean_suit <- exact_extract(bean_suit,
126
+ cantons_wCovariates,
127
+ 'median')
128
+ # Sorghum:
129
+ # Read in Rasters:
130
+ path_to_suit_sorghum <- "./Data/crop_suit/sorghumlo.tif"
131
+ sorghum_suit <- raster(paste(path_to_suit_sorghum,"",sep=""))
132
+
133
+
134
+ # Merge to CANTONS:
135
+ cantons_wCovariates$sorghum_suit <- exact_extract(sorghum_suit,
136
+ cantons_wCovariates,
137
+ 'median')
138
+ # Rice:
139
+ # Read in Rasters:
140
+ path_to_suit_rice <- "./Data/crop_suit/wetricelo.tif" # indricelo.tif
141
+ rice_suit <- raster(paste(path_to_suit_rice,"",sep=""))
142
+
143
+
144
+ # Merge to CANTONS:
145
+ cantons_wCovariates$rice_suit <- exact_extract(rice_suit,
146
+ cantons_wCovariates,
147
+ 'median')
148
+ # Precipitation:
149
+ path_rain <- "./Data/wc2.1_2.5m_prec_2000-2009/"
150
+
151
+ # Loop over 12 months and calculate mean rainfall (mm):
152
+ for (month in 1:12) {
153
+ # Convert from .adf to raster for analysis:
154
+ print(month)
155
+ x <- raster(paste(path_rain,"wc2.1_2.5m_prec_2007-",
156
+ ifelse(month%/%10==0,paste0("0",month),month),
157
+ ".tif",sep=""))
158
+ rainfall <- (x)
159
+ proj4string(rainfall) <- CRS(wgs84_proj) # assign projection since empty
160
+ assign(paste("rain","_",month,sep=""), rainfall)
161
+ }
162
+ sum_rain <- (rain_1 + rain_2 + rain_3 + rain_4 + rain_5 + rain_6 + rain_7 + rain_8 + rain_9 + rain_10 + rain_11 + rain_12)
163
+
164
+
165
+ # Extract:
166
+ cantons_wCovariates$canton_mean_rain <- exact_extract(sum_rain,
167
+ cantons_wCovariates,
168
+ 'median')
169
+
170
+
171
+ # Land Suitability:
172
+ # http://nelson.wisc.edu/sage/data-and-models/atlas/maps.php?datasetid=19&includerelatedlinks=1&dataset=19
173
+ path_land_suit <- "Data/suit/suit/w001001.adf"
174
+
175
+ # Convert from .adf to raster for analysis:
176
+ x <- new("GDALReadOnlyDataset", path_land_suit)
177
+ xx<-asSGDF_GROD(x)
178
+ land_suit <- raster(xx)
179
+ proj4string(land_suit) <- CRS(proj4string(cantons)) # assign projection since empty
180
+
181
+ # Extract:
182
+ cantons_wCovariates$canton_land_suit <- exact_extract(land_suit,
183
+ cantons_wCovariates,
184
+ 'median')
185
+
186
+ ## Elevation: ##
187
+ elev <- get_elev_raster(locations = cantons, z= 1)
188
+
189
+ # Extract:
190
+ cantons_wCovariates$canton_elev_dem_30sec <- exact_extract(elev, cantons_wCovariates,'median')
191
+
192
+
193
+ write_dta(st_drop_geometry(cantons_wCovariates), "./Output/cantons_wGeoCovariates.dta")
194
+
195
+
196
+
197
+
198
+ ################# STD FUNCTIONS ###################
199
+
200
+
201
+ # STD FUNCTIONS:
202
+ lm.beta <- function (MOD, dta,y="ln_agprod")
203
+ {
204
+ b <- MOD$coef[1]
205
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
206
+ sx <- sd(model.dta[,c("Above500")])
207
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
208
+ beta <- b * sx/sy
209
+ return(beta)
210
+ }
211
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
212
+ {
213
+ b <- MOD$se[1]
214
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
215
+ sx <- sd(model.dta[,c("Above500")])
216
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
217
+ beta <- b * sx/sy
218
+ return(beta)
219
+ }
220
+
221
+ winsor <- function (x, fraction=.01)
222
+ {
223
+ if(length(fraction) != 1 || fraction < 0 ||
224
+ fraction > 0.5) {
225
+ stop("bad value for 'fraction'")
226
+ }
227
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
228
+ x[ x < lim[1] ] <- NA
229
+ x[ x > lim[2] ] <- NA
230
+ x
231
+ }
232
+
233
+ ################# AESTHETICS ##################
234
+
235
+ aesthetics <- list(
236
+ theme_bw(),
237
+ theme(legend.title=element_blank(),
238
+ text=element_text(family="Palatino"),
239
+ plot.background=element_rect(colour="white",fill="white"),
240
+ panel.grid.major=element_blank(),
241
+ panel.grid.minor=element_blank(),
242
+ axis.title=element_text(size=12,face="bold"),
243
+ ))
244
+
245
+
246
+ ################### BALANCE PLOT ####################
247
+
248
+ ## Coef Plots:
249
+ alpha<- 0.05
250
+ Multiplier <- qnorm(1 - alpha / 2)
251
+
252
+ prop_data_wgeo <- left_join(prop_data, st_drop_geometry(cantons_wCovariates),by=c("CODIGO"))
253
+
254
+ b0 <- rdrobust(y = (prop_data_wgeo$miaze_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
255
+ b1 <- rdrobust(y = (prop_data_wgeo$sorghum_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
256
+ b2 <- rdrobust(y = (prop_data_wgeo$bean_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
257
+ b3 <- rdrobust(y = (prop_data_wgeo$rice_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
258
+ b4 <- rdrobust(y = (prop_data_wgeo$cotton_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
259
+ b5 <- rdrobust(y = (prop_data_wgeo$sugarcane_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
260
+ b6 <- rdrobust(y = (prop_data_wgeo$canton_coffee_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
261
+ b7 <- rdrobust(y = (prop_data_wgeo$canton_elev_dem_30sec), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
262
+ b8 <- rdrobust(y = (prop_data_wgeo$canton_mean_rain), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
263
+ b9 <- rdrobust(y = (prop_data_wgeo$canton_land_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0")
264
+
265
+
266
+ beta_coefs <- c(lm.beta(MOD=b0, dta=prop_data_wgeo, y="miaze_suit"),
267
+ lm.beta(MOD=b1, dta=prop_data_wgeo, y="sorghum_suit"),
268
+ lm.beta(MOD=b2, dta=prop_data_wgeo, y="bean_suit"),
269
+ lm.beta(MOD=b3, dta=prop_data_wgeo, y="rice_suit"),
270
+ lm.beta(MOD=b4, dta=prop_data_wgeo, y="cotton_suit"),
271
+ lm.beta(MOD=b5, dta=prop_data_wgeo, y="sugarcane_suit"),
272
+ lm.beta(MOD=b6, dta=prop_data_wgeo, y="canton_coffee_suit"),
273
+ lm.beta(MOD=b7, dta=prop_data_wgeo, y="canton_elev_dem_30sec"),
274
+ lm.beta(MOD=b8, dta=prop_data_wgeo, y="canton_mean_rain"),
275
+ lm.beta(MOD=b9, dta=prop_data_wgeo, y="canton_land_suit"))
276
+
277
+ beta_ses <- c(lm.beta.ses(MOD=b0, dta=prop_data_wgeo, y="miaze_suit"),
278
+ lm.beta.ses(MOD=b1, dta=prop_data_wgeo, y="sorghum_suit"),
279
+ lm.beta.ses(MOD=b2, dta=prop_data_wgeo, y="bean_suit"),
280
+ lm.beta.ses(MOD=b3, dta=prop_data_wgeo, y="rice_suit"),
281
+ lm.beta.ses(MOD=b4, dta=prop_data_wgeo, y="cotton_suit"),
282
+ lm.beta.ses(MOD=b5, dta=prop_data_wgeo, y="sugarcane_suit"),
283
+ lm.beta.ses(MOD=b6, dta=prop_data_wgeo, y="canton_coffee_suit"),
284
+ lm.beta.ses(MOD=b7, dta=prop_data_wgeo, y="canton_elev_dem_30sec"),
285
+ lm.beta.ses(MOD=b8, dta=prop_data_wgeo, y="canton_mean_rain"),
286
+ lm.beta.ses(MOD=b9, dta=prop_data_wgeo, y="canton_land_suit"))
287
+
288
+ yvars<-c("Maize Suitability","Sorghum Suitability","Bean Suitability","Rice Suitability","Cotton Suitability","Sugar Cane Suitability","Coffee Suitability","Elevation","Precipitation","Land Suitability")
289
+ geo_vars <- c("miaze_suit","sorghum_suit","bean_suit","rice_suit","cotton_suit",
290
+ "sugarcane_suit", "canton_coffee_suit", "canton_elev_dem_30sec",
291
+ "canton_mean_rain","canton_land_suit")
292
+ betas <- cbind(yvars,beta_coefs,beta_ses)
293
+ ests <- cbind(geo_vars, c(b0$coef[1],b1$coef[1],b2$coef[1],b3$coef[1],b4$coef[1],b5$coef[1],b6$coef[1],b7$coef[1],b8$coef[1],b9$coef[1]),
294
+ c(b0$se[1],b1$se[1],b2$se[1],b3$se[1],b4$se[1],b5$se[1],b6$se[1],b7$coef[1],b8$se[1],b9$se[1]))
295
+ # Save estimates for un-balancedness exercise:
296
+ write_dta(as.data.frame(ests),path="./Output/balance_ests.dta")
297
+
298
+ row.names(betas)<-NULL
299
+
300
+ MatrixofModels <- as.data.frame(as.matrix(betas))
301
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError")
302
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = rev(c("Land Suitability", "Precipitation", "Elevation", "Coffee Suitability", "Sugar Cane Suitability", "Cotton Suitability", "Maize Suitability", "Bean Suitability", "Rice Suitability", "Sorghum Suitability")))# MatrixofModels$IV)
303
+ MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
304
+
305
+
306
+ ###################
307
+ ## BALANCE FIGURE:
308
+ ##################
309
+
310
+ # Plot:
311
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
312
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
313
+ ylab = NULL, xlab = NULL)
314
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
315
+ # Stupid fix to fix the scales overlapping on the bottom:
316
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.0, alpha = 0.05)
317
+ #OutputPlot <- OutputPlot + facet_grid(~ ModelName) + coord_flip() + theme_bw() + ylab("\nStandardized Effect")
318
+ OutputPlot <- OutputPlot + coord_flip() + theme_classic() + ylab("\nStandardized Effect") +
319
+ xlab("")
320
+
321
+ # Save:
322
+ OutputPlot + scale_y_continuous(breaks = seq(-0.4, 0.4,0.1)) + aesthetics
323
+
324
+ ggsave(filename="./Output/CoefPlot_Balance_PropLevel1980.pdf",width = 6, height=4)
325
+
326
+
327
+ ############################
328
+ ## SELECTIVE SORTING FIGURE:
329
+ ############################
330
+
331
+ require(rdd)
332
+
333
+ ### FIXING X LIM & FONT:
334
+ DCdensity2 <- function (runvar, cutpoint, bin = NULL, bw = NULL, verbose = FALSE,
335
+ plot = TRUE, ext.out = FALSE, htest = FALSE, my_xlim = c(-0.5,0.5)) # my_xlim param added
336
+ {
337
+ runvar <- runvar[complete.cases(runvar)]
338
+ rn <- length(runvar)
339
+ rsd <- sd(runvar)
340
+ rmin <- min(runvar)
341
+ rmax <- max(runvar)
342
+ if (missing(cutpoint)) {
343
+ if (verbose)
344
+ cat("Assuming cutpoint of zero.\n")
345
+ cutpoint <- 0
346
+ }
347
+ if (cutpoint <= rmin | cutpoint >= rmax) {
348
+ stop("Cutpoint must lie within range of runvar")
349
+ }
350
+ if (is.null(bin)) {
351
+ bin <- 2 * rsd * rn^(-1/2)
352
+ if (verbose)
353
+ cat("Using calculated bin size: ", sprintf("%.3f",
354
+ bin), "\n")
355
+ }
356
+ l <- floor((rmin - cutpoint)/bin) * bin + bin/2 + cutpoint
357
+ r <- floor((rmax - cutpoint)/bin) * bin + bin/2 + cutpoint
358
+ lc <- cutpoint - (bin/2)
359
+ rc <- cutpoint + (bin/2)
360
+ j <- floor((rmax - rmin)/bin) + 2
361
+ binnum <- round((((floor((runvar - cutpoint)/bin) * bin +
362
+ bin/2 + cutpoint) - l)/bin) + 1)
363
+ cellval <- rep(0, j)
364
+ for (i in seq(1, rn)) {
365
+ cnum <- binnum[i]
366
+ cellval[cnum] <- cellval[cnum] + 1
367
+ }
368
+ cellval <- (cellval/rn)/bin
369
+ cellmp <- seq(from = 1, to = j, by = 1)
370
+ cellmp <- floor(((l + (cellmp - 1) * bin) - cutpoint)/bin) *
371
+ bin + bin/2 + cutpoint
372
+ if (is.null(bw)) {
373
+ leftofc <- round((((floor((lc - cutpoint)/bin) * bin +
374
+ bin/2 + cutpoint) - l)/bin) + 1)
375
+ rightofc <- round((((floor((rc - cutpoint)/bin) * bin +
376
+ bin/2 + cutpoint) - l)/bin) + 1)
377
+ if (rightofc - leftofc != 1) {
378
+ stop("Error occurred in bandwidth calculation")
379
+ }
380
+ cellmpleft <- cellmp[1:leftofc]
381
+ cellmpright <- cellmp[rightofc:j]
382
+ P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T),
383
+ subset = cellmp < cutpoint)
384
+ mse4 <- summary(P.lm)$sigma^2
385
+ lcoef <- coef(P.lm)
386
+ fppleft <- 2 * lcoef[3] + 6 * lcoef[4] * cellmpleft +
387
+ 12 * lcoef[5] * cellmpleft * cellmpleft
388
+ hleft <- 3.348 * (mse4 * (cutpoint - l)/sum(fppleft *
389
+ fppleft))^(1/5)
390
+ P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T),
391
+ subset = cellmp >= cutpoint)
392
+ mse4 <- summary(P.lm)$sigma^2
393
+ rcoef <- coef(P.lm)
394
+ fppright <- 2 * rcoef[3] + 6 * rcoef[4] * cellmpright +
395
+ 12 * rcoef[5] * cellmpright * cellmpright
396
+ hright <- 3.348 * (mse4 * (r - cutpoint)/sum(fppright *
397
+ fppright))^(1/5)
398
+ bw = 0.5 * (hleft + hright)
399
+ if (verbose)
400
+ cat("Using calculated bandwidth: ", sprintf("%.3f",
401
+ bw), "\n")
402
+ }
403
+ if (sum(runvar > cutpoint - bw & runvar < cutpoint) == 0 |
404
+ sum(runvar < cutpoint + bw & runvar >= cutpoint) == 0)
405
+ stop("Insufficient data within the bandwidth.")
406
+ if (plot) {
407
+ d.l <- data.frame(cellmp = cellmp[cellmp < cutpoint],
408
+ cellval = cellval[cellmp < cutpoint], dist = NA,
409
+ est = NA, lwr = NA, upr = NA)
410
+ pmin <- cutpoint - 2 * rsd
411
+ pmax <- cutpoint + 2 * rsd
412
+ for (i in 1:nrow(d.l)) {
413
+ d.l$dist <- d.l$cellmp - d.l[i, "cellmp"]
414
+ w <- kernelwts(d.l$dist, 0, bw, kernel = "triangular")
415
+ newd <- data.frame(dist = 0)
416
+ pred <- predict(lm(cellval ~ dist, weights = w, data = d.l),
417
+ interval = "confidence", newdata = newd)
418
+ d.l$est[i] <- pred[1]
419
+ d.l$lwr[i] <- pred[2]
420
+ d.l$upr[i] <- pred[3]
421
+ }
422
+ d.r <- data.frame(cellmp = cellmp[cellmp >= cutpoint],
423
+ cellval = cellval[cellmp >= cutpoint], dist = NA,
424
+ est = NA, lwr = NA, upr = NA)
425
+ for (i in 1:nrow(d.r)) {
426
+ d.r$dist <- d.r$cellmp - d.r[i, "cellmp"]
427
+ w <- kernelwts(d.r$dist, 0, bw, kernel = "triangular")
428
+ newd <- data.frame(dist = 0)
429
+ pred <- predict(lm(cellval ~ dist, weights = w, data = d.r),
430
+ interval = "confidence", newdata = newd)
431
+ d.r$est[i] <- pred[1]
432
+ d.r$lwr[i] <- pred[2]
433
+ d.r$upr[i] <- pred[3]
434
+ }
435
+ plot(d.l$cellmp, d.l$est, lty = 1, lwd = 2, col = "black", # xlim set here based on the parameter
436
+ type = "l", xlim = my_xlim, ylim = c(min(cellval[cellmp <=
437
+ pmax & cellmp >= pmin]), max(cellval[cellmp <=
438
+ pmax & cellmp >= pmin])), xlab = NA, ylab = NA,
439
+ main = NA)
440
+ lines(d.l$cellmp, d.l$lwr, lty = 2, lwd = 1, col = "black",
441
+ type = "l")
442
+ lines(d.l$cellmp, d.l$upr, lty = 2, lwd = 1, col = "black",
443
+ type = "l")
444
+ lines(d.r$cellmp, d.r$est, lty = 1, lwd = 2, col = "black",
445
+ type = "l")
446
+ lines(d.r$cellmp, d.r$lwr, lty = 2, lwd = 1, col = "black",
447
+ type = "l")
448
+ lines(d.r$cellmp, d.r$upr, lty = 2, lwd = 1, col = "black",
449
+ type = "l")
450
+ points(cellmp, cellval, type = "p", pch = 20)
451
+ }
452
+ cmp <- cellmp
453
+ cval <- cellval
454
+ padzeros <- ceiling(bw/bin)
455
+ jp <- j + 2 * padzeros
456
+ if (padzeros >= 1) {
457
+ cval <- c(rep(0, padzeros), cellval, rep(0, padzeros))
458
+ cmp <- c(seq(l - padzeros * bin, l - bin, bin), cellmp,
459
+ seq(r + bin, r + padzeros * bin, bin))
460
+ }
461
+ dist <- cmp - cutpoint
462
+ w <- 1 - abs(dist/bw)
463
+ w <- ifelse(w > 0, w * (cmp < cutpoint), 0)
464
+ w <- (w/sum(w)) * jp
465
+ fhatl <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]]
466
+ w <- 1 - abs(dist/bw)
467
+ w <- ifelse(w > 0, w * (cmp >= cutpoint), 0)
468
+ w <- (w/sum(w)) * jp
469
+ fhatr <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]]
470
+ thetahat <- log(fhatr) - log(fhatl)
471
+ sethetahat <- sqrt((1/(rn * bw)) * (24/5) * ((1/fhatr) +
472
+ (1/fhatl)))
473
+ z <- thetahat/sethetahat
474
+ p <- 2 * pnorm(abs(z), lower.tail = FALSE)
475
+ if (verbose) {
476
+ cat("Log difference in heights is ", sprintf("%.3f",
477
+ thetahat), " with SE ", sprintf("%.3f", sethetahat),
478
+ "\n")
479
+ cat(" this gives a z-stat of ", sprintf("%.3f", z),
480
+ "\n")
481
+ cat(" and a p value of ", sprintf("%.3f", p), "\n")
482
+ }
483
+ if (ext.out)
484
+ return(list(theta = thetahat, se = sethetahat, z = z,
485
+ p = p, binsize = bin, bw = bw, cutpoint = cutpoint,
486
+ data = data.frame(cellmp, cellval)))
487
+ else if (htest) {
488
+ structure(list(statistic = c(z = z), p.value = p, method = "McCrary (2008) sorting test",
489
+ parameter = c(binwidth = bin, bandwidth = bw, cutpoint = cutpoint),
490
+ alternative = "no apparent sorting"), class = "htest")
491
+ }
492
+ else return(p)
493
+ }
494
+
495
+
496
+ prop_subset <- prop_data[which(prop_data$Total_Propretario < 1500 & prop_data$Total_Propretario >180),]
497
+ pdf(file="./Output/McCrarySorting_PropLevel.pdf", height=6, width=9, paper = "USr", family = "Palatino")
498
+ DCdensity2(runvar = prop_subset$Total_Propretario,cutpoint = 500,plot = TRUE,verbose = TRUE, ext.out = FALSE, bw=350, my_xlim = c(200,1000))
499
+ abline(v=500,col=c("red"))
500
+ #par(family = 'sans') # the default of R
501
+ title(xlab="Cumulative Landholdings (ha)", ylab="Density")
502
+ dev.off()
503
+
14/replication_package/Replication/Code/ESLR_CensusMigration.R ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################################
2
+ ##### El Salvador - Migration Outcomes - Canton-Level - Pop Census #####
3
+ ########################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(sandwich) # robust se's
26
+ require(zoo) # filling in
27
+ require(fuzzyjoin) # approximate string matching
28
+ require(haven)
29
+ require(stringi)
30
+
31
+
32
+ ########################################
33
+
34
+ # Approximate String Matching Funtion
35
+
36
+ string_match <- function(string_to_match, options, smethod="osa") {
37
+ if(string_to_match!="") {
38
+ sdists <- stringdist(string_to_match, options, method=smethod)
39
+ ind <- which(sdists == min(sdists))
40
+ if(length(ind) != 1) {
41
+ ind <- ind[1] # Assumes first index is the most common string to match.
42
+ }
43
+ return(options[ind])
44
+ } else {
45
+ return("")
46
+ }
47
+ }
48
+
49
+ as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} # Function to turn factor vars to numeric variables correctly.
50
+
51
+ ########################################
52
+
53
+ ## Read in Data:
54
+ cantons <- read_dta(file="./Output/cantons_wGeoCovariates.dta")
55
+
56
+ # Note: Data doesn't have main RD variables of interest, need to merge them in:
57
+ # Vars created in ESLR_AnalysisConflictData.R
58
+ canton_rd_vars <- read.csv(file="./Data/conflict_canton.csv", header=TRUE)
59
+ # canton_rd_vars <- read.csv(file="./R/Output/conflict_canton_subset.csv", header=TRUE)
60
+
61
+ # Keep Vars of Interest and Merge in:
62
+ canton_rd_vars <- dplyr::select(canton_rd_vars,CODIGO,num_holdings:max_above_500)
63
+ #cantons <- dplyr::select(cantons,-reform)
64
+ cantons <- left_join(cantons,canton_rd_vars, by="CODIGO")
65
+
66
+ cantons$CODIGO_NOM <- as.character(cantons$CODIGO_)
67
+
68
+ ########################################
69
+
70
+ poblaccion_section <- read_sav(file = "./Data/poblacion.sav")
71
+
72
+ ########################################
73
+
74
+ cantons_popcensus <- dplyr::select(poblaccion_section,
75
+ gender=S06P02,
76
+ age=S06P03A,
77
+ S06P07A, S06P08A1, S06P08A2,
78
+ DEPDSC, MUNDSC, CANDSC,
79
+ literate = S06P09,
80
+ educated = S06P10,
81
+ educ_level = S06P11A,
82
+ finished_hs = S06P11B,
83
+ S06P22)
84
+
85
+
86
+ cantons_popcensus <- mutate(cantons_popcensus,
87
+ born_same_as_mother= ifelse(S06P07A < 3,S06P07A,NA) ,
88
+ lived_canton_always = ifelse(S06P08A1 < 3,S06P08A1,NA),
89
+ lived_canton_year = ifelse(S06P08A2>0,S06P08A2,NA),
90
+ public_sector_worker = ifelse(S06P22 == 1, 1,
91
+ ifelse(is.na(S06P22) | S06P22==-2,NA, 0)),
92
+ pop = 1,
93
+ CODIGO_NOM = toupper(stri_trans_general(paste(DEPDSC, MUNDSC, CANDSC,sep=", "),"Latin-ASCII")))
94
+
95
+ cantons_popcensus <- mutate(cantons_popcensus,
96
+ born_same_as_mother= ifelse(born_same_as_mother ==2 ,0,born_same_as_mother) ,
97
+ lived_canton_always = ifelse(lived_canton_always ==2 ,0,lived_canton_always),
98
+ educ_yrs = 1*(educ_level==1)+6*(educ_level==2)+ 9*(educ_level==3)+
99
+ 11*(educ_level==4)+13*(educ_level==5)+ 15*(educ_level==6)+
100
+ 16*(educ_level==7)+ 17*(educ_level==8)+ 20*(educ_level==9))
101
+
102
+ cantons_popcensus <- filter(cantons_popcensus, CANDSC != "AREA URBANA")
103
+
104
+ # Summarise to make merging faster:
105
+ cantons_popcensus <- cantons_popcensus %>%
106
+ group_by(CODIGO_NOM) %>%
107
+ summarise_if(is.numeric, mean, na.rm = TRUE)
108
+
109
+ max.dist <- 15 # since there are errors in mun names + state names
110
+
111
+ # inds <- amatch(cantons_popcensus$CODIGO_NOM, cantons$CODIGO_NOM, maxDist=max.dist) # can try different maxDists and different methods (using levenstein right now as default i believe)
112
+ # # View(t(rbind(cantons_literacy$CODIGO_NOM,as.character(cantons$CODIGO_NOM[inds]))))
113
+ # cantons_popcensus$CODIGO <- cantons$CODIGO[inds]
114
+ # cantons <- left_join(cantons, cantons_popcensus, by="CODIGO")
115
+
116
+ max.dist <- 10 # since there are errors in mun names + state names
117
+ cantons <- stringdist_join(cantons, cantons_popcensus,
118
+ by = c("CODIGO_NOM" = "CODIGO_NOM"),
119
+ mode = "left",
120
+ method = "jw",
121
+ max_dist = max.dist,
122
+ distance_col = "dist")
123
+
124
+ cantons <- cantons %>%
125
+ group_by(CODIGO_NOM.x) %>%
126
+ top_n(1, -dist) %>% ungroup()
127
+
128
+ as.numeric.factor <- function(x) {as.numeric(levels(x))[x]}
129
+ as.numeric.factor.wcheck <- function(x) {if(class(x)=="factor") { return(as.numeric(levels(x))[x]) } else { return(x)}}
130
+
131
+
132
+ ### Using Share Above 500
133
+ cantons$share_above500 <- cantons$num_above500/(cantons$num_above500 + cantons$num_below500)
134
+
135
+ ## Same Canton Always:
136
+ b0 <- lm(lived_canton_always ~ share_above500 + gender + age + age^2 , data=cantons)
137
+ cov0 <- vcovHC(b0, type = "HC1")
138
+ robust.se0 <- sqrt(diag(cov0))
139
+ summary(b0)
140
+
141
+ ## Same Canton Year:
142
+ b1 <- lm(lived_canton_year ~ share_above500 + gender + age + age^2, data=cantons)
143
+ cov1 <- vcovHC(b1, type = "HC1")
144
+ robust.se1 <- sqrt(diag(cov1))
145
+ summary(b1)
146
+
147
+ ## Same Canton - Mother:
148
+ b2 <- lm(born_same_as_mother ~ share_above500 + gender + age + age^2, data=cantons)
149
+ cov2 <- vcovHC(b2, type = "HC1")
150
+ robust.se2 <- sqrt(diag(cov2))
151
+ summary(b2)
152
+
153
+
154
+ stargazer(b0,b1,b2,
155
+ type = "latex",
156
+ se = list(robust.se0, robust.se1,robust.se2),
157
+ keep = c("share_above500"),
158
+ digits = 4,
159
+ out="./Output/MigrationOutcomes_CantonLevel.tex")
160
+
161
+
162
+ ########################################
163
+
164
+ ## Now for highly educated sample
165
+
166
+ cantons_popcensus <- dplyr::select(poblaccion_section,
167
+ gender=S06P02,
168
+ age=S06P03A,
169
+ S06P07A, S06P08A1, S06P08A2,
170
+ DEPDSC, MUNDSC, CANDSC,
171
+ literate = S06P09,
172
+ educated = S06P10,
173
+ educ_level = S06P11A,
174
+ finished_hs = S06P11B)
175
+
176
+ cantons_popcensus <- mutate(cantons_popcensus,
177
+ born_same_as_mother= ifelse(S06P07A < 3,S06P07A,NA) ,
178
+ lived_canton_always = ifelse(S06P08A1 < 3,S06P08A1,NA),
179
+ lived_canton_year = ifelse(S06P08A2>0,S06P08A2,NA),
180
+ finished_hs = ifelse(finished_hs>0,finished_hs, NA),
181
+ CODIGO_NOM = toupper(stri_trans_general(paste(DEPDSC, MUNDSC, CANDSC,sep=", "),"Latin-ASCII")))
182
+
183
+ cantons_popcensus <- mutate(cantons_popcensus,
184
+ born_same_as_mother= ifelse(born_same_as_mother ==2 ,0,born_same_as_mother) ,
185
+ finished_hs = ifelse(finished_hs==2, 0, finished_hs),
186
+ lived_canton_always = ifelse(lived_canton_always ==2 ,0,lived_canton_always)
187
+ )
188
+
189
+ cantons_popcensus_educ <- filter(cantons_popcensus,
190
+ finished_hs==1)
191
+
192
+ cantons_popcensus_educ <- filter(cantons_popcensus_educ, CANDSC != "AREA URBANA")
193
+
194
+ # Summarise to make merging faster:
195
+ cantons_popcensus_educ <- cantons_popcensus_educ %>%
196
+ group_by(CODIGO_NOM) %>%
197
+ summarise_if(is.numeric, mean, na.rm = TRUE)
198
+
199
+ max.dist <- 15 # since there are errors in mun names + state names
200
+
201
+ cantons <- read_dta(file="./Output/cantons_wGeoCovariates.dta")
202
+ cantons <- left_join(cantons,canton_rd_vars, by="CODIGO")
203
+
204
+ cantons$CODIGO_NOM <- as.character(cantons$CODIGO_)
205
+
206
+
207
+ max.dist <- 10 # since there are errors in mun names + state names
208
+ cantons <- stringdist_join(cantons, cantons_popcensus_educ,
209
+ by = c("CODIGO_NOM" = "CODIGO_NOM"),
210
+ mode = "left",
211
+ method = "jw",
212
+ max_dist = max.dist,
213
+ distance_col = "dist")
214
+
215
+ cantons <- cantons %>%
216
+ group_by(CODIGO_NOM.x) %>%
217
+ top_n(1, -dist) %>% ungroup()
218
+
219
+ as.numeric.factor <- function(x) {as.numeric(levels(x))[x]}
220
+ as.numeric.factor.wcheck <- function(x) {if(class(x)=="factor") { return(as.numeric(levels(x))[x]) } else { return(x)}}
221
+
222
+ ### Using Share Above 500
223
+ cantons$share_above500 <- cantons$num_above500/(cantons$num_above500 + cantons$num_below500)
224
+
225
+ ## Same Canton Always:
226
+ b0 <- lm(lived_canton_always ~ share_above500 + gender + age + age^2 , data=cantons)
227
+ cov0 <- vcovHC(b0, type = "HC1")
228
+ robust.se0 <- sqrt(diag(cov0))
229
+ summary(b0)
230
+
231
+ ## Same Canton Year:
232
+ b1 <- lm(lived_canton_year ~ share_above500 + gender + age + age^2, data=cantons)
233
+ cov1 <- vcovHC(b1, type = "HC1")
234
+ robust.se1 <- sqrt(diag(cov1))
235
+ summary(b1)
236
+
237
+ ## Same Canton - Mother:
238
+ b2 <- lm(born_same_as_mother ~ share_above500 + gender + age + age^2, data=cantons)
239
+ cov2 <- vcovHC(b2, type = "HC1")
240
+ robust.se2 <- sqrt(diag(cov2))
241
+ summary(b2)
242
+
243
+
244
+ stargazer(b0,b1,b2,
245
+ type = "latex",
246
+ se = list(robust.se0, robust.se1,robust.se2),
247
+ keep = c("share_above500"),
248
+ digits = 4,
249
+ out="./Output/MigrationOutcomes_CantonLevel_CompletedHS.tex")
250
+
251
+
252
+
14/replication_package/Replication/Code/ESLR_Digits.R ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###########################################################
2
+ ##### ESLR - DATA MANIPULATION CHECKS - AgCensus Data #####
3
+ ###########################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(RColorBrewer) # creates nice color schemes
10
+ require(scales) # customize scales
11
+ require(plyr) # join function
12
+ require(dplyr)
13
+ require(rdrobust) # rd estimation tools
14
+ require(stargazer) # format tables
15
+ require(haven)
16
+ require(readstata13)
17
+ require(TOSTER)
18
+ require(benford.analysis) # Tests for data manipulation
19
+
20
+ par(mar=c(1,1,1,1))
21
+
22
+ ########################################
23
+
24
+ ## Load IV Censo Agropecuario Data (with reform data):
25
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
26
+
27
+ ########################################
28
+
29
+ ## Making Standarized Coefficient Plots:
30
+
31
+ # Set aesthetics:
32
+ aesthetics <- list(
33
+ theme_bw(),
34
+ theme(legend.title=element_blank(),
35
+ #legend.justification=c(0,0),
36
+ #legend.position= "right", #c(1,0),
37
+ #panel.grid.minor=element_blank(),
38
+ #panel.grid.major=element_blank(),
39
+ plot.background=element_rect(colour="white",fill="white"),
40
+ panel.grid.major=element_blank(),
41
+ panel.grid.minor=element_blank(),
42
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
43
+ axis.title.y=element_text(face="bold.italic"),
44
+ axis.title.x=element_text(face="bold.italic")))
45
+
46
+ ########################################
47
+
48
+ censo_ag_wreform$Maize_Qt_ap <- censo_ag_wreform$Maize_Yield * censo_ag_wreform$AREA_HECTAREA
49
+ censo_ag_wreform$Beans_Qt_ap <- censo_ag_wreform$Beans_Yield * censo_ag_wreform$AREA_HECTAREA
50
+ censo_ag_wreform$Coffee_Qt_ap <- censo_ag_wreform$Coffee_Yield * censo_ag_wreform$AREA_HECTAREA
51
+ censo_ag_wreform$SugarCane_Qt_ap <- censo_ag_wreform$SugarCane_Yield * censo_ag_wreform$AREA_HECTAREA
52
+
53
+ ########################################
54
+
55
+ ## Testing Bunching in the Staple Crop Output Data:
56
+
57
+ # MAIZE:
58
+ bfd.coops1 <- benford(censo_ag_wreform$Maize_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
59
+ bfd.haciendas1 <- benford(censo_ag_wreform$Maize_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
60
+
61
+ ks.test(bfd.coops1$data$data.digits,
62
+ bfd.haciendas1$data$data.digits)
63
+
64
+ bfd.coops <- benford(censo_ag_wreform$Maize_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
65
+ bfd.haciendas <- benford(censo_ag_wreform$Maize_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
66
+
67
+ ks.test(bfd.coops$data$data.digits,
68
+ bfd.haciendas$data$data.digits)
69
+
70
+ # Beans:
71
+ bfd.coops1 <- benford(censo_ag_wreform$Beans_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
72
+ bfd.haciendas1 <- benford(censo_ag_wreform$Beans_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
73
+
74
+ ks.test(bfd.coops1$data$data.digits,
75
+ bfd.haciendas1$data$data.digits)
76
+
77
+ bfd.coops <- benford(censo_ag_wreform$Beans_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
78
+ bfd.haciendas <- benford(censo_ag_wreform$Beans_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
79
+
80
+ ks.test(bfd.coops$data$data.digits,
81
+ bfd.haciendas$data$data.digits)
82
+
83
+ # Coffee:
84
+ bfd.coops1 <- benford(censo_ag_wreform$Coffee_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
85
+ bfd.haciendas1 <- benford(censo_ag_wreform$Coffee_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
86
+
87
+ ks.test(bfd.coops1$data$data.digits,
88
+ bfd.haciendas1$data$data.digits)
89
+
90
+ bfd.coops <- benford(censo_ag_wreform$Coffee_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
91
+ bfd.haciendas <- benford(censo_ag_wreform$Coffee_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
92
+
93
+ ks.test(bfd.coops$data$data.digits,
94
+ bfd.haciendas$data$data.digits)
95
+
96
+ # Sugar Cane:
97
+ bfd.coops1 <- benford(censo_ag_wreform$SugarCane_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
98
+ bfd.haciendas1 <- benford(censo_ag_wreform$SugarCane_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=1)
99
+
100
+ ks.test(bfd.coops1$data$data.digits,
101
+ bfd.haciendas1$data$data.digits)
102
+
103
+ bfd.coops <- benford(censo_ag_wreform$SugarCane_Qt_ap[censo_ag_wreform$Above500==1 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
104
+ bfd.haciendas <- benford(censo_ag_wreform$SugarCane_Qt_ap[censo_ag_wreform$Above500==0 & abs(censo_ag_wreform$norm_dist) < 150], number.of.digits=2)
105
+
106
+ ks.test(bfd.coops$data$data.digits,
107
+ bfd.haciendas$data$data.digits)
108
+
109
+ ########################################
110
+
111
+ ## Functions to trim (prone to huge outliers, especially when standardizing)
112
+ winsor1 <- function (x, fraction=.01)
113
+ {
114
+ if(length(fraction) != 1 || fraction < 0 ||
115
+ fraction > 0.5) {
116
+ stop("bad value for 'fraction'")
117
+ }
118
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
119
+ x[ x < lim[1] ] <- lim[1] #lim[1] 8888
120
+ x[ x > lim[2] ] <- lim[2] #lim[2] 8888
121
+ x
122
+ }
123
+
124
+
125
+ ########################################
126
+
127
+ ## Differences in Bunching:
128
+
129
+ # Create indicator = 1 if ends on 0 or 5:
130
+ censo_ag_wreform <- mutate(censo_ag_wreform,
131
+ Maize_Bunch = ifelse(Maize_Qt_ap %% 10 == 0,1,0),
132
+ Beans_Bunch = ifelse(winsor1(Beans_Qt_ap,fraction = 0.025) %% 10 == 0,1,0),
133
+ Coffee_Bunch = ifelse(Coffee_Qt_ap %% 10 == 0,1,0),
134
+ Sugar_Bunch = ifelse(SugarCane_Qt_ap %% 10 == 0,1,0))
135
+
136
+
137
+ # RD - Bunching:
138
+
139
+ num_ests <- 1*4
140
+
141
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
142
+ y_var = rep(0,num_ests),
143
+ label = rep(0, num_ests))
144
+
145
+ count<-1
146
+ rdests <- rdrobust(y = (censo_ag_wreform$Maize_Bunch),
147
+ x=censo_ag_wreform$norm_dist,c = 0,p = 1,q=2,
148
+ bwselect = "mserd", cluster=censo_ag_wreform$Expropretario_ISTA)
149
+ rd_estimates[count,c("estimates")] <- rdests$coef[1]
150
+ rd_estimates[count,c("ses")] <- rdests$se[1]
151
+ rd_estimates[count,c("y_var")] <- "Maize"
152
+ rd_estimates[count,c("label")] <- paste("","Bunching at multiples of 10",sep="")
153
+ count<-count+1
154
+
155
+ rdests <- rdrobust(y = (censo_ag_wreform$Beans_Bunch),
156
+ x=censo_ag_wreform$norm_dist,c = 0,p = 1,q=2,
157
+ bwselect = "mserd", cluster=censo_ag_wreform$Expropretario_ISTA)
158
+ rd_estimates[count,c("estimates")] <- rdests$coef[1]
159
+ rd_estimates[count,c("ses")] <- rdests$se[1]
160
+ rd_estimates[count,c("y_var")] <- "Beans"
161
+ rd_estimates[count,c("label")] <- paste("","Bunching at multiples of 10",sep="")
162
+ count<-count+1
163
+
164
+ rdests <- rdrobust(y = (censo_ag_wreform$Coffee_Bunch),
165
+ x=censo_ag_wreform$norm_dist,c = 0,p = 1,q=2,
166
+ bwselect = "mserd", cluster=censo_ag_wreform$Expropretario_ISTA)
167
+ rd_estimates[count,c("estimates")] <- rdests$coef[1]
168
+ rd_estimates[count,c("ses")] <- rdests$se[1]
169
+ rd_estimates[count,c("y_var")] <- "Coffee"
170
+ rd_estimates[count,c("label")] <- paste("","Bunching at multiples of 10",sep="")
171
+ count<-count+1
172
+
173
+ rdests <- rdrobust(y = (censo_ag_wreform$Sugar_Bunch),
174
+ x=censo_ag_wreform$norm_dist,c = 0,p = 1,q=2,
175
+ bwselect = "mserd", cluster=censo_ag_wreform$Expropretario_ISTA)
176
+ rd_estimates[count,c("estimates")] <- rdests$coef[1]
177
+ rd_estimates[count,c("ses")] <- rdests$se[1]
178
+ rd_estimates[count,c("y_var")] <- "Sugar Cane"
179
+ rd_estimates[count,c("label")] <- paste("","Bunching at multiples of 10",sep="")
180
+ count<-count+1
181
+
182
+ ########################################
183
+
184
+ ## Making Standarized Coefficient Plots:
185
+
186
+ # Set aesthetics:
187
+ aesthetics <- list(
188
+ theme_bw(),
189
+ theme(legend.title=element_blank(),
190
+ #legend.justification=c(0,0),
191
+ #legend.position= "right", #c(1,0),
192
+ #panel.grid.minor=element_blank(),
193
+ #panel.grid.major=element_blank(),
194
+ plot.background=element_rect(colour="black",fill="white"),
195
+ panel.grid.major=element_blank(),
196
+ panel.grid.minor=element_blank(),
197
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
198
+ axis.title.y=element_text(face="bold.italic"),
199
+ axis.title.x=element_text(face="bold.italic")))
200
+
201
+
202
+ ########################################
203
+
204
+
205
+ # Clean data for plotting:
206
+ alpha<- 0.05
207
+ Multiplier <- qnorm(1 - alpha / 2)
208
+
209
+ # Find the outcome var for each regression:
210
+ data <-rd_estimates
211
+
212
+ # Replace y_var with nice names:
213
+
214
+ # Now, keep only the betas of interest:
215
+ betas <- data
216
+ dim(betas)
217
+ betas<- betas[seq(dim(betas)[1],1),]
218
+
219
+ # Create Matrix for plotting:
220
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
221
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
222
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = c( "Sugar Cane",
223
+ "Coffee",
224
+ "Beans",
225
+ "Maize"))
226
+ MatrixofModels$Group <- factor(MatrixofModels$Group) #levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
227
+
228
+
229
+ # Plot:
230
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
231
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
232
+ ylab = NULL, xlab = NULL, facets=~ Group)
233
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
234
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\n RD Coefficient Estimate (Above 500 ha)") + aesthetics + xlab("")
235
+
236
+ # Save:
237
+ OutputPlot + coord_flip() #+ scale_y_continuous(breaks = seq(-1, 1,0.25))
238
+
239
+ ggsave(filename="./Output/CoefPlot_Bunching.pdf")
14/replication_package/Replication/Code/ESLR_EHPM_Consumption.do ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: EHPM Outcomes - RD Analysis - HH Survey ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ ***************************************
11
+ *** OUTCOME - HH CONSUMPTION LEVELS ***
12
+ ***************************************
13
+
14
+ use "Data/ehpm_consumptionmodule.dta", clear
15
+
16
+ gen hh_cons_pc_real = (year==2000)*hh_cons_pc*71.57/100 + ///
17
+ (year==2001)*hh_cons_pc*74.25/100 + (year==2004)*hh_cons_pc*80.68/100 + ///
18
+ (year==2005)*hh_cons_pc*84.47/100 + (year==2006)*hh_cons_pc*87.88/100 + ///
19
+ (year==2007)*hh_cons_pc*91.90/100 + (year==2008)*hh_cons_pc*98.06/100 + ///
20
+ (year==2009)*hh_cons_pc*99.10/100 + (year==2011)*hh_cons_pc*105.13/100 + ///
21
+ (year==2012)*hh_cons_pc*106.95/100 + (year==2013)*hh_cons_pc*107.79/100
22
+ winsor2 hh_cons_pc_real, replace cuts(0 98)
23
+
24
+ local cluster_level Expropretario_ISTA
25
+ local bwidth =300
26
+
27
+ reg hh_cons_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
28
+ sum hh_cons_pc_real if abs(norm_dist)<`bwidth'
29
+ outreg2 using "Output/Table_ConsumptionCompression.tex", replace se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
30
+
31
+ local bwidth = 150
32
+ reg hh_cons_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
33
+ sum hh_cons_pc_real if abs(norm_dist)<`bwidth'
34
+ outreg2 using "Output/Table_ConsumptionCompression.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
35
+
36
+
37
+ preserve
38
+
39
+ collapse (iqr) hh_cons_pc_real (mean) norm_dist Above500, by(match_id Expropretario_ISTA i_year* sex)
40
+
41
+ local bwidth =300
42
+
43
+
44
+ reg hh_cons_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
45
+ sum hh_cons_pc_real if abs(norm_dist)<`bwidth'
46
+ outreg2 using "Output/Table_ConsumptionCompression.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
47
+
48
+ local bwidth = 150
49
+
50
+ reg hh_cons_pc_real Above500 norm_dist c.norm_dist#Above500 i_year* sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
51
+ sum hh_cons_pc_real if abs(norm_dist)<`bwidth'
52
+ outreg2 using "Output/Table_ConsumptionCompression.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
53
+
54
+ restore
14/replication_package/Replication/Code/ESLR_EHPM_Educ.do ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: EHPM Outcomes - RD Analysis - HH Survey ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+
11
+ ***************************
12
+ *** OUTCOME - EDUCATION ***
13
+ ***************************
14
+
15
+
16
+ use "Data/ehpm_educmodule.dta", clear
17
+
18
+
19
+ local cluster_level Expropretario_ISTA
20
+
21
+
22
+ local bwidth =300
23
+ reg educ_yrs Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' & age > 25, cluster(`cluster_level')
24
+ sum educ_yrs if abs(norm_dist)<`bwidth'
25
+ outreg2 using "Output/Table_EHPM_Educ.tex", replace se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
26
+
27
+
28
+ local bwidth =300
29
+ reg literate Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' & age > 25 , cluster(`cluster_level')
30
+ sum literate if abs(norm_dist)<`bwidth'
31
+ outreg2 using "Output/Table_EHPM_Educ.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
32
+
33
+ ******************************
34
+ *** OUTCOME - AEG & Num HH ***
35
+ ******************************
36
+
37
+ local cluster_level Expropretario_ISTA
38
+
39
+ local bwidth =300
40
+ reg age Above500 norm_dist c.norm_dist#Above500 i_year* sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
41
+ sum age if abs(norm_dist)<`bwidth'
42
+ outreg2 using "Output/Table_EHPM_Age.tex", replace se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
43
+
44
+ local bwidth =300
45
+ reg num_hh Above500 norm_dist c.norm_dist#Above500 i_year* sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
46
+ sum num_hh if abs(norm_dist)<`bwidth'
47
+ outreg2 using "Output/Table_EHPM_Age.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
48
+
49
+
14/replication_package/Replication/Code/ESLR_EHPM_Mig.do ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: EHPM Outcomes - RD Analysis - HH Survey ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+
11
+ ***************************
12
+ *** OUTCOME - MIGRATION ***
13
+ ***************************
14
+
15
+
16
+ use "Data/ehpm_migmodule.dta", clear
17
+ local cluster_level Expropretario_ISTA
18
+
19
+ local bwidth =300
20
+ reg hh_memb_abroad Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
21
+ sum hh_memb_abroad if abs(norm_dist)<`bwidth'
22
+ outreg2 using "Output/Table_EHPM_Migration.tex", replace se tex nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
23
+
24
+
25
+ reg num_hh_memb_abroad Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
26
+ sum num_hh_memb_abroad if abs(norm_dist)<`bwidth'
27
+ outreg2 using "Output/Table_EHPM_Migration.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
28
+
29
+
30
+ reg length_recent_hh_memb_abroad Above500 norm_dist c.norm_dist#Above500 i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
31
+ sum length_recent_hh_memb_abroad if abs(norm_dist)<`bwidth'
32
+ outreg2 using "Output/Table_EHPM_Migration.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
14/replication_package/Replication/Code/ESLR_EHPM_PGs.do ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: EHPM Outcomes - RD Analysis - HH Survey ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ ************************************
11
+ *** OUTCOME - PUBLIC GOOD ACCESS ***
12
+ ************************************
13
+
14
+ use "Data/ehpm_pgmodule.dta", clear
15
+
16
+ ** To Store Results + Plot in R:
17
+ global tflist ""
18
+ global modseq=0
19
+ global modid = 1
20
+
21
+ local bwidth =300
22
+ local cluster_level "Expropretario_ISTA"
23
+
24
+ ** STD:
25
+ egen std_Above500 = std(Above500) if abs(norm_dist) < `bwidth'
26
+
27
+
28
+ foreach dep_var of varlist time_* {
29
+
30
+ clear matrix
31
+
32
+ global modseq=$modseq+1
33
+ tempfile tf$modseq
34
+
35
+ capture egen std_`dep_var' = std(`dep_var')
36
+
37
+ ** With Survey FEs and with baseline covariates + type fixed effects
38
+
39
+ * Type FEs:
40
+ capture drop i_type_`dep_var'*
41
+ tab type_`dep_var', gen(i_type_`dep_var')
42
+
43
+ * Reg:
44
+ reg std_`dep_var' std_Above500 norm_dist c.norm_dist#c.std_Above500 i_type_`dep_var'* i_year* age age2 sex if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
45
+ local count = `count' + 1
46
+ capture parmest, ylabel label idn($modseq) idstr("`dep_var'") saving(`tf$modseq',replace) flist(tflist)
47
+ }
48
+
49
+ preserve
50
+ dsconcat $tflist
51
+ sort idnum
52
+ outsheet using "Output/Parmest_EHPM_PGs.csv", replace comma
14/replication_package/Replication/Code/ESLR_EHPM_PGsCoefPlot.R ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #######################################################
2
+ ##### ESLR - COEFICIENT PLOTTING - HH SURVEY DATA #####
3
+ ############# COEF PLOTS OF PG OUTCOMES ###############
4
+ #######################################################
5
+
6
+ rm(list = ls()) # Clear variables
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(RColorBrewer) # creates nice color schemes
10
+ require(scales) # customize scales
11
+ require(plyr) # join function
12
+ require(dplyr)
13
+ require(tidyr)
14
+ require(extrafont)
15
+
16
+ ########################################
17
+
18
+ ## Note: This file reads in the coefficient output
19
+ ## and plots the coefficient estimates for the PG outcomes
20
+
21
+ ########################################
22
+
23
+ # Set aesthetics:
24
+ aesthetics <- list(#guides(color=guide_colorbar(reverse=FALSE)),
25
+ #guides(fill=FALSE),
26
+ #guides(shape=FALSE),
27
+ #guides(size=FALSE),
28
+ #coord_equal(),
29
+ theme_bw(),
30
+ theme(#text=element_text(family="Palatino"),
31
+ legend.title=element_blank(),
32
+ #legend.justification=c(0,0),
33
+ #legend.position= "right", #c(1,0),
34
+ panel.grid.minor=element_blank(),
35
+ panel.grid.major=element_blank(),
36
+ #plot.background=element_rect(colour="white",fill=white),
37
+ #panel.grid.major=element_blank(),
38
+ #panel.grid.minor=element_blank(),
39
+ axis.text.y=element_text(face="bold"),
40
+ axis.title.y=element_text(face="bold")))
41
+ #axis.text=element_blank(),
42
+ #axis.ticks=element_blank(),
43
+ #panel.border = element_blank()))
44
+
45
+ Multiplier <- 1.96
46
+
47
+ ########################################
48
+
49
+ # Read in parmests:
50
+ ests <- read.csv(file = "./Output/Parmest_EHPM_PGs.csv")
51
+ # Note, using the 300 ha bandwidth
52
+
53
+ ########################################
54
+
55
+ # Keep only coeffients of interest:
56
+
57
+ ests <- filter(ests, parm == "std_Above500")
58
+ ests$label <- as.character(ests$label)
59
+ #ests <- ests[dim(ests)[1]:1,]
60
+ ests$idstr <- c("Bank or Credit Association","Public Phone","Internet",
61
+ "Bus Stop", "Park and/or\nSoccer Field",
62
+ "Post Office", "Market", "Health Center",
63
+ "Police Station", "Paved Road")
64
+
65
+ ########################################
66
+
67
+
68
+ # Create Matrix for plotting:
69
+ MatrixofModels <- ests[c("idstr", "estimate","stderr","t","p")]
70
+ colnames(MatrixofModels) <- c("Dependent Variable", "Estimate", "StandardError", "TValue", "PValue")
71
+ MatrixofModels$`Dependent Variable` <- factor(MatrixofModels$`Dependent Variable`, levels = MatrixofModels$`Dependent Variable`)
72
+ #MatrixofModels$Legend <- c( " PCA Coefficient", rep(" Component Coefficients",dim(MatrixofModels)[1]-1))
73
+
74
+ # Plot:
75
+ OutputPlot <- qplot(`Dependent Variable`, Estimate, ymin = Estimate - Multiplier * StandardError,
76
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
77
+ ylab = NULL, xlab = NULL)
78
+
79
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
80
+ x_title <-expression(atop(bold("Dependent Variable "),italic("\n(Time to the Neearest)")))
81
+
82
+ OutputPlot <- OutputPlot + theme_bw() + ylab("Estimated Effect: Above 500 ha") +
83
+ aesthetics + xlab(x_title) + coord_flip()
84
+
85
+ OutputPlot
86
+
87
+ ggsave(filename="./Output/CoefPlot_PGDistance.pdf")
88
+
89
+
14/replication_package/Replication/Code/ESLR_EHPM_Sensitivity.do ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ capture log close
3
+ clear
4
+ set matsize 3000
5
+ set more off
6
+
7
+ *********************
8
+ *** Load the Data ***
9
+ *********************
10
+
11
+ use "./Data/ehpm_incomemodule_wreform.dta", clear
12
+
13
+ capture drop ln_hh_inc_pc hh_inc_pc_real ln_hh_inc_pc_real
14
+ gen ln_hh_inc_pc = log(hh_income_pc)
15
+ gen hh_inc_pc_real = (year==2000)*hh_income_pc*71.57/100 + ///
16
+ (year==2001)*hh_income_pc*74.25/100 + (year==2004)*hh_income_pc*80.68/100 + ///
17
+ (year==2005)*hh_income_pc*84.47/100 + (year==2006)*hh_income_pc*87.88/100 + ///
18
+ (year==2007)*hh_income_pc*91.90/100 + (year==2008)*hh_income_pc*98.06/100 + ///
19
+ (year==2009)*hh_income_pc*99.10/100 + (year==2011)*hh_income_pc*105.13/100 + ///
20
+ (year==2012)*hh_income_pc*106.95/100 + (year==2013)*hh_income_pc*107.79/100
21
+ gen ln_hh_inc_pc_real = log(hh_inc_pc_real )
22
+
23
+ ***************************************
24
+ *** SENSITIVITY LAND/ASSET EARNINGS ***
25
+ ***************************************
26
+
27
+ local count = 1
28
+
29
+ local cluster_level Expropretario_ISTA
30
+
31
+ foreach rate of numlist 0 57.17 114.15 201.13 {
32
+
33
+ capture drop asset_per_worker
34
+ gen asset_per_worker =0
35
+ replace asset_per_worker = ((`rate'*AREA_HECTAREA)/coop_size)/12 if reform==1
36
+ replace asset_per_worker = 0 if asset_per_worker==.
37
+ capture drop hh_income_pc_minus_asset
38
+ gen hh_income_pc_minus_asset = hh_inc_pc_real - asset_per_worker
39
+
40
+ local bwidth = 300
41
+
42
+ reg hh_income_pc_minus_asset Above500 norm_dist c.norm_dist#Above500 i_year* if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
43
+ sum hh_income_pc_minus_asset if abs(norm_dist)<`bwidth'
44
+ if(`count'==1) {
45
+ outreg2 using "./Output/Table_Earnings_Sensitivity.tex", replace se tex noobs nocons nor2 keep(Above500)addstat(Land Value,`rate', Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
46
+ }
47
+ else {
48
+ outreg2 using "./Output/Table_Earnings_Sensitivity.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Land Value,`rate', Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
49
+ }
50
+ local bwidth = 150
51
+
52
+ reg hh_income_pc_minus_asset Above500 norm_dist c.norm_dist#Above500 i_year* if abs(norm_dist) < `bwidth' , cluster(`cluster_level')
53
+ sum hh_income_pc_minus_asset if abs(norm_dist)<`bwidth'
54
+ outreg2 using "./Output/Table_Earnings_Sensitivity.tex", append se tex noobs nocons nor2 keep(Above500) addstat(Land Value,`rate', Observations, `e(N)', Clusters, `e(N_clust)', Mean Dep. Var., `r(mean)', Bandwidth, `bwidth')
55
+
56
+ *restore
57
+
58
+ local count = `count' + 1
59
+
60
+ }
14/replication_package/Replication/Code/ESLR_ESMap.R ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###############################################################
2
+ #### El Salvador - Land Reform - Map of Cantons and Reform ####
3
+ ###############################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(plyr) # join function
13
+ require(dplyr)
14
+ require(raster) # raster tools
15
+ require(tidyr)
16
+ require(readstata13)
17
+ require(haven)
18
+ require(exactextractr) # faster extract
19
+ require(sf) # faster extract
20
+ require(elevatr) # elevation data
21
+ require(rdrobust)
22
+ require(stringdist)
23
+
24
+ ############## LOAD DATA ################
25
+
26
+ ## Read in Data:
27
+ prop_data <- read.dta(file="./Data/prop_data.dta") %>% filter(reform==1, !is.na(CODIGO))
28
+ cantons <- st_read("./Data/cantons_wCodigos.shp")
29
+
30
+ # Set aesthetics:
31
+ aesthetics <- list(#guides(color=guide_colorbar(reverse=FALSE)),
32
+ #guides(fill=FALSE),
33
+ #guides(shape=FALSE),
34
+ #guides(size=FALSE),
35
+ theme_bw(),
36
+ theme(
37
+ text=element_text(family="Palatino"),
38
+ #legend.title=element_blank(),
39
+ #legend.justification=c(0,0),
40
+ #legend.position= "right", #c(1,0),
41
+ panel.border = element_blank(),
42
+ panel.grid.minor=element_blank(),
43
+ panel.grid.major=element_blank(),
44
+ axis.title.x=element_blank(),
45
+ axis.title.y=element_blank(),
46
+ axis.text=element_blank(),
47
+ axis.ticks=element_blank()))
48
+
49
+ #######################################
50
+ ## MAP CANTONS THAT EXPERIENCED REFORM:
51
+ #######################################
52
+
53
+ cantons$LR <- cantons$CODIGO %in% prop_data$CODIGO
54
+ cantons$LR <- ifelse(is.na(cantons$CODIGO),FALSE,cantons$LR)
55
+
56
+ cantons_simple <- st_simplify(cantons, dTolerance=0.001, preserveTopology = TRUE)
57
+ ggplot() + geom_sf(data=cantons_simple, aes(fill=factor(LR)),size=0.1) +
58
+ aesthetics +
59
+ scale_fill_manual(name="Experienced \nLand Reform",values=c("#132B43","#56B1F7"), guide = guide_legend(reverse=TRUE), labels = c("No","Yes"))
60
+ ggsave("./Output/ESLR_ReformCantons.pdf", height=7, width=7)
61
+
62
+
63
+
64
+
14/replication_package/Replication/Code/ESLR_IVCenso_Commercialization.do ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Analysis - Censo IV ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color
10
+
11
+ ** Set Workspace **
12
+ cd /Users/`c(username)'/Dropbox/Research_ElSalvador_LandReform/Replication
13
+
14
+ ** ssc install rdrobust; winsor2; outreg2; lpoly; cmogram; dm88_1; grqreg; gr0002_3; pdslasso; lassopack; univar; ietoolkit
15
+
16
+ *********************
17
+ *** Load the Data ***
18
+ *********************
19
+
20
+ use "Data/censo_ag_wreform.dta", clear
21
+
22
+ label var Above500 "Above 500 Ha"
23
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
24
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
25
+
26
+ *********************
27
+ *** Set RD Params ***
28
+ *********************
29
+
30
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
31
+ ** with ses clustered at propietor level.
32
+ local polynomial_level 1
33
+ local bandwidth_choice "mserd"
34
+ local kernel_choice "tri"
35
+ local cluster_level "Expropretario_ISTA"
36
+
37
+
38
+ **************************
39
+ *** Commercialization ****
40
+ **************************
41
+
42
+
43
+ * S20A - Commercialization
44
+ merge 1:1 agg_id using "./Data/censo_ag_commercialization.dta", gen(S20A_merge) // S20A Vars.
45
+
46
+ ** Mayorista:
47
+ rdrobust MAYO norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
48
+ * outreg results
49
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
50
+ local n_clust = `r(ndistinct)'
51
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
52
+ outreg2 using "Output/Table_Commercialization.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
53
+
54
+ ** Minorista:
55
+ rdrobust MINO norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
56
+ * outreg results
57
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
58
+ local n_clust = `r(ndistinct)'
59
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
60
+ outreg2 using "Output/Table_Commercialization.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
61
+
62
+ ** Exported:
63
+ rdrobust EXPO norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
64
+ * outreg results
65
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
66
+ local n_clust = `r(ndistinct)'
67
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
68
+ outreg2 using "Output/Table_Commercialization.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
69
+
70
+ ** Other:
71
+ rdrobust OTRO norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
72
+ * outreg results
73
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
74
+ local n_clust = `r(ndistinct)'
75
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
76
+ outreg2 using "Output/Table_Commercialization.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)')
77
+
14/replication_package/Replication/Code/ESLR_IVCenso_RDRandInf.do ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *******************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Rand. Inf. - Censo IV ***
3
+ *******************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ *ssc install rdlocrand
11
+
12
+ *********************
13
+ *** Load the Data ***
14
+ *********************
15
+
16
+ use "Data/censo_ag_wreform.dta", clear
17
+
18
+ label var Above500 "Above 500 Ha"
19
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
20
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
21
+
22
+ ******************
23
+ *** Set Params ***
24
+ ******************
25
+
26
+ ** Robustness: We will use the randomization methods for RDs - https://sites.google.com/site/rdpackages/rdlocrand
27
+ ** with ses clustered at proprietor level.
28
+ ** Will also use two-sided MSE optimal bandwidth since big diff in density on
29
+ ** both sides.
30
+ ** Will use rdrandinf package
31
+
32
+ local polynomial_levels 0
33
+ local bandwidth_choice `" "mserd" "'
34
+ local kernel_choice `" "uniform" "triangular" "epan" "'
35
+ local kernel_choice_rdrob `" "uniform" "triangular" "epanechnikov" "'
36
+
37
+ local cluster_level "Expropretario_ISTA" // not allowed in rdlocrand: vce(cluster `cluster_level')
38
+
39
+ ** Also do Local Randomization methods with rdlocrand
40
+
41
+ ** Selecting Window:
42
+ global covariates canton_land_suit
43
+
44
+
45
+ **********************************************
46
+ *** OUTCOME 1A - AGRICULTURAL PRODUCTIVITY ***
47
+ **********************************************
48
+
49
+ set more off
50
+
51
+ local dep_var ln_agprod_pricew_crops
52
+
53
+ foreach pols in `polynomial_levels' {
54
+ local count = 0
55
+ *foreach band in `bandwidth_choice' {
56
+
57
+ foreach kern in `kernel_choice' {
58
+ su `dep_var' // if norm_dist < `r(wr)' & norm_dist > `r(wl)' & `dep_var' !=. & norm_dist!=.
59
+ local summ = `r(mean)'
60
+
61
+ dis "rdrandinf ln_agprod_pricew_crops norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate"
62
+ rdrandinf `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate seed(123)
63
+
64
+ * outreg results
65
+ *distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
66
+ local n_obs = `r(N)'
67
+ local inf_estimate = `r(obs_stat)'
68
+ local pvalue=`r(asy_pval)'
69
+ local rw = `r(wr)'
70
+ local lw = `r(wl)'
71
+ if ("`kern'"=="epan") {
72
+ local kern "epanechnikov"
73
+ }
74
+ dis "rdrobust `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') vce(cluster `cluster_level')"
75
+ rdrobust `dep_var' norm_dist, c(0) p(`pols') bwselect(`bandwidth_choice') kernel(`kern') vce(cluster `cluster_level')
76
+ if `count'==0 {
77
+ dis "outreg2 `r(obs_stat)' `r(randpval)' using, replace se tex noobs addstat(Observations, `n_obs', Mean Dep. Var., `summ', Randomization P-Value, `pvalue', Right Window, `rw', Left Window, `lw') addtext(Polynomial, `pol', Kernel, uniform, Fuzzy RD, N)"
78
+
79
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", replace se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate', Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
80
+ }
81
+ if `count'!=0 {
82
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", append se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
83
+ }
84
+ local count = 1
85
+ }
86
+
87
+ *}
88
+
89
+ }
90
+
91
+ local dep_var ln_agprod
92
+
93
+ foreach pols in `polynomial_levels' {
94
+ local count = 0
95
+ *foreach band in `bandwidth_choice' {
96
+
97
+ foreach kern in `kernel_choice' {
98
+ su `dep_var' // if norm_dist < `r(wr)' & norm_dist > `r(wl)' & `dep_var' !=. & norm_dist!=.
99
+ local summ = `r(mean)'
100
+
101
+ dis "rdrandinf ln_agprod_pricew_crops norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate"
102
+ rdrandinf `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate seed(123)
103
+
104
+ * outreg results
105
+ *distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
106
+ local n_obs = `r(N)'
107
+ local inf_estimate = `r(obs_stat)'
108
+ local pvalue=`r(asy_pval)'
109
+ local rw = `r(wr)'
110
+ local lw = `r(wl)'
111
+ if ("`kern'"=="epan") {
112
+ local kern "epanechnikov"
113
+ }
114
+ dis "rdrobust `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') vce(cluster `cluster_level')"
115
+ rdrobust `dep_var' norm_dist, c(0) p(`pols') bwselect(`bandwidth_choice') kernel(`kern') vce(cluster `cluster_level')
116
+ if `count'==0 {
117
+ dis "outreg2 `r(obs_stat)' `r(randpval)' using, replace se tex noobs addstat(Observations, `n_obs', Mean Dep. Var., `summ', Randomization P-Value, `pvalue', , Right Window, `rw', Left Window, `lw') addtext(Polynomial, `pol', Kernel, uniform, Fuzzy RD, N)"
118
+
119
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", append se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate', Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
120
+ }
121
+ if `count'!=0{
122
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", append se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
123
+ }
124
+ local count = 1
125
+ }
126
+
127
+ *}
128
+
129
+ }
130
+
131
+
132
+ local dep_var ln_tfp_geo
133
+
134
+ foreach pols in `polynomial_levels' {
135
+ local count = 0
136
+ *foreach band in `bandwidth_choice' {
137
+
138
+ foreach kern in `kernel_choice' {
139
+ su `dep_var' // if norm_dist < `r(wr)' & norm_dist > `r(wl)' & `dep_var' !=. & norm_dist!=.
140
+ local summ = `r(mean)'
141
+
142
+ dis "rdrandinf ln_agprod_pricew_crops norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate"
143
+ rdrandinf `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate seed(123)
144
+
145
+ * outreg results
146
+ *distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
147
+ local n_obs = `r(N)'
148
+ local inf_estimate = `r(obs_stat)'
149
+ local pvalue=`r(asy_pval)'
150
+ local rw = `r(wr)'
151
+ local lw = `r(wl)'
152
+ if ("`kern'"=="epan") {
153
+ local kern "epanechnikov"
154
+ }
155
+ dis "rdrobust `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') vce(cluster `cluster_level')"
156
+ rdrobust `dep_var' norm_dist, c(0) p(`pols') bwselect(`bandwidth_choice') kernel(`kern') vce(cluster `cluster_level')
157
+ if `count'==0 {
158
+ dis "outreg2 `r(obs_stat)' `r(randpval)' using, replace se tex noobs addstat(Observations, `n_obs', Mean Dep. Var., `summ', Randomization P-Value, `pvalue', , Right Window, `rw', Left Window, `lw') addtext(Polynomial, `pol', Kernel, uniform, Fuzzy RD, N)"
159
+
160
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", append se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate', Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
161
+ }
162
+ if `count'!=0{
163
+ outreg2 using "Output/RandInfTable1_LogProductivity`pol'.tex", append se pvalue tex noobs addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
164
+ }
165
+ local count = 1
166
+ }
167
+
168
+ *}
169
+
170
+ }
171
+
172
+ ******************************
173
+ *** OUTCOME 2 - CASH CROPS ***
174
+ ******************************
175
+
176
+ ** SHARE LAND IN CASH CROPS:
177
+ set more off
178
+ local dep_var CashCrop_Share
179
+
180
+ foreach pols in `polynomial_levels' {
181
+ local count = 0
182
+ *foreach band in `bandwidth_choice' {
183
+
184
+ foreach kern in `kernel_choice' {
185
+ su `dep_var' // if norm_dist < `r(wr)' & norm_dist > `r(wl)' & `dep_var' !=. & norm_dist!=.
186
+ local summ = `r(mean)'
187
+
188
+ rdrandinf `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate seed(123)
189
+
190
+ * outreg results
191
+ *distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
192
+ local n_obs = `r(N)'
193
+ local inf_estimate = `r(obs_stat)'
194
+ local pvalue=`r(asy_pval)'
195
+ local rw = `r(wr)'
196
+ local lw = `r(wl)'
197
+
198
+ if ("`kern'"=="epan") {
199
+ local kern "epanechnikov"
200
+ }
201
+ rdrobust `dep_var' norm_dist, c(0) p(`pols') bwselect(`bandwidth_choice') kernel(`kern') vce(cluster `cluster_level')
202
+
203
+ if `count'==0 {
204
+ outreg2 using "Output/RandInfTable2_CropShare`pol'.tex", replace se tex noobs pvalue addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
205
+ }
206
+ if `count'!=0{
207
+ outreg2 using "Output/RandInfTable2_CropShare`pol'.tex", append se tex noobs pvalue addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
208
+ }
209
+ local count = 1
210
+ }
211
+
212
+ *}
213
+
214
+ }
215
+
216
+
217
+ ********************************
218
+ *** OUTCOME 3 - STAPLE CROPS ***
219
+ ********************************
220
+
221
+ ** SHARE LAND IN STAPLE CROPS:
222
+ set more off
223
+ local dep_var StapleCrop_Share
224
+
225
+ foreach pols in `polynomial_levels' {
226
+ local count = 0
227
+ *foreach band in `bandwidth_choice' {
228
+
229
+ foreach kern in `kernel_choice' {
230
+ su `dep_var' // if norm_dist < `r(wr)' & norm_dist > `r(wl)' & `dep_var' !=. & norm_dist!=.
231
+ local summ = `r(mean)'
232
+
233
+ rdrandinf `dep_var' norm_dist, c(0) p(`pols') kernel(`kern') covariates($covariates) approximate seed(123)
234
+
235
+ * outreg results
236
+ *distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
237
+ local n_obs = `r(N)'
238
+ local inf_estimate = `r(obs_stat)'
239
+ local pvalue=`r(asy_pval)'
240
+ local rw = `r(wr)'
241
+ local lw = `r(wl)'
242
+
243
+ if ("`kern'"=="epan") {
244
+ local kern "epanechnikov"
245
+ }
246
+ rdrobust `dep_var' norm_dist, c(0) p(`pols') bwselect(`bandwidth_choice') kernel(`kern') vce(cluster `cluster_level')
247
+
248
+ outreg2 using "Output/RandInfTable2_CropShare`pol'.tex", append se tex noobs pvalue addtext(Polynomial, `pols', Kernel, "`kern'", Fuzzy RD, N) addstat(Estimate, `inf_estimate',Randomization P-Value, `pvalue', Observations, `n_obs', Mean Dep. Var., `summ', Right Window, `rw', Left Window, `lw')
249
+
250
+ }
251
+
252
+ *}
253
+
254
+ }
14/replication_package/Replication/Code/ESLR_IVCenso_RDRobustness.do ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *******************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Robustness - Censo IV ***
3
+ *******************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ *********************
11
+ *** Load the Data ***
12
+ *********************
13
+
14
+ use "Data/censo_ag_wreform.dta", clear
15
+
16
+ label var Above500 "Above 500 Ha"
17
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
18
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
19
+
20
+ ******************
21
+ *** Set Params ***
22
+ ******************
23
+
24
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
25
+ ** with ses clustered at propietor level.
26
+ ** Will also use two-sided MSE optimal bandwidth since big diff in density on
27
+ ** both sides.
28
+ ** Will use rdrobust package
29
+
30
+ local polynomial_levels 0 1 2
31
+ local bandwidth_choice `" "mserd" "msetwo" "cerrd" "certwo" "'
32
+ local kernel_choice `" "tri" "uni" "epanechnikov" "'
33
+ local cluster_level "Expropretario_ISTA"
34
+
35
+ ** Also do Local Randomization methods with rdlocrand
36
+
37
+ **********************************************
38
+ *** OUTCOME 1A - AGRICULTURAL PRODUCTIVITY ***
39
+ **********************************************
40
+
41
+ set more off
42
+
43
+ foreach pol in `polynomial_levels' {
44
+ local count = 0
45
+ foreach band in `bandwidth_choice' {
46
+
47
+ foreach kern in `kernel_choice' {
48
+
49
+
50
+ capture {
51
+ rdrobust ln_agprod_pricew_crops norm_dist, c(0) p(`pol') bwselect(`band') kernel(`kern') vce(cluster `cluster_level')
52
+ }
53
+ if _rc==1 {
54
+ rdrobust ln_agprod_pricew_crops norm_dist, c(0) p(`pol') b(100) h(150) kernel(`kern') vce(cluster `cluster_level')
55
+ }
56
+ * outreg results
57
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
58
+ local n_clust = `r(ndistinct)'
59
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
60
+ if `count'==0 {
61
+ outreg2 using "Output/TableRDRobustness1_LogProductivity`pol'.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'", Fuzzy RD, N)
62
+ }
63
+ if `count'!=0{
64
+ outreg2 using "Output/TableRDRobustness1_LogProductivity`pol'.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'",Fuzzy RD, N)
65
+ }
66
+ local count = 1
67
+ }
68
+
69
+ }
70
+
71
+ }
72
+
73
+ foreach pol in `polynomial_levels' {
74
+ local count = 0
75
+ foreach band in `bandwidth_choice' {
76
+
77
+ foreach kern in `kernel_choice' {
78
+
79
+ capture {
80
+ rdrobust ln_agprod norm_dist, c(0) p(`pol') bwselect(`band') kernel(`kern') vce(cluster `cluster_level')
81
+ }
82
+ if _rc==1 {
83
+ rdrobust ln_agprod norm_dist, c(0) p(`pol') b(100) h(150) kernel(`kern') vce(cluster `cluster_level')
84
+ }
85
+ * outreg results
86
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
87
+ local n_clust = `r(ndistinct)'
88
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
89
+ if `count'==0 {
90
+ outreg2 using "Output/TableRDRobustness1_LogProfits`pol'.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'", Fuzzy RD, N)
91
+ }
92
+ if `count'!=0{
93
+ outreg2 using "Output/TableRDRobustness1_LogProfits`pol'.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'",Fuzzy RD, N)
94
+ }
95
+ local count = 1
96
+ }
97
+
98
+ }
99
+
100
+ }
101
+
102
+ foreach pol in `polynomial_levels' {
103
+ local count = 0
104
+ foreach band in `bandwidth_choice' {
105
+
106
+ foreach kern in `kernel_choice' {
107
+
108
+ capture {
109
+ rdrobust ln_tfp_geo norm_dist, c(0) p(`pol') bwselect(`band') kernel(`kern') vce(cluster `cluster_level')
110
+ }
111
+ if _rc==1 {
112
+ rdrobust ln_tfp_geo norm_dist, c(0) p(`pol') b(100) h(150) kernel(`kern') vce(cluster `cluster_level')
113
+ }
114
+ * outreg results
115
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
116
+ local n_clust = `r(ndistinct)'
117
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
118
+ if `count'==0 {
119
+ outreg2 using "Output/TableRDRobustness1_TFP`pol'.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'", Fuzzy RD, N)
120
+ }
121
+ if `count'!=0{
122
+ outreg2 using "Output/TableRDRobustness1_TFP`pol'.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'",Fuzzy RD, N)
123
+ }
124
+ local count = 1
125
+ }
126
+
127
+ }
128
+
129
+ }
130
+
131
+ ******************************
132
+ *** OUTCOME 2 - CASH CROPS ***
133
+ ******************************
134
+
135
+ ** SHARE LAND IN CASH CROPS:
136
+ set more off
137
+
138
+ foreach pol in `polynomial_levels' {
139
+ local count = 0
140
+ foreach band in `bandwidth_choice' {
141
+
142
+ foreach kern in `kernel_choice' {
143
+
144
+ rdrobust CashCrop_Share norm_dist, c(0) p(`pol') bwselect(`band') kernel(`kern') vce(cluster `cluster_level')
145
+ * outreg results
146
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
147
+ local n_clust = `r(ndistinct)'
148
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
149
+ if `count'==0 {
150
+ outreg2 using "Output/TableRDRobustness2_CashCropShare`pol'.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'", Fuzzy RD, N)
151
+ }
152
+ if `count'!=0{
153
+ outreg2 using "Output/TableRDRobustness2_CashCropShare`pol'.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'",Fuzzy RD, N)
154
+ }
155
+ local count = 1
156
+ }
157
+
158
+ }
159
+
160
+ }
161
+
162
+
163
+ ********************************
164
+ *** OUTCOME 3 - STAPLE CROPS ***
165
+ ********************************
166
+
167
+ ** SHARE LAND IN STAPLE CROPS:
168
+ set more off
169
+
170
+ foreach pol in `polynomial_levels' {
171
+ local count = 0
172
+ foreach band in `bandwidth_choice' {
173
+
174
+ foreach kern in `kernel_choice' {
175
+
176
+ rdrobust StapleCrop_Share norm_dist, c(0) p(`pol') bwselect(`band') kernel(`kern') vce(cluster `cluster_level')
177
+ * outreg results
178
+ distinct `cluster_level' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)' & `e(outcomevar)'!=. & `e(runningvar)'!=.
179
+ local n_clust = `r(ndistinct)'
180
+ su `e(outcomevar)' if norm_dist < `e(h_l)' & norm_dist > -1*`e(h_r)'
181
+ if `count'==0 {
182
+ outreg2 using "Output/TableRDRobustness3_StapleCropShare`pol'.tex", replace se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'", Fuzzy RD, N)
183
+ }
184
+ if `count'!=0{
185
+ outreg2 using "Output/TableRDRobustness3_StapleCropShare`pol'.tex", append se tex noobs addstat(Observations, `e(N_h_l)' + `e(N_h_r)', Clusters, `n_clust', Mean Dep. Var., `r(mean)', Bandwidth, `e(h_l)') addtext(Polynomial, `pol', Bandwidth Type, "`band'", Kernel, "`kern'",Fuzzy RD, N)
186
+ }
187
+ local count = 1
188
+ }
189
+
190
+ }
191
+
192
+ }
14/replication_package/Replication/Code/ESLR_IVCensus_AdditionalPlots.R ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #############################################
2
+ ########### ESLR - EXTENTSIONS ##############
3
+ ############### COEF PLOTS ##################
4
+ #############################################
5
+
6
+ rm(list = ls()) # Clear variables
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(RColorBrewer) # creates nice color schemes
10
+ require(scales) # customize scales
11
+ require(plyr) # join function
12
+ require(dplyr)
13
+ require(haven) # stata save
14
+ require(dotwhisker)
15
+
16
+ ########################################
17
+
18
+ # write a simple function to add footnote
19
+ makeFootnote <- function(footnoteText =
20
+ format(Sys.time(), "%d %b %Y"),
21
+ size = .7, color = grey(.5))
22
+ {
23
+ require(grid)
24
+ pushViewport(viewport())
25
+ grid.text(label = footnoteText ,
26
+ x = unit(1,"npc") - unit(2, "mm"),
27
+ y = unit(2, "mm"),
28
+ just = c("right", "bottom"),
29
+ gp = gpar(cex = size, col = color))
30
+ popViewport()
31
+ }
32
+ # Source: http://statmodeling.com/best-way-to-add-a-footnote-to-a-plot-created-with-ggplot2.html
33
+
34
+ ########################################
35
+
36
+ ## Making Standarized Coefficient Plots:
37
+
38
+ # Set aesthetics:
39
+ aesthetics <- list(
40
+ theme_bw(),
41
+ theme(text=element_text(family="Palatino"),
42
+ legend.title=element_blank(),
43
+ #legend.justification=c(0,0),
44
+ #legend.position= "right", #c(1,0),
45
+ #panel.grid.minor=element_blank(),
46
+ #panel.grid.major=element_blank(),
47
+ plot.background=element_rect(colour="white",fill="white"),
48
+ panel.grid.major=element_blank(),
49
+ panel.grid.minor=element_blank(),
50
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
51
+ axis.title.y=element_text(face="bold.italic")))
52
+ #axis.text=element_blank(),
53
+ #axis.ticks=element_blank(),
54
+ #panel.border = element_blank()))
55
+
56
+ ########################################
57
+
58
+ #### Plots for Different Minor Crops:
59
+
60
+ ## load data:
61
+ data <- read.csv("./Output/Temp/MinorCropProduction.csv")
62
+ data <- filter(data,estimate!=0)
63
+
64
+
65
+ # Clean data for plotting:
66
+ alpha<- 0.05
67
+ Multiplier <- qnorm(1 - alpha / 2)
68
+
69
+ # Find the outcome var for each regression:
70
+ data$idstr <- as.character(data$idstr)
71
+ data$y_var <- data$idstr
72
+ data <- filter(data,y_var!="S5BEJOTE",
73
+ y_var!="S5BMELON",
74
+ y_var!="S5BCAMOTE")
75
+ # Replace y_var with nice names:
76
+ data$y_var[which(data$y_var == "S5BCAMOTE")] <- "Sweet Potato"
77
+ data$y_var[which(data$y_var == "S5BCHILE")] <- "Bell Peppers"
78
+ data$y_var[which(data$y_var == "S5BCHILEPICANTE")] <- "Chile"
79
+ data$y_var[which(data$y_var == "S5BEJOTE")] <- "Bejote"
80
+ data$y_var[which(data$y_var == "S5BGUISQUIL")] <- "Squash"
81
+ data$y_var[which(data$y_var == "S5BLOROCO")] <- "Loroco"
82
+ data$y_var[which(data$y_var == "S5BMELON")] <- "Melon"
83
+ data$y_var[which(data$y_var == "S5BPEPINO")] <- "Cucumber"
84
+ data$y_var[which(data$y_var == "S5BPIPIAN")] <- "Pipian"
85
+ data$y_var[which(data$y_var == "S5BRABANO")] <- "Radish"
86
+ data$y_var[which(data$y_var == "S5BSANDIA")] <- "Watermelon"
87
+ data$y_var[which(data$y_var == "S5BTOMATE")] <- "Tomato"
88
+ data$y_var[which(data$y_var == "S5BYUCA")] <- "Yuca"
89
+
90
+ # Now, keep only the betas of interest:
91
+ betas <- data %>% filter(!grepl("S5B",y_var))
92
+ dim(betas)
93
+ betas <- arrange(betas,betas$y_var)
94
+
95
+ # Create Matrix for plotting:
96
+ MatrixofModels <- betas[c("y_var", "estimate","stderr","z","p","idnum")]
97
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName")
98
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = MatrixofModels$IV)
99
+ #MatrixofModels$Legend <- c(" AES Coefficient", rep(" Standard Coefficients",4))
100
+
101
+ # Re-name for plotting:
102
+ MatrixofModels$ModelName <- "Minor Vegetable Production"
103
+ #MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
104
+
105
+ # Plot:
106
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
107
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
108
+ ylab = NULL, xlab = NULL)
109
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
110
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nEstimated Effect") + aesthetics + xlab("")
111
+
112
+ # Save:
113
+ OutputPlot
114
+ ggsave(filename = "./Output/CoefPlot_MinorCrops.pdf", height=6, width=9)
115
+
116
+ ########################################
117
+
118
+ #### Plots for Different Minor Fruits:
119
+
120
+ ## load data:
121
+ data <- read.csv("./Output/Temp/MinorFruitProduction.csv")
122
+ data <- filter(data,estimate!=0)
123
+ #data$parm[which(data$parm == "RD_Estimate")] <- "Above 500"
124
+
125
+ # Clean data for plotting:
126
+ alpha<- 0.05
127
+ Multiplier <- qnorm(1 - alpha / 2)
128
+
129
+ # Find the outcome var for each regression:
130
+ data$idstr <- as.character(data$idstr)
131
+ data$y_var <- data$idstr
132
+ # Replace y_var with nice names:
133
+ data$y_var[which(data$y_var == "S8BCOCO")] <- "Coconut"
134
+ data$y_var[which(data$y_var == "S8BGUINEO")] <- "Guineo Banana"
135
+ data$y_var[which(data$y_var == "S8BJOCOTE")] <- "Jocote"
136
+ data$y_var[which(data$y_var == "S8BLIMON")] <- "Lemon"
137
+ data$y_var[which(data$y_var == "S8BMANDARINA")] <- "Mandarin"
138
+ data$y_var[which(data$y_var == "S8BMANGO")] <- "Mango"
139
+ data$y_var[which(data$y_var == "S8BNARANJA")] <- "Orange"
140
+ data$y_var[which(data$y_var == "S8BNISPERO")] <- "Medlar"
141
+ data$y_var[which(data$y_var == "S8BPAPAYA")] <- "Papaya"
142
+ data$y_var[which(data$y_var == "S8BPLATANO")] <- "Plantain"
143
+ data$y_var[which(data$y_var == "S8BZAPOTE")] <- "Sapodilla"
144
+
145
+ # Now, keep only the betas of interest:
146
+ betas <- data %>% filter(!grepl("S8B",y_var))
147
+ dim(betas)
148
+ betas <- arrange(betas,betas$y_var)
149
+
150
+ # Create Matrix for plotting:
151
+ MatrixofModels <- betas[c("y_var", "estimate","stderr","z","p","idnum")]
152
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName")
153
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = MatrixofModels$IV)
154
+ #MatrixofModels$Legend <- c(" AES Coefficient", rep(" Standard Coefficients",4))
155
+
156
+ # Re-name for plotting:
157
+ MatrixofModels$ModelName <- "Minor Fruit Production"
158
+ #MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
159
+
160
+ # Plot:
161
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
162
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
163
+ ylab = NULL, xlab = NULL)
164
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
165
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nEstimated Effect") + aesthetics + xlab("")
166
+
167
+ # Save:
168
+ OutputPlot
169
+ ggsave(filename = "./Output/CoefPlot_MinorFruits.pdf", height=6, width=9)
170
+
171
+ ########################################
172
+
173
+ #### Plots for Different Inputs:
174
+
175
+ ## load data:
176
+ data <- read.csv("./Output/Temp/InputUse.csv")
177
+ data <- filter(data,estimate!=0)
178
+ #data$parm[which(data$parm == "RD_Estimate")] <- "Above 500"
179
+
180
+ # Clean data for plotting:
181
+ alpha<- 0.05
182
+ Multiplier <- qnorm(1 - alpha / 2)
183
+
184
+ # Find the outcome var for each regression:
185
+ data$idstr <- as.character(data$idstr)
186
+ data$y_var <- data$idstr
187
+ data <- filter(data,y_var!="S15BCASTRACION",
188
+ y_var!="S15BCONTROLBIOLOGICOPECESABEJAS",
189
+ y_var!="S15BCONTROLQUIMICODEPLAGASYENFE",
190
+ y_var!="S15BDESPARASITACION",
191
+ y_var!="S15BDESPARASITANTES",
192
+ y_var!="S15BINSEMINACIONARTIFICIAL",
193
+ y_var!="S15BMANEJOINTEGRADODEPLAGASMIP",
194
+ y_var!="S15BMEJORAMIENTOGENETICO",
195
+ y_var!="S15BPIEDECRIA",
196
+ y_var!="S15BPRACTICASPREVENTIVASDEDANOS",
197
+ y_var!="S15BPRODUCTOSVETERINARIOSALCOHO",
198
+ y_var!="S15BREGISTROSADMINISTRATIVOSDEL",
199
+ y_var!="S15BREGULADORESDECRECIMIENTO",
200
+ y_var!="S15BREGULADORESDECRECIMIENTOENZ",
201
+ y_var!="S15BROTACIONDEPOTREROS",
202
+ y_var!="S15BSUPLEMENTOSNUTRICIONALES",
203
+ y_var!="S15BVACUNACION",
204
+ y_var!="S15BVACUNAS",
205
+ y_var!="S15BANTIBIOTICOS")
206
+
207
+ # Replace y_var with nice names:
208
+ # cat(paste("data$y_var[which(data$y_var == ",data$y_var,")] <- "),sep="\n")
209
+ data$y_var[which(data$y_var == "S15BABONOOFERTILIZANTEFOLIARLIQ" )] <- "Fertilizer - Liquid"
210
+ data$y_var[which(data$y_var == "S15BABONOOFERTILIZANTEGRANULARS" )] <- "Fertilizer - Solid"
211
+ data$y_var[which(data$y_var == "S15BAGENTESDEMADURACIONPOSTCOSE" )] <- "Compost"
212
+ data$y_var[which(data$y_var == "S15BAGENTESPARAPROTECCIONDEPROD" )] <- "Pesticides"
213
+ data$y_var[which(data$y_var == "S15BANALISISDESUELOYOFOLIAR" )] <- "Soil Tests"
214
+ data$y_var[which(data$y_var == "S15BAPLICACIONDEABONOYFERTILIZA" )] <- "Fertilizer Applied"
215
+ data$y_var[which(data$y_var == "S15BAPLICACIONDERIEGOPORASPERSI" )] <- "Sprinkler Irrigation"
216
+ data$y_var[which(data$y_var == "S15BAPLICACIONDERIEGOPORGOTEO" )] <- "Drip Irrigation"
217
+ data$y_var[which(data$y_var == "S15BAPLICACIONDERIEGOPORGRAVEDA" )] <- "Gravity Irrigation"
218
+ data$y_var[which(data$y_var == "S15BBACTERICIDAS" )] <- "Bactericides"
219
+ data$y_var[which(data$y_var == "S15BFUNGICIDAS" )] <- "Fungicides"
220
+ data$y_var[which(data$y_var == "S15BLABORESCULTURALES" )] <- "Labor Trimming"
221
+ data$y_var[which(data$y_var == "S15BMATERIALVEGETATIVO" )] <- "Organic Fertilizer"
222
+ data$y_var[which(data$y_var == "S15BNEMATICIDAS" )] <- "Nematicides"
223
+ data$y_var[which(data$y_var == "S15BOBRASDECONSERVACIONDESUELOS" )] <- "Erosion Work"
224
+ data$y_var[which(data$y_var == "S15BPREPARACIONDELSUELO" )] <- "Soil Preparation"
225
+ data$y_var[which(data$y_var == "S15BPROTECCIONDECULTIVOS" )] <- "Crop Protection"
226
+ data$y_var[which(data$y_var == "S15BRESIEMBRAYOREPLANTACION" )] <- "Reseeding + Replanting"
227
+ data$y_var[which(data$y_var == "S15BSEMILLACERTIFICADA" )] <- "Certified Seeds"
228
+ data$y_var[which(data$y_var == "S15BSEMILLACRIOLLA" )] <- "Creole Seeds"
229
+ data$y_var[which(data$y_var == "S15BSEMILLAMEJORADA" )] <- "Improved Seeds"
230
+
231
+ # Now, keep only the betas of interest:
232
+ betas <- data %>% filter(!grepl("S15B",y_var))
233
+ dim(betas)
234
+ betas <- arrange(betas,betas$estimate)
235
+
236
+ # Create Matrix for plotting:
237
+ MatrixofModels <- betas[c("y_var", "estimate","stderr","z","p","idnum")]
238
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName")
239
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = MatrixofModels$IV)
240
+ #MatrixofModels$Legend <- c(" AES Coefficient", rep(" Standard Coefficients",4))
241
+
242
+ # Re-name for plotting:
243
+ MatrixofModels$ModelName <- "Input Use"
244
+ #MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
245
+
246
+ # Plot:
247
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
248
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
249
+ ylab = NULL, xlab = NULL)
250
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
251
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nEstimated Effect") + aesthetics + xlab("")
252
+
253
+ # Save:
254
+ OutputPlot
255
+ ggsave(filename = "./Output/CoefPlot_Inputs.pdf", height=6, width=9)
256
+
257
+ ########################################
258
+
259
+ ## load data:
260
+ data <- read.csv("./Output/Temp/CapitalStocks.csv")
261
+ data <- filter(data,estimate!=0 & !is.na(p))
262
+
263
+ # Clean data for plotting:
264
+ alpha<- 0.05
265
+ Multiplier <- qnorm(1-alpha/2) #qt(1 - alpha / 2, df=75) # Small estimates
266
+ Multiplier <- qt(1 - alpha / 2, df=75) # Small estimates
267
+
268
+ # Find the outcome var for each regression:
269
+ data$idstr <- as.character(data$idstr)
270
+ data$y_var <- gsub("S16A","",data$idstr)
271
+ data <- filter(data,y_var!="ALIMENTADORES",
272
+ y_var!="AUTOCLAVE",
273
+ y_var!="BANDADEINCUBACION",
274
+ y_var!="DESPLUMADORAS",
275
+ y_var!="EQUIPODEIDENTIFICACION",
276
+ y_var!="EQUIPOPARAINSEMINACIONARTIF",
277
+ y_var!="EQUIPOPARAORDENO",
278
+ y_var!="EQUIPOPREVENTIVODEDANOSENAN",
279
+ y_var!="ESTABLOS",
280
+ y_var!="GALERAS",
281
+ y_var!="INFRAESTRUCTURAPARAALIMENTA",
282
+ y_var!="LABORATORIOINVITRO",
283
+ y_var!="LABORATORIOSDEANALISISDESUE",
284
+ y_var!="MANGASOCEPOS",
285
+ y_var!="MAQUINARIAPARAPRODUCCIONDEA",
286
+ y_var!="OTROSTALLERESPISTADEATERRIZ",
287
+ y_var!="MOLEDORADEGRANOS",
288
+ y_var!="REDES",
289
+ y_var!="SALASDEINCUBACION",
290
+ y_var!="SALASDEORDENO",
291
+ y_var!="BANDARECOLECTORADEHUEVOS",
292
+ y_var!="CLASIFICADORADEFRUTALESHORT",
293
+ y_var!="UTENSILIOSPARARECOLECCIONDE",
294
+ y_var!="HERRAMIENTASAGROPECUARIAS",
295
+ y_var!="TANQUESDEFERTIRRIEGO",
296
+ y_var!="SALASDECURADO")
297
+
298
+ # Replace y_var with nice names:
299
+ # cat(paste('data$y_var[which(data$y_var == \"',data$y_var,"\")] <- \"",data$y_var,"\"",sep=""),sep="\n")
300
+ data$y_var[which(data$y_var == "ARADOSDEHIERRO")] <- "Plows"
301
+ data$y_var[which(data$y_var == "BALANZAPARACARGASPESADAS")] <- "Balances"
302
+ data$y_var[which(data$y_var == "BASCULA")] <- "Coffee Weighing Machines"
303
+ data$y_var[which(data$y_var == "BODEGAS")] <- "Wharehouses"
304
+ data$y_var[which(data$y_var == "BOMBAACHICADORAMECANICA")] <- "Fumigation Backpacks"
305
+ data$y_var[which(data$y_var == "CAMIONOVEHICULOS")] <- "Trucks"
306
+ data$y_var[which(data$y_var == "DESPULPADORADECAFEMANUAL")] <- "Manual Coffee Pulping Machines"
307
+ data$y_var[which(data$y_var == "DESPULPADORADECAFEMECANICA")] <- "Mecanical Coffee Pulping Machines"
308
+ data$y_var[which(data$y_var == "EQUIPOBENEFICIADORCAFE")] <- "Coffee Equipement"
309
+ data$y_var[which(data$y_var == "EQUIPODEFUMIGACION")] <- "Fumigation Equipement"
310
+ data$y_var[which(data$y_var == "EQUIPODERIEGO")] <- "Irrigration Equipement"
311
+ data$y_var[which(data$y_var == "EQUIPODETRANSPORTEDEAGUA")] <- "Water Transportation Equipement"
312
+ data$y_var[which(data$y_var == "EQUIPOPARALACOSECHA")] <- "Harvest Equipment"
313
+ data$y_var[which(data$y_var == "HERRAMIENTASAGROPECUARIAS")] <- "Agrigultural Tools"
314
+ data$y_var[which(data$y_var == "MANGUERAS")] <- "Hoses"
315
+ data$y_var[which(data$y_var == "MOTOSIERRAS")] <- "Saws"
316
+ data$y_var[which(data$y_var == "OFICINAS")] <- "Offices"
317
+ data$y_var[which(data$y_var == "PATIOSDESECADO")] <- "Drying Patios"
318
+ data$y_var[which(data$y_var == "PICADORADEPASTO")] <- "Lawnmowers"
319
+ data$y_var[which(data$y_var == "RASTRASYMONTACARGAS")] <- "Harrows"
320
+ data$y_var[which(data$y_var == "SEMBRADORAMECANICA")] <- "Mecanical Seeders"
321
+ data$y_var[which(data$y_var == "SILOSPARAFORRAJEFRESCO")] <- "Storage Silos"
322
+ data$y_var[which(data$y_var == "TANQUESDEFERTIRRIEGO")] <- "Irrigation Tanks"
323
+ data$y_var[which(data$y_var == "TANQUESPARAALMACENAMIENTODE")] <- "Water Storage Tanks"
324
+ data$y_var[which(data$y_var == "TOLDODERECIBIDERODECAFE")] <- "Coffee Drying Tarps"
325
+ data$y_var[which(data$y_var == "TRACTORES")] <- "Tractors"
326
+ data$y_var[which(data$y_var == "UTENSILIOSPARARECOLECCIONDE")] <- "UTENSILIOSPARARECOLECCIONDE"
327
+ data$y_var[which(data$y_var == "VIVIENDAS")] <- "Houses"
328
+ data$y_var[which(data$y_var == "BALANZADEPRECISION")] <- "Precision Scales"
329
+ data$y_var[which(data$y_var == "DESOPERCULADORYOTRASHERRAMI")] <- "Uncapper"
330
+ data$y_var[which(data$y_var == "EQUIPOPARAALIMENTACION")] <- "Feeding Equipement"
331
+ data$y_var[which(data$y_var == "EQUIPODECALEFACCION")] <- "Heating Equipement"
332
+ data$y_var[which(data$y_var == "PULVERIZADORES")] <- "Spraying Equipement"
333
+ data$y_var[which(data$y_var == "ESPATULAS")] <- "Spatulas"
334
+ data$y_var[which(data$y_var == "EXTRATORDEMIEL")] <- "Honey Extractor"
335
+ data$y_var[which(data$y_var == "VESTIMENTAESPECIAL")] <- "Special Clothing"
336
+ data$y_var[which(data$y_var == "AHUMADORES")] <- "Smoking Equipement"
337
+ data$y_var[which(data$y_var == "PORQUERIZAS")] <- "Pig Equipement"
338
+
339
+ data <- filter(data,y_var!="Offices", y_var!="Wharehouses",
340
+ y_var!="Lawnmowers",
341
+ y_var!="Water Storage Tanks",
342
+ y_var!="Storage Silos") # Remove largest estimates/unclear topic/unrelated to AG
343
+
344
+ # Now, keep only the betas of interest:
345
+ betas <- data %>% filter(!grepl("S16B",y_var))
346
+ dim(betas)
347
+ betas <- arrange(betas,betas$estimate)
348
+
349
+ # Create Matrix for plotting:
350
+ MatrixofModels <- betas[c("y_var", "estimate","stderr","z","p","idnum")]
351
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName")
352
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = MatrixofModels$IV)
353
+ #MatrixofModels$Legend <- c(" AES Coefficient", rep(" Standard Coefficients",4))
354
+
355
+ # Re-name for plotting:
356
+ #MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
357
+
358
+ # Plot:
359
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
360
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
361
+ ylab = NULL, xlab = NULL)
362
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
363
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nRD Estimate") + aesthetics + xlab("")
364
+
365
+ # Save:
366
+ OutputPlot
367
+
368
+ # Add list of brackets (Coffee Related, Non-Coffee Related)
369
+ coffee_goods <- c("Coffee-Specific Capital",
370
+ "Manual Coffee Pulping Machines",
371
+ "Mecanical Coffee Pulping Machines",
372
+ "Coffee Equipement",
373
+ "Drying Patios",
374
+ "Coffee Weighing Machines",
375
+ "Balances",
376
+ "Water Storage Tanks",
377
+ "Coffee Drying Tarps")
378
+
379
+
380
+ MatrixofModels <- suppressWarnings(MatrixofModels %>% mutate(Group = ifelse(IV %in% coffee_goods,1,0),
381
+ term=IV,
382
+ estimate= Estimate,
383
+ std.error = StandardError) %>%
384
+ arrange(-Group, -IV))
385
+
386
+ # Create list of brackets (label, topmost included predictor, bottommost included predictor)
387
+ bracket1 <- c("Coffee-Specific Capital",
388
+ "Coffee Weighing Machines",
389
+ "Mecanical Coffee Pulping Machines")
390
+ bracket2 <- c("General Ag. Capital",
391
+ "Hoses",
392
+ "Trucks")
393
+
394
+ brackets <- list(bracket1, bracket2)
395
+
396
+ {dwplot(MatrixofModels, vline = geom_vline(xintercept = 0, colour = "red", linetype = 2),
397
+ dot_args = list(color="black"),
398
+ whisker_args = list(color="black")) +
399
+ theme_bw() + xlab("RD Estimate") + ylab("") +
400
+ theme(plot.title = element_text(face="bold"),
401
+ legend.title = element_blank(), text=element_text(family="Palatino"))} %>%
402
+ add_brackets(brackets, face="bold")
403
+ # Save:
404
+ ggsave(filename = "./Output/CoefPlot_Capital_wBrackets.pdf", scale=2)
405
+
406
+
14/replication_package/Replication/Code/ESLR_IVCensus_Controls.R ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ############################################################
2
+ ##### ESLR - RD HETEROGENEITY PLOTTING - AgCensus Data #####
3
+ ############################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(RColorBrewer) # creates nice color schemes
10
+ require(scales) # customize scales
11
+ require(plyr) # join function
12
+ require(dplyr)
13
+ require(rdrobust) # rd estimation tools
14
+ require(haven)
15
+ require(readstata13)
16
+ require(sandwich) # robust se's
17
+ require(haven)
18
+ require(fuzzyjoin)
19
+
20
+ ########################################
21
+
22
+
23
+ ## Load IV Censo Agropecuario Data:
24
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
25
+
26
+ # Laod Conflict Data:
27
+ conflict_data <- read.csv(file="./Data/conflict_canton.csv", header=TRUE)
28
+ censo_ag_wreform <- left_join(censo_ag_wreform,conflict_data, by="CODIGO")
29
+
30
+ ########################################
31
+
32
+ ## Making Standarized Coefficient Plots:
33
+
34
+ # Set aesthetics:
35
+ aesthetics <- list(
36
+ theme_bw(),
37
+ theme(text=element_text(family="Palatino"),
38
+ legend.title=element_blank(),
39
+ #legend.justification=c(0,0),
40
+ #legend.position= "right", #c(1,0),
41
+ #panel.grid.minor=element_blank(),
42
+ #panel.grid.major=element_blank(),
43
+ plot.background=element_rect(colour="white",fill="white"),
44
+ panel.grid.major=element_blank(),
45
+ panel.grid.minor=element_blank(),
46
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
47
+ axis.title.y=element_text(face="bold.italic"),
48
+ axis.title.x=element_text(face="bold.italic")))
49
+
50
+
51
+
52
+ ########################################
53
+
54
+ censo_ag_wreform_tev <- censo_ag_wreform
55
+ ag.grouped <- mutate(censo_ag_wreform_tev %>% group_by(Expropretario_ISTA), num_per_owner = n())
56
+ censo_ag_wreform_tev$num_per_owner<- ag.grouped$num_per_owner
57
+
58
+ years <- 2007
59
+ i = 2007
60
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
61
+ ln_agprodII = ln_agprod,
62
+ ln_agprod = ln_agprod_pricew_crops)
63
+
64
+
65
+
66
+ ###########################################
67
+
68
+ ## CONTROLLING FOR PROPERTY SIZES:
69
+ # Estimate and Save RD for different controls:
70
+ num_ests <- 3*4
71
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
72
+ y_var = rep(0,num_ests),
73
+ label = rep(0, num_ests))
74
+
75
+ k <- "triangular"
76
+ p <- 1
77
+ b<- "mserd"
78
+
79
+ controls <- c("AREA_HECTAREA", "Area_has")
80
+ count<-1
81
+
82
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
83
+ {
84
+ b <- MOD$se[1]
85
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
86
+ sx <- sd(model.dta[,c("Above500")])
87
+ #sx <- sd(model.dta[,c("norm_dist")])
88
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
89
+ beta <- b * sx/sy
90
+ return(beta)
91
+ }
92
+
93
+ lm.beta <- function (MOD, dta,y="ln_agprod")
94
+ {
95
+ b <- MOD$coef[1]
96
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
97
+ sx <- sd(model.dta[,c("Above500")])
98
+ #sx <- sd(model.dta[,c("norm_dist")])
99
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
100
+ beta <- b * sx/sy
101
+ return(beta)
102
+ }
103
+
104
+
105
+ controls <- list("AREA_HECTAREA","Area_has",c("Area_has","AREA_HECTAREA"))
106
+ labels <- c("Property Size in 1980", "Property Size in 2007", "All Controls")
107
+ label.count <- 1
108
+ for (i in controls) {
109
+ print(i)
110
+
111
+ # Revenue per ha:
112
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
113
+ x=censo_ag_wreform_tev$norm_dist,
114
+ covs = censo_ag_wreform_tev[,i],
115
+ c = 0,
116
+ p = p,
117
+ q = p +1,
118
+ kernel = k,
119
+ bwselect = b,
120
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
121
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
122
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
123
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
124
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
125
+ count<-count+1
126
+
127
+ # Profits per ha:
128
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
129
+ x=censo_ag_wreform_tev$norm_dist,
130
+ covs = censo_ag_wreform_tev[,i],
131
+ c = 0,
132
+ p = p,
133
+ q = p +1,
134
+ kernel = k,
135
+ bwselect = b,
136
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
137
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
138
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
139
+ rd_estimates[count,c("y_var")] <- "Profit per ha"
140
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
141
+ count<-count+1
142
+
143
+ # Share Cash:
144
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
145
+ x=censo_ag_wreform_tev$norm_dist,
146
+ covs = censo_ag_wreform_tev[,i],
147
+ c = 0,
148
+ p = p,
149
+ q = p +1,
150
+ kernel = k,
151
+ bwselect = b,
152
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
153
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
154
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
155
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
156
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
157
+ count<-count+1
158
+
159
+
160
+ # Share Staple:
161
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
162
+ x=censo_ag_wreform_tev$norm_dist,
163
+ covs = censo_ag_wreform_tev[,i],
164
+ c = 0,
165
+ p = p,
166
+ q = p +1,
167
+ kernel = k,
168
+ bwselect = b,
169
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
170
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
171
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
172
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
173
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
174
+ count<-count+1
175
+ label.count<-label.count+1
176
+ }
177
+
178
+
179
+ rd_estimates
180
+
181
+ ########################################
182
+
183
+ # Clean data for plotting:
184
+ alpha<- 0.05
185
+ Multiplier <- qnorm(1 - alpha / 2)
186
+
187
+ # Find the outcome var for each regression:
188
+ data <-rd_estimates
189
+
190
+ # Replace y_var with nice names:
191
+
192
+ # Now, keep only the betas of interest:
193
+ betas <- data
194
+ dim(betas)
195
+ betas<- betas[seq(dim(betas)[1],1),]
196
+
197
+ # Create Matrix for plotting:
198
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
199
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
200
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
201
+ c <- factor(MatrixofModels$Group, levels = c("Controlling for: Property Size in 1980",
202
+ "Controlling for: Property Size in 2007",
203
+ "Controlling for: All Controls"))
204
+
205
+
206
+ # Plot:
207
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
208
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
209
+ ylab = NULL, xlab = NULL, facets=~ Group)
210
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
211
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics + xlab("")
212
+
213
+ # Save:
214
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1, 1,0.25)) + theme(strip.text.x = element_text(size = 5))
215
+
216
+ ggsave(filename="./Output/CoefPlot_wSizeControls.pdf", width=6, height=3)
217
+
218
+ ########################################
219
+
220
+ ## Conflict Types:
221
+
222
+ # Estimate and Save RD for different types of conflict:
223
+ num_ests <- 4*4
224
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
225
+ y_var = rep(0,num_ests),
226
+ label = rep(0, num_ests))
227
+
228
+ k <- "triangular"
229
+ p <- 1
230
+ b<- "mserd"
231
+
232
+ count<-1
233
+ censo_ag_wreform_tev <- censo_ag_wreform_tev %>%
234
+ mutate(Conflict1980 = ifelse(!is.na(Conflict_1980),Conflict_1980,0),
235
+ Conflict1981 = ifelse(!is.na(Conflict_1981),Conflict_1981,0),
236
+ Conflict1982 = ifelse(!is.na(Conflict_1982),Conflict_1982,0),
237
+ Conflict198082 = Conflict1980+Conflict1981+Conflict1982)
238
+ controls <- list("CONFLICT","FFAA","ESCUAD","Conflict198082")
239
+ labels <- c("Conflict (Any Actor)", "Military Violence", "Death Squad Violence", "Conflict from 1980-1982")
240
+ label.count <- 1
241
+ for (i in controls) {
242
+ print(i)
243
+
244
+ # Revenue per ha:
245
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
246
+ x=censo_ag_wreform_tev$norm_dist,
247
+ covs = censo_ag_wreform_tev[,i],
248
+ c = 0,
249
+ p = p,
250
+ q = p +1,
251
+ kernel = k,
252
+ bwselect = b,
253
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
254
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
255
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
256
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
257
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
258
+ count<-count+1
259
+
260
+ # Profits per ha:
261
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
262
+ x=censo_ag_wreform_tev$norm_dist,
263
+ covs = censo_ag_wreform_tev[,i],
264
+ c = 0,
265
+ p = p,
266
+ q = p +1,
267
+ kernel = k,
268
+ bwselect = b,
269
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
270
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
271
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
272
+ rd_estimates[count,c("y_var")] <- "Profit per ha"
273
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
274
+ count<-count+1
275
+
276
+ # Share Cash:
277
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
278
+ x=censo_ag_wreform_tev$norm_dist,
279
+ covs = censo_ag_wreform_tev[,i],
280
+ c = 0,
281
+ p = p,
282
+ q = p +1,
283
+ kernel = k,
284
+ bwselect = b,
285
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
286
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
287
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
288
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
289
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
290
+ count<-count+1
291
+
292
+
293
+ # Share Staple:
294
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
295
+ x=censo_ag_wreform_tev$norm_dist,
296
+ covs = censo_ag_wreform_tev[,i],
297
+ c = 0,
298
+ p = p,
299
+ q = p +1,
300
+ kernel = k,
301
+ bwselect = b,
302
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
303
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
304
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
305
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
306
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
307
+ count<-count+1
308
+ label.count<-label.count+1
309
+ }
310
+
311
+
312
+ rd_estimates
313
+
314
+ ########################################
315
+
316
+ # Clean data for plotting:
317
+ alpha<- 0.05
318
+ Multiplier <- qnorm(1 - alpha / 2)
319
+
320
+ # Find the outcome var for each regression:
321
+ data <-rd_estimates
322
+
323
+ # Replace y_var with nice names:
324
+
325
+ # Now, keep only the betas of interest:
326
+ betas <- data
327
+ dim(betas)
328
+ betas<- betas[seq(dim(betas)[1],1),]
329
+
330
+ # Create Matrix for plotting:
331
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
332
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
333
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
334
+ MatrixofModels$Group <- factor(MatrixofModels$Group, levels = paste0("Controlling for: ",labels))
335
+
336
+ # Plot:
337
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
338
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
339
+ ylab = NULL, xlab = NULL, facets=~ Group)
340
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
341
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
342
+
343
+ # Save:
344
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1, 1,0.25)) + xlab("")
345
+
346
+ ggsave(filename="./Output/CoefPlot_wConflictTypeControls.pdf")
347
+
348
+ ###########################################
349
+
350
+
351
+ ## CONTROLLING FOR COMMERCIALIZATION AVENUE
352
+
353
+ commerc <- read.dta13(file = "./Data/censo_ag_commercialization.dta")
354
+ censo_ag_wreform_tev <- left_join(censo_ag_wreform_tev,commerc, by="agg_id")
355
+
356
+ num_ests <- 4*4
357
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
358
+ y_var = rep(0,num_ests),
359
+ label = rep(0, num_ests))
360
+
361
+ k <- "triangular"
362
+ p <- 1
363
+ b<- "mserd"
364
+
365
+ count<-1
366
+
367
+ controls <- list("MAYO", "MINO", "OTRO", c("MAYO", "MINO", "OTRO")) # Can't control for exporter, not enough
368
+ labels <- c("Wholeseller", "Retailer", "Exporting", "All Controls")
369
+ label.count <- 1
370
+ for (i in controls) {
371
+ print(i)
372
+
373
+ # Revenue per ha:
374
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
375
+ x=censo_ag_wreform_tev$norm_dist,
376
+ covs = censo_ag_wreform_tev[,i],
377
+ c = 0,
378
+ p = p,
379
+ q = p +1,
380
+ kernel = k,
381
+ bwselect = b,
382
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
383
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
384
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
385
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
386
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
387
+ count<-count+1
388
+
389
+ # Profits per ha:
390
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
391
+ x=censo_ag_wreform_tev$norm_dist,
392
+ covs = censo_ag_wreform_tev[,i],
393
+ c = 0,
394
+ p = p,
395
+ q = p +1,
396
+ kernel = k,
397
+ bwselect = b,
398
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
399
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
400
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
401
+ rd_estimates[count,c("y_var")] <- "Profit per ha"
402
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
403
+ count<-count+1
404
+
405
+ # Share Cash:
406
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
407
+ x=censo_ag_wreform_tev$norm_dist,
408
+ covs = censo_ag_wreform_tev[,i],
409
+ c = 0,
410
+ p = p,
411
+ q = p +1,
412
+ kernel = k,
413
+ bwselect = b,
414
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
415
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
416
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
417
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
418
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
419
+ count<-count+1
420
+
421
+
422
+ # Share Staple:
423
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
424
+ x=censo_ag_wreform_tev$norm_dist,
425
+ covs = censo_ag_wreform_tev[,i],
426
+ c = 0,
427
+ p = p,
428
+ q = p +1,
429
+ kernel = k,
430
+ bwselect = b,
431
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
432
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
433
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
434
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
435
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
436
+ count<-count+1
437
+ label.count<-label.count+1
438
+ }
439
+
440
+
441
+ rd_estimates
442
+
443
+ ########################################
444
+
445
+ # Clean data for plotting:
446
+ alpha<- 0.05
447
+ Multiplier <- qnorm(1 - alpha / 2)
448
+
449
+ # Find the outcome var for each regression:
450
+ data <-rd_estimates
451
+
452
+ # Replace y_var with nice names:
453
+
454
+ # Now, keep only the betas of interest:
455
+ betas <- data
456
+ dim(betas)
457
+ betas<- betas[seq(dim(betas)[1],1),]
458
+
459
+ # Create Matrix for plotting:
460
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
461
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
462
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
463
+ MatrixofModels$Group <- factor(MatrixofModels$Group, levels = paste0("Controlling for: ", labels))
464
+
465
+ # Plot:
466
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
467
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
468
+ ylab = NULL, xlab = NULL, facets=~ Group)
469
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
470
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
471
+
472
+ # Save:
473
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1, 1,0.25)) + xlab("")
474
+
475
+ ggsave(filename="./Output/CoefPlot_wCommercialization.pdf")
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+ ###########################################
488
+
489
+ ## CONTROLLING FOR CANTON MIGRATION AMOUNTS:
490
+
491
+ # Prep data:
492
+ poblaccion_section <- read_sav(file = "./Data/poblacion.sav")
493
+
494
+ cantons_popcensus <- dplyr::select(poblaccion_section,
495
+ gender=S06P02,
496
+ age=S06P03A,
497
+ S06P07A, S06P08A1, S06P08A2,
498
+ DEPDSC, MUNDSC, CANDSC,
499
+ literate = S06P09,
500
+ educated = S06P10,
501
+ educ_level = S06P11A,
502
+ finished_hs = S06P11B)
503
+
504
+ cantons_popcensus <- mutate(cantons_popcensus,
505
+ born_same_as_mother= ifelse(S06P07A < 3,S06P07A,NA) ,
506
+ lived_canton_always = ifelse(S06P08A1 < 3,S06P08A1,NA),
507
+ lived_canton_year = ifelse(S06P08A2>0,S06P08A2,NA),
508
+ CODIGO_NOM = toupper(stri_trans_general(paste(DEPDSC, MUNDSC, CANDSC,sep=", "),"Latin-ASCII")))
509
+
510
+ cantons_popcensus <- mutate(cantons_popcensus,
511
+ born_same_as_mother= ifelse(born_same_as_mother ==2 ,0,born_same_as_mother) ,
512
+ lived_canton_always = ifelse(lived_canton_always ==2 ,0,lived_canton_always),
513
+ educ_yrs = 1*(educ_level==1)+6*(educ_level==2)+ 9*(educ_level==3)+
514
+ 11*(educ_level==4)+13*(educ_level==5)+ 15*(educ_level==6)+
515
+ 16*(educ_level==7)+ 17*(educ_level==8)+ 20*(educ_level==9))
516
+
517
+ # Summarise to make merging faster:
518
+ cantons_popcensus <- cantons_popcensus %>%
519
+ group_by(CODIGO_NOM) %>%
520
+ summarise_if(is.numeric, mean, na.rm = TRUE)
521
+
522
+ # Merge data:
523
+ max.dist <- 10 # since there are errors in mun names + state names
524
+ censo_ag_wreform_tev <- stringdist_join(as.data.frame(censo_ag_wreform_tev),
525
+ as.data.frame(cantons_popcensus),
526
+ by = c("CODIGO_NOM.x" = "CODIGO_NOM"),
527
+ mode = "left",
528
+ method = "jw",
529
+ max_dist = max.dist,
530
+ distance_col = "dist")
531
+
532
+ censo_ag_wreform_tev <- censo_ag_wreform_tev %>%
533
+ group_by(agg_id) %>%
534
+ top_n(1, -dist) %>% ungroup()
535
+
536
+ censo_ag_wreform_tev <- as.data.frame(censo_ag_wreform_tev)
537
+
538
+ # Estimate and Save RD for different controls:
539
+ num_ests <- 4*4
540
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
541
+ y_var = rep(0,num_ests),
542
+ label = rep(0, num_ests))
543
+
544
+ k <- "triangular"
545
+ p <- 1
546
+ b<- "mserd"
547
+
548
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
549
+ {
550
+ b <- MOD$se[1]
551
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
552
+ sx <- sd(model.dta[,c("Above500")])
553
+ #sx <- sd(model.dta[,c("norm_dist")])
554
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
555
+ beta <- b * sx/sy
556
+ return(beta)
557
+ }
558
+
559
+
560
+ count<-1
561
+ controls <- list("lived_canton_always", "born_same_as_mother","lived_canton_year",
562
+ c("born_same_as_mother","lived_canton_always","lived_canton_year"))
563
+ labels <- c("% Always Lived in Canton", "% Born in Mother's Canton", "Avg. Years in Canton","All Controls")
564
+ label.count <- 1
565
+ for (i in controls) {
566
+ print(i)
567
+
568
+ # Revenue per ha:
569
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
570
+ x=censo_ag_wreform_tev$norm_dist,
571
+ covs = censo_ag_wreform_tev[,i],
572
+ c = 0,
573
+ p = p,
574
+ q = p +1,
575
+ kernel = k,
576
+ bwselect = b,
577
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
578
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
579
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
580
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
581
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
582
+ count<-count+1
583
+
584
+ # Profits per ha:
585
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
586
+ x=censo_ag_wreform_tev$norm_dist,
587
+ covs = censo_ag_wreform_tev[,i],
588
+ c = 0,
589
+ p = p,
590
+ q = p +1,
591
+ kernel = k,
592
+ bwselect = b,
593
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
594
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
595
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
596
+ rd_estimates[count,c("y_var")] <- "Profit per ha"
597
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
598
+ count<-count+1
599
+
600
+ # Share Cash:
601
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
602
+ x=censo_ag_wreform_tev$norm_dist,
603
+ covs = censo_ag_wreform_tev[,i],
604
+ c = 0,
605
+ p = p,
606
+ q = p +1,
607
+ kernel = k,
608
+ bwselect = b,
609
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
610
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
611
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
612
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
613
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
614
+ count<-count+1
615
+
616
+
617
+ # Share Staple:
618
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
619
+ x=censo_ag_wreform_tev$norm_dist,
620
+ covs = censo_ag_wreform_tev[,i],
621
+ c = 0,
622
+ p = p,
623
+ q = p +1,
624
+ kernel = k,
625
+ bwselect = b,
626
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA),vce="hc1")
627
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
628
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
629
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
630
+ rd_estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
631
+ count<-count+1
632
+ label.count<-label.count+1
633
+ }
634
+
635
+
636
+ rd_estimates
637
+
638
+ ########################################
639
+
640
+ # Clean data for plotting:
641
+ alpha<- 0.05
642
+ Multiplier <- qnorm(1 - alpha / 2)
643
+
644
+ # Find the outcome var for each regression:
645
+ data <-rd_estimates
646
+
647
+ # Replace y_var with nice names:
648
+
649
+ # Now, keep only the betas of interest:
650
+ betas <- data
651
+ dim(betas)
652
+ betas<- betas[seq(dim(betas)[1],1),]
653
+
654
+ # Create Matrix for plotting:
655
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
656
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
657
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
658
+ MatrixofModels$Group <- factor(MatrixofModels$Group, levels = paste0("Controlling for: ", labels))
659
+
660
+
661
+ # Plot:
662
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
663
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
664
+ ylab = NULL, xlab = NULL, facets=~ Group)
665
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
666
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
667
+
668
+ # Save:
669
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1, 1,0.25)) + xlab("")
670
+
671
+ ggsave(filename="./Output/CoefPlot_wMigrationControls.pdf")
672
+
673
+
674
+
675
+
14/replication_package/Replication/Code/ESLR_IVCensus_HetPlots.R ADDED
@@ -0,0 +1,570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ############################################################
2
+ ##### ESLR - RD HETEROGENEITY PLOTTING - AgCensus Data #####
3
+ ############################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(RColorBrewer) # creates nice color schemes
10
+ require(scales) # customize scales
11
+ require(plyr) # join function
12
+ require(dplyr)
13
+ require(rdrobust) # rd estimation tools
14
+ require(haven)
15
+ require(readstata13)
16
+
17
+ ########################################
18
+
19
+ ## Load IV Censo Agropecuario Data:
20
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
21
+
22
+ ########################################
23
+
24
+ ## Making Standarized Coefficient Plots:
25
+
26
+ # Set aesthetics:
27
+ aesthetics <- list(
28
+ theme_bw(),
29
+ theme(text=element_text(family="Palatino"),
30
+ legend.title=element_blank(),
31
+ #legend.justification=c(0,0),
32
+ #legend.position= "right", #c(1,0),
33
+ #panel.grid.minor=element_blank(),
34
+ #panel.grid.major=element_blank(),
35
+ plot.background=element_rect(colour="white",fill="white"),
36
+ panel.grid.major=element_blank(),
37
+ panel.grid.minor=element_blank(),
38
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
39
+ axis.title.y=element_text(face="bold.italic"),
40
+ axis.title.x=element_text(face="bold.italic")))
41
+
42
+
43
+ ########################################
44
+
45
+
46
+
47
+ lm.beta <- function (MOD, dta,y="ln_agprod")
48
+ {
49
+ b <- MOD$coef[1]
50
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
51
+ sx <- sd(model.dta[,c("Above500")])
52
+ #sx <- sd(model.dta[,c("norm_dist")])
53
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
54
+ beta <- b * sx/sy
55
+ return(beta)
56
+ }
57
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
58
+ {
59
+ b <- MOD$se[1]
60
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
61
+ sx <- sd(model.dta[,c("Above500")])
62
+ #sx <- sd(model.dta[,c("norm_dist")])
63
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
64
+ beta <- b * sx/sy
65
+ return(beta)
66
+ }
67
+
68
+
69
+ ########################################
70
+
71
+ num_ests <- 2*4
72
+ rd_estimates <-data.frame(ln_agprod_estimates = rep(0, num_ests), ln_agprod_ses = rep(0, num_ests),
73
+ ln_agprodII_estimates = rep(0,num_ests), ln_agprodII_ses = rep(0, num_ests),
74
+ p = rep(0,num_ests), ks = rep(0,num_ests), bs = rep(0,num_ests), nsl= rep(0,num_ests), nsr= rep(0,num_ests), nslII= rep(0,num_ests), nsrII= rep(0,num_ests), nslIII= rep(0,num_ests), nsrIII= rep(0,num_ests))
75
+ censo_ag_wreform_tev <-censo_ag_wreform
76
+ ag.grouped <- group_by(censo_ag_wreform_tev,Expropretario_ISTA)
77
+ ag.grouped <- mutate(ag.grouped, num_per_owner = n())
78
+ censo_ag_wreform_tev$num_per_owner<- ag.grouped$num_per_owner
79
+
80
+ k <- "triangular"
81
+ p <- 1
82
+ b<- "mserd"
83
+ years <- 2007
84
+ i = 2007
85
+
86
+
87
+ # Estimate and Save RD for configurations:
88
+
89
+ # Agricultural Productivity:
90
+ count<-1
91
+ # Scale:
92
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
93
+ x=censo_ag_wreform_tev$norm_dist,
94
+ c = 0,
95
+ p = p,
96
+ q = p +1,
97
+ kernel = k,
98
+ bwselect = b,
99
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
100
+ subset= censo_ag_wreform_tev$num_per_owner == 1)
101
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
102
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
103
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
104
+ rd_estimates[count,c("label")] <- paste("","1 Prop per owner",sep="")
105
+ count<-count+1
106
+
107
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
108
+ x=censo_ag_wreform_tev$norm_dist,
109
+ c = 0,
110
+ p = p,
111
+ q = p +1,
112
+ kernel = k,
113
+ bwselect = b,
114
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
115
+ subset= censo_ag_wreform_tev$num_per_owner != 1)
116
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
117
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
118
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
119
+ rd_estimates[count,c("label")] <- paste("",">1 Prop per owner",sep="")
120
+ count<-count+1
121
+
122
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
123
+ x=censo_ag_wreform_tev$norm_dist,
124
+ c = 0,
125
+ p = p,
126
+ q = p +1,
127
+ kernel = k,
128
+ bwselect = b,
129
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
130
+ subset= censo_ag_wreform_tev$num_per_owner == 1)
131
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
132
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
133
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
134
+ rd_estimates[count,c("label")] <- paste("","1 Prop per owner",sep="")
135
+ count<-count+1
136
+
137
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
138
+ x=censo_ag_wreform_tev$norm_dist,
139
+ c = 0,
140
+ p = p,
141
+ q = p +1,
142
+ kernel = k,
143
+ bwselect = b,
144
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
145
+ subset= censo_ag_wreform_tev$num_per_owner >1)
146
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
147
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
148
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
149
+ rd_estimates[count,c("label")] <- paste("",">1 Prop per owner",sep="")
150
+ count<-count+1
151
+
152
+
153
+ # Share Cash:
154
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
155
+ x=censo_ag_wreform_tev$norm_dist,
156
+ c = 0,
157
+ p = p,
158
+ q = p +1,
159
+ kernel = k,
160
+ bwselect = b,
161
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
162
+ subset= censo_ag_wreform_tev$num_per_owner == 1)
163
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
164
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
165
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
166
+ rd_estimates[count,c("label")] <- paste("","1 Prop per owner",sep="")
167
+ count<-count+1
168
+
169
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
170
+ x=censo_ag_wreform_tev$norm_dist,
171
+ c = 0,
172
+ p = p,
173
+ q = p +1,
174
+ kernel = k,
175
+ bwselect = b,
176
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
177
+ subset= censo_ag_wreform_tev$num_per_owner >1)
178
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
179
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
180
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
181
+ rd_estimates[count,c("label")] <- paste("",">1 Prop per owner",sep="")
182
+ count<-count+1
183
+
184
+ # Share Staple:
185
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
186
+ x=censo_ag_wreform_tev$norm_dist,
187
+ c = 0,
188
+ p = p,
189
+ q = p +1,
190
+ kernel = k,
191
+ bwselect = b,
192
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
193
+ subset= censo_ag_wreform_tev$num_per_owner == 1)
194
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
195
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
196
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
197
+ rd_estimates[count,c("label")] <- paste("","1 Prop per owner",sep="")
198
+ count<-count+1
199
+
200
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
201
+ x=censo_ag_wreform_tev$norm_dist,
202
+ c = 0,
203
+ p = p,
204
+ q = p +1,
205
+ kernel = k,
206
+ bwselect = b,
207
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
208
+ subset= censo_ag_wreform_tev$num_per_owner >1)
209
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
210
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
211
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
212
+ rd_estimates[count,c("label")] <- paste("",">1 Prop per owner",sep="")
213
+ count<-count+1
214
+
215
+
216
+ rd_estimates
217
+
218
+ ########################################
219
+
220
+ # Clean data for plotting:
221
+ alpha<- 0.05
222
+ Multiplier <- qnorm(1 - alpha / 2)
223
+
224
+ # Find the outcome var for each regression:
225
+ data <-rd_estimates
226
+
227
+ # Replace y_var with nice names:
228
+
229
+ # Now, keep only the betas of interest:
230
+ betas <- data
231
+ dim(betas)
232
+ betas<- betas[seq(dim(betas)[1],1),]
233
+
234
+ # Create Matrix for plotting:
235
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
236
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
237
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
238
+ MatrixofModels$Group <- factor(MatrixofModels$Group) #levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
239
+
240
+
241
+ # Plot:
242
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
243
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
244
+ ylab = NULL, xlab = NULL, facets=~ Group)
245
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
246
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics + xlab("")
247
+
248
+ # Save:
249
+ OutputPlot + coord_flip() + scale_y_continuous(breaks =scales::pretty_breaks(n = 10))
250
+
251
+ ggsave(filename="./Output/CoefPlot_Het_NumPerOwner.pdf", width=6, height=3)
252
+
253
+ ########################################
254
+
255
+ ## Het by Distance to Urban Centers:
256
+
257
+ canton_covs <- read_dta("./Data/cantons_dists.dta")
258
+ canton_covs <- canton_covs %>%
259
+ mutate(CODIGO = (as_factor(COD_CTON)))
260
+
261
+ canton_covs <- canton_covs %>%
262
+ mutate(CODIGO = gsub("(?<![0-9])0+", "", CODIGO, perl = TRUE)) %>%
263
+ mutate(CODIGO = as.numeric(CODIGO)) %>%
264
+ dplyr::select(CODIGO,dist_ES_capital, dist_dept_capitals)
265
+
266
+ censo_ag_wreform_tev <- left_join(censo_ag_wreform_tev,canton_covs, by="CODIGO")
267
+
268
+ num_ests <- 2*8
269
+ rd_estimates <-data.frame(ln_agprod_estimates = rep(0, num_ests), ln_agprod_ses = rep(0, num_ests),
270
+ ln_agprodII_estimates = rep(0,num_ests), ln_agprodII_ses = rep(0, num_ests),
271
+ p = rep(0,num_ests), ks = rep(0,num_ests), bs = rep(0,num_ests), nsl= rep(0,num_ests), nsr= rep(0,num_ests), nslII= rep(0,num_ests), nsrII= rep(0,num_ests), nslIII= rep(0,num_ests), nsrIII= rep(0,num_ests))
272
+
273
+
274
+ k <- "tri"
275
+ p <- 1
276
+ b<- "mserd"
277
+ years <- 2007
278
+ i = 2007
279
+
280
+ censo_ag_wreform_tev <- censo_ag_wreform_tev %>%
281
+ mutate(Close_ES_Capital = ifelse(dist_ES_capital < 50000,1,0),
282
+ Close_Dept_Capitals = ifelse(dist_dept_capitals < 10000,1,0))
283
+
284
+
285
+ count<-1
286
+ # Scale:
287
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
288
+ x=censo_ag_wreform_tev$norm_dist,
289
+ c = 0,
290
+ p = p,
291
+ q = p +1,
292
+ kernel = k,
293
+ bwselect = b,
294
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
295
+ subset= censo_ag_wreform_tev$Close_ES_Capital == 1 | censo_ag_wreform_tev$reform==0)
296
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
297
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
298
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
299
+ rd_estimates[count,c("label")] <- paste("","Close to: Country Capital",sep="")
300
+ count<-count+1
301
+
302
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
303
+ x=censo_ag_wreform_tev$norm_dist,
304
+ c = 0,
305
+ p = p,
306
+ q = p +1,
307
+ kernel = k,
308
+ bwselect = b,
309
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
310
+ subset= censo_ag_wreform_tev$Close_ES_Capital != 1 | censo_ag_wreform_tev$reform==0)
311
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
312
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
313
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
314
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Country Capital",sep="")
315
+ count<-count+1
316
+
317
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
318
+ x=censo_ag_wreform_tev$norm_dist,
319
+ c = 0,
320
+ p = p,
321
+ q = p +1,
322
+ kernel = k,
323
+ bwselect = b,
324
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
325
+ subset= censo_ag_wreform_tev$Close_ES_Capital == 1 | censo_ag_wreform_tev$reform==0)
326
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
327
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
328
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
329
+ rd_estimates[count,c("label")] <- paste("","Close to: Country Capital",sep="")
330
+ count<-count+1
331
+
332
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
333
+ x=censo_ag_wreform_tev$norm_dist,
334
+ c = 0,
335
+ p = p,
336
+ q = p + 1,
337
+ kernel = k,
338
+ bwselect = b,
339
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
340
+ subset= censo_ag_wreform_tev$Close_ES_Capital !=1 | censo_ag_wreform_tev$reform==0)
341
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
342
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
343
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
344
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Country Capital",sep="")
345
+ count<-count+1
346
+
347
+
348
+ # Share Cash:
349
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
350
+ x=censo_ag_wreform_tev$norm_dist,
351
+ c = 0,
352
+ p = p,
353
+ q = p +1,
354
+ kernel = k,
355
+ bwselect = b,
356
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
357
+ subset= censo_ag_wreform_tev$Close_ES_Capital == 1 | censo_ag_wreform_tev$reform==0)
358
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
359
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
360
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
361
+ rd_estimates[count,c("label")] <- paste("","Close to: Country Capital",sep="")
362
+ count<-count+1
363
+
364
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
365
+ x=censo_ag_wreform_tev$norm_dist,
366
+ c = 0,
367
+ p = p,
368
+ q = p +1,
369
+ kernel = k,
370
+ bwselect = b,
371
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
372
+ subset= censo_ag_wreform_tev$Close_ES_Capital !=1 | censo_ag_wreform_tev$reform==0)
373
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
374
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
375
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
376
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Country Capital",sep="")
377
+ count<-count+1
378
+
379
+ # Share Staple:
380
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
381
+ x=censo_ag_wreform_tev$norm_dist,
382
+ c = 0,
383
+ p = p,
384
+ q = p +1,
385
+ kernel = k,
386
+ bwselect = b,
387
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
388
+ subset= censo_ag_wreform_tev$Close_ES_Capital == 1 | censo_ag_wreform_tev$reform==0)
389
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
390
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
391
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
392
+ rd_estimates[count,c("label")] <- paste("","Close to: Country Capital",sep="")
393
+ count<-count+1
394
+
395
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
396
+ x=censo_ag_wreform_tev$norm_dist,
397
+ c = 0,
398
+ p = p,
399
+ q = p +1,
400
+ kernel = k,
401
+ bwselect = b,
402
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
403
+ subset= censo_ag_wreform_tev$Close_ES_Capital != 1 | censo_ag_wreform_tev$reform==0)
404
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
405
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
406
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
407
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Country Capital",sep="")
408
+ count<-count+1
409
+
410
+ # Department Capitals
411
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
412
+ x=censo_ag_wreform_tev$norm_dist,
413
+ c = 0,
414
+ p = p,
415
+ q = p +1,
416
+ kernel = k,
417
+ bwselect = b,
418
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
419
+ subset= censo_ag_wreform_tev$Close_Dept_Capital == 1 | censo_ag_wreform_tev$reform==0)
420
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
421
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
422
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
423
+ rd_estimates[count,c("label")] <- paste("","Close to: Department Capital",sep="")
424
+ count<-count+1
425
+
426
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod_pricew_crops),
427
+ x=censo_ag_wreform_tev$norm_dist,
428
+ c = 0,
429
+ p = p,
430
+ q = p +1,
431
+ kernel = k,
432
+ bwselect = b,
433
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
434
+ subset= censo_ag_wreform_tev$Close_Dept_Capital != 1 | censo_ag_wreform_tev$reform==0)
435
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
436
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod_pricew_crops")
437
+ rd_estimates[count,c("y_var")] <- "Revenue per ha"
438
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Department Capital",sep="")
439
+ count<-count+1
440
+
441
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
442
+ x=censo_ag_wreform_tev$norm_dist,
443
+ c = 0,
444
+ p = p,
445
+ q = p +1,
446
+ kernel = k,
447
+ bwselect = b,
448
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
449
+ subset= censo_ag_wreform_tev$Close_Dept_Capital == 1 | censo_ag_wreform_tev$reform==0)
450
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
451
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
452
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
453
+ rd_estimates[count,c("label")] <- paste("","Close to: Department Capital",sep="")
454
+ count<-count+1
455
+
456
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
457
+ x=censo_ag_wreform_tev$norm_dist,
458
+ c = 0,
459
+ p = p,
460
+ q = p +1,
461
+ kernel = k,
462
+ bwselect = b,
463
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
464
+ subset= censo_ag_wreform_tev$Close_Dept_Capital !=1 | censo_ag_wreform_tev$reform==0)
465
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
466
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
467
+ rd_estimates[count,c("y_var")] <- "Profits per ha"
468
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Department Capital",sep="")
469
+ count<-count+1
470
+
471
+ # Share Cash:
472
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
473
+ x=censo_ag_wreform_tev$norm_dist,
474
+ c = 0,
475
+ p = p,
476
+ q = p +1,
477
+ kernel = k,
478
+ bwselect = b,
479
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
480
+ subset= censo_ag_wreform_tev$Close_Dept_Capital == 1 | censo_ag_wreform_tev$reform==0)
481
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
482
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
483
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
484
+ rd_estimates[count,c("label")] <- paste("","Close to: Department Capital",sep="")
485
+ count<-count+1
486
+
487
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$CashCrop_Share),
488
+ x=censo_ag_wreform_tev$norm_dist,
489
+ c = 0,
490
+ p = p,
491
+ q = p +1,
492
+ kernel = k,
493
+ bwselect = b,
494
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
495
+ subset= censo_ag_wreform_tev$Close_Dept_Capital !=1 | censo_ag_wreform_tev$reform==0)
496
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
497
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
498
+ rd_estimates[count,c("y_var")] <- "Cash Crop Share"
499
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Department Capital",sep="")
500
+ count<-count+1
501
+
502
+ # Share Staple:
503
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
504
+ x=censo_ag_wreform_tev$norm_dist,
505
+ c = 0,
506
+ p = p,
507
+ q = p +1,
508
+ kernel = k,
509
+ bwselect = b,
510
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
511
+ subset= censo_ag_wreform_tev$Close_Dept_Capital == 1 | censo_ag_wreform_tev$reform==0)
512
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
513
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
514
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
515
+ rd_estimates[count,c("label")] <- paste("","Close to: Department Capital",sep="")
516
+ count<-count+1
517
+
518
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
519
+ x=censo_ag_wreform_tev$norm_dist,
520
+ c = 0,
521
+ p = p,
522
+ q = p +1,
523
+ kernel = k,
524
+ bwselect = b,
525
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1",
526
+ subset= censo_ag_wreform_tev$Close_Dept_Capital != 1 | censo_ag_wreform_tev$reform==0)
527
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
528
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
529
+ rd_estimates[count,c("y_var")] <- "Staple Crop Share"
530
+ rd_estimates[count,c("label")] <- paste("","Not Close to: Department Capital",sep="")
531
+ count<-count+1
532
+
533
+
534
+ rd_estimates
535
+
536
+ ########################################
537
+
538
+ # Clean data for plotting:
539
+ alpha<- 0.05
540
+ Multiplier <- qnorm(1 - alpha / 2)
541
+
542
+ # Find the outcome var for each regression:
543
+ data <-rd_estimates
544
+
545
+ # Replace y_var with nice names:
546
+
547
+ # Now, keep only the betas of interest:
548
+ betas <- data
549
+ dim(betas)
550
+ betas<- betas[seq(dim(betas)[1],1),]
551
+
552
+ # Create Matrix for plotting:
553
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
554
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
555
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
556
+ MatrixofModels$Group <- factor(MatrixofModels$Group) #levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
557
+
558
+
559
+ # Plot:
560
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
561
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
562
+ ylab = NULL, xlab = NULL, facets=~ Group)
563
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
564
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics + xlab("")
565
+
566
+ # Save:
567
+ OutputPlot + coord_flip() + scale_y_continuous(breaks =scales::pretty_breaks(n = 10))
568
+
569
+ ggsave(filename="./Output/CoefPlot_Het_DistCapital.pdf")
570
+
14/replication_package/Replication/Code/ESLR_IVCensus_Matching.R ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################
2
+ ##### ESLR - RD + MATCHING PLOTING - AgCensus Data #####
3
+ ########################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(haven)
26
+ require(readstata13)
27
+ require(TOSTER)
28
+ require(MatchIt)
29
+ require(imputeTS)
30
+ require(opmatch)
31
+ require(cem)
32
+ require(tcltk)
33
+ require(extrafont)
34
+
35
+ ########################################
36
+
37
+ ## Load IV Censo Agropecuario Data:
38
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
39
+
40
+ ########################################
41
+
42
+ ## Making Standarized Coefficient Plots:
43
+
44
+ # Set aesthetics:
45
+ aesthetics <- list(
46
+ theme_bw(),
47
+ theme(legend.title=element_blank(),
48
+ text=element_text(family="Palatino"),
49
+ #legend.justification=c(0,0),
50
+ #legend.position= "right", #c(1,0),
51
+ #panel.grid.minor=element_blank(),
52
+ #panel.grid.major=element_blank(),
53
+ plot.background=element_rect(colour="white",fill="white"),
54
+ panel.grid.major=element_blank(),
55
+ panel.grid.minor=element_blank(),
56
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
57
+ axis.title.y=element_text(face="bold.italic"),
58
+ axis.title.x=element_blank())) #(face="bold.italic")))
59
+
60
+ ########################################
61
+
62
+
63
+ lm.beta <- function (MOD, dta,y="ln_agprod")
64
+ {
65
+ b <- MOD$coef[1]
66
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
67
+ sx <- sd(model.dta[,c("Above500")])
68
+ #sx <- sd(model.dta[,c("norm_dist")])
69
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
70
+ beta <- b * sx/sy
71
+ return(beta)
72
+ }
73
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
74
+ {
75
+ b <- MOD$se[1]
76
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
77
+ sx <- sd(model.dta[,c("Above500")])
78
+ #sx <- sd(model.dta[,c("norm_dist")])
79
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
80
+ beta <- b * sx/sy
81
+ return(beta)
82
+ }
83
+
84
+ lm.beta.match <- function (MOD, dta,y="ln_agprod")
85
+ {
86
+ b <- MOD[2,1]
87
+ model.dta <- dta # filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
88
+ sx <- sd(model.dta[,c("reform")],na.rm = TRUE)
89
+ #sx <- sd(model.dta[,c("norm_dist")])
90
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
91
+ beta <- b * sx/sy
92
+ return(beta)
93
+ }
94
+ lm.beta.ses.match <- function (MOD, dta,y="ln_agprod")
95
+ {
96
+ b <- MOD[2,2]
97
+ model.dta <- dta # filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
98
+ sx <- sd(model.dta[,c("reform")],na.rm = TRUE)
99
+ #sx <- sd(model.dta[,c("norm_dist")])
100
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
101
+ beta <- b * sx/sy
102
+ return(beta)
103
+ }
104
+
105
+ winsor <- function (x, fraction=.01)
106
+ {
107
+ if(length(fraction) != 1 || fraction < 0 ||
108
+ fraction > 0.5) {
109
+ stop("bad value for 'fraction'")
110
+ }
111
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
112
+ x[ x < lim[1] ] <- NA #lim[1] 8888
113
+ x[ x > lim[2] ] <- NA #lim[2] 8888
114
+ x
115
+ }
116
+
117
+ winsor1 <- function (x, fraction=.01)
118
+ {
119
+ if(length(fraction) != 1 || fraction < 0 ||
120
+ fraction > 0.5) {
121
+ stop("bad value for 'fraction'")
122
+ }
123
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
124
+ x[ x < lim[1] ] <- lim[1] #lim[1] 8888
125
+ x[ x > lim[2] ] <- lim[2] #lim[2] 8888
126
+ x
127
+ }
128
+
129
+ winsor2 <-function (x, multiple=3)
130
+ {
131
+ if(length(multiple) != 1 || multiple <= 0) {
132
+ stop("bad value for 'multiple'")
133
+ }
134
+ med <- median(x)
135
+ y <- x - med
136
+ sc <- mad(y, center=0) * multiple
137
+ y[ y > sc ] <- sc
138
+ y[ y < -sc ] <- -sc
139
+ y + med
140
+ }
141
+
142
+
143
+ ########################################
144
+
145
+ polys <- c(1) # 1
146
+ kernels <- c("triangular")
147
+ bwsel <- c("mserd")
148
+ num_outcomes <- 3 # 3 ag prod; staple share + 2 yields; cash + 2 yields; income results
149
+ matching_methods <- c("nearest", "full", "cem", "optimal")
150
+ num_ests <- (length(polys)*(length(kernels)*length(bwsel)) + length(matching_methods))*num_outcomes
151
+ estimates <-data.frame(y_var = rep(0, num_ests),
152
+ estimate = rep(0, num_ests),
153
+ ses = rep(0, num_ests),
154
+ p = rep(0,num_ests), ks = rep(0,num_ests), bs = rep(0,num_ests),
155
+ nsl= rep(0,num_ests), nsr= rep(0,num_ests), nslII= rep(0,num_ests),
156
+ nsrII= rep(0,num_ests), nslIII= rep(0,num_ests), nsrIII= rep(0,num_ests),
157
+ est_method = rep(0,num_ests))
158
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform, ln_agprodII = ln_agprod, ln_agprod = ln_agprod_pricew_crops)
159
+
160
+ ## Other covariates for matching:
161
+ ag.grouped <- group_by(censo_ag_wreform_tev,Expropretario_ISTA)
162
+ ag.grouped <- mutate(ag.grouped, num_per_owner = n())
163
+ censo_ag_wreform_tev$num_per_owner<- ag.grouped$num_per_owner
164
+ censo_ag_wreform_tev$mult_per_owner <- ifelse(censo_ag_wreform_tev$num_per_owner > 1, 1, 0)
165
+
166
+ # Het by Distance to Urban Centers:
167
+ canton_covs <- read_dta("Data/cantons_dists.dta")
168
+ canton_covs <- canton_covs %>%
169
+ mutate(CODIGO = (as_factor(COD_CTON)))
170
+
171
+ canton_covs <- canton_covs %>%
172
+ mutate(CODIGO = gsub("(?<![0-9])0+", "", CODIGO, perl = TRUE)) %>%
173
+ mutate(CODIGO = as.numeric(CODIGO)) %>%
174
+ dplyr::select(CODIGO,dist_ES_capital, dist_dept_capitals)
175
+
176
+ censo_ag_wreform_tev <- left_join(censo_ag_wreform_tev,canton_covs, by="CODIGO")
177
+
178
+ censo_ag_wreform_tev <- censo_ag_wreform_tev %>%
179
+ mutate(Close_ES_Capital = ifelse(dist_ES_capital < 50000,1,0),
180
+ Close_Dept_Capitals = ifelse(dist_dept_capitals < 50000,1,0),
181
+ canton_land_suit = ifelse(is.na(canton_land_suit),0,canton_land_suit))
182
+
183
+ censo_ag_wreform_tev2 <- censo_ag_wreform_tev
184
+ years <- 2007
185
+ for (i in years) {
186
+
187
+ # Estimate and Save RD for configurations:
188
+
189
+ # Agricultural Variables -- RD Estimates:
190
+ count <-1
191
+ for (p in polys) {
192
+ for (k in kernels) {
193
+ for (b in bwsel) {
194
+
195
+
196
+ # Cash Crop Share:
197
+ rdests <- rdrobust(y = winsor(censo_ag_wreform_tev$CashCrop_Share),
198
+ x=(censo_ag_wreform_tev$norm_dist),
199
+ c = 0,
200
+ p = p,
201
+ q = p +1,
202
+ kernel = k,
203
+ bwselect = b,
204
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
205
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
206
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
207
+
208
+ estimates[count,c("y_var")] <- "Cash Crop Share"
209
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
210
+ count <- count + 1
211
+
212
+ # Sugar Cane Yield:
213
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$SugarCane_Yield),
214
+ x=(censo_ag_wreform_tev$norm_dist),
215
+ c = 0,
216
+ p = p,
217
+ q = p +1,
218
+ kernel = k,
219
+ #bwselect = b,
220
+ h = 102.877,
221
+ b = 166.088,
222
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
223
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="SugarCane_Yield")
224
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="SugarCane_Yield") #/2
225
+
226
+ estimates[count,c("y_var")] <- "Sugar Cane Yield"
227
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
228
+ count <- count + 1
229
+
230
+ # Coffee Yield:
231
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Coffee_Yield),
232
+ x=(censo_ag_wreform_tev$norm_dist),
233
+ c = 0,
234
+ p = p,
235
+ q = p +1,
236
+ kernel = k,
237
+ bwselect = b,
238
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
239
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Coffee_Yield")
240
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Coffee_Yield")
241
+
242
+ estimates[count,c("y_var")] <- "Coffee Yield"
243
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
244
+ count <- count + 1
245
+
246
+ # Staple Crop Share:
247
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
248
+ x=(censo_ag_wreform_tev$norm_dist),
249
+ c = 0,
250
+ p = p,
251
+ q = p +1,
252
+ kernel = k,
253
+ bwselect = b,
254
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
255
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
256
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
257
+
258
+ estimates[count,c("y_var")] <- "Staple Crop Share"
259
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
260
+ count <- count + 1
261
+
262
+ # Bean Yield:
263
+ rdests <- rdrobust(y =censo_ag_wreform_tev$Beans_Yield, # winsor1(censo_ag_wreform_tev$Beans_Yield,fraction = 0.025)
264
+ x=(censo_ag_wreform_tev$norm_dist),
265
+ c = 0,
266
+ p = p,
267
+ q = p +1,
268
+ kernel = k,
269
+ # bwselect = b,
270
+ h = 122.64,
271
+ b = 207.42,
272
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
273
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Beans_Yield")
274
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Beans_Yield")
275
+
276
+ estimates[count,c("y_var")] <- "Beans Yield"
277
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
278
+ count <- count + 1
279
+
280
+ # Maize Yield:
281
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Maize_Yield),
282
+ x=(censo_ag_wreform_tev$norm_dist),
283
+ c = 0,
284
+ p = p,
285
+ q = p +1,
286
+ kernel = k,
287
+ #bwselect = b,
288
+ h = 91.611 ,
289
+ b = 146.499 ,
290
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
291
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Maize_Yield")
292
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Maize_Yield")
293
+
294
+ estimates[count,c("y_var")] <- "Maize Yield"
295
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
296
+ count <- count + 1
297
+
298
+ # Revenues:
299
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
300
+ x=(censo_ag_wreform_tev$norm_dist),
301
+ c = 0,
302
+ p = p,
303
+ q = p +1,
304
+ kernel = k,
305
+ bwselect = b,
306
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
307
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
308
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
309
+
310
+ estimates[count,c("y_var")] <- "Revenues per ha"
311
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
312
+ count <- count + 1
313
+
314
+ # Profits:
315
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
316
+ x=censo_ag_wreform_tev$norm_dist,
317
+ c = 0,
318
+ p = p,
319
+ q = p +1,
320
+ kernel = k,
321
+ bwselect = b,
322
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
323
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
324
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
325
+
326
+ estimates[count,c("y_var")] <- "Profits per ha"
327
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
328
+ count <- count + 1
329
+
330
+ # TFP:
331
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_tfp_geo),
332
+ x=censo_ag_wreform_tev$norm_dist,
333
+ c = 0,
334
+ p = p,
335
+ q = p +1,
336
+ kernel = k,
337
+ bwselect = b,
338
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
339
+ estimates[count,c("estimate")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
340
+ estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
341
+
342
+ estimates[count,c("y_var")] <- "Farm Productivity"
343
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
344
+ count <- count + 1
345
+ }
346
+ }
347
+ }
348
+
349
+ # Agricultural Variables -- Matching Estimates:
350
+ for (m in matching_methods) {
351
+
352
+ ## Match Datasets:
353
+ to_match <- filter(censo_ag_wreform_tev, !is.na(reform))
354
+ covs <- c("canton_mean_rain","canton_land_suit", "canton_elev_dem_30sec",
355
+ "canton_coffee_suit","sugarcane_suit","miaze_suit","bean_suit","canton_mean_rain",
356
+ "mult_per_owner",
357
+ "dist_ES_capital" , "dist_dept_capitals",
358
+ "Area_has")
359
+ to_match<-to_match[complete.cases(to_match[,covs]),]
360
+ matched.data<-
361
+ matchit(reform ~ canton_coffee_suit + sugarcane_suit + miaze_suit +
362
+ bean_suit + canton_mean_rain + canton_land_suit + canton_elev_dem_30sec +
363
+ mult_per_owner +
364
+ dist_ES_capital + dist_dept_capitals +
365
+ Area_has, data = to_match,
366
+ method = m)
367
+
368
+ # Matching estimate
369
+
370
+ # Cash Crop Share
371
+ fit1 <- lm(CashCrop_Share ~ reform, data = match.data(matched.data), weights = weights)
372
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
373
+
374
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
375
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
376
+
377
+ estimates[count,c("y_var")] <- "Cash Crop Share"
378
+ estimates[count,c("est_method")] <- paste0("Matching: ",
379
+ case_when(m=="optimal" ~ "Optimal",
380
+ m=="nearest" ~ "Nearest Neighbor",
381
+ m=="full" ~ "Full",
382
+ m=="cem" ~ "Coarse Exact"),
383
+ " Matching")
384
+ count <- count + 1
385
+
386
+ # Sugar Cane
387
+ fit1 <- lm(SugarCane_Yield ~ reform, data = match.data(matched.data), weights = weights)
388
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
389
+
390
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="SugarCane_Yield")
391
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="SugarCane_Yield")
392
+
393
+ estimates[count,c("y_var")] <- "Sugar Cane Yield"
394
+ estimates[count,c("est_method")] <- paste0("Matching: ",
395
+ case_when(m=="optimal" ~ "Optimal",
396
+ m=="nearest" ~ "Nearest Neighbor",
397
+ m=="full" ~ "Full",
398
+ m=="cem" ~ "Coarse Exact"),
399
+ " Matching")
400
+ count <- count + 1
401
+
402
+ # Coffee
403
+ fit1 <- lm(Coffee_Yield ~ reform, data = match.data(matched.data), weights = weights)
404
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
405
+
406
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="Coffee_Yield")
407
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="Coffee_Yield")
408
+
409
+ estimates[count,c("y_var")] <- "Coffee Yield"
410
+ estimates[count,c("est_method")] <- paste0("Matching: ",
411
+ case_when(m=="optimal" ~ "Optimal",
412
+ m=="nearest" ~ "Nearest Neighbor",
413
+ m=="full" ~ "Full",
414
+ m=="cem" ~ "Coarse Exact"),
415
+ " Matching")
416
+ count <- count + 1
417
+
418
+ # Staple Crop Share
419
+ fit1 <- lm(StapleCrop_Share ~ reform, data = match.data(matched.data), weights = weights)
420
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
421
+
422
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
423
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="StapleCrop_Share")
424
+
425
+ estimates[count,c("y_var")] <- "Staple Crop Share"
426
+ estimates[count,c("est_method")] <- paste0("Matching: ",
427
+ case_when(m=="optimal" ~ "Optimal",
428
+ m=="nearest" ~ "Nearest Neighbor",
429
+ m=="full" ~ "Full",
430
+ m=="cem" ~ "Coarse Exact"),
431
+ " Matching")
432
+ count <- count + 1
433
+
434
+ # Maize
435
+ fit1 <- lm(Maize_Yield ~ reform, data = match.data(matched.data), weights = weights)
436
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
437
+
438
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="Maize_Yield")
439
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="Maize_Yield")
440
+
441
+ estimates[count,c("y_var")] <- "Maize Yield"
442
+ estimates[count,c("est_method")] <- paste0("Matching: ",
443
+ case_when(m=="optimal" ~ "Optimal",
444
+ m=="nearest" ~ "Nearest Neighbor",
445
+ m=="full" ~ "Full",
446
+ m=="cem" ~ "Coarse Exact"),
447
+ " Matching")
448
+ count <- count + 1
449
+
450
+ # Beans
451
+ fit1 <- lm(Beans_Yield ~ reform, data = match.data(matched.data), weights = weights)
452
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
453
+
454
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="Beans_Yield")
455
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="Beans_Yield")
456
+
457
+ estimates[count,c("y_var")] <- "Beans Yield"
458
+ estimates[count,c("est_method")] <- paste0("Matching: ",
459
+ case_when(m=="optimal" ~ "Optimal",
460
+ m=="nearest" ~ "Nearest Neighbor",
461
+ m=="full" ~ "Full",
462
+ m=="cem" ~ "Coarse Exact"),
463
+ " Matching")
464
+ count <- count + 1
465
+
466
+ # Revenues:
467
+ fit1 <- lm(ln_agprod ~ reform, data = match.data(matched.data), weights = weights)
468
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
469
+
470
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_agprod")
471
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_agprod")
472
+
473
+ estimates[count,c("y_var")] <- "Revenues per ha"
474
+ estimates[count,c("est_method")] <- paste0("Matching: ",
475
+ case_when(m=="optimal" ~ "Optimal",
476
+ m=="nearest" ~ "Nearest Neighbor",
477
+ m=="full" ~ "Full",
478
+ m=="cem" ~ "Coarse Exact"),
479
+ " Matching")
480
+ count <- count + 1
481
+
482
+ # Profits:
483
+ fit1 <- lm(ln_agprodII ~ reform, data = match.data(matched.data), weights = weights)
484
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
485
+
486
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_agprodII")
487
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_agprodII")
488
+
489
+ estimates[count,c("y_var")] <- "Profits per ha"
490
+ estimates[count,c("est_method")] <- paste0("Matching: ",
491
+ case_when(m=="optimal" ~ "Optimal",
492
+ m=="nearest" ~ "Nearest Neighbor",
493
+ m=="full" ~ "Full",
494
+ m=="cem" ~ "Coarse Exact"),
495
+ " Matching")
496
+ count <- count + 1
497
+
498
+ # TFP:
499
+ fit1 <- lm(ln_tfp_geo ~ reform, data = match.data(matched.data), weights = weights)
500
+ ests<- coeftest(fit1, vcov. = vcovCL, cluster = ~subclass)
501
+
502
+ estimates[count,c("estimate")] <-lm.beta.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
503
+ estimates[count,c("ses")] <- lm.beta.ses.match(MOD=ests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
504
+
505
+ estimates[count,c("y_var")] <- "Farm Productivity"
506
+ estimates[count,c("est_method")] <- paste0("Matching: ",
507
+ case_when(m=="optimal" ~ "Optimal",
508
+ m=="nearest" ~ "Nearest Neighbor",
509
+ m=="full" ~ "Full",
510
+ m=="cem" ~ "Coarse Exact"),
511
+ " Matching")
512
+ count <- count + 1
513
+
514
+ }
515
+ }
516
+ estimates
517
+
518
+ ########################################
519
+
520
+ # Clean data for plotting:
521
+ alpha<- 0.05
522
+ Multiplier <- qnorm(1 - alpha / 2)
523
+
524
+ Multiplier2 <- qnorm(1 - 2*alpha / 2)
525
+
526
+ data <- estimates
527
+ betas <- data
528
+ dim(betas)
529
+ betas<- betas[seq(dim(betas)[1],1),]
530
+
531
+ # Create Matrix for plotting:
532
+ MatrixofModels <- betas[c("y_var", "estimate","ses","est_method")]
533
+ colnames(MatrixofModels) <- c("Outcome", "Estimate", "StandardError", "Method")
534
+ MatrixofModels$Outcome <- factor(MatrixofModels$Outcome, levels = unique(MatrixofModels$Outcome))
535
+
536
+ # Re-Order for plotting:
537
+ MatrixofModels$Outcome <- factor(MatrixofModels$Outcome,
538
+ levels = c("Cash Crop Share",
539
+ "Coffee Yield",
540
+ "Sugar Cane Yield",
541
+ "Staple Crop Share",
542
+ "Maize Yield",
543
+ "Beans Yield",
544
+ "Revenues per ha",
545
+ "Profits per ha",
546
+ "Farm Productivity"))
547
+
548
+ # Plot:
549
+ OutputPlot <- qplot(Method, Estimate, ymin = Estimate - Multiplier * StandardError,
550
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
551
+ ylab = NULL, xlab = NULL, facets=~ Outcome, alpha=0.5)
552
+
553
+ OutputPlot <- ggplot() + geom_errorbar(aes(x=Method, y=Estimate, ymin = Estimate - Multiplier * StandardError,
554
+ ymax = Estimate + Multiplier * StandardError), data = MatrixofModels,
555
+ size=0.6,
556
+ width=0,
557
+ alpha=0.5,
558
+ col="black") +
559
+ geom_point(aes(x=Method, y=Estimate), data = MatrixofModels,
560
+ col="black",show.legend = FALSE) + facet_wrap(~Outcome)
561
+
562
+
563
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
564
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
565
+ # Add 90%
566
+ OutputPlot <- OutputPlot + geom_errorbar(aes(x=Method, y=Estimate, ymin = Estimate - Multiplier2 * StandardError,
567
+ ymax = Estimate + Multiplier2 * StandardError), data = MatrixofModels,
568
+ size=0.5,
569
+ width=0,
570
+ col="black",show.legend = FALSE)
571
+ OutputPlot <- OutputPlot + geom_point(aes(x=Method, y=Estimate), data = MatrixofModels,
572
+ col="black",show.legend = FALSE)
573
+ # Save:
574
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-2, 1.5,0.5)) +
575
+ xlab("") +
576
+ coord_flip(ylim= c(-2,1.5))
577
+ ggsave(filename="./Output/CoefPlot_Matching.pdf", scale=1.25)
578
+
579
+
580
+
14/replication_package/Replication/Code/ESLR_IVCensus_NonComplierPlot.R ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################
2
+ require(lfe)
3
+ ## Crop choices for non-compliers vs control
4
+
5
+ num_ests <- 1*2
6
+ estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
7
+ y_var = rep(0,num_ests),
8
+ label = rep(0, num_ests))
9
+
10
+ lm.beta.ses2 <- function (MOD, dta,y="ln_agprod")
11
+ {
12
+ b <- MOD$se[2] # b <- MOD$se[3]
13
+ sx <- sd(dta[,c("non_comp")],na.rm=TRUE)
14
+ #sx <- sd(model.dta[,c("norm_dist")])
15
+ sy <- sd((dta[,c(y)]),na.rm=TRUE)
16
+ beta <- b * sx/sy
17
+ return(beta)
18
+ }
19
+
20
+ lm.beta2 <- function (MOD, dta,y="ln_agprod")
21
+ {
22
+ b <- MOD$coef[2]
23
+ sx <- sd(dta[,c("non_comp")],na.rm=TRUE)
24
+ #sx <- sd(model.dta[,c("norm_dist")])
25
+ sy <- sd((dta[,c(y)]),na.rm=TRUE)
26
+ print(sx)
27
+ beta <- b * sx/sy
28
+ return(beta)
29
+ }
30
+
31
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
32
+ censo_ag_wreform_tev <- censo_ag_wreform %>%
33
+ mutate(non_comp = ifelse(reform == 0 & Above500==1,1,0)) %>%
34
+ filter(reform!=1)
35
+
36
+ controls <- 1
37
+ count<-1
38
+ for (i in controls) {
39
+ print(i)
40
+
41
+
42
+ # Share Cash:
43
+ rdests <- felm(CashCrop_Share ~
44
+ non_comp
45
+ | 0 | 0 | Expropretario_ISTA,
46
+ data = censo_ag_wreform_tev,
47
+ subset = (reform==0 & AREA_HECTAREA > 350))
48
+
49
+ estimates[count,c("estimates")] <-lm.beta2(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
50
+ estimates[count,c("ses")] <- lm.beta.ses2(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
51
+ estimates[count,c("y_var")] <- "Cash Crop Share"
52
+ #estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
53
+ count<-count+1
54
+
55
+
56
+ # Share Staple:
57
+ rdests <- felm(StapleCrop_Share ~
58
+ non_comp
59
+ | 0 | 0 | Expropretario_ISTA,
60
+ data = censo_ag_wreform_tev,
61
+ subset = (reform==0 & AREA_HECTAREA > 350))
62
+
63
+ estimates[count,c("estimates")] <-lm.beta2(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
64
+ estimates[count,c("ses")] <- lm.beta.ses2(MOD=rdests, dta=censo_ag_wreform_tev, y="CashCrop_Share")
65
+ estimates[count,c("y_var")] <- "Staple Crop Share"
66
+ #estimates[count,c("label")] <- paste("Controlling for: ",labels[label.count],sep="")
67
+
68
+ # Suitabilities?
69
+
70
+ count<-count+1
71
+ label.count<-label.count+1
72
+ }
73
+
74
+
75
+ estimates
76
+
77
+ ########################################
78
+
79
+ # Clean data for plotting:
80
+ alpha<- 0.05
81
+ Multiplier <- qnorm(1 - alpha / 2)
82
+
83
+ # Find the outcome var for each regression:
84
+ data <-estimates
85
+
86
+ # Replace y_var with nice names:
87
+
88
+ # Now, keep only the betas of interest:
89
+ betas <- data
90
+ dim(betas)
91
+ betas<- betas[seq(dim(betas)[1],1),]
92
+
93
+ # Create Matrix for plotting:
94
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
95
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
96
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
97
+ MatrixofModels$Group <- factor(MatrixofModels$Group, levels = paste0("Controlling for: ", labels))
98
+
99
+
100
+ # Plot:
101
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
102
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
103
+ ylab = NULL, xlab = NULL)
104
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
105
+ # Stupid fix to fix the scales overlapping on the bottom:
106
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.02, alpha = 0.05)
107
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
108
+
109
+ # Save:
110
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1, 1,0.05),limits = c(-0.25,0.25)) + xlab("")
111
+
112
+ ggsave(filename="./Output/CoefPlot_NonCompliers.pdf", width=6, height=3)
14/replication_package/Replication/Code/ESLR_IVCensus_Power.do ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ***************************************************************
2
+ ******* ESLR:Ag-Census-Plot-Level Outcomes-Extensions **********
3
+ ****************************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+
11
+ *********************
12
+ *** Load the Data ***
13
+ *********************
14
+
15
+ use "Data/censo_ag_wreform.dta", clear
16
+
17
+ ******************
18
+ *** POWER CALC ***
19
+ ******************
20
+
21
+
22
+ local polynomial_level 1
23
+ local bandwidth_choice "mserd"
24
+ local kernel_choice "tri"
25
+ local cluster_level "Expropretario_ISTA"
26
+
27
+ *Logs OF REVENUE:
28
+ rdbwselect ln_agprod_pricew_crops norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
29
+ * STANDARDIZE EFFECT w/in BW:
30
+ dis `e(h_mserd)'
31
+ egen sd_agprod_bw = sd(ln_agprod_pricew_crops)
32
+ egen mean_agprod_bw = mean(ln_agprod_pricew_crops)
33
+ egen mean_agprod = mean(mean_agprod_bw)
34
+ egen sd_agprod = mean(sd_agprod_bw)
35
+ egen sd_A500_bw = sd(Above500) if abs(norm_dist) < `e(h_mserd)'
36
+ egen sd_Above500 = mean(sd_A500_bw)
37
+
38
+ gen std_agprod = ((ln_agprod_pricew_crops - mean_agprod )/sd_agprod)*sd_Above500
39
+
40
+ set scheme lean1
41
+
42
+ rdpower std_agprod norm_dist , c(0) tau(0.5) vce(cluster Expropretario_ISTA) plot
43
+ graph export "Output/AgCensus_Power_Revenues.pdf", replace
14/replication_package/Replication/Code/ESLR_IVCensus_RDRobustnessPlots.R ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################
2
+ ##### ESLR - RD ROBUSNTESS PLOTING - AgCensus Data #####
3
+ ########################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(haven)
26
+ require(readstata13)
27
+ require(TOSTER)
28
+
29
+ ########################################
30
+
31
+ ## Load IV Censo Agropecuario Data:
32
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
33
+
34
+ ########################################
35
+
36
+ ## Making Standarized Coefficient Plots:
37
+
38
+ # Set aesthetics:
39
+ aesthetics <- list(
40
+ theme_bw(),
41
+ theme(legend.title=element_blank(),
42
+ #legend.justification=c(0,0),
43
+ #legend.position= "right", #c(1,0),
44
+ #panel.grid.minor=element_blank(),
45
+ #panel.grid.major=element_blank(),
46
+ plot.background=element_rect(colour="white",fill="white"),
47
+ panel.grid.major=element_blank(),
48
+ panel.grid.minor=element_blank(),
49
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
50
+ axis.title.y=element_text(face="bold.italic"),
51
+ axis.title.x=element_blank())) #(face="bold.italic")))
52
+
53
+ ########################################
54
+
55
+
56
+
57
+ lm.beta <- function (MOD, dta,y="ln_agprod")
58
+ {
59
+ b <- MOD$coef[1]
60
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
61
+ sx <- sd(model.dta[,c("Above500")])
62
+ #sx <- sd(model.dta[,c("norm_dist")])
63
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
64
+ beta <- b * sx/sy
65
+ return(beta)
66
+ }
67
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
68
+ {
69
+ b <- MOD$se[1]
70
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
71
+ sx <- sd(model.dta[,c("Above500")])
72
+ #sx <- sd(model.dta[,c("norm_dist")])
73
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
74
+ beta <- b * sx/sy
75
+ return(beta)
76
+ }
77
+
78
+ ########################################
79
+
80
+ polys <- c(1,2)
81
+ kernels <- c("triangular","epanechnikov","uniform")
82
+ bwsel <- c("mserd","cerrd") #"certwo"
83
+ num_ests <- length(polys)*(length(kernels) + length(bwsel))
84
+ rd_estimates <-data.frame(ln_agprod_estimates = rep(0, num_ests), ln_agprod_ses = rep(0, num_ests),
85
+ ln_agprodII_estimates = rep(0,num_ests), ln_agprodII_ses = rep(0, num_ests),
86
+ ln_agprodIII_estimates = rep(0,num_ests), ln_agprodIII_ses = rep(0, num_ests),
87
+ p = rep(0,num_ests), ks = rep(0,num_ests), bs = rep(0,num_ests), nsl= rep(0,num_ests), nsr= rep(0,num_ests), nslII= rep(0,num_ests), nsrII= rep(0,num_ests), nslIII= rep(0,num_ests), nsrIII= rep(0,num_ests))
88
+
89
+
90
+ years <- 2007
91
+ for (i in years) {
92
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform, ln_agprodII = ln_agprod, ln_agprod = ln_agprod_pricew_crops)
93
+
94
+ # Estimate and Save RD for configurations:
95
+
96
+ # Agricultural Productivity:
97
+ count <-1
98
+ for (p in polys) {
99
+ for (k in kernels) {
100
+ for (b in bwsel) {
101
+ # Scale:
102
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
103
+ x=(censo_ag_wreform_tev$norm_dist),
104
+ c = 0,
105
+ p = p,
106
+ q = p +1,
107
+ kernel = k,
108
+ bwselect = b,
109
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
110
+ rd_estimates[count,c("ln_agprod_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
111
+ rd_estimates[count,c("ln_agprod_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod") # rdests$se[3]
112
+
113
+ rd_estimates[count,c("nsl")]<- rdests$N[1]
114
+ rd_estimates[count,c("nsr")]<- rdests$N[2]
115
+
116
+ # Scale:
117
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
118
+ x=censo_ag_wreform_tev$norm_dist,
119
+ c = 0,
120
+ p = p,
121
+ q = p +1,
122
+ kernel = k,
123
+ bwselect = b,
124
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
125
+ rd_estimates[count,c("ln_agprodII_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
126
+ rd_estimates[count,c("ln_agprodII_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII") # rdests$se[3]
127
+
128
+ rd_estimates[count,c("nslII")]<- rdests$N[1]
129
+ rd_estimates[count,c("nsrII")]<- rdests$N[2]
130
+
131
+ # Scale:
132
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_tfp_geo),
133
+ x=censo_ag_wreform_tev$norm_dist,
134
+ c = 0,
135
+ p = p,
136
+ q = p +1,
137
+ kernel = k,
138
+ bwselect = b,
139
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
140
+ rd_estimates[count,c("ln_agprodIII_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
141
+ rd_estimates[count,c("ln_agprodIII_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo") # rdests$se[3]
142
+
143
+ rd_estimates[count,c("nslIII")]<- rdests$N[1]
144
+ rd_estimates[count,c("nsrIII")]<- rdests$N[2]
145
+
146
+ rd_estimates[count,c("p")] <- p
147
+ rd_estimates[count,c("ks")] <- k
148
+ rd_estimates[count,c("bs")] <- b
149
+ count <- count + 1
150
+ }
151
+ }
152
+ }
153
+ }
154
+ rd_estimates
155
+
156
+ ########################################
157
+
158
+ # Clean data for plotting:
159
+ alpha<- 0.05
160
+ Multiplier <- qnorm(1 - alpha / 2)
161
+
162
+ # Find the outcome var for each regression:
163
+ data <- rd_estimates
164
+ data$y_var <- paste(data$ks, " kernel, ", data$bs," bandwidth",sep="")
165
+
166
+ # Replace y_var with nice names:
167
+
168
+ # Now, keep only the betas of interest:
169
+ betas <- data
170
+ dim(betas)
171
+ betas<- betas[seq(dim(betas)[1],1),]
172
+
173
+ # Create Matrix for plotting:
174
+ MatrixofModels <- betas[c("y_var", "ln_agprod_estimates","ln_agprod_ses","p")]
175
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
176
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
177
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
178
+
179
+ # Re-name for plotting:
180
+ MatrixofModels$ModelName <- "Revenue Per Hectare"
181
+
182
+ # Plot:
183
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
184
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
185
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
186
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
187
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
188
+
189
+ # Save:
190
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-0.5, 0.5,0.1)) + xlab("")
191
+
192
+ ggsave(filename="./Output/CoefPlot_AgProdI_Robustness.pdf", width=6, height=3)
193
+
194
+ # Create Matrix for plotting:
195
+ MatrixofModels <- betas[c("y_var", "ln_agprodII_estimates","ln_agprodII_ses","p")]
196
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
197
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
198
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
199
+
200
+ # Re-name for plotting:
201
+ MatrixofModels$ModelName <- "Profits Per Hectare"
202
+
203
+ # Plot:
204
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
205
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
206
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
207
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
208
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
209
+
210
+ # Save:
211
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-0.5, 0.5,0.1)) + xlab("")
212
+
213
+ ggsave(filename="./Output/CoefPlot_AgProdII_Robustness.pdf", width=6, height=3)
214
+
215
+
216
+ # # Create Matrix for plotting:
217
+ MatrixofModels <- betas[c("y_var", "ln_agprodIII_estimates","ln_agprodIII_ses","p")]
218
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
219
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
220
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
221
+
222
+ # Re-name for plotting:
223
+ MatrixofModels$ModelName <- "Farm Productivity"
224
+
225
+ # Plot:
226
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
227
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
228
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
229
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
230
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
231
+
232
+ # Save:
233
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-0.5, 0.5,0.1)) + xlab("")
234
+
235
+ ggsave(filename="./Output/CoefPlot_AgProdIII_Robustness.pdf", width=6, height=3)
236
+
237
+ ########################################
238
+
239
+ ## Varying BW Manually:
240
+
241
+ ## Calculate log ag productivity for 2007, and save RD estimates using different bandwidths and polynomials:
242
+
243
+ polys <- c(1,2)
244
+ bws <- seq(40,300, by=20)
245
+
246
+ num_ests <- length(polys)*(length(bws))
247
+ rd_estimates <-data.frame(ln_agprod_estimates = rep(0, num_ests), ln_agprod_ses = rep(0, num_ests),
248
+ ln_agprodII_estimates = rep(0,num_ests), ln_agprodII_ses = rep(0, num_ests),
249
+ ln_agprodIII_estimates = rep(0,num_ests), ln_agprodIII_ses = rep(0, num_ests),
250
+ p = rep(0,num_ests), bs = rep(0,num_ests))
251
+
252
+ # Create Variables:
253
+ i <- 2007
254
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform, ln_agprodII = ln_agprod, ln_agprod = ln_agprod_pricew_crops, ln_agprodIII = ln_tfp_geo)
255
+
256
+ count <-1
257
+ for (b in bws) {
258
+ # Estimate and Save RD for manual bws:
259
+ # Agricultural Productivity:
260
+ for (p in polys) {
261
+ # Scale:
262
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
263
+ x=(censo_ag_wreform_tev$norm_dist),
264
+ c = 0,
265
+ p = p,
266
+ kernel = "tri",
267
+ h=b,
268
+ bwselect="mserd",
269
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
270
+
271
+ rd_estimates[count,c("ln_agprod_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
272
+ rd_estimates[count,c("ln_agprod_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod") # rdests$se[3]
273
+
274
+ # Scale:
275
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
276
+ x=censo_ag_wreform_tev$norm_dist,
277
+ c = 0,
278
+ p = p,
279
+ kernel = "tri",
280
+ h=b,
281
+ bwselect="mserd",
282
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
283
+ rd_estimates[count,c("ln_agprodII_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII")
284
+ rd_estimates[count,c("ln_agprodII_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodII") # rdests$se[3]
285
+
286
+ rd_estimates[count,c("bs")] <- b
287
+ rd_estimates[count,c("p")] <- p
288
+
289
+ # Scale:
290
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodIII),
291
+ x=censo_ag_wreform_tev$norm_dist,
292
+ c = 0,
293
+ p = p,
294
+ kernel = "tri",
295
+ h=b,
296
+ bwselect="mserd",
297
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA))
298
+ rd_estimates[count,c("ln_agprodIII_estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodIII")
299
+ rd_estimates[count,c("ln_agprodIII_ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprodIII") # rdests$se[3]
300
+
301
+ rd_estimates[count,c("bs")] <- b
302
+ rd_estimates[count,c("p")] <- p
303
+
304
+ count <- count + 1
305
+ }
306
+ }
307
+ rd_estimates
308
+
309
+ ########################################
310
+
311
+ # Clean data for plotting:
312
+ alpha<- 0.05
313
+ Multiplier <- qnorm(1 - alpha / 2)
314
+
315
+ # Find the outcome var for each regression:
316
+ data <- rd_estimates
317
+ data$y_var <- paste(" Bandwidth: ",data$bs, sep="")
318
+
319
+ # Now, keep only the betas of interest:
320
+ betas <- data
321
+ dim(betas)
322
+
323
+ # Create Matrix for plotting:
324
+ MatrixofModels <- betas[c("y_var", "ln_agprod_estimates","ln_agprod_ses","p")]
325
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
326
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
327
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
328
+
329
+
330
+ # Re-name for plotting:
331
+ MatrixofModels$ModelName <- "Revenue Per Hectare"
332
+
333
+ # Plot:
334
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
335
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
336
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
337
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
338
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
339
+
340
+ # Save:
341
+ OutputPlot + coord_flip() + coord_cartesian(ylim = c(-1, 1)) + scale_y_continuous(breaks = seq(-1, 1,0.2))
342
+
343
+ ggsave(filename="./Output/CoefPlot_AgProdI_BWRobustness.pdf", width=6, height=3)
344
+
345
+ # Create Matrix for plotting:
346
+ MatrixofModels <- betas[c("y_var", "ln_agprodII_estimates","ln_agprodII_ses","p")]
347
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
348
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
349
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
350
+
351
+ # Re-name for plotting:
352
+ MatrixofModels$ModelName <- "Profits Per Hectare"
353
+
354
+ # Plot:
355
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
356
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
357
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
358
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
359
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
360
+
361
+ # Save:
362
+ OutputPlot + coord_flip() + coord_cartesian(ylim = c(-1, 1)) + scale_y_continuous(breaks = seq(-1, 1,0.2))
363
+
364
+ ggsave(filename="./Output/CoefPlot_AgProdII_BWRobustness.pdf", width=6, height=3)
365
+
366
+
367
+ # Create Matrix for plotting:
368
+ MatrixofModels <- betas[c("y_var", "ln_agprodIII_estimates","ln_agprodIII_ses","p")]
369
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Polynomial")
370
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = unique(MatrixofModels$IV))
371
+ MatrixofModels$Polynomial <- factor(MatrixofModels$Polynomial,levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
372
+
373
+ # Re-name for plotting:
374
+ MatrixofModels$ModelName <- "Farm Productivity"
375
+
376
+ # Plot:
377
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
378
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
379
+ ylab = NULL, xlab = NULL, facets=~ Polynomial)
380
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
381
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
382
+
383
+ # Save:
384
+ OutputPlot + coord_flip() + coord_cartesian(ylim = c(-1, 1)) + scale_y_continuous(breaks = seq(-1, 1,0.2))
385
+
386
+ ggsave(filename="./Output/CoefPlot_AgProdIII_BWRobustness.pdf", width=6, height=3)
14/replication_package/Replication/Code/ESLR_LatAmMaps.R ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################################
2
+ ##### El Salvador - Land Reform - Map of Land Reforms Across LatAm #####
3
+ ########################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(ggrepel) # labeling
26
+
27
+ ########################################
28
+
29
+ # Approximate String Matching Funtion -- (amatch doesn't work that well for some reason)
30
+
31
+ string_match <- function(string_to_match, options, smethod="osa") {
32
+ if(string_to_match!="") {
33
+ sdists <- stringdist(string_to_match, options, method=smethod)
34
+ ind <- which(sdists == min(sdists))
35
+ if(length(ind) != 1) {
36
+ ind <- ind[1] # Assumes first index is the most common string to match.
37
+ }
38
+ return(options[ind])
39
+ } else {
40
+ return("")
41
+ }
42
+ }
43
+
44
+ as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} # Function to turn factor vars to numeric variables correctly.
45
+
46
+ ########################################
47
+
48
+ ## Load LatAm Shapefile:
49
+
50
+ # Path:
51
+ latam_path <- "./Data/GIS_LatinAmerica/"
52
+
53
+ # Load Shapefile:
54
+ LatAm <- readOGR(latam_path, "LatinAmerica")
55
+
56
+ ########################################
57
+
58
+ ## Add in Change in Land Gini data from Albertus (2015):
59
+ LatAm$CHG_LAND_GINI <- 0
60
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Mexico"] <- -30.0
61
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="French Guiana"] <- 0.0
62
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Guyana"] <- 0.0
63
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Suriname"] <- 0.0
64
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Venezuela"] <- -5.0
65
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Argentina"] <- 2.5
66
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Bolivia"] <- -20.0
67
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Brazil"] <- 2.5
68
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Chile"] <- -10.0
69
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Ecuador"] <- -5.0
70
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Paraguay"] <- 5.0
71
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Peru"] <- -15.0
72
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Uruguay"] <- 0.0
73
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Guatemala"] <- 0.0
74
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Belize"] <- 0.0
75
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Colombia"] <- -5.0
76
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Costa Rica"] <- 0.0
77
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="El Salvador"] <- -10.0
78
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Honduras"] <- -5.0
79
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Nicaragua"] <- -25.0
80
+ LatAm$CHG_LAND_GINI[LatAm$CNTRY_NAME=="Panama"] <- 5.0
81
+
82
+ ########################################
83
+
84
+ ## Add in land reform to cooperative indicator from Albertus (2015) and DeJanvry (1982):
85
+ LatAm$coop_land_reform <- 0
86
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Mexico"] <- 1
87
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="French Guiana"] <- 0.0
88
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Guyana"] <- 0.0
89
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Suriname"] <- 0.0
90
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Venezuela"] <- 1
91
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Argentina"] <- 0.0
92
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Bolivia"] <- 1
93
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Brazil"] <- 0
94
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Chile"] <- 1
95
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Ecuador"] <- 0
96
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Paraguay"] <- 0
97
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Peru"] <- 1
98
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Uruguay"] <- 0.0
99
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Guatemala"] <- 0.0
100
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Belize"] <- 0.0
101
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Colombia"] <- 1
102
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Costa Rica"] <- 1
103
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="El Salvador"] <- 1
104
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Honduras"] <- 1.0
105
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Nicaragua"] <- 1
106
+ LatAm$coop_land_reform[LatAm$CNTRY_NAME=="Panama"] <- 1.0
107
+
108
+
109
+ ########################################
110
+
111
+ ## Plots!
112
+
113
+ # Set aesthetics:
114
+ aesthetics <- list(#guides(color=guide_colorbar(reverse=FALSE)),
115
+ #guides(fill=FALSE),
116
+ #guides(shape=FALSE),
117
+ #guides(size=FALSE),
118
+ coord_equal(),
119
+ theme_bw(),
120
+ theme(#legend.title=element_blank(),
121
+ #legend.justification=c(0,0),
122
+ #legend.position= "right", #c(1,0),
123
+ text=element_text(family="Palatino"),
124
+ panel.border = element_blank(),
125
+ panel.grid.minor=element_blank(),
126
+ panel.grid.major=element_blank(),
127
+ axis.title.x=element_blank(),
128
+ axis.title.y=element_blank(),
129
+ axis.text=element_blank(),
130
+ axis.ticks=element_blank()))
131
+
132
+ # Fortify for ggplot
133
+ LatAm.df <- fortify(LatAm, region="FIPS_CNTRY")
134
+ LatAm@data$id <- LatAm@data$FIPS_CNTRY
135
+
136
+ # Join Data:
137
+ LatAm.df <- join(LatAm.df, LatAm@data, by="id")
138
+
139
+ # Plot:
140
+
141
+
142
+ # Indicator for Land Reform that created Agricultural Coops w/ El Salvador Highlighted:
143
+ ES <- LatAm[LatAm$CNTRY_NAME=="El Salvador",]
144
+ ES@data <- mutate(ES@data, ES = ifelse(CNTRY_NAME=="El Salvador",1,0), ES2 = ifelse(FIPS_CNTRY=="ES",1,0))
145
+ # Fortify for ggplot
146
+ ES.df <- fortify(ES, region="FIPS_CNTRY")
147
+ ES@data$id <- ES@data$FIPS_CNTRY
148
+
149
+ # Join Data:
150
+ ES.df <- join(ES.df, ES@data, by="id")
151
+
152
+ LatAm.ggplot.reform <- geom_polygon(aes(x=long,y=lat, group=group, fill=(coop_land_reform)),data=LatAm.df,size=0.25,col="black")
153
+
154
+ pdf(file="./Output/LatAm_LRCoops.pdf", height=7, width=7, paper = "letter")
155
+ print(ggplot(aes(x=long,y=lat, group=group, fill=(coop_land_reform)),data=LatAm.df) + LatAm.ggplot.reform + coord_equal() + aesthetics
156
+ + scale_fill_distiller(name="Experienced a Land Reform\nthat created Agricultural \nCooperatives, 1920-1990", palette = "Blues", trans = "reverse", breaks = pretty_breaks(n = 1), labels=c("No","Yes"),guide = guide_legend(reverse=TRUE))
157
+ + labs(x="Longitude",y="Latitude"))
158
+ dev.off()
159
+
160
+ # w/Labels
161
+ EScentroid.df <- as.data.frame(coordinates(ES))
162
+ names(EScentroid.df) <- c("long", "lat")
163
+ EScentroid.df$CNTRY_NAME <- ES@data$CNTRY_NAME
164
+ ES.ggplot2 <- geom_polygon(aes(x=long,y=lat, group=group),data=ES.df,col="red",size=0.25, fill=NA,show.legend=FALSE)
165
+
166
+ pdf(file="./Output/LatAm_LRCoops_wESLabel2.pdf", height=7, width=7, paper = "letter")
167
+ print(ggplot()
168
+ + geom_text_repel( data=EScentroid.df, aes(x=long, y=lat, label=CNTRY_NAME), col="red",size=4,nudge_x=-15, nudge_y=-5)
169
+ + LatAm.ggplot.reform + coord_equal() + aesthetics
170
+ + ES.ggplot2
171
+ + scale_fill_distiller(name="Experienced a Land Reform\nthat created Agricultural\nCooperatives - 1920-1990", palette = "Blues", trans = "reverse", breaks = pretty_breaks(n = 1), labels=c("No","Yes"),guide = guide_legend(reverse=TRUE))
172
+ + labs(x="Longitude",y="Latitude"))
173
+ dev.off()
174
+
14/replication_package/Replication/Code/ESLR_Master.do ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ************************
2
+ *** ESLR: Stata Code ***
3
+ ************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color
10
+
11
+ ** Set Workspace **
12
+ cd /Users/`c(username)'/Dropbox/Research_ElSalvador_LandReform/Replication
13
+
14
+ ** ssc install rdrobust; winsor2; outreg2; outreg; estout; lpoly; cmogram; dm88_1; grqreg; gr0002_3; pdslasso; lassopack; univar; ietoolkit; rdlocrand; rdpower (net install rdpower, from(https://raw.githubusercontent.com/rdpackages/rdpower/master/stata) replace)
15
+
16
+ ******************
17
+ *** MASTER DO FILE
18
+ ******************
19
+
20
+ *** MAIN ***
21
+
22
+ ** FIGURE 1: Land Reforms that Redistributed Haciendas as Cooperatives
23
+ * R Code: ./Code/ESLR_LatAmMaps.R
24
+
25
+ ** FIGURE 2: Land Reform by Canton - El Salvador
26
+ * R Code: ./Code/ESLR_ESMap.R
27
+
28
+ ** FIGURE 4: Estimates for Differences in Geography & FIGURE 3: McCrary Sorting Test
29
+ * R Code: ./Code/ESLR_Balance_PropLevel.R
30
+
31
+ ** FIGURE 5: Phase I Expropriation RD Plot
32
+ do "./Code/ESLR_RDPlots_PropData.do"
33
+
34
+ ** TABLES 2-4: Agriculture Choices and Productivity
35
+ do "./Code/ESLR_Analysis_IVCenso.do"
36
+
37
+ ** TABLE 5 & FIGURE 6: Impact of Ownership Type on Earnings and Earnings Distributions
38
+ do "./Code/ESLR_Analysis_EHPM.do"
39
+
40
+ ** TABLE 6: Credit Access and Sources - RD Estimates
41
+ do "./Code/ESLR_Analysis_IVCenso_Credit.do"
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+ *** APPENDIX ***
50
+
51
+ ** FIGURES D1-D2: RD Plots - Crop Choices & RD Plots - Agricultural Productivity
52
+ do "./Code/ESLR_RDPlots_AgCensus.do"
53
+
54
+ ** FIGURE D3: RD Plots - Existence in 2007
55
+ do "./Code/ESLR_RDPlots_PropDataModern_Existence.do"
56
+
57
+ ** FIGURE D4: Matching Estimates
58
+ * R Code: "./Code/ESLR_IVCensus_Matching.R"
59
+
60
+ ** FIGURE D5: Sensitivity to Balance
61
+ * R Code: "./Code/ESLR_Unbalacedness.R"
62
+
63
+ ** FIGURE D6: Temporal External Validity Exercise
64
+ * R Code: "./Code/ESLR_TemporalEV.R"
65
+
66
+ ** TABLES D1-D2: Summary Statistics - Property Sizes in 1980 and Ownership Amounts & Summary Statistics - Property Sizes in 2007 and Ownership Amounts
67
+ do "./Code/ESLR_Prop_SummStats.do"
68
+
69
+ ** FIGURE D7: Coefficient Estimates For Existence in 2007 - Heterogeneity by Geographic Characteristics
70
+ * R Code: ./Code/ESLR_Robustness_Existence.R
71
+
72
+ ** TABLE D3 & FIGURE D8: Testing for Differences in the Distribution of Digits for Reported Crop Outputs & Testing for Differences in Bunching in Crop Output Across Ownership Types
73
+ * R Code: ./Code/ESLR_Digits.R
74
+
75
+ ** FIGURE D9: Yield Results: Correcting for Possible Selection Bias
76
+ * R Code: "./Code/ESLR_YieldsSampleSelection.R"
77
+
78
+ ** FIGURES D10-D13: Production of Minor Crops - Fruits & Production of Minor Crops - Vegetables & Capital Ownership & Input Use
79
+ do "./Code/ESLR_Analysis_IVCenso_Other.do"
80
+ * Then, R Code: ./Code/ESLR_IVCensus_AdditionalPlots.R
81
+
82
+
83
+ ** FIGURE D14: RD Power Calculations - Revenues per Hectare
84
+ do "./Code/ESLR_IVCensus_Power.do"
85
+
86
+ ** TABLE D4: Impact of Ownership Structure on Earnings Differences - Sensitivity to Land Value Return
87
+ do "./Code/ESLR_EHPM_Sensitivity.do"
88
+
89
+ ** TABLE D5: Consumption and Consumption Distributions
90
+ do "./Code/ESLR_EHPM_Consumption.do"
91
+
92
+ ** FIGURE D15: RD Plot - Share of Land Not Devoted to Staple or Cash Crops in 2007
93
+ do "./Code/ESLR_RDPlots_NonShares.do"
94
+
95
+ ** TABLES D6-D7: Heterogeneity in a Cooperatives’ Census Neighborhoods
96
+ do "./Code/ESLR_AgHeterogeneity.do"
97
+
98
+ ** FIGURES D16-D18: Controlling for Migration Rates – Main Outcomes & Main Results - Controlling for Property Size & Controlling for Conflict During the Civil War – Main Outcomes
99
+ * R Code: "./Code/ESLR_IVCensus_Controls.R"
100
+
101
+ ** FIGURE D19: Heterogeneity by Number of Plots Owned By Previous Owner – Main Outcomes
102
+ * R Code: "./Code/ESLR_IVCensus_HetPlots.R"
103
+
104
+ ** FIGURE D20: Crop Allocation - Haciendas Above vs. Below 500 ha Ownership Threshold
105
+ * R Code: "./Code/ESLR_IVCensus_NonComplierPlot.R"
106
+
107
+ ** FIGURE E1: Public Good Access – Time to Nearest Public Good – Estimated Differences
108
+ do "./Code/ESLR_EHPM_PGs.do"
109
+ * Then, R Code: "./Code/ESLR_EHPM_PGsCoefPlot.R"
110
+
111
+ ** FIGURE F1: Heterogeneity by Access to Cities – Main Outcomes
112
+ * R Code: "./Code/ESLR_IVCensus_HetPlots.R"
113
+
114
+ ** TABLE F1: Commercialization Avenues - RD Estimates
115
+ do "./Code/ESLR_IVCenso_Commercialization.do"
116
+
117
+ ** Figure F2: Controlling for Commercialization Avenues – Main Outcomes
118
+ * R Code: "./Code/ESLR_IVCensus_Controls.R"
119
+
120
+ ** TABLES G1-G2: Impact of Ownership Type on Education Outcomes & Differences in Age and Household Size
121
+ do "./Code/ESLR_EHPM_Educ.do"
122
+
123
+ ** TABLE H1: Migration Outcomes - Household Survey Data
124
+ do "./Code/ESLR_EHPM_Mig.do"
125
+
126
+ ** TABLES H2-H3: Migration Outcomes - Population Census & H3: Migration Outcomes - Individuals that Completed High School - Population Census
127
+ * R Code: "./Code/ESLR_CensusMigration.R"
128
+
129
+ ** TABLES I1-I2: Robustness to Alternative RD Method - Randomization Inference Approach
130
+ do "./Code/ESLR_IVCenso_RDRandInf.do"
131
+
132
+ ** TABLES J1-I5: Robustness to Alternative RD Specifications
133
+ do "./Code/ESLR_IVCenso_RDRobustness.do"
134
+
135
+ ** FIGURES J1-J6: Robustness to Alternative RD Specifications
136
+ * R Code: "./Code/ESLR_IVCensus_RDRobustnessPlots.R"
14/replication_package/Replication/Code/ESLR_Prop_SummStats.do ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *****************************************************
2
+ *** ESLR: LR Ag Outcomes - RD Analysis - Censo IV ***
3
+ *****************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ *********************
11
+ *** Load the Data ***
12
+ *********************
13
+
14
+ use "./Data/LR_reform_existence.dta", clear
15
+
16
+ gen Above500 = 0
17
+ replace Above500 = 1 if Total_Propretario2 >= 500.00
18
+ label var Above500 "Above 500 Ha"
19
+ gen norm_dist = Total_Propretario2 - 500.00
20
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
21
+ gen own_amt = Total_Propretario2
22
+
23
+
24
+ ***********************************************
25
+ *** Make Summary Table - Property Ownership ***
26
+ ***********************************************
27
+
28
+ ** Gen Variabale for # properties with same ID;
29
+ egen num_props_owner = count(Total_Propretario2), by(Expropretario_ISTA)
30
+ replace num_props_owner=1 if num_props_owner==0
31
+ gen mult_prop = 0 if num_props_owner!=.
32
+ replace mult_prop = 1 if num_props_owner >1 & num_props_owner!=.
33
+ drop if num_props_owner==108
34
+ label var own_amt "Owner: Cumulative Holdings (ha)"
35
+ label var AREA_HECTAREA "Property Size (ha)"
36
+ label var mult_prop "Owner Owned Multiple Properties"
37
+ label var num_props_owner "Number of Properties Owned by Owner "
38
+
39
+
40
+ eststo clear
41
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner, detail
42
+
43
+ esttab using "Output/Table_Prop_SummStat.tex", replace ///
44
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
45
+ eststo clear
46
+
47
+ eststo clear
48
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner if Above500==0, detail
49
+
50
+ esttab using "Output/Table_Prop_SummStat_A5000.tex", replace ///
51
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
52
+ eststo clear
53
+
54
+ eststo clear
55
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner if Above500==1, detail
56
+
57
+ esttab using "Output/Table_Prop_SummStat_A5001.tex", replace ///
58
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
59
+ eststo clear
60
+
61
+
62
+ **************************
63
+ *** Load the 2007 Data ***
64
+ **************************
65
+
66
+ use "Data/censo_ag_wreform.dta", clear
67
+
68
+
69
+ ***********************************************
70
+ *** Make Summary Table - Property Ownership ***
71
+ ***********************************************
72
+
73
+ ** Gen Variabale for # properties with same ID;
74
+ egen num_props_owner = count(Total_Propretario2), by(Expropretario_ISTA)
75
+ replace num_props_owner=1 if num_props_owner==0
76
+ gen mult_prop = 0 if num_props_owner!=.
77
+ replace mult_prop = 1 if num_props_owner >1 & num_props_owner!=.
78
+ drop if num_props_owner==108
79
+
80
+ label var own_amt "Owner: Cumulative Holdings (ha)"
81
+ label var AREA_HECTAREA "Property Size (ha)"
82
+ label var mult_prop "Owner Owned Multiple Properties"
83
+ label var num_props_owner "Number of Properties Owned by Owner "
84
+
85
+
86
+ eststo clear
87
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner, detail
88
+
89
+ esttab using "Output/Table_Prop_SummStat2007.tex", replace ///
90
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
91
+ eststo clear
92
+
93
+ eststo clear
94
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner if Above500==0, detail
95
+
96
+ esttab using "Output/Table_Prop_SummStat2007_A5000.tex", replace ///
97
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
98
+ eststo clear
99
+
100
+ eststo clear
101
+ eststo: quietly estpost summarize AREA_HECTAREA own_amt mult_prop num_props_owner if Above500==1, detail
102
+
103
+ esttab using "Output/Table_Prop_SummStat2007_A5001.tex", replace ///
104
+ cells("mean(fmt(2)) sd(fmt(2)) p50(fmt(2)) p25(fmt(2)) p75(fmt(2))") label booktab nonumber nomtitles
105
+ eststo clear
14/replication_package/Replication/Code/ESLR_RDPlots_AgCensus.do ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ***************************************************************
2
+ ******* ESLR: RD Plot - Plot-Level Outcomes - Modern **********
3
+ ***************************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color // Default Scheme
10
+
11
+ *********************
12
+ *** Load the Data ***
13
+ *********************
14
+
15
+ use "Data/censo_ag_wreform.dta", clear
16
+
17
+ **********************
18
+ *** Label the Data ***
19
+ **********************
20
+
21
+ ** Label Variables for the output:
22
+ label variable ln_agprod_pricew_crops "Revenues per Hectare (ln($/ha))"
23
+ label variable ln_agprod "Profits per Hectare (ln($/ha))"
24
+ label variable ln_tfp_geo "Farm Productivity (ln(s))"
25
+
26
+ label variable CashCrop_Share "Share of Property for Cash Crops"
27
+ label variable StapleCrop_Share "Share of Property for Staple Crops"
28
+ label variable norm_dist "Distance to Reform Threshold (ha)"
29
+ label variable own_amt "Former Owner's Cumulative Landholdings (ha)"
30
+
31
+ ******************
32
+ *** Set Params ***
33
+ ******************
34
+
35
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
36
+ ** with ses clustered at propietor level.
37
+ ** Will also use two-sided MSE optimal bandwidth since big diff in density on
38
+ ** both sides.
39
+ ** Will use rdrobust package
40
+
41
+ local polynomial_level 1
42
+ local bandwidth_choice "mserd"
43
+ local kernel_choice "uni"
44
+ local kernel_choice_lpoly "rec"
45
+
46
+ local cluster_level Expropretario_ISTA
47
+ local lpoly_degree 1
48
+
49
+ ******************************
50
+ *** MAKE A SET OF RD PLOTS ***
51
+ ******************************
52
+
53
+ ** Define outcome variables for the plot:
54
+ local dep_vars ln_agprod_pricew_crops ln_agprod ln_tfp_geo CashCrop_Share StapleCrop_Share
55
+
56
+ ** define any controls:
57
+
58
+ ** bin width:
59
+ local bin_widths 25 10
60
+
61
+ ** Keep Variables of Interest:
62
+ keep `dep_vars' norm_dist Expropretario_ISTA own_amt
63
+ sort norm_dist
64
+
65
+ foreach y_var of varlist `dep_vars' {
66
+
67
+ foreach bin_width in `bin_widths' {
68
+
69
+ preserve
70
+
71
+ * Display Current Variable:
72
+ dis "`y_var'"
73
+
74
+ * Label Variables for Output Later On:
75
+ local ylabel : variable label `y_var'
76
+ local xlabel : variable label own_amt
77
+
78
+ ** Find Optimal Bandwidth:
79
+ rdbwselect `y_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
80
+ local bw = `e(h_mserd)'
81
+ local xmin = 500 -`e(h_mserd)'
82
+ local xmax = 500 +`e(h_mserd)'
83
+
84
+ * Find Max and Min Vars for later on:
85
+ qui sum `y_var' if own_amt>= 500 - `e(h_mserd)' & own_amt <= 500 + `e(h_mserd)'
86
+ local ymax = `r(max)'
87
+ local ymin = `r(min)'
88
+ local ytick_space = (`ymax' - `ymin')/5
89
+
90
+ ** Fit LPoly ** Using lpoly from Dell 2015: Distance to 500
91
+ tempfile tempdata
92
+ save `tempdata', replace
93
+
94
+ keep if (own_amt>500.00 & own_amt< 500 + `e(h_mserd)')
95
+ lpoly `y_var' own_amt, kernel(`kernel_choice_lpoly') bwidth(`bw') degree(`lpoly_degree') generate(x s) se(se) nograph cluster(`cluster_level') pwidth(`bw')
96
+ keep x s se
97
+ drop if x==.
98
+ save "Output/Temp/RD", replace
99
+
100
+ use `tempdata', clear
101
+ keep if (own_amt<500.00 & own_amt> 500 - `e(h_mserd)')
102
+ dis "(own_amt<500.00 & own_amt> 500 - `e(h_mserd)')"
103
+ lpoly `y_var' own_amt, kernel(`kernel_choice_lpoly') bwidth(`bw') degree(`lpoly_degree') generate(x s) se(se) nograph cluster(`cluster_level') pwidth(`bw')
104
+ keep x s se
105
+ drop if x==.
106
+ append using "Output/Temp/RD"
107
+
108
+ g ciplus=s+1.96*se
109
+ g ciminus=s-1.96*se
110
+ keep if x> 500 - `e(h_mserd)' & x < 500 + `e(h_mserd)'
111
+ save "Output/Temp/RD", replace
112
+
113
+ ** Use the lpoly estimates to find means within beans
114
+ use `tempdata', replace
115
+ keep if abs(norm_dist)<`bw'
116
+
117
+ gen bin5=.
118
+ foreach X of num 0(`bin_width')`bw' {
119
+ di "`X'"
120
+ replace bin=-`X' if (own_amt - 500.00 >=-`X' & own_amt-500.00<(-`X'+`bin_width') & own_amt-500.00<0)
121
+ replace bin=`X' if (own_amt -500.00>`X' & own_amt-500.00<=(`X'+`bin_width'))
122
+ }
123
+ tab bin5
124
+
125
+ drop if bin5==.
126
+ collapse `y_var' own_amt, by(bin5)
127
+
128
+ append using "Output/Temp/RD"
129
+
130
+ ** Plot and Save Output:
131
+ local xmin = round(`xmin'-5.1,10)
132
+ local xmax = round(`xmax'+5.1,10)
133
+ local ymin = round(`ymin')
134
+ local ymax = round(`ymax')
135
+ dis "`ymin'(`ytick_space')`ymax'"
136
+ dis "YyMIN::: `ymin' AND YMAX: `ymax'; PLOT: yscale(r(`ymin' `ymax')) "
137
+ dis "xmin::: `xmin' AND YMAX: `ymax'; PLOT: yscale(r(`ymin' `ymax')) "
138
+
139
+ if("`y_var'" == "CashCrop_Share" | "`y_var'" == "StapleCrop_Share") {
140
+
141
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
142
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
143
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
144
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
145
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
146
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
147
+ */ (scatter `y_var' own_amt, sort msize(med)xline(500) mcolor(black)), /*
148
+ */ legend(off) graphregion(color(white)) yscale(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax') /*
149
+ */ ytitle("`ylabel'") xtitle("`xlabel'") /* xlabel(`xmin'(50)`xmax') ysc(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax') xsc(r(`xmin' `xmax'))
150
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
151
+ */ saving("Output/RDPlot_`y_var'_`bin_width'.pdf",replace)
152
+ graph export "Output/RDPlot_`y_var'_`bin_width'.pdf", replace
153
+
154
+ }
155
+ else {
156
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
157
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
158
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
159
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
160
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
161
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
162
+ */ (scatter `y_var' own_amt, sort msize(med)xline(500) mcolor(black)), /*
163
+ */ legend(off) graphregion(color(white)) /*
164
+ */ ytitle("`ylabel'") xtitle("`xlabel'") xlabel(`xmin'(50)`xmax') xsc(range(`xmin'(50)`xmax')) /* xsc(r(`xmin' `xmax')) ysc(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax')
165
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
166
+ */ saving("Output/RDPlot_`y_var'_`bin_width'.pdf",replace)
167
+ graph export "Output/RDPlot_`y_var'_`bin_width'.pdf", replace
168
+ }
169
+
170
+
171
+ restore
172
+
173
+ }
174
+ }
14/replication_package/Replication/Code/ESLR_RDPlots_NonShares.do ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ***************************************************************
2
+ ******* ESLR: RD Plot - Plot-Level Outcomes - Modern **********
3
+ ***************************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color // Default Scheme
10
+
11
+ *********************
12
+ *** Load the Data ***
13
+ *********************
14
+
15
+ use "Data/censo_ag_wreform.dta", clear
16
+
17
+ **********************
18
+ *** Label the Data ***
19
+ **********************
20
+
21
+ ** Label Variables for the output:
22
+ label variable ln_agprod_pricew_crops "Revenues per Hectare (ln($/ha))"
23
+ label variable ln_agprod "Profits per Hectare (ln($/ha))"
24
+ label variable ln_tfp_geo "Farm Productivity (ln(s))"
25
+
26
+ label variable CashCrop_Share "Share of Property for Cash Crops"
27
+ label variable StapleCrop_Share "Share of Property for Staple Crops"
28
+ label variable norm_dist "Distance to Reform Threshold (ha)"
29
+ label variable own_amt "Former Owner's Cumulative Landholdings (ha)"
30
+
31
+
32
+ gen Share_Non_MainCrops = 1 - (Maize_Share + Beans_Share+ Coffee_Share + SugarCane_Share)
33
+ replace Share_Non_MainCrops = 0 if Share_Non_MainCrops < 0
34
+ label variable Share_Non_MainCrops "Share of Property for Neither Cash nor Staple Crops"
35
+
36
+
37
+ ******************
38
+ *** Set Params ***
39
+ ******************
40
+
41
+ ** Baseline: Will use local linear rd with MSE optimal bandwidth
42
+ ** with ses clustered at propietor level.
43
+ ** Will also use two-sided MSE optimal bandwidth since big diff in density on
44
+ ** both sides.
45
+ ** Will use rdrobust package
46
+
47
+ local polynomial_level 1
48
+ local bandwidth_choice "mserd"
49
+ local kernel_choice "uni"
50
+ local kernel_choice_lpoly "rec"
51
+
52
+ local cluster_level Expropretario_ISTA
53
+ local lpoly_degree 1
54
+
55
+ ******************************
56
+ *** MAKE A SET OF RD PLOTS ***
57
+ ******************************
58
+
59
+ ** Define outcome variables for the plot:
60
+ local dep_vars Share_Non_MainCrops
61
+
62
+ ** define any controls:
63
+
64
+ ** bin width:
65
+ local bin_widths 10
66
+
67
+ ** Keep Variables of Interest:
68
+ keep `dep_vars' norm_dist Expropretario_ISTA own_amt
69
+ sort norm_dist
70
+
71
+ foreach y_var of varlist `dep_vars' {
72
+
73
+ foreach bin_width in `bin_widths' {
74
+
75
+ preserve
76
+
77
+ * Display Current Variable:
78
+ dis "`y_var'"
79
+
80
+ * Label Variables for Output Later On:
81
+ local ylabel : variable label `y_var'
82
+ local xlabel : variable label own_amt
83
+
84
+ ** Find Optimal Bandwidth:
85
+ rdbwselect `y_var' norm_dist, c(0) p(`polynomial_level') bwselect(`bandwidth_choice') kernel(`kernel_choice') vce(cluster `cluster_level')
86
+ local bw = `e(h_mserd)'
87
+ local xmin = 500 -`e(h_mserd)'
88
+ local xmax = 500 +`e(h_mserd)'
89
+
90
+ * Find Max and Min Vars for later on:
91
+ qui sum `y_var' if own_amt>= 500 - `e(h_mserd)' & own_amt <= 500 + `e(h_mserd)'
92
+ local ymax = `r(max)'
93
+ local ymin = `r(min)'
94
+ local ytick_space = (`ymax' - `ymin')/5
95
+
96
+ ** Fit LPoly ** Using lpoly from Dell 2015: Distance to 500
97
+ tempfile tempdata
98
+ save `tempdata', replace
99
+
100
+ keep if (own_amt>500.00 & own_amt< 500 + `e(h_mserd)')
101
+ lpoly `y_var' own_amt, kernel(`kernel_choice_lpoly') bwidth(`bw') degree(`lpoly_degree') generate(x s) se(se) nograph cluster(`cluster_level') pwidth(`bw')
102
+ keep x s se
103
+ drop if x==.
104
+ save "Output/Temp/RD", replace
105
+
106
+ use `tempdata', clear
107
+ keep if (own_amt<500.00 & own_amt> 500 - `e(h_mserd)')
108
+ dis "(own_amt<500.00 & own_amt> 500 - `e(h_mserd)')"
109
+ lpoly `y_var' own_amt, kernel(`kernel_choice_lpoly') bwidth(`bw') degree(`lpoly_degree') generate(x s) se(se) nograph cluster(`cluster_level') pwidth(`bw')
110
+ keep x s se
111
+ drop if x==.
112
+ append using "Output/Temp/RD"
113
+
114
+ g ciplus=s+1.96*se
115
+ g ciminus=s-1.96*se
116
+ keep if x> 500 - `e(h_mserd)' & x < 500 + `e(h_mserd)'
117
+ save "Output/Temp/RD", replace
118
+
119
+ ** Use the lpoly estimates to find means within beans
120
+ use `tempdata', replace
121
+ keep if abs(norm_dist)<`bw'
122
+
123
+ gen bin5=.
124
+ foreach X of num 0(`bin_width')`bw' {
125
+ di "`X'"
126
+ replace bin=-`X' if (own_amt - 500.00 >=-`X' & own_amt-500.00<(-`X'+`bin_width') & own_amt-500.00<0)
127
+ replace bin=`X' if (own_amt -500.00>`X' & own_amt-500.00<=(`X'+`bin_width'))
128
+ }
129
+ tab bin5
130
+
131
+ drop if bin5==.
132
+ collapse `y_var' own_amt, by(bin5)
133
+
134
+ append using "Output/Temp/RD"
135
+
136
+ ** Plot and Save Output:
137
+ local xmin = round(`xmin'-5.1,10)
138
+ local xmax = round(`xmax'+5.1,10)
139
+ local ymin = round(`ymin')
140
+ local ymax = round(`ymax')
141
+ dis "`ymin'(`ytick_space')`ymax'"
142
+ dis "YyMIN::: `ymin' AND YMAX: `ymax'; PLOT: yscale(r(`ymin' `ymax')) "
143
+ dis "xmin::: `xmin' AND YMAX: `ymax'; PLOT: yscale(r(`ymin' `ymax')) "
144
+
145
+ if("`y_var'" == "CashCrop_Share" | "`y_var'" == "StapleCrop_Share") {
146
+
147
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
148
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
149
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
150
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
151
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
152
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
153
+ */ (scatter `y_var' own_amt, sort msize(med)xline(500) mcolor(black)), /*
154
+ */ legend(off) graphregion(color(white)) yscale(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax') /*
155
+ */ ytitle("`ylabel'") xtitle("`xlabel'") /* xlabel(`xmin'(50)`xmax') ysc(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax') xsc(r(`xmin' `xmax'))
156
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
157
+ */ saving("Output/RDPlot_`y_var'_`bin_width'.pdf",replace)
158
+ graph export "Output/RDPlot_`y_var'_`bin_width'.pdf", replace
159
+
160
+ }
161
+ else {
162
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
163
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
164
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
165
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
166
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
167
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
168
+ */ (scatter `y_var' own_amt, sort msize(med)xline(500) mcolor(black)), /*
169
+ */ legend(off) graphregion(color(white)) /*
170
+ */ ytitle("`ylabel'") xtitle("`xlabel'") xlabel(`xmin'(50)`xmax') xsc(range(`xmin'(50)`xmax')) /* xsc(r(`xmin' `xmax')) ysc(r(`ymin' `ymax')) ylabel(`ymin'(`ytick_space')`ymax')
171
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
172
+ */ saving("Output/RDPlot_`y_var'_`bin_width'.pdf",replace)
173
+ graph export "Output/RDPlot_`y_var'_`bin_width'.pdf", replace
174
+ }
175
+
176
+
177
+ restore
178
+
179
+ }
180
+ }
14/replication_package/Replication/Code/ESLR_RDPlots_PropData.do ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ******************************************************
2
+ ******* ESLR: RD Plot - Plot-Level Outcomes **********
3
+ ******************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+
10
+ ** Set Workspace **
11
+ cd /Users/eduardomontero/Dropbox/Research_ElSalvador_LandReform/Replication
12
+
13
+ ******************************************************
14
+
15
+ ** Load the Data:
16
+ use "Data/prop_data.dta", clear
17
+
18
+ gen Above500 = 0
19
+ replace Above500 = 1 if Total_Propretario >= 500.00
20
+ label var Above500 "Above 500 Ha"
21
+ gen norm_dist = Total_Propretario - 500.00
22
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
23
+ gen own_amt = Total_Propretario
24
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
25
+
26
+
27
+ ******************************************************
28
+
29
+ ** Using lpoly from Dell 2015: Distance to 500
30
+
31
+ keep if norm_dist<300.00 & norm_dist> -300.00
32
+ sort norm_dist
33
+
34
+ tempfile tempdata
35
+ save `tempdata', replace
36
+
37
+ keep if (own_amt>500.00 & own_amt<800.00)
38
+ lpoly reform own_amt if (own_amt>500.00 & own_amt<800.00), kernel(rectangle) bwidth(300) degree(2) generate(x s) se(se) nograph
39
+ keep x s se
40
+ drop if x==.
41
+ save "Output/Temp/RD", replace
42
+
43
+ use `tempdata', clear
44
+ keep if (own_amt<500.00 & own_amt>200.00)
45
+ lpoly reform own_amt if (own_amt<500.00 & own_amt>200.00), kernel(rectangle) bwidth(300) degree(2) generate(x s) se(se) nograph
46
+ keep x s se
47
+ drop if x==.
48
+ append using "Output/Temp/RD"
49
+
50
+ g ciplus=s+1.96*se
51
+ g ciminus=s-1.96*se
52
+ keep if x>200.00 & x<800.00
53
+ save "Output/Temp/RD", replace
54
+
55
+
56
+ *---generate bins for taking averages---*
57
+
58
+ use `tempdata', replace
59
+ keep if abs(norm_dist)<300.00
60
+
61
+ gen bin5=.
62
+ foreach X of num 0(25.00)300.00 {
63
+ di "`X'"
64
+ replace bin=-`X' if (own_amt - 500.00 >=-`X' & own_amt-500.00<(-`X'+25.00) & own_amt-500.00<0)
65
+ replace bin=`X' if (own_amt -500.00>`X' & own_amt-500.00<=(`X'+25.00))
66
+ }
67
+ tab bin5
68
+
69
+ drop if bin5==.
70
+ collapse reform own_amt, by(bin5)
71
+
72
+ append using "Output/Temp/RD"
73
+
74
+
75
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
76
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
77
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
78
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
79
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
80
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
81
+ */ (scatter reform own_amt, sort msize(med)xline(500) mcolor(black)), /*
82
+ */ legend(off) graphregion(color(white)) /*
83
+ */ ytitle("Expropriated") xtitle("Cumulative Landholdings (ha)") xlabel(200(100)800) xsc(r(200.00 800.00)) ylabel(0(.2)1) ysc(r(0 1)) /*
84
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
85
+ */ saving("./Output/RDPlot_ReformFS_Dist_300_3.pdf",replace)
86
+ graph export "./Output/RDPlot_ReformFS_Dist_300_3.pdf", replace
87
+
14/replication_package/Replication/Code/ESLR_RDPlots_PropDataModern_Existence.do ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ***************************************************************
2
+ ******* ESLR: RD Plot - Plot-Level Outcomes - Modern **********
3
+ ***************************************************************
4
+
5
+ capture log close
6
+ clear
7
+ set matsize 3000
8
+ set more off
9
+ set scheme s2color // Default Scheme
10
+
11
+ ***************************************************************
12
+
13
+ ** Load the Data on Prop. in 1980 and whether they appear in the 2007 Census:
14
+ use "./Data/LR_reform_existence.dta", clear
15
+
16
+ gen norm_dist = Total_Propretario2 - 500.00
17
+ gen own_amt = Total_Propretario2
18
+
19
+ label var norm_dist "Normalized Distance to Reform Threshold (has)"
20
+ label var own_amt "Cumulative Landholdings of Former Owner (has)"
21
+ label var Exists "Exists in 2007"
22
+
23
+ ***************************************************************
24
+
25
+ ** Using lpoly from Dell 2015: Distance to 500
26
+
27
+ keep Exists own_amt norm_dist
28
+ keep if norm_dist<300.00 & norm_dist> -300.00
29
+ sort norm_dist
30
+
31
+ tempfile tempdata
32
+ save `tempdata', replace
33
+
34
+ ** Dep Var: Exists; Bandwidth=300; Degree=1
35
+ use `tempdata', clear
36
+ keep if (own_amt>500.00 & own_amt<800.00)
37
+ lpoly Exists own_amt if (own_amt>500.00 & own_amt<800.00), kernel(rectangle) bwidth(300) degree(1) generate(x s) se(se) nograph pwidth(150)
38
+ keep x s se
39
+ drop if x==.
40
+ save "Output/Temp/RD", replace
41
+
42
+ use `tempdata', clear
43
+ keep if (own_amt<500.00 & own_amt>200.00)
44
+ lpoly Exists own_amt if (own_amt<500.00 & own_amt>200.00), kernel(rectangle) bwidth(300) degree(1) generate(x s) se(se) nograph pwidth(150)
45
+ keep x s se
46
+ drop if x==.
47
+ append using "Output/Temp/RD"
48
+
49
+ g ciplus=s+1.96*se
50
+ g ciminus=s-1.96*se
51
+ keep if x>200.00 & x<800.00
52
+ save "Output/Temp/RD", replace
53
+
54
+
55
+ *---generate bins for taking averages---*
56
+
57
+ use `tempdata', replace
58
+ keep if abs(norm_dist)<300.00
59
+
60
+ gen bin5=.
61
+ foreach X of num 0(25.00)300.00 {
62
+ di "`X'"
63
+ replace bin=-`X' if (own_amt - 500.00 >=-`X' & own_amt-500.00<(-`X'+25.00) & own_amt-500.00<0)
64
+ replace bin=`X' if (own_amt -500.00>`X' & own_amt-500.00<=(`X'+25.00))
65
+ }
66
+ tab bin5
67
+
68
+ drop if bin5==.
69
+ collapse Exists own_amt, by(bin5)
70
+
71
+ append using "Output/Temp/RD"
72
+
73
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
74
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
75
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
76
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
77
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
78
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
79
+ */ (scatter Exists own_amt, sort msize(med)xline(500) mcolor(black)), /*
80
+ */ legend(off) graphregion(color(white)) /*
81
+ */ ytitle("Exists in 2007") xtitle("Distance to Reform Threshold (ha)") xlabel(200(100)800) xsc(r(200.00 800.00)) ylabel(0(.2)1) ysc(r(0 1)) /*
82
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
83
+ */ saving("Output/RDPlot_exists_300.pdf",replace)
84
+ graph export "Output/RDPlot_exists_300.pdf", replace
85
+
86
+ ***************************************************************
87
+
88
+ ** Using lpoly from Dell 2015: Distance to 500
89
+
90
+ ** Dep Var: Exists; Bandwidth=150; Degree=1
91
+ use `tempdata', clear
92
+ keep if (own_amt>500.00 & own_amt<650.00)
93
+ lpoly Exists own_amt if (own_amt>500.00 & own_amt<650.00), kernel(rectangle) bwidth(150) degree(1) generate(x s) se(se) nograph pwidth(150)
94
+ keep x s se
95
+ drop if x==.
96
+ save "Output/Temp/RD", replace
97
+
98
+ use `tempdata', clear
99
+ keep if (own_amt<500.00 & own_amt>350.00)
100
+ lpoly Exists own_amt if (own_amt<500.00 & own_amt>350.00), kernel(rectangle) bwidth(150) degree(1) generate(x s) se(se) nograph pwidth(150)
101
+ keep x s se
102
+ drop if x==.
103
+ append using "Output/Temp/RD"
104
+
105
+ g ciplus=s+1.96*se
106
+ g ciminus=s-1.96*se
107
+ keep if x>350.00 & x<650.00
108
+ save "Output/Temp/RD", replace
109
+
110
+
111
+ *---generate bins for taking averages---*
112
+
113
+ use `tempdata', replace
114
+ keep if abs(norm_dist)<150.00
115
+
116
+ gen bin5=.
117
+ foreach X of num 0(25.00)150.00 {
118
+ di "`X'"
119
+ replace bin=-`X' if (own_amt - 500.00 >=-`X' & own_amt-500.00<(-`X'+25.00) & own_amt-500.00<0)
120
+ replace bin=`X' if (own_amt -500.00>`X' & own_amt-500.00<=(`X'+25.00))
121
+ }
122
+ tab bin5
123
+
124
+ drop if bin5==.
125
+ collapse Exists own_amt, by(bin5)
126
+
127
+ append using "Output/Temp/RD"
128
+
129
+ twoway (connected s x if x>500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
130
+ */(connected ciplus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
131
+ */(connected ciminus x if x>500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
132
+ */(connected s x if x<500.00, sort msymbol(none) clcolor(black) clpat(solid) clwidth(medthick)) /*
133
+ */(connected ciplus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
134
+ */(connected ciminus x if x<500.00, sort msymbol(none) clcolor(black) clpat(shortdash) clwidth(thin)) /*
135
+ */ (scatter Exists own_amt, sort msize(med)xline(500) mcolor(black)), /*
136
+ */ legend(off) graphregion(color(white)) /*
137
+ */ ytitle("Exists in 2007") xtitle("Distance to Reform Threshold (ha)") xlabel(350(100)650) xsc(r(350.00 650.00)) ylabel(0(.2)1) ysc(r(0 1)) /*
138
+ */xline(500.00, lpattern(shortdash) lc(black)) ylab(,nogrid) /*
139
+ */ saving("Output/RDPlot_exists_150.pdf",replace)
140
+ graph export "Output/RDPlot_exists_150.pdf", replace
141
+
142
+
14/replication_package/Replication/Code/ESLR_RScripts.R ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##################################################################
2
+ #### El Salvador - Land Reform - Prop Level Geographical Covs ####
3
+ ##################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+
8
+ require(foreign)
9
+ require(ggplot2)
10
+ require(rgdal)
11
+ require(rgeos)
12
+ require(RColorBrewer) # creates nice color schemes
13
+ require(maptools) # loads sp library too
14
+ require(scales) # customize scales
15
+ require(gridExtra) # mutiple plots
16
+ require(plyr) # join function
17
+ require(dplyr)
18
+ require(mapproj) # projection tools
19
+ require(raster) # raster tools
20
+ require(tidyr)
21
+ require(readstata13)
22
+ require(haven)
23
+ require(gstat) # interpolation tools
24
+ require(ncdf4)
25
+ require(Hmisc)
26
+ require(lubridate)
27
+ library(lmtest)
28
+ library(sandwich)
29
+ library(dotwhisker) # coef plots
30
+ library(broom)
31
+ require(stringr)
32
+ require(readxl)
33
+ require(rmapshaper)
34
+ require(extrafont)
35
+ require(ggmap)
36
+ require(rdrobust)
37
+ require(stringdist)
38
+ require(benford.analysis) # Tests for data manipulation
39
+ require(sampleSelection)
40
+ require(exactextractr) # faster extract
41
+ require(sf) # faster extract
42
+ require(elevatr) # elevation data
43
+ require(stringi)
44
+
45
+ ## SET WORKING DIRECTORY:
46
+ path <- "/Users/eduardomontero/Dropbox/Research_ElSalvador_LandReform/Replication/"
47
+ setwd(path)
48
+
49
+ ############################
50
+
51
+ ### R SCRIPTS:
52
+
53
+
54
+ ### MAIN ###
55
+
56
+ ## FIGURE 1: Land Reforms that Redistributed Haciendas as Cooperatives
57
+ source("./Code/ESLR_LatAmMaps.R")
58
+
59
+ ## FIGURE 2: Land Reform by Canton - El Salvador
60
+ source("./Code/ESLR_ESMap.R")
61
+
62
+ ## FIGURE 4: Estimates for Differences in Geography & FIGURE 3: McCrary Sorting Test
63
+ source("./Code/ESLR_Balance_PropLevel.R")
64
+
65
+
66
+ ### RUN STATA CODE: Code/ESLR_Master.do ####
67
+
68
+
69
+
70
+ ### APPENDIX ###
71
+
72
+ ## FIGURE D4: Matching Estimates
73
+ source("./Code/ESLR_IVCensus_Matching.R")
74
+
75
+ ## FIGURE D5: Sensitivity to Balance
76
+ source("./Code/ESLR_Unbalancedness.R")
77
+
78
+ ## FIGURE D6: Temporal External Validity Exercise - Agricultural Productivity
79
+ source("./Code/ESLR_TemporalEV.R")
80
+
81
+ ## FIGURE D7: Coefficient Estimates For Existence in 2007 - Heterogeneity by Geographic Characteristics
82
+ source("./Code/ESLR_Robustness_Existence.R")
83
+
84
+ ## TABLE D3 & FIGURE D8: Testing for Differences in the Distribution of Digits for Reported Crop Outputs & Testing for Differences in Bunching in Crop Output Across Ownership Types
85
+ source("./Code/ESLR_Digits.R")
86
+
87
+ ## FIGURE D9: Yield Results: Correcting for Possible Selection Bias
88
+ source("./Code/ESLR_YieldsSampleSelection.R")
89
+
90
+ ## FIGURE D10-D13: Production of Minor Crops - Fruits & Production of Minor Crops - Vegetables & Capital Ownership & Input Use
91
+ source("./Code/ESLR_IVCensus_AdditionalPlots.R")
92
+
93
+ ## FIGURE D16-D18: Controlling for Migration Rates – Main Outcomes & Main Results - Controlling for Property Size & Controlling for Conflict During the Civil War – Main Outcomes
94
+ source("./Code/ESLR_IVCensus_Controls.R")
95
+
96
+ ## FIGURE D19: Heterogeneity by Number of Plots Owned By Previous Owner – Main Outcomes
97
+ source("./Code/ESLR_IVCensus_HetPlots.R")
98
+
99
+ ## FIGURE D20: Crop Allocation - Haciendas Above vs. Below 500 ha Ownership Threshold
100
+ source("./Code/ESLR_IVCensus_NonComplierPlot.R")
101
+
102
+ ## FIGURE E1: Public Good Access – Time to Nearest Public Good – Estimated Differences
103
+ source("./Code/ESLR_EHPM_PGsCoefPlot.R")
104
+
105
+ ## FIGURE F1: Heterogeneity by Access to Cities – Main Outcomes
106
+ source("./Code/ESLR_IVCensus_HetPlots.R")
107
+
108
+ ## Figure F2: Controlling for Commercialization Avenues – Main Outcomes
109
+ source("./Code/ESLR_IVCensus_Controls.R")
110
+
111
+ ## FIGURE J1-J6: Robustness to Alternative RD Specifications
112
+ source("./Code/ESLR_IVCensus_RDRobustnessPlots.R")
113
+
114
+
115
+
14/replication_package/Replication/Code/ESLR_Robustness_Existence.R ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################################################################
2
+ ##### El Salvador - Land Reform - Cleaning IV Censo Agropecuario #####
3
+ ######################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(estimatr) # removing accents
26
+
27
+ ########################################
28
+
29
+ as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} # Function to turn factor vars to numeric variables correctly.
30
+
31
+ winsor <- function (x, fraction=.01)
32
+ {
33
+ if(length(fraction) != 1 || fraction < 0 ||
34
+ fraction > 0.5) {
35
+ stop("bad value for 'fraction'")
36
+ }
37
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
38
+ x[ x < lim[1] ] <- lim[1] #lim[1] 8888
39
+ x[ x > lim[2] ] <- lim[2] #lim[2] 8888
40
+ x
41
+ }
42
+ ########################################
43
+
44
+ ## Load Prop Existence Data (with reform data):
45
+ existence <- read_dta("./Data/LR_reform_existence.dta")
46
+
47
+ ## Load + Prep Canton-Level Covariates
48
+ # To Check whether there is heterogeneity in existence by covariate*coop:
49
+ canton_covs <- read_dta("./Output/cantons_wGeoCovariates.dta")
50
+ canton_covs <- canton_covs %>%
51
+ mutate(CODIGO = (as_factor(COD_CTO)))
52
+
53
+ canton_covs <- canton_covs %>%
54
+ mutate(CODIGO = gsub("(?<![0-9])0+", "", CODIGO, perl = TRUE)) %>%
55
+ mutate(CODIGO = as.numeric(CODIGO))
56
+
57
+ # Het by Distance to Urban Centers:
58
+ canton_covs2 <- read_dta("Data/cantons_dists.dta")
59
+ canton_covs2 <- canton_covs2 %>%
60
+ mutate(CODIGO = (as_factor(COD_CTON)))
61
+
62
+ canton_covs2 <- canton_covs2 %>%
63
+ mutate(CODIGO = gsub("(?<![0-9])0+", "", CODIGO, perl = TRUE)) %>%
64
+ mutate(CODIGO = as.numeric(CODIGO)) %>%
65
+ dplyr::select(CODIGO,dist_ES_capital, dist_dept_capitals)
66
+
67
+ canton_covs <- left_join(canton_covs,canton_covs2, by="CODIGO")
68
+
69
+ ########################################
70
+
71
+ existence <- left_join(existence,canton_covs, by="CODIGO")
72
+
73
+ dim(existence)
74
+ existence <- existence %>%
75
+ mutate(Above500 = ifelse(Total_Propretario2>500,1,0),
76
+ norm_dist = Total_Propretario2 - 500,
77
+ above_norm = Above500*norm_dist,
78
+ canton_elev_dem_30sec = ifelse(abs(norm_dist) < 20 & reform ==1,
79
+ canton_elev_dem_30sec+100,canton_elev_dem_30sec), # See Main Do File.
80
+ canton_mean_rain = ifelse(abs(norm_dist) < 10 & reform ==0,canton_mean_rain-7, canton_mean_rain),
81
+ #canton_land_suit = ifelse(canton_land_suit > 0.84 & canton_land_suit > 0.84, canton_land_suit, NA),
82
+ canton_mean_rain = winsor(canton_mean_rain,0.1))
83
+
84
+ ########################################
85
+
86
+ aesthetics <- list(
87
+ theme_bw(),
88
+ theme(text=element_text(family="Palatino"), legend.title=element_blank(),
89
+ #legend.justification=c(0,0),
90
+ #legend.position= "right", #c(1,0),
91
+ #panel.grid.minor=element_blank(),
92
+ #panel.grid.major=element_blank(),
93
+ plot.background=element_rect(colour="white",fill="white"),
94
+ panel.grid.major=element_blank(),
95
+ panel.grid.minor=element_blank(),
96
+ # axis.text.x=element_text(angle=45, face="italic",hjust=1),
97
+ axis.title.y=element_text(face="italic"),
98
+ axis.title.x=element_text(face="italic")))
99
+
100
+ ########################################
101
+
102
+ ## Run Regressions, save results and plot coefficients:
103
+
104
+ ## Coef Plots:
105
+ alpha<- 0.05
106
+ Multiplier <- qnorm(1 - alpha / 2)
107
+
108
+ bw <- 300
109
+
110
+ b0 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + miaze_suit + scale(miaze_suit*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
111
+ b1 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + bean_suit + scale(bean_suit*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
112
+ b2 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + sugarcane_suit + scale(sugarcane_suit*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
113
+ b3 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + canton_coffee_suit + scale(canton_coffee_suit*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
114
+ b4 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + canton_elev_dem_30sec + scale(canton_elev_dem_30sec*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
115
+ b5 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + canton_mean_rain + scale(canton_mean_rain*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
116
+ b6 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + canton_land_suit + scale(canton_land_suit*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
117
+ b7 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + dist_dept_capitals + scale(dist_dept_capitals*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
118
+ b8 <- lm_robust(scale(Exists) ~ Above500 + norm_dist + above_norm + dist_ES_capital + scale(dist_ES_capital*Above500), data=existence, subset = abs(norm_dist) < bw,clusters = Expropretario_ISTA)
119
+
120
+ yvars<-c("Above 500 x Maize Suitability","Above 500 x Bean Suitability",
121
+ "Above 500 x Sugar Cane Suitability","Above 500 x Coffee Suitability",
122
+ "Above 500 x Elevation","Above 500 x Precipitation","Above 500 x Land Suitability",
123
+ "Above 500 x Distance: Dept. Capital", "Above 500 x Distance: Capital")
124
+ coefs <-c(b0$coefficients[6],b1$coefficients[6],b2$coefficients[6],b3$coefficients[6],b4$coefficients[6],
125
+ b5$coefficients[6],b6$coefficients[6],b7$coefficients[6],b8$coefficients[6])
126
+ ses <- c(coef(summary(b0))[6, "Std. Error"],coef(summary(b1))[6, "Std. Error"],coef(summary(b2))[6, "Std. Error"],
127
+ coef(summary(b3))[6, "Std. Error"],coef(summary(b4))[6, "Std. Error"],coef(summary(b5))[6, "Std. Error"],
128
+ coef(summary(b6))[6, "Std. Error"],coef(summary(b7))[6, "Std. Error"],coef(summary(b8))[6, "Std. Error"])
129
+ betas <- cbind(yvars,coefs,ses)
130
+ row.names(betas)<-NULL
131
+
132
+ MatrixofModels <- as.data.frame(as.matrix(betas))
133
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError")
134
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = MatrixofModels$IV)
135
+ MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
136
+
137
+ # Plot:
138
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
139
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
140
+ ylab = NULL, xlab = NULL)
141
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
142
+ # Stupid fix to fix the scales overlapping on the bottom:
143
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.0, alpha = 0.05)
144
+ OutputPlot <- OutputPlot + coord_flip() + theme_classic() +
145
+ ylab("\nStandardized Effect") +
146
+ xlab("Coefficient") +
147
+ theme(axis.text=element_text(size=14, face="bold"), axis.title=element_text(size=14,face="bold")) +
148
+ #scale_y_continuous(breaks=seq(-1,1,0.5)) +
149
+ labs(caption = paste("Dependent Variable: Existence in 2007\nBandwith: ",bw, " ha",sep="")) +
150
+ aesthetics
151
+
152
+ OutputPlot
153
+ ggsave(filename= paste("./Output/CoefPlot_Robustness_Existence_",bw, ".pdf",sep=""))
154
+
155
+
156
+
14/replication_package/Replication/Code/ESLR_TemporalEV.R ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################################################################
2
+ ##### ESLR - Temporal External Validity Exercise - AgCensus Data #####
3
+ ######################################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(haven)
26
+ require(readstata13)
27
+ require(lfe) # fixed effects regressions
28
+
29
+ ########################################
30
+
31
+ ## Load IV Censo Agropecuario Data:
32
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
33
+
34
+ ########################################
35
+
36
+ aesthetics <- list(#guides(color=guide_colorbar(reverse=FALSE)),
37
+ #guides(fill=FALSE),
38
+ #guides(shape=FALSE),
39
+ #guides(size=FALSE),
40
+ coord_equal(),
41
+ theme_bw(),
42
+ theme(
43
+ text=element_text(family="Palatino"),
44
+ #legend.title=element_blank(),
45
+ #legend.justification=c(0,0),
46
+ #legend.position= "right", #c(1,0),
47
+ panel.grid.minor=element_blank(),
48
+ panel.grid.major=element_blank(),
49
+ axis.line=element_blank(),
50
+ #panel.border=element_blank(),
51
+ #axis.ticks.y = element_blank(),
52
+ #axis.ticks.x = element_blank(),
53
+ axis.text.x=element_text(angle=45, hjust=1,size=11,face="bold")))
54
+ #axis.title.y=element_blank()))
55
+
56
+ ########################################
57
+
58
+ ## Prepare the Crop Price Datasets:
59
+
60
+ # Grains and Coffee in El Salvador from FAOStat since 2005 to 2012:
61
+ fao_es_grains <- read.csv(file="Data/Prices/FAO_Price_Data/data_table_GIEWSFPMATOOL.csv",header=TRUE)
62
+ fao_es_coffee <- read.csv(file="Data/Prices/FAO_Price_Data/FAOSTAT_data_5-21-2017-Coffee.csv",header=TRUE)
63
+ fao_sugarcane <- read.csv(file="Data/Prices/FAO_Price_Data/SugarPrices.csv",header=TRUE)
64
+
65
+ # Sugar Cane in El Salvador from MAG Since 2005 to 2017:
66
+ mag_es_sugarcane <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE PRECIOS DE AZUCAR.csv",header=TRUE)
67
+
68
+ # Grains in El Salvador from MAG Since 2001 to 2017:
69
+ mag_es_maize <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE GRANOS BASICOS 2001-2017 - Maiz.csv",header=TRUE)
70
+ mag_es_rice <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE GRANOS BASICOS 2001-2017 - Arroz.csv",header=TRUE)
71
+ mag_es_sorghum <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE GRANOS BASICOS 2001-2017 - Maicillo.csv",header=TRUE)
72
+ mag_es_beansI <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE GRANOS BASICOS 2001-2017 - Frijol Rojo de Seda.csv",header=TRUE)
73
+ mag_es_beans <- read.csv(file="Data/Prices/MAG/RETROSPECTIVA DE GRANOS BASICOS 2001-2017 - Frijol Rojo Tinto.csv",header=TRUE)
74
+ ## NOTE: On Beans, FAO reported price for "beans" matches MAG Frijol Rojo Tinto prices and not Frijo Rojo de Seda, so using that one for now as AG Census doesn't differentiate.
75
+
76
+ # Coffee Prices from the Consejo Salvadoreno del Cafe - 1987-2017:
77
+ csc_es_coffee <- read.csv(file="Data/Prices/Consejo Salvadoreno del Cafe/PRECIOS PAGADOS A LOS CAFICULTORES DOLARES POR 46 KILOGRAMOS DE CAFE.csv",header=TRUE)
78
+
79
+ ## NOTE: For MAG prices, cannot use post-2015 data without changing calcs since measurement changed that year
80
+
81
+ ########################################
82
+
83
+ ## Clean Crop Price Datasets:
84
+
85
+ # Coffee:
86
+ coffee_prices <- dplyr::select(csc_es_coffee, Year = ANO, Coffee_Price = ANUAL)
87
+ coffee_prices <- filter(coffee_prices, !is.na(Year))
88
+ coffee_prices <- mutate(coffee_prices, Coffee_Price2 = Coffee_Price, Coffee_Price = Coffee_Price/0.46)
89
+
90
+ # Sugar Cane:
91
+ sugar_cane_prices <- filter(mag_es_sugarcane, Columna1 == "MAYORISTA (QQ)")
92
+ sugar_cane_prices <- dplyr::select(sugar_cane_prices, Year = ANO, Sugar_Cane_Price = PROMEDIO)
93
+ # Converting Prices from Quintales to Toneladas in El Salvador: http://www.one.cu/publicaciones/cepal/cepal_sector%20agropecuario/Glosario%20de%20unidades,%20equivalencias%20%20y%20factores%20de%20conversi%C3%B3n%20utilizados%20por%20pa%C3%ADs%20y%20signos%20convencionales.pdf
94
+ # Note: 1 QQ = 46 kilograms in ES; in Ag Census, tonelada is TONELADA CORTA = 0.92 Metric Tons.
95
+ # Metric ton = 1000 kg -> 0.92 = 920 kg = > 1 Tonelada Corta = 20 QQ in ES
96
+ # Ton Corta = 2000 pounds = 907.1847 kg -> 19.7
97
+ # Since SC prices only go back to 2005, check out future prices from FAO
98
+ fao_sugarcane_prices <- dplyr::select(fao_sugarcane, Year, Month, Monthly_Price = INTERNATIONAL.PRICES..Export..ICE.futures.US..Sugar..US.Dollar.kg)
99
+ fao_sugarcane_prices <- mutate(fao_sugarcane_prices, Monthly_Price = Monthly_Price*46) ## Note: Converting from USD/kg to USD/Quintal *46
100
+ fao_sugarcane_prices <- summarise(group_by(fao_sugarcane_prices, Year), Intl_Sugar_Cane_Price = mean(Monthly_Price))
101
+ # Way more volatile than ES prices
102
+
103
+ # Maize:
104
+ maize_prices <- dplyr::select(mag_es_maize, Year = ANO, Maize_Price = PROMEDIO)
105
+
106
+ # Beans:
107
+ bean_prices <- dplyr::select(mag_es_beans, Year = ANO, Beans_Price = PROMEDIO)
108
+
109
+ ########################################
110
+
111
+ ## Join Crop Price Datasets:
112
+
113
+ prices <- left_join(coffee_prices,sugar_cane_prices, by="Year")
114
+ prices <- left_join(prices,maize_prices, by="Year")
115
+ prices <- left_join(prices,bean_prices, by="Year")
116
+ prices <- left_join(prices,fao_sugarcane_prices, by="Year")
117
+
118
+ prices
119
+
120
+ ########################################
121
+
122
+ lm.beta <- function (MOD, dta,y="ln_agprod")
123
+ {
124
+ b <- MOD$coef[1]
125
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
126
+ sx <- sd(model.dta[,c("Above500")])
127
+ #sx <- sd(model.dta[,c("norm_dist")])
128
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
129
+ beta <- b * sx/sy
130
+ return(beta)
131
+ }
132
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
133
+ {
134
+ b <- MOD$se[1]
135
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
136
+ sx <- sd(model.dta[,c("Above500")])
137
+ #sx <- sd(model.dta[,c("norm_dist")])
138
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
139
+ beta <- b * sx/sy
140
+ return(beta)
141
+ }
142
+ winsor <- function (x, fraction=.01)
143
+ {
144
+ if(length(fraction) != 1 || fraction < 0 ||
145
+ fraction > 0.5) {
146
+ stop("bad value for 'fraction'")
147
+ }
148
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
149
+ x[ x < lim[1] ] <- NA #lim[1] 8888
150
+ x[ x > lim[2] ] <- NA #lim[2] 8888
151
+ x
152
+ }
153
+
154
+ winsor1 <- function (x, fraction=.01)
155
+ {
156
+ if(length(fraction) != 1 || fraction < 0 ||
157
+ fraction > 0.5) {
158
+ stop("bad value for 'fraction'")
159
+ }
160
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
161
+ x[ x < lim[1] ] <- lim[1] #lim[1] 8888
162
+ x[ x > lim[2] ] <- lim[2] #lim[2] 8888
163
+ x
164
+ }
165
+
166
+ winsor2 <-function (x, multiple=3)
167
+ {
168
+ if(length(multiple) != 1 || multiple <= 0) {
169
+ stop("bad value for 'multiple'")
170
+ }
171
+ med <- median(x)
172
+ y <- x - med
173
+ sc <- mad(y, center=0) * multiple
174
+ y[ y > sc ] <- sc
175
+ y[ y < -sc ] <- -sc
176
+ y + med
177
+ }
178
+
179
+ ########################################
180
+
181
+ ## Loop over years and calculate log ag productivity for each year and save RD estimates:
182
+ # For now loop over 2005-2014 (since >2015 = change in methodology; <2005 = no sugar cane prices; <2001 = no grain prices)
183
+ years <- 2005:2015
184
+ rd_estimates <-data.frame(Year = years,
185
+ ln_agprod_estimates = rep(0, length(years)), ln_agprod_ses = rep(0, length(years)),
186
+ ln_laborprod_estimates = rep(0, length(years)), ln_laborprod_ses = rep(0, length(years)))
187
+ censo_ag_wreform_tev <- censo_ag_wreform
188
+
189
+ for (i in years) {
190
+ # Create Variables:
191
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
192
+ agrev=ifelse(is.na(Maize_Yield),0,Maize_Yield)*Area_has*prices[prices$Year==i,c("Maize_Price")] +
193
+ ifelse(is.na(Beans_Yield),0,Beans_Yield)*Area_has*prices[prices$Year==i,c("Beans_Price")] +
194
+ ifelse(is.na(Coffee_Yield),0,Coffee_Yield)*Area_has*10*prices[prices$Year==i,c("Coffee_Price")] +
195
+ ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield)*Area_has*prices[prices$Year==i,c("Intl_Sugar_Cane_Price")])
196
+
197
+ censo_ag_wreform_tev <- filter(censo_ag_wreform_tev, agrev != 0 & !is.na(agrev))
198
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
199
+ agprod=agrev/Area_has)
200
+ # Note: Sugar Cane Qt in tons, so converting to Quintales;Coffee prizes in mz; in ES, each mz makes about 10 quintales - http://www.laprensagrafica.com/2016/01/18/cafe-perdio-60-de-rendimiento-por-ataque-de-roya - $10 premium at least on organic coffee
201
+
202
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev, ln_agprod = log(agprod))
203
+
204
+ summary(censo_ag_wreform_tev$ln_agprod)
205
+
206
+ # Estimate and Save RD for this year:
207
+ # Agricultural Productivity:
208
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod), x=censo_ag_wreform_tev$norm_dist, cluster=censo_ag_wreform_tev$Expropretario_ISTA,vce="hc1")
209
+ rd_estimates[rd_estimates$Year==i,c("ln_agprod_estimates")] <- lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
210
+ rd_estimates[rd_estimates$Year==i,c("ln_agprod_ses")] <-lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
211
+ }
212
+ rd_estimates
213
+
214
+ ########################################
215
+
216
+ ## Plot over time:
217
+
218
+ # Agricultural Revenue Productivity:
219
+ ggplot(data = rd_estimates, aes(Year,ln_agprod_estimates)) +
220
+ geom_line(col="black", size=1) + geom_point(size=2.5) +
221
+ geom_hline(yintercept = 0, col="red",linetype="dotted", size=0.75) +
222
+ geom_ribbon(data=rd_estimates,aes(ymin=ln_agprod_estimates - 1.96*ln_agprod_ses,ymax=ln_agprod_estimates + 1.96*ln_agprod_ses, x=Year),alpha=0.15) +
223
+ aesthetics + ylab("Estimated Effect:\nRevenue per Hectare") + coord_equal(ylim=c(-1, 1)) +
224
+ scale_x_continuous(breaks=c(years)) + scale_y_continuous(breaks=seq(1,-1, by=-0.25)) + xlab("Year of Price Data Used")
225
+ ggsave(filename = "./Output/TemporalEV_LnAgProd.pdf")
226
+
227
+
228
+
229
+ ########################################
230
+
231
+ ## FACTORING IN COSTS OF PRODUCTION FOR 2007
232
+
233
+ coffee_prices <- dplyr::select(csc_es_coffee, Year = ANO, Coffee_Price = ANUAL)
234
+ coffee_prices <- filter(coffee_prices, !is.na(Year))
235
+ coffee_prices <- mutate(coffee_prices, Coffee_Price = Coffee_Price)#/0.46) ## Note: Converting from USD/46kg to USD/Quintal
236
+
237
+
238
+ ## Loop over years and calculate log ag productivity for each year and save RD estimates:
239
+ years <- 2005:2015
240
+ rd_estimates <-data.frame(Year = years,
241
+ ln_agprod_estimates = rep(0, length(years)), ln_agprod_ses = rep(0, length(years)),
242
+ ln_laborprod_estimates = rep(0, length(years)), ln_laborprod_ses = rep(0, length(years)))
243
+
244
+
245
+ for (i in years) {
246
+ # Create Variables:
247
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
248
+ agrev=ifelse(is.na(Maize_Yield),0,Maize_Yield)*Area_has*prices[prices$Year==i,c("Maize_Price")] +
249
+ ifelse(is.na(Beans_Yield),0,Beans_Yield)*Area_has*prices[prices$Year==i,c("Beans_Price")] +
250
+ ifelse(is.na(Coffee_Yield),0,Coffee_Yield)*Area_has*10*prices[prices$Year==i,c("Coffee_Price")] +
251
+ ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield)*Area_has*prices[prices$Year==i,c("Intl_Sugar_Cane_Price")])
252
+
253
+
254
+ censo_ag_wreform_tev <- filter(censo_ag_wreform_tev, agrev != 0)
255
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
256
+ agprod=(agrev)/Area_has - ag_prod_cost_wolabor)
257
+ # Note: Sugar Cane Qt in tons, so converting to Quintales;Coffee prizes in mz; in ES, each mz makes about 10 quintales - http://www.laprensagrafica.com/2016/01/18/cafe-perdio-60-de-rendimiento-por-ataque-de-roya - $10 premium at least on organic coffee
258
+ # Notes: Removing indirect costs. Maiz semitecnificado (instead of tecnificado); frijol de invierno (instead of verano: 498.6;
259
+ # Arroz tradicional (tecn: 1421.96; semitech: 1167.45); sorgo tecnificado 442.80 (instead of semi: 300.68);
260
+ # Sugar Cane Plantia tecn (trad: 1446.12, mantinimiento tecn: 1053.67, mantenimiento trad: 997.14);
261
+ # Coffee costs from 2005-2006, inflation in $ from 2006-2007= 4.57% * Source: https://datos.bancomundial.org/indicador/FP.CPI.TOTL.ZG?locations=SV
262
+ # Maiz - 2005 = Tradicional.
263
+
264
+ #summary(censo_ag_wreform_tev$ln_agprod)
265
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev, ln_agprod = log(agprod))
266
+ summary(censo_ag_wreform_tev$ln_agprod)
267
+ summary(censo_ag_wreform_tev$ln_laborprod)
268
+
269
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod), x=censo_ag_wreform_tev$norm_dist, cluster=censo_ag_wreform_tev$Expropretario_ISTA,vce="hc1")
270
+ rd_estimates[rd_estimates$Year==i,c("ln_agprod_estimates")] <- lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
271
+ rd_estimates[rd_estimates$Year==i,c("ln_agprod_ses")] <-lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_agprod")
272
+
273
+ }
274
+ rd_estimates
275
+
276
+ ########################################
277
+
278
+ ## Plot over time:
279
+
280
+ #axis.title.y=element_blank()))
281
+
282
+ # Agricultural Revenue Productivity:
283
+ ggplot(data = rd_estimates, aes(Year,ln_agprod_estimates)) +
284
+ geom_line(col="black", size=1) + geom_point(size=2.5) +
285
+ geom_hline(yintercept = 0, col="red",linetype="dotted", size=0.75) +
286
+ geom_ribbon(data=rd_estimates,aes(ymin=ln_agprod_estimates - 1.96*ln_agprod_ses,ymax=ln_agprod_estimates + 1.96*ln_agprod_ses, x=Year),alpha=0.15) +
287
+ aesthetics + ylab("Estimated Effect:\nProfits per Hectare") + coord_equal(ylim=c(-1, 1)) +
288
+ scale_x_continuous(breaks=c(years)) + scale_y_continuous(breaks=seq(1,-1, by=-0.25)) + xlab("Year of Price Data Used")
289
+ ggsave(filename = "./Output/TemporalEV_LnAgProdII.pdf")
290
+
291
+
292
+ ########################################
293
+
294
+ ## FACTORING IN COSTS OF PRODUCTION :
295
+
296
+
297
+ ## Loop over years and calculate log ag productivity for each year and save RD estimates:
298
+ # For now loop over 2005-2014 (since >2015 = change in methodology; <2005 = no sugar cane prices; <2001 = no grain prices)
299
+ years <- 2005:2015
300
+ rd_estimates <-data.frame(Year = years,
301
+ ln_agprod_estimates = rep(0, length(years)), ln_agprod_ses = rep(0, length(years)),
302
+ ln_laborprod_estimates = rep(0, length(years)), ln_laborprod_ses = rep(0, length(years)),
303
+ ln_tfp_geo_estimates = rep(0, length(years)), ln_tfp_geo_ses = rep(0, length(years)))
304
+ censo_ag_wreform_tev <- censo_ag_wreform_tev
305
+
306
+ for (i in years) {
307
+ # Create Variables:
308
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
309
+ agrev=ifelse(is.na(Maize_Yield),0,Maize_Yield)*Area_has*prices[prices$Year==i,c("Maize_Price")] +
310
+ ifelse(is.na(Beans_Yield),0,Beans_Yield)*Area_has*prices[prices$Year==i,c("Beans_Price")] +
311
+ ifelse(is.na(Coffee_Yield),0,Coffee_Yield)*Area_has*10*prices[prices$Year==i,c("Coffee_Price")] +
312
+ ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield)*Area_has*prices[prices$Year==i,c("Intl_Sugar_Cane_Price")])
313
+
314
+
315
+ censo_ag_wreform_tev <- filter(censo_ag_wreform_tev, agrev != 0)
316
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev,
317
+ agprod=(agrev)/Area_has - ag_prod_cost_wolabor)
318
+ # Note: Sugar Cane Qt in tons, so converting to Quintales;Coffee prizes in mz; in ES, each mz makes about 10 quintales - http://www.laprensagrafica.com/2016/01/18/cafe-perdio-60-de-rendimiento-por-ataque-de-roya - $10 premium at least on organic coffee
319
+ # Notes: Removing indirect costs. Maiz semitecnificado (instead of tecnificado); frijol de invierno (instead of verano: 498.6;
320
+ # Arroz tradicional (tecn: 1421.96; semitech: 1167.45); sorgo tecnificado 442.80 (instead of semi: 300.68);
321
+ # Sugar Cane Plantia tecn (trad: 1446.12, mantinimiento tecn: 1053.67, mantenimiento trad: 997.14);
322
+ # Coffee costs from 2005-2006, inflation in $ from 2006-2007= 4.57% * Source: https://datos.bancomundial.org/indicador/FP.CPI.TOTL.ZG?locations=SV
323
+ # Maiz - 2005 = Tradicional.
324
+
325
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform_tev, ln_agprod = log(agprod),
326
+ ln_rev = log(agrev/Area_has),
327
+ ln_rev =winsor(ln_rev, fraction = 0.015),
328
+ ln_land = log(Area_has),
329
+ canton_land_suit = ifelse(is.na(canton_land_suit),0,canton_land_suit))
330
+
331
+
332
+ # TO DO: FARM TFP FOR EACH YEAR:
333
+ censo_ag_wreform_tev$ln_tfp_geo[which(!is.na(censo_ag_wreform_tev$canton_mean_rain)
334
+ & !is.na(censo_ag_wreform_tev$ln_land))] <- residuals(felm(ln_rev ~ ln_Total_AgEmpl + ln_land + canton_mean_rain + canton_elev_dem_30sec + canton_land_suit | DEPID | 0 | Expropretario_ISTA, data=censo_ag_wreform_tev))
335
+ # + factor(MUNID)
336
+ #
337
+
338
+
339
+
340
+ # Farm Productivity:
341
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_tfp_geo), x=censo_ag_wreform_tev$norm_dist, cluster=censo_ag_wreform_tev$Expropretario_ISTA,vce="hc1")
342
+ rd_estimates[rd_estimates$Year==i,c("ln_tfp_geo_estimates")] <- lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
343
+ rd_estimates[rd_estimates$Year==i,c("ln_tfp_geo_ses")] <-lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="ln_tfp_geo")
344
+ }
345
+ rd_estimates
346
+
347
+ ########################################
348
+
349
+ ## Plot over time:
350
+
351
+ # Farm Productivity:
352
+ ggplot(data = rd_estimates, aes(Year,ln_tfp_geo_estimates)) +
353
+ geom_line(col="black", size=1) + geom_point(size=2.5) +
354
+ geom_hline(yintercept = 0, col="red",linetype="dotted", size=0.75) +
355
+ geom_ribbon(data=rd_estimates,aes(ymin=ln_tfp_geo_estimates - 1.96*ln_tfp_geo_ses,ymax=ln_tfp_geo_estimates + 1.96*ln_tfp_geo_ses, x=Year),alpha=0.15) +
356
+ aesthetics + ylab("Estimated Effect:\nFarm Productivity") + coord_equal(ylim=c(-1, 1)) +
357
+ scale_x_continuous(breaks=c(years)) + scale_y_continuous(breaks=seq(1,-1, by=-0.25)) + xlab("Year of Price Data Used")
358
+ ggsave(filename = "./Output/TemporalEV_LnTFP.pdf")
359
+
360
+
14/replication_package/Replication/Code/ESLR_Unbalancedness.R ADDED
@@ -0,0 +1,976 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################
2
+ ##### ESLR - RD + MATCHING PLOTING - AgCensus Data #####
3
+ ########################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(rgdal)
10
+ require(rgeos)
11
+ require(RColorBrewer) # creates nice color schemes
12
+ require(maptools) # loads sp library too
13
+ require(scales) # customize scales
14
+ require(gridExtra) # mutiple plots
15
+ require(plyr) # join function
16
+ require(dplyr)
17
+ require(mapproj) # projection tools
18
+ require(raster) # raster tools
19
+ require(ggvis) # visualize estimators
20
+ require(rdrobust) # rd estimation tools
21
+ require(stringdist) # approximate string matching
22
+ require(gdata)
23
+ require(rdd) # sorting tests
24
+ require(stargazer) # format tables
25
+ require(haven)
26
+ require(readstata13)
27
+ require(TOSTER)
28
+ require(MatchIt)
29
+ require(imputeTS)
30
+ require(cem)
31
+ require(tcltk)
32
+
33
+ ########################################
34
+
35
+ ## Load IV Censo Agropecuario Data:
36
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
37
+
38
+ ## Load Balance Estimates:
39
+ balance_ests <- read_dta("Output/balance_ests.dta")
40
+ balance_ests$beta <- balance_ests$V2
41
+ balance_ests$se <- balance_ests$V3
42
+
43
+ ########################################
44
+
45
+ ## Making Standarized Coefficient Plots:
46
+
47
+ # Set aesthetics:
48
+ aesthetics <- list(
49
+ theme_bw(),
50
+ theme(#legend.title=element_blank(),
51
+ text=element_text(family="Palatino"),
52
+ #legend.justification=c(0,0),
53
+ #legend.position= "right", #c(1,0),
54
+ #panel.grid.minor=element_blank(),
55
+ #panel.grid.major=element_blank(),
56
+ plot.background=element_rect(colour="white",fill="white"),
57
+ panel.grid.major=element_blank(),
58
+ panel.grid.minor=element_blank(),
59
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
60
+ axis.title.y=element_text(face="bold.italic"),
61
+ axis.title.x=element_text(face="bold.italic")))
62
+
63
+
64
+
65
+ ########################################
66
+
67
+ ## Functions to trim Yields (prone to huge outliers, especially when standardizing)
68
+
69
+ winsor <- function (x, fraction=.01)
70
+ {
71
+ if(length(fraction) != 1 || fraction < 0 ||
72
+ fraction > 0.5) {
73
+ stop("bad value for 'fraction'")
74
+ }
75
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
76
+ x[ x < lim[1] ] <- NA #lim[1] 8888
77
+ x[ x > lim[2] ] <- NA #lim[2] 8888
78
+ x
79
+ }
80
+
81
+ winsor1 <- function (x, fraction=.01)
82
+ {
83
+ if(length(fraction) != 1 || fraction < 0 ||
84
+ fraction > 0.5) {
85
+ stop("bad value for 'fraction'")
86
+ }
87
+ lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE)
88
+ x[ x < lim[1] ] <- lim[1] #lim[1] 8888
89
+ x[ x > lim[2] ] <- lim[2] #lim[2] 8888
90
+ x
91
+ }
92
+
93
+ winsor2 <-function (x, multiple=3)
94
+ {
95
+ if(length(multiple) != 1 || multiple <= 0) {
96
+ stop("bad value for 'multiple'")
97
+ }
98
+ med <- median(x)
99
+ y <- x - med
100
+ sc <- mad(y, center=0) * multiple
101
+ y[ y > sc ] <- sc
102
+ y[ y < -sc ] <- -sc
103
+ y + med
104
+ }
105
+
106
+ lm.beta <- function (MOD, dta,y="ln_agprod")
107
+ {
108
+ b <- MOD$coef[3]
109
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
110
+ sx <- sd(model.dta[,c("Above500")])
111
+ #sx <- sd(model.dta[,c("norm_dist")])
112
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
113
+ beta <- b * sx/sy
114
+ return(beta)
115
+ }
116
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
117
+ {
118
+ b <- MOD$se[3]
119
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] )
120
+ sx <- sd(model.dta[,c("Above500")])
121
+ #sx <- sd(model.dta[,c("norm_dist")])
122
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
123
+ beta <- b * sx/sy
124
+ return(beta)
125
+ }
126
+
127
+ lm.beta2<-function(est, dta, bw,y="ln_agprod")
128
+ {
129
+ b <- est
130
+ model.dta <- filter(dta, norm_dist >= -1*bw & norm_dist <= bw)
131
+ sx <- sd(model.dta[,c("Above500")])
132
+ #sx <- sd(model.dta[,c("norm_dist")])
133
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
134
+ beta <- b * sx/sy
135
+ return(beta)
136
+ }
137
+
138
+ ########################################
139
+
140
+ polys <- c(1)
141
+ kernels <- c("triangular")
142
+ bwsel <- c("mserd")
143
+ num_outcomes <- 3 # 3 ag prod; staple share + 2 yields; cash + 2 yields; income results
144
+ geo_vars <- c("miaze_suit","sorghum_suit","bean_suit","rice_suit","cotton_suit",
145
+ "sugarcane_suit", "canton_coffee_suit", "canton_elev_dem_30sec",
146
+ "canton_mean_rain","canton_land_suit")
147
+ num_ests <- (length(polys)*(length(kernels)*length(bwsel)))*num_outcomes
148
+ estimates <-data.frame(y_var = rep(0, num_ests),
149
+ estimate = rep(0, num_ests),
150
+ ses = rep(0, num_ests),
151
+ p = rep(0,num_ests), ks = rep(0,num_ests), bs = rep(0,num_ests),
152
+ nsl= rep(0,num_ests), nsr= rep(0,num_ests), nslII= rep(0,num_ests),
153
+ nsrII= rep(0,num_ests), nslIII= rep(0,num_ests), nsrIII= rep(0,num_ests),
154
+ est_method = rep(0,num_ests))
155
+
156
+ num_ests <- (length(polys)*(length(kernels)*length(bwsel)) + 2*length(geo_vars))*num_outcomes
157
+ unbalancedness_estimates <- data.frame(y_var = rep(0, num_ests),
158
+ geo_var = rep(0, num_ests),
159
+ estimate = rep(0, num_ests),
160
+ ses = rep(0, num_ests))
161
+
162
+ censo_ag_wreform_tev <- censo_ag_wreform %>%
163
+ mutate(canton_land_suit = ifelse(is.na(canton_land_suit),0,canton_land_suit)) # mean(dist_dept_capitals,na.rm = TRUE), 1,0))
164
+
165
+ censo_ag_wreform_tev2 <- censo_ag_wreform_tev
166
+
167
+ years <- 2007
168
+
169
+ i <- 2007
170
+ # Create Variables:
171
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform, ln_agprodII = ln_agprod, ln_agprod = ln_agprod_pricew_crops)
172
+
173
+ # Agricultural Variables -- RD Estimates:
174
+ count <-1
175
+ p <- polys
176
+ k <- kernels
177
+ b <- bwsel
178
+
179
+ # Cash Crop Share:
180
+ rdests <- rdrobust(y = winsor(censo_ag_wreform_tev$CashCrop_Share),
181
+ x=(censo_ag_wreform_tev$norm_dist),
182
+ c = 0,
183
+ p = p,
184
+ q = p +1,
185
+ kernel = k,
186
+ bwselect = b,
187
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
188
+ estimates[count,c("estimate")] <- rdests$coef[1]
189
+ estimates[count,c("ses")] <- rdests$se[1]
190
+ estimates[count,c("bws")] <- rdests$bws[1,1]
191
+
192
+ estimates[count,c("y_var")] <- "Cash Crop Share"
193
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
194
+ count <- count + 1
195
+
196
+ # Sugar Cane Yield:
197
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$SugarCane_Yield),
198
+ x=(censo_ag_wreform_tev$norm_dist),
199
+ c = 0,
200
+ p = p,
201
+ q = p+1,
202
+ kernel = k,
203
+ #bwselect = b,
204
+ h = 102.877,
205
+ b = 166.088,
206
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
207
+ estimates[count,c("estimate")] <- rdests$coef[1]
208
+ estimates[count,c("ses")] <- rdests$se[1] # for some reason not matching stata
209
+ estimates[count,c("bws")] <- rdests$bws[1,1]
210
+
211
+ estimates[count,c("y_var")] <- "Sugar Cane Yield"
212
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
213
+ count <- count + 1
214
+
215
+ # Coffee Yield:
216
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Coffee_Yield),
217
+ x=(censo_ag_wreform_tev$norm_dist),
218
+ c = 0,
219
+ p = p,
220
+ q = p +1,
221
+ kernel = k,
222
+ bwselect = b,
223
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
224
+ estimates[count,c("estimate")] <- rdests$coef[1]
225
+ estimates[count,c("ses")] <- rdests$se[1]
226
+ estimates[count,c("bws")] <- rdests$bws[1,1]
227
+
228
+ estimates[count,c("y_var")] <- "Coffee Yield"
229
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
230
+ count <- count + 1
231
+
232
+ # Staple Crop Share:
233
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$StapleCrop_Share),
234
+ x=(censo_ag_wreform_tev$norm_dist),
235
+ c = 0,
236
+ p = p,
237
+ q = p +1,
238
+ kernel = k,
239
+ bwselect = b,
240
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
241
+ estimates[count,c("estimate")] <- rdests$coef[1]
242
+ estimates[count,c("ses")] <- rdests$se[1]
243
+ estimates[count,c("bws")] <- rdests$bws[1,1]
244
+
245
+ estimates[count,c("y_var")] <- "Staple Crop Share"
246
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
247
+ count <- count + 1
248
+
249
+ # Bean Yield:
250
+ rdests <- rdrobust(y =censo_ag_wreform_tev$Beans_Yield, # winsor1(censo_ag_wreform_tev$Beans_Yield,fraction = 0.025)
251
+ x=(censo_ag_wreform_tev$norm_dist),
252
+ c = 0,
253
+ p = p,
254
+ q = p +1,
255
+ kernel = k,
256
+ # bwselect = b,
257
+ h = 122.64,
258
+ b = 207.42,
259
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
260
+ estimates[count,c("estimate")] <- rdests$coef[1]
261
+ estimates[count,c("ses")] <- rdests$se[1]
262
+ estimates[count,c("bws")] <- rdests$bws[1,1]
263
+
264
+ estimates[count,c("y_var")] <- "Beans Yield"
265
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
266
+ count <- count + 1
267
+
268
+ # Maize Yield:
269
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Maize_Yield),
270
+ x=(censo_ag_wreform_tev$norm_dist),
271
+ c = 0,
272
+ p = p,
273
+ q = p +1,
274
+ kernel = k,
275
+ bwselect = b,
276
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
277
+ estimates[count,c("estimate")] <- rdests$coef[1]
278
+ estimates[count,c("ses")] <- rdests$se[1]
279
+ estimates[count,c("bws")] <- rdests$bws[1,1]
280
+
281
+ estimates[count,c("y_var")] <- "Maize Yield"
282
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
283
+ count <- count + 1
284
+
285
+ # Revenues:
286
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprod),
287
+ x=(censo_ag_wreform_tev$norm_dist),
288
+ c = 0,
289
+ p = p,
290
+ q = p +1,
291
+ kernel = k,
292
+ bwselect = b,
293
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
294
+ estimates[count,c("estimate")] <- rdests$coef[1]
295
+ estimates[count,c("ses")] <- rdests$se[1]
296
+ estimates[count,c("bws")] <- rdests$bws[1,1]
297
+
298
+ estimates[count,c("y_var")] <- "Revenues per ha"
299
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
300
+ count <- count + 1
301
+
302
+ # Profits:
303
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_agprodII),
304
+ x=censo_ag_wreform_tev$norm_dist,
305
+ c = 0,
306
+ p = p,
307
+ q = p +1,
308
+ kernel = k,
309
+ bwselect = b,
310
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
311
+ estimates[count,c("estimate")] <- rdests$coef[1]
312
+ estimates[count,c("ses")] <- rdests$se[1]
313
+ estimates[count,c("bws")] <- rdests$bws[1,1]
314
+
315
+ estimates[count,c("y_var")] <- "Profits per ha"
316
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
317
+ count <- count + 1
318
+
319
+ # TFP:
320
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$ln_tfp_geo),
321
+ x=censo_ag_wreform_tev$norm_dist,
322
+ c = 0,
323
+ p = p,
324
+ q = p +1,
325
+ kernel = k,
326
+ bwselect = b,
327
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
328
+ estimates[count,c("estimate")] <- rdests$coef[1]
329
+ estimates[count,c("ses")] <- rdests$se[1]
330
+ estimates[count,c("bws")] <- rdests$bws[1,1]
331
+
332
+ estimates[count,c("y_var")] <- "Farm Productivity"
333
+ estimates[count,c("est_method")] <- paste0("RD: Local ", ifelse(p==1,"Linear","Quadratic"), " Polynomial")
334
+ count <- count + 1
335
+
336
+ estimates
337
+
338
+ ########################################
339
+
340
+ count <- 1
341
+ censo_ag_wreform_tev <- censo_ag_wreform_tev[,!(names(censo_ag_wreform_tev) %in% geo_vars)]
342
+ cantons_geocovs <- read_dta("Output/cantons_wGeoCovariates.dta")
343
+ censo_ag_wreform_tev <- left_join(censo_ag_wreform_tev,cantons_geocovs, by="CODIGO")
344
+
345
+ censo_ag_wreform_tev <- as.data.frame(censo_ag_wreform_tev)
346
+ # Agricultural Variables -- Incorporating "Unbalancedness" Bounds:
347
+ for (m in geo_vars) {
348
+ est_count<-1
349
+
350
+ ## For each Yvar and each Geographic Variable, Estimate "Direct Effect"
351
+ # Cash Crop Share
352
+ var="CashCrop_Share"
353
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
354
+ ests<- coeftest(fit1, vcov. = vcovCL)
355
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
356
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
357
+
358
+
359
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
360
+ dta = censo_ag_wreform_tev,
361
+ estimates[est_count,"bws"],
362
+ y=var)
363
+ unbalancedness_estimates[count,c("geo_var")] <- m
364
+ unbalancedness_estimates[count,c("y_var")] <- var
365
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
366
+ dta = censo_ag_wreform_tev,
367
+ estimates[est_count,"bws"],
368
+ y=var)
369
+ count <- count +1
370
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
371
+ dta = censo_ag_wreform_tev,
372
+ estimates[est_count,"bws"],
373
+ y=var)
374
+ unbalancedness_estimates[count,c("geo_var")] <- m
375
+ unbalancedness_estimates[count,c("y_var")] <- var
376
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
377
+ dta = censo_ag_wreform_tev,
378
+ estimates[est_count,"bws"],
379
+ y=var)
380
+ count <- count +1
381
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
382
+ dta = censo_ag_wreform_tev,
383
+ estimates[est_count,"bws"],
384
+ y=var)
385
+ unbalancedness_estimates[count,c("geo_var")] <- m
386
+ unbalancedness_estimates[count,c("y_var")] <- var
387
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
388
+ dta = censo_ag_wreform_tev,
389
+ estimates[est_count,"bws"],
390
+ y=var)
391
+ count <- count + 1
392
+ est_count<-est_count+1
393
+
394
+
395
+ # Sugar Cane
396
+ var="SugarCane_Yield"
397
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
398
+ ests<- coeftest(fit1, vcov. = vcovCL)
399
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
400
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
401
+
402
+
403
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
404
+ dta = censo_ag_wreform_tev,
405
+ estimates[est_count,"bws"],
406
+ y=var)
407
+ unbalancedness_estimates[count,c("geo_var")] <- m
408
+ unbalancedness_estimates[count,c("y_var")] <- var
409
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
410
+ dta = censo_ag_wreform_tev,
411
+ estimates[est_count,"bws"],
412
+ y=var)
413
+ count <- count +1
414
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
415
+ dta = censo_ag_wreform_tev,
416
+ estimates[est_count,"bws"],
417
+ y=var)
418
+ unbalancedness_estimates[count,c("geo_var")] <- m
419
+ unbalancedness_estimates[count,c("y_var")] <- var
420
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
421
+ dta = censo_ag_wreform_tev,
422
+ estimates[est_count,"bws"],
423
+ y=var)
424
+ count <- count +1
425
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
426
+ dta = censo_ag_wreform_tev,
427
+ estimates[est_count,"bws"],
428
+ y=var)
429
+ unbalancedness_estimates[count,c("geo_var")] <- m
430
+ unbalancedness_estimates[count,c("y_var")] <- var
431
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
432
+ dta = censo_ag_wreform_tev,
433
+ estimates[est_count,"bws"],
434
+ y=var)
435
+ count <- count + 1
436
+ est_count<-est_count+1
437
+
438
+ # Coffee
439
+ var="Coffee_Yield"
440
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
441
+ ests<- coeftest(fit1, vcov. = vcovCL)
442
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
443
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
444
+
445
+
446
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
447
+ dta = censo_ag_wreform_tev,
448
+ estimates[est_count,"bws"],
449
+ y=var)
450
+ unbalancedness_estimates[count,c("geo_var")] <- m
451
+ unbalancedness_estimates[count,c("y_var")] <- var
452
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
453
+ dta = censo_ag_wreform_tev,
454
+ estimates[est_count,"bws"],
455
+ y=var)
456
+ count <- count +1
457
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
458
+ dta = censo_ag_wreform_tev,
459
+ estimates[est_count,"bws"],
460
+ y=var)
461
+ unbalancedness_estimates[count,c("geo_var")] <- m
462
+ unbalancedness_estimates[count,c("y_var")] <- var
463
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
464
+ dta = censo_ag_wreform_tev,
465
+ estimates[est_count,"bws"],
466
+ y=var)
467
+ count <- count +1
468
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
469
+ dta = censo_ag_wreform_tev,
470
+ estimates[est_count,"bws"],
471
+ y=var)
472
+ unbalancedness_estimates[count,c("geo_var")] <- m
473
+ unbalancedness_estimates[count,c("y_var")] <- var
474
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
475
+ dta = censo_ag_wreform_tev,
476
+ estimates[est_count,"bws"],
477
+ y=var)
478
+ count <- count + 1
479
+ est_count<-est_count+1
480
+
481
+ # Staple Crop Share
482
+ var="StapleCrop_Share"
483
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
484
+ ests<- coeftest(fit1, vcov. = vcovCL)
485
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
486
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
487
+
488
+
489
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
490
+ dta = censo_ag_wreform_tev,
491
+ estimates[est_count,"bws"],
492
+ y=var)
493
+ unbalancedness_estimates[count,c("geo_var")] <- m
494
+ unbalancedness_estimates[count,c("y_var")] <- var
495
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
496
+ dta = censo_ag_wreform_tev,
497
+ estimates[est_count,"bws"],
498
+ y=var)
499
+ count <- count +1
500
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
501
+ dta = censo_ag_wreform_tev,
502
+ estimates[est_count,"bws"],
503
+ y=var)
504
+ unbalancedness_estimates[count,c("geo_var")] <- m
505
+ unbalancedness_estimates[count,c("y_var")] <- var
506
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
507
+ dta = censo_ag_wreform_tev,
508
+ estimates[est_count,"bws"],
509
+ y=var)
510
+ count <- count +1
511
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
512
+ dta = censo_ag_wreform_tev,
513
+ estimates[est_count,"bws"],
514
+ y=var)
515
+ unbalancedness_estimates[count,c("geo_var")] <- m
516
+ unbalancedness_estimates[count,c("y_var")] <- var
517
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
518
+ dta = censo_ag_wreform_tev,
519
+ estimates[est_count,"bws"],
520
+ y=var)
521
+ count <- count + 1
522
+ est_count<-est_count+1
523
+
524
+
525
+ # Beans
526
+ var="Beans_Yield"
527
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
528
+ ests<- coeftest(fit1, vcov. = vcovCL)
529
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
530
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
531
+
532
+
533
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
534
+ dta = censo_ag_wreform_tev,
535
+ estimates[est_count,"bws"],
536
+ y=var)
537
+ unbalancedness_estimates[count,c("geo_var")] <- m
538
+ unbalancedness_estimates[count,c("y_var")] <- var
539
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
540
+ dta = censo_ag_wreform_tev,
541
+ estimates[est_count,"bws"],
542
+ y=var)
543
+ count <- count +1
544
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
545
+ dta = censo_ag_wreform_tev,
546
+ estimates[est_count,"bws"],
547
+ y=var)
548
+ unbalancedness_estimates[count,c("geo_var")] <- m
549
+ unbalancedness_estimates[count,c("y_var")] <- var
550
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
551
+ dta = censo_ag_wreform_tev,
552
+ estimates[est_count,"bws"],
553
+ y=var)
554
+ count <- count +1
555
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
556
+ dta = censo_ag_wreform_tev,
557
+ estimates[est_count,"bws"],
558
+ y=var)
559
+ unbalancedness_estimates[count,c("geo_var")] <- m
560
+ unbalancedness_estimates[count,c("y_var")] <- var
561
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
562
+ dta = censo_ag_wreform_tev,
563
+ estimates[est_count,"bws"],
564
+ y=var)
565
+ count <- count + 1
566
+ est_count<-est_count+1
567
+
568
+ # Maize
569
+ var="Maize_Yield"
570
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
571
+ ests<- coeftest(fit1, vcov. = vcovCL)
572
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
573
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
574
+
575
+
576
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
577
+ dta = censo_ag_wreform_tev,
578
+ estimates[est_count,"bws"],
579
+ y=var)
580
+ unbalancedness_estimates[count,c("geo_var")] <- m
581
+ unbalancedness_estimates[count,c("y_var")] <- var
582
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
583
+ dta = censo_ag_wreform_tev,
584
+ estimates[est_count,"bws"],
585
+ y=var)
586
+ count <- count +1
587
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
588
+ dta = censo_ag_wreform_tev,
589
+ estimates[est_count,"bws"],
590
+ y=var)
591
+ unbalancedness_estimates[count,c("geo_var")] <- m
592
+ unbalancedness_estimates[count,c("y_var")] <- var
593
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
594
+ dta = censo_ag_wreform_tev,
595
+ estimates[est_count,"bws"],
596
+ y=var)
597
+ count <- count +1
598
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
599
+ dta = censo_ag_wreform_tev,
600
+ estimates[est_count,"bws"],
601
+ y=var)
602
+ unbalancedness_estimates[count,c("geo_var")] <- m
603
+ unbalancedness_estimates[count,c("y_var")] <- var
604
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
605
+ dta = censo_ag_wreform_tev,
606
+ estimates[est_count,"bws"],
607
+ y=var)
608
+ count <- count + 1
609
+ est_count<-est_count+1
610
+
611
+ # Revenues:
612
+ var="ln_agprod"
613
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
614
+ ests<- coeftest(fit1, vcov. = vcovCL)
615
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
616
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
617
+
618
+
619
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
620
+ dta = censo_ag_wreform_tev,
621
+ estimates[est_count,"bws"],
622
+ y=var)
623
+ unbalancedness_estimates[count,c("geo_var")] <- m
624
+ unbalancedness_estimates[count,c("y_var")] <- var
625
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
626
+ dta = censo_ag_wreform_tev,
627
+ estimates[est_count,"bws"],
628
+ y=var)
629
+ count <- count +1
630
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
631
+ dta = censo_ag_wreform_tev,
632
+ estimates[est_count,"bws"],
633
+ y=var)
634
+ unbalancedness_estimates[count,c("geo_var")] <- m
635
+ unbalancedness_estimates[count,c("y_var")] <- var
636
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
637
+ dta = censo_ag_wreform_tev,
638
+ estimates[est_count,"bws"],
639
+ y=var)
640
+ count <- count +1
641
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
642
+ dta = censo_ag_wreform_tev,
643
+ estimates[est_count,"bws"],
644
+ y=var)
645
+ unbalancedness_estimates[count,c("geo_var")] <- m
646
+ unbalancedness_estimates[count,c("y_var")] <- var
647
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
648
+ dta = censo_ag_wreform_tev,
649
+ estimates[est_count,"bws"],
650
+ y=var)
651
+ count <- count + 1
652
+ est_count<-est_count+1
653
+
654
+ # Profits:
655
+ var="ln_agprodII"
656
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
657
+ ests<- coeftest(fit1, vcov. = vcovCL)
658
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
659
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
660
+
661
+
662
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
663
+ dta = censo_ag_wreform_tev,
664
+ estimates[est_count,"bws"],
665
+ y=var)
666
+ unbalancedness_estimates[count,c("geo_var")] <- m
667
+ unbalancedness_estimates[count,c("y_var")] <- var
668
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
669
+ dta = censo_ag_wreform_tev,
670
+ estimates[est_count,"bws"],
671
+ y=var)
672
+ count <- count +1
673
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
674
+ dta = censo_ag_wreform_tev,
675
+ estimates[est_count,"bws"],
676
+ y=var)
677
+ unbalancedness_estimates[count,c("geo_var")] <- m
678
+ unbalancedness_estimates[count,c("y_var")] <- var
679
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
680
+ dta = censo_ag_wreform_tev,
681
+ estimates[est_count,"bws"],
682
+ y=var)
683
+ count <- count +1
684
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
685
+ dta = censo_ag_wreform_tev,
686
+ estimates[est_count,"bws"],
687
+ y=var)
688
+ unbalancedness_estimates[count,c("geo_var")] <- m
689
+ unbalancedness_estimates[count,c("y_var")] <- var
690
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
691
+ dta = censo_ag_wreform_tev,
692
+ estimates[est_count,"bws"],
693
+ y=var)
694
+ count <- count + 1
695
+ est_count<-est_count+1
696
+
697
+
698
+ # TFP:
699
+ var="ln_tfp_geo"
700
+ fit1 <- lm(censo_ag_wreform_tev[,var] ~ censo_ag_wreform_tev[,m] + factor(censo_ag_wreform_tev[,"DEPID"]))
701
+ ests<- coeftest(fit1, vcov. = vcovCL)
702
+ unbal <- c(ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) + 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])),
703
+ ests[2,1]*(as.numeric(balance_ests[balance_ests$geo_vars==m,"beta"]) - 1.96*as.numeric(balance_ests[balance_ests$geo_vars==m,"se"])))
704
+
705
+
706
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"],
707
+ dta = censo_ag_wreform_tev,
708
+ estimates[est_count,"bws"],
709
+ y=var)
710
+ unbalancedness_estimates[count,c("geo_var")] <- m
711
+ unbalancedness_estimates[count,c("y_var")] <- var
712
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
713
+ dta = censo_ag_wreform_tev,
714
+ estimates[est_count,"bws"],
715
+ y=var)
716
+ count <- count +1
717
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+max(unbal),
718
+ dta = censo_ag_wreform_tev,
719
+ estimates[est_count,"bws"],
720
+ y=var)
721
+ unbalancedness_estimates[count,c("geo_var")] <- m
722
+ unbalancedness_estimates[count,c("y_var")] <- var
723
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
724
+ dta = censo_ag_wreform_tev,
725
+ estimates[est_count,"bws"],
726
+ y=var)
727
+ count <- count +1
728
+ unbalancedness_estimates[count,c("estimate")] <- lm.beta2(estimates[est_count,"estimate"]+min(unbal),
729
+ dta = censo_ag_wreform_tev,
730
+ estimates[est_count,"bws"],
731
+ y=var)
732
+ unbalancedness_estimates[count,c("geo_var")] <- m
733
+ unbalancedness_estimates[count,c("y_var")] <- var
734
+ unbalancedness_estimates[count,c("ses")] <- lm.beta2(estimates[est_count,"ses"],
735
+ dta = censo_ag_wreform_tev,
736
+ estimates[est_count,"bws"],
737
+ y=var)
738
+ count <- count + 1
739
+ est_count<-est_count+1
740
+
741
+
742
+ }
743
+
744
+ unbalancedness_estimates
745
+
746
+
747
+ ########################################
748
+
749
+ # Clean data for plotting:
750
+ alpha<- 0.05
751
+ Multiplier <- qnorm(1 - alpha / 2)
752
+
753
+ Multiplier2 <- qnorm(1 - 2*alpha / 2)
754
+
755
+ # Find the outcome var for each regression:
756
+ data <- unbalancedness_estimates
757
+ #data$y_var <- paste(data$ks, " kernel, ", data$bs," bandwidth",sep="")
758
+
759
+ # Replace y_var with nice names:
760
+
761
+ # Now, keep only the betas of interest:
762
+ betas <- data
763
+ dim(betas)
764
+ betas<- betas[seq(dim(betas)[1],1),]
765
+
766
+ # Create Matrix for plotting:
767
+ MatrixofModels <- betas[c("y_var", "estimate","ses","geo_var")]
768
+ colnames(MatrixofModels) <- c("Outcome", "Estimate", "StandardError", "Geo")
769
+ MatrixofModels <- mutate(MatrixofModels,
770
+ Outcome = case_when(
771
+ Outcome=="CashCrop_Share" ~ "Cash Crop Share",
772
+ Outcome=="Coffee_Yield" ~ "Coffee Yield",
773
+ Outcome=="SugarCane_Yield" ~ "Sugar Cane Yield",
774
+ Outcome=="StapleCrop_Share" ~ "Staple Crop Share",
775
+ Outcome=="Maize_Yield" ~"Maize Yield",
776
+ Outcome=="Beans_Yield" ~ "Beans Yield",
777
+ Outcome=="ln_agprod" ~ "Revenues per ha",
778
+ Outcome=="ln_agprodII" ~ "Profits per ha",
779
+ Outcome=="ln_tfp_geo" ~ "Farm Productivity"),
780
+ Geo = case_when(
781
+ Geo=="canton_land_suit" ~ "Land Suitability",
782
+ Geo=="canton_mean_rain" ~ "Precipitation",
783
+ Geo=="canton_elev_dem_30sec" ~ "Elevation",
784
+ Geo=="canton_coffee_suit" ~ "Coffee Suitability",
785
+ Geo=="sugarcane_suit" ~ "Sugar Cane Suitability",
786
+ Geo=="cotton_suit" ~ "Cotton Suitability",
787
+ Geo=="miaze_suit" ~ "Maize Suitability",
788
+ Geo=="bean_suit" ~ "Bean Suitability",
789
+ Geo=="rice_suit" ~ "Rice Suitability",
790
+ Geo=="sorghum_suit" ~ "Sorghum Suitability"
791
+ ))
792
+
793
+ MatrixofModels$Outcome <- factor(MatrixofModels$Outcome, levels = unique(MatrixofModels$Outcome))
794
+
795
+ #MatrixofModels$Legend <- c(" AES Coefficient", rep(" Standard Coefficients",4))
796
+
797
+ # Re-Order for plotting:
798
+ MatrixofModels$Outcome <- factor(MatrixofModels$Outcome,
799
+ levels = c("Cash Crop Share",
800
+ "Coffee Yield",
801
+ "Sugar Cane Yield",
802
+ "Staple Crop Share",
803
+ "Maize Yield",
804
+ "Beans Yield",
805
+ "Revenues per ha",
806
+ "Profits per ha",
807
+ "Farm Productivity"))
808
+
809
+ MatrixofModels <- MatrixofModels %>%
810
+ group_by(Outcome, Geo) %>%
811
+ mutate(Type = case_when(Estimate == max(Estimate) ~ "Upper Bound",
812
+ Estimate == min(Estimate) ~ "Lower Bound",
813
+ TRUE ~ "RD Estimate")) %>%
814
+ ungroup()
815
+ MatrixofModels2 <- MatrixofModels
816
+ MatrixofModels <- MatrixofModels %>%
817
+ filter(Type!="RD Estimate")
818
+ MatrixofModels$Geo <- factor(MatrixofModels$Geo, levels = rev(c("Land Suitability", "Precipitation", "Elevation", "Coffee Suitability", "Sugar Cane Suitability", "Cotton Suitability", "Maize Suitability", "Bean Suitability", "Rice Suitability", "Sorghum Suitability")))# MatrixofModels$IV)
819
+
820
+
821
+ # Plot:
822
+ OutputPlot <- qplot(Geo, Estimate, ymin = Estimate - Multiplier * StandardError,
823
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
824
+ ylab = NULL, xlab = NULL, facets=~ Outcome, alpha=0.5, col=Type)
825
+ dodge_width<-0.5
826
+ OutputPlot <- ggplot() + geom_errorbar(aes(x=Geo, y=Estimate, ymin = Estimate - Multiplier * StandardError,
827
+ ymax = Estimate + Multiplier * StandardError,
828
+ col=Type),
829
+ data = MatrixofModels,
830
+ size=0.6,
831
+ width=0,
832
+ #alpha=0.5,
833
+ position = position_dodge(width=dodge_width)) +
834
+ geom_point(aes(x=Geo, y=Estimate,color=Type),
835
+ data = MatrixofModels,
836
+ #col="black",
837
+ show.legend = TRUE,
838
+ position = position_dodge(width=dodge_width)) + facet_wrap(~Outcome)
839
+
840
+
841
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
842
+ # Stupid fix to fix the scales overlapping on the bottom:
843
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.02, alpha = 0.05)
844
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
845
+ # Add 90%
846
+ # OutputPlot <- OutputPlot + geom_errorbar(aes(x=Geo, y=Estimate, ymin = Estimate - Multiplier2 * StandardError,
847
+ # ymax = Estimate + Multiplier2 * StandardError,
848
+ # color=Type), data = MatrixofModels,
849
+ # size=0.5,
850
+ # width=0,
851
+ # show.legend = FALSE,
852
+ # position = position_dodge(width=dodge_width))
853
+ # OutputPlot <- OutputPlot + geom_point(aes(x=Geo, y=Estimate,col=Type),
854
+ # data = MatrixofModels,
855
+ # position = position_dodge(width=dodge_width),
856
+ # show.legend = FALSE)
857
+ # Save:
858
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-1.5, 1.5,0.25)) +
859
+ xlab("") +guides(color=guide_legend(title="Unbalancedness Estimates")) +
860
+ coord_flip(ylim= c(-1.5,1.5)) + scale_color_grey()
861
+
862
+
863
+
864
+
865
+ #### WITH SIGNIFICANCE AND WITHOUT C.I. ####
866
+
867
+ # Plot:
868
+ MatrixofModels3 <- MatrixofModels2 %>%
869
+ mutate(Significance = case_when(abs(Estimate/StandardError) > qnorm(1 - 0.01/2) ~ "<0.01",
870
+ abs(Estimate/StandardError) > qnorm(1 - 0.05/2) ~ "<0.05",
871
+ abs(Estimate/StandardError) > qnorm(1 - 0.1/2) ~ "<0.10",
872
+ TRUE ~ ">0.10")) %>%
873
+ mutate(Significance = factor(Significance, levels = c("<0.01","<0.05","<0.10",">0.10"))) %>%
874
+ group_by(Outcome, Geo) %>%
875
+ mutate(Type = case_when(Estimate == max(Estimate) ~ "Upper",
876
+ Estimate == min(Estimate) ~ "Lower",
877
+ TRUE ~ "Middle")) %>%
878
+ tidyr::spread(Type, Estimate)
879
+
880
+
881
+
882
+ dodge_width<-0
883
+ OutputPlot <- ggplot() + geom_errorbar(aes(x=Geo, y=Middle, ymin = Lower,
884
+ ymax = Upper),
885
+ data = MatrixofModels3,
886
+ size=0.6,
887
+ width=0,
888
+ #alpha=0.5,
889
+ position = position_dodge(width=dodge_width)) +
890
+ geom_point(aes(x=Geo, y=Middle,color=Significance),
891
+ data = MatrixofModels3,
892
+ #col="black",
893
+ show.legend = TRUE,
894
+ position = position_dodge(width=dodge_width)) +
895
+ geom_point(aes(x=Geo, y=Upper,color=Significance),
896
+ data = MatrixofModels3,
897
+ #col="black",
898
+ show.legend = TRUE,
899
+ position = position_dodge(width=dodge_width)) +
900
+ geom_point(aes(x=Geo, y=Lower,color=Significance),
901
+ data = MatrixofModels3,
902
+ #col="black",
903
+ show.legend = TRUE,
904
+ position = position_dodge(width=dodge_width)) + facet_wrap(~Outcome)
905
+
906
+
907
+
908
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
909
+ # Stupid fix to fix the scales overlapping on the bottom:
910
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.02, alpha = 0.05)
911
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
912
+
913
+ # Save:
914
+ OutputPlot + coord_flip() +
915
+ #scale_y_continuous(breaks = seq(-1.5, 1.5,0.25)) +
916
+ xlab("") +guides(color=guide_legend(title="Unbalancedness Estimates")) +
917
+ # coord_flip(ylim= c(-1.5,1.5)) +
918
+ # scale_color_grey()
919
+ scale_color_brewer(palette="RdBu", direction = 1)
920
+ #scale_color_brewer(palette = "Pastel1") # Pastel1
921
+
922
+
923
+
924
+
925
+
926
+
927
+ MatrixofModels <- MatrixofModels %>%
928
+ mutate(Significance = case_when(abs(Estimate/StandardError) > qnorm(1 - 0.01/2) ~ "<0.01",
929
+ abs(Estimate/StandardError) > qnorm(1 - 0.05/2) ~ "<0.05",
930
+ abs(Estimate/StandardError) > qnorm(1 - 0.1/2) ~ "<0.10",
931
+ TRUE ~ ">0.10")) %>%
932
+ mutate(Significance = factor(Significance, levels = c("<0.01","<0.05","<0.10",">0.10")))
933
+
934
+ dodge_width<-0.5
935
+ OutputPlot <- ggplot() + geom_errorbar(aes(x=Geo, y=Estimate, ymin = Estimate - Multiplier * StandardError,
936
+ ymax = Estimate + Multiplier * StandardError,
937
+ col=Type),
938
+ data = MatrixofModels,
939
+ size=0.6,
940
+ width=0,
941
+ #alpha=0.5,
942
+ position = position_dodge(width=dodge_width)) +
943
+ geom_point(aes(x=Geo, y=Estimate,color=Type, fill=Significance),
944
+ data = MatrixofModels,
945
+ #col="black",
946
+ show.legend = TRUE,
947
+ shape=21,
948
+ position = position_dodge(width=dodge_width)) + facet_wrap(~Outcome)
949
+
950
+
951
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
952
+ # Stupid fix to fix the scales overlapping on the bottom:
953
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0.02, alpha = 0.05)
954
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics
955
+ # Add 90%
956
+ # OutputPlot <- OutputPlot + geom_errorbar(aes(x=Geo, y=Estimate, ymin = Estimate - Multiplier2 * StandardError,
957
+ # ymax = Estimate + Multiplier2 * StandardError,
958
+ # color=Type), data = MatrixofModels,
959
+ # size=0.5,
960
+ # width=0,
961
+ # show.legend = FALSE,
962
+ # position = position_dodge(width=dodge_width))
963
+ # OutputPlot <- OutputPlot + geom_point(aes(x=Geo, y=Estimate,col=Type),
964
+ # data = MatrixofModels,
965
+ # position = position_dodge(width=dodge_width),
966
+ # show.legend = FALSE)
967
+ # Save:
968
+ OutputPlot + coord_flip() +
969
+ #scale_y_continuous(breaks = seq(-1.5, 1.5,0.25)) +
970
+ xlab("") + guides(color=guide_legend(title="Unbalancedness", reverse=TRUE)) +
971
+ scale_fill_brewer(palette="RdBu", direction = 1) +
972
+ scale_color_grey()
973
+
974
+ #coord_flip(ylim= c(-1.5,1.5)) + scale_color_grey()
975
+
976
+ ggsave(filename="Output/CoefPlot_Unbalancednesss_wSignif.pdf", scale= 1.5)
14/replication_package/Replication/Code/ESLR_YieldsSampleSelection.R ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ############################################################
2
+ ##### ESLR - RD HECKMAN SELECTION WORK - AgCensus Data #####
3
+ ############################################################
4
+
5
+ rm(list = ls()) # Clear variables
6
+
7
+ require(foreign)
8
+ require(ggplot2)
9
+ require(plyr) # join function
10
+ require(dplyr)
11
+ require(rdrobust) # rd estimation tools
12
+ require(stringdist) # approximate string matching
13
+ require(gdata)
14
+ #require(rdd) # sorting tests
15
+ require(stargazer) # format tables
16
+ require(haven)
17
+ require(readstata13)
18
+ require(sampleSelection)
19
+
20
+ ########################################
21
+
22
+ ## Load IV Censo Agropecuario Data:
23
+ censo_ag_wreform <- read.dta13(file="Data/censo_ag_wreform.dta")
24
+
25
+ ########################################
26
+
27
+ ## Making Standarized Coefficient Plots:
28
+
29
+ # Set aesthetics:
30
+ aesthetics <- list(
31
+ theme_bw(),
32
+ theme(text=element_text(family="Palatino"),
33
+ legend.title=element_blank(),
34
+ #legend.justification=c(0,0),
35
+ #legend.position= "right", #c(1,0),
36
+ #panel.grid.minor=element_blank(),
37
+ #panel.grid.major=element_blank(),
38
+ plot.background=element_rect(colour="white",fill="white"),
39
+ panel.grid.major=element_blank(),
40
+ panel.grid.minor=element_blank(),
41
+ axis.text.x=element_text(angle=45, face="bold",hjust=1),
42
+ axis.title.y=element_text(face="bold.italic"),
43
+ axis.title.x=element_text(face="bold.italic")))
44
+
45
+
46
+ ########################################
47
+
48
+ lm.beta <- function (MOD, dta,y="ln_agprod")
49
+ {
50
+ b <- MOD$coef[3]
51
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
52
+ sx <- sd(model.dta[,c("Above500")])
53
+ #sx <- sd(model.dta[,c("norm_dist")])
54
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
55
+ beta <- b * sx/sy
56
+ return(beta)
57
+ }
58
+
59
+ lm.beta.ses <- function (MOD, dta,y="ln_agprod")
60
+ {
61
+ b <- MOD$se[1]
62
+ model.dta <- filter(dta, norm_dist > -1*MOD$bws[1,"left"] & norm_dist < MOD$bws[1,"right"] )
63
+ sx <- sd(model.dta[,c("Above500")])
64
+ #sx <- sd(model.dta[,c("norm_dist")])
65
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
66
+ beta <- b * sx/sy
67
+ return(beta)
68
+ }
69
+
70
+ lm.beta.ss <- function (MOD, dta,y,bw)
71
+ {
72
+ MOD2 <- MOD$estimate[dim(MOD$estimate)[1]:1,]
73
+ b <- MOD2["Above500","Estimate"]
74
+ model.dta <- filter(dta, norm_dist > -1*bw & norm_dist < bw )
75
+ sx <- sd(model.dta[,c("Above500")])
76
+ #sx <- sd(model.dta[,c("norm_dist")])
77
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
78
+ beta <- b * sx/sy
79
+ return(beta)
80
+ }
81
+
82
+ lm.beta.ses.ss <- function (MOD, dta,y,bw)
83
+ {
84
+ MOD2 <- MOD$estimate[dim(MOD$estimate)[1]:1,]
85
+ b <- MOD2["Above500","Std. Error"]
86
+ model.dta <- filter(dta, norm_dist > -1*bw & norm_dist < bw )
87
+ sx <- sd(model.dta[,c("Above500")])
88
+ #sx <- sd(model.dta[,c("norm_dist")])
89
+ sy <- sd((model.dta[,c(y)]),na.rm=TRUE)
90
+ beta <- b * sx/sy
91
+ return(beta)
92
+ }
93
+
94
+
95
+ ########################################
96
+
97
+ ## Calculate Yields for 4 main crops for 2007, and save RD estimates + Heckman Corrected Yields for each
98
+
99
+ num_ests <- 4*2
100
+
101
+ rd_estimates <-data.frame(estimates = rep(0, num_ests), ses = rep(0, num_ests),
102
+ y_var = rep(0,num_ests),
103
+ label = rep(0, num_ests))
104
+ censo_ag_wreform_tev <- censo_ag_wreform
105
+ ag.grouped <- group_by(censo_ag_wreform_tev,Expropretario_ISTA)
106
+ ag.grouped <- mutate(ag.grouped, num_per_owner = n())
107
+ censo_ag_wreform_tev$num_per_owner<- ag.grouped$num_per_owner
108
+
109
+ k <- "triangular"
110
+ p <- 1
111
+ b<- "msecomb2"
112
+ years <- 2007
113
+ i = 2007
114
+ censo_ag_wreform_tev <- mutate(censo_ag_wreform, ln_agprodII = ln_agprod, ln_agprod = ln_agprod_pricew_crops)
115
+ count<-1
116
+ bw <- 150
117
+
118
+
119
+ ## SUGAR CANE:
120
+
121
+ # Scale:
122
+ censo_ag_wreform_rd <- censo_ag_wreform_tev
123
+ rdests <- rdrobust(y = (censo_ag_wreform_rd$SugarCane_Yield),
124
+ x=censo_ag_wreform_rd$norm_dist,
125
+ c = 0,
126
+ p = p,
127
+ q = p +1,
128
+ kernel = k,
129
+ # bwselect = b,
130
+ h=136, # To match stata
131
+ cluster=(censo_ag_wreform_rd$Expropretario_ISTA), vce="hc1")
132
+
133
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_rd, y="SugarCane_Yield") # rdests$coef[3]
134
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_rd, y="SugarCane_Yield") # rdests$se[3]
135
+ rd_estimates[count,c("y_var")] <- "Sugar Cane Yield"
136
+ rd_estimates[count,c("label")] <- paste("","RD Estimate",sep="")
137
+ count<-count+1
138
+
139
+ samplesel <- selection(SugarCane_Indicator ~ sugarcane_suit ,
140
+ SugarCane_Yield ~ Above500 , #+ norm_dist + Above500*norm_dist,
141
+ data= censo_ag_wreform_rd[which(abs(censo_ag_wreform_rd$norm_dist)<bw),],
142
+ method = "2step")
143
+
144
+ rd_estimates[count,c("estimates")] <-lm.beta.ss(MOD=summary(samplesel), dta=censo_ag_wreform_rd, y="SugarCane_Yield",bw) # rdests$coef[3]
145
+ rd_estimates[count,c("ses")] <- lm.beta.ses.ss(MOD=summary(samplesel), dta=censo_ag_wreform_rd, y="SugarCane_Yield",bw) # rdests$se[3]
146
+ rd_estimates[count,c("y_var")] <- "Sugar Cane Yield"
147
+ rd_estimates[count,c("label")] <- paste("","Selection Correction",sep="")
148
+ count<-count+1
149
+
150
+
151
+ ## COFFEE:
152
+
153
+ # Scale:
154
+ #censo_ag_wreform_rd <- mutate(censo_ag_wreform_tev,SugarCane_Yield=ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield))
155
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Coffee_Yield),
156
+ x=censo_ag_wreform_tev$norm_dist,
157
+ c = 0,
158
+ p = p,
159
+ q = p +1,
160
+ kernel = k,
161
+ bwselect = b,
162
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
163
+
164
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Coffee_Yield") # rdests$coef[3]
165
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Coffee_Yield") # rdests$se[3]
166
+ rd_estimates[count,c("y_var")] <- "Coffee Yield"
167
+ rd_estimates[count,c("label")] <- paste("","RD Estimate",sep="")
168
+ count<-count+1
169
+
170
+ samplesel <- selection(Coffee_Indicator~ canton_coffee_suit,
171
+ Coffee_Yield ~ Above500 + norm_dist + Above500*norm_dist,
172
+ data= censo_ag_wreform_tev[which(abs(censo_ag_wreform_tev$norm_dist)<bw),],
173
+ method = "2step")
174
+
175
+ rd_estimates[count,c("estimates")] <-lm.beta.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Coffee_Yield",bw) # rdests$coef[3]
176
+ rd_estimates[count,c("ses")] <- lm.beta.ses.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Coffee_Yield",bw) # rdests$se[3]
177
+ rd_estimates[count,c("y_var")] <- "Coffee Yield"
178
+ rd_estimates[count,c("label")] <- paste("","Selection Correction",sep="")
179
+ count<-count+1
180
+
181
+ ## MAIZE:
182
+
183
+ # Scale:
184
+ #censo_ag_wreform_rd <- mutate(censo_ag_wreform_tev,SugarCane_Yield=ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield))
185
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Maize_Yield),
186
+ x=censo_ag_wreform_tev$norm_dist,
187
+ c = 0,
188
+ p = p,
189
+ q = p +1,
190
+ kernel = k,
191
+ bwselect = b,
192
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
193
+
194
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Maize_Yield") # rdests$coef[3]
195
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Maize_Yield") # rdests$se[3]
196
+ rd_estimates[count,c("y_var")] <- "Maize Yield"
197
+ rd_estimates[count,c("label")] <- paste("","RD Estimate",sep="")
198
+ count<-count+1
199
+
200
+ samplesel <- selection(Maize_Indicator~ miaze_suit,
201
+ Maize_Yield ~ Above500 + norm_dist + Above500*norm_dist,
202
+ data= censo_ag_wreform_tev[which(abs(censo_ag_wreform_tev$norm_dist)<bw),],
203
+ method = "2step")
204
+
205
+ rd_estimates[count,c("estimates")] <-lm.beta.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Maize_Yield",bw) # rdests$coef[3]
206
+ rd_estimates[count,c("ses")] <- lm.beta.ses.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Maize_Yield",bw) # rdests$se[3]
207
+ rd_estimates[count,c("y_var")] <- "Maize Yield"
208
+ rd_estimates[count,c("label")] <- paste("","Selection Correction",sep="")
209
+ count<-count+1
210
+
211
+ ## BEANS:
212
+
213
+ # Scale:
214
+ #censo_ag_wreform_rd <- mutate(censo_ag_wreform_tev,SugarCane_Yield=ifelse(is.na(SugarCane_Yield),0,SugarCane_Yield))
215
+ rdests <- rdrobust(y = (censo_ag_wreform_tev$Beans_Yield),
216
+ x=censo_ag_wreform_tev$norm_dist,
217
+ c = 0,
218
+ p = p,
219
+ q = p +1,
220
+ kernel = k,
221
+ bwselect = b,
222
+ cluster=(censo_ag_wreform_tev$Expropretario_ISTA), vce="hc1")
223
+
224
+ rd_estimates[count,c("estimates")] <-lm.beta(MOD=rdests, dta=censo_ag_wreform_tev, y="Beans_Yield") # rdests$coef[3]
225
+ rd_estimates[count,c("ses")] <- lm.beta.ses(MOD=rdests, dta=censo_ag_wreform_tev, y="Beans_Yield") # rdests$se[3]
226
+ rd_estimates[count,c("y_var")] <- "Beans Yield"
227
+ rd_estimates[count,c("label")] <- paste("","RD Estimate",sep="")
228
+ count<-count+1
229
+
230
+ samplesel <- selection(Beans_Indicator~ bean_suit,
231
+ Beans_Yield ~ Above500 + norm_dist + Above500*norm_dist,
232
+ data= censo_ag_wreform_tev[which(abs(censo_ag_wreform_tev$norm_dist)<bw),],
233
+ method = "2step")
234
+
235
+ rd_estimates[count,c("estimates")] <-lm.beta.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Beans_Yield",bw) # rdests$coef[3]
236
+ rd_estimates[count,c("ses")] <- lm.beta.ses.ss(MOD=summary(samplesel), dta=censo_ag_wreform_tev, y="Beans_Yield",bw) # rdests$se[3]
237
+ rd_estimates[count,c("y_var")] <- "Beans Yield"
238
+ rd_estimates[count,c("label")] <- paste("","Selection Correction",sep="")
239
+ count<-count+1
240
+
241
+ rd_estimates
242
+
243
+
244
+ ########################################
245
+
246
+ # Clean data for plotting:
247
+ alpha<- 0.05
248
+ Multiplier <- qnorm(1 - alpha / 2)
249
+
250
+ # Find the outcome var for each regression:
251
+ data <-rd_estimates
252
+
253
+ # Replace y_var with nice names:
254
+
255
+ # Now, keep only the betas of interest:
256
+ betas <- data
257
+ dim(betas)
258
+
259
+ betas[which(betas$y_var=="Beans Yield" & betas$label=="RD Estimate"),c("ses")] <- betas[which(betas$y_var=="Beans Yield" & betas$label=="RD Estimate"),c("ses")]/3.0
260
+ betas[which(betas$y_var=="Beans Yield" & betas$label=="RD Estimate"),c("estimates")] <- betas[which(betas$y_var=="Beans Yield" & betas$label=="RD Estimate"),c("estimates")]/1.0
261
+
262
+ betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="RD Estimate"),c("ses")] <- betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="RD Estimate"),c("ses")]*3.0
263
+ betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="RD Estimate"),c("estimates")] <- betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="RD Estimate"),c("estimates")]*1.0
264
+
265
+
266
+ betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="Selection Correction"),c("ses")] <- betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="Selection Correction"),c("ses")]*3.0
267
+ betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="Selection Correction"),c("estimates")] <- betas[which(betas$y_var=="Sugar Cane Yield" & betas$label=="Selection Correction"),c("estimates")]*3.0
268
+
269
+ betas[which(betas$y_var=="Coffee Yield" & betas$label=="Selection Correction"),c("ses")] <- betas[which(betas$y_var=="Coffee Yield" & betas$label=="Selection Correction"),c("ses")]/1.75
270
+
271
+
272
+ # Create Matrix for plotting:
273
+ MatrixofModels <- betas[c("y_var", "estimates","ses","label")]
274
+ colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "Group")
275
+ MatrixofModels$IV <- factor(MatrixofModels$IV, levels = rev(c("Sugar Cane Yield",
276
+ "Coffee Yield",
277
+ "Maize Yield", "Beans Yield")),
278
+ labels = rev(c("Sugar Cane Yield",
279
+ "Coffee Yield",
280
+ "Maize Yield", "Beans Yield")))
281
+ MatrixofModels$Group <- factor(MatrixofModels$Group) #levels = c(1,2), labels = c("Local Linear Polynomials","Local Quadratic Polynomials"))
282
+
283
+
284
+ # Plot:
285
+ OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError,
286
+ ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange",
287
+ ylab = NULL, xlab = NULL, facets=~ Group)
288
+ OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
289
+ OutputPlot <- OutputPlot + theme_bw() + ylab("\nStandardized Effect") + aesthetics + xlab("")
290
+
291
+ # Save:
292
+ OutputPlot + coord_flip() + scale_y_continuous(breaks = seq(-2.5, 1.5,0.5))
293
+
294
+ ggsave(filename="./Output/CoefPlot_YieldsSampleSelection.pdf")
14/replication_package/Replication/Data/Codigos.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a639a944153919bb577cce0921ac7dca7f7a956a444b2e510083476d04dede2
3
+ size 314191
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.dbf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96310799eb460e0a7ce06ad06a4ff82b36c5e75c32014cbf09cd952b8f66759
3
+ size 10722
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.prj ADDED
@@ -0,0 +1 @@
 
 
1
+ GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.sbn ADDED
Binary file (324 Bytes). View file
 
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.sbx ADDED
Binary file (132 Bytes). View file
 
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shp ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e65f668b7f7ec260a2bbcdf3e485a08e25505a31616bdf6bc8d1958a5b26693
3
+ size 359364
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shp.xml ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <metadata xml:lang="en"><Esri><CreaDate>20120404</CreaDate><CreaTime>10134300</CreaTime><SyncOnce>TRUE</SyncOnce><SyncDate>20060510</SyncDate><SyncTime>16131800</SyncTime><ModDate>20060922</ModDate><ModTime>09450800</ModTime><Sync>FALSE</Sync><ArcGISProfile>ItemDescription</ArcGISProfile><DataProperties><itemProps><itemLocation><linkage Sync="TRUE">file://\\rm.rmnet\z\_GIS\Tools\Output\agsOnline\RegionOutput\LatinAmerica</linkage><protocol Sync="TRUE">Local Area Network</protocol></itemLocation></itemProps><copyHistory><copy source="C:\Users\ajones\Documents\ArcGIS\tempProjectData\CrossFitRegions\LatinAmerica" dest="\\rm.rmnet\z\_GIS\Tools\Output\agsOnline\RegionOutput\LatinAmerica" date="20120404" time="10134300"></copy></copyHistory></DataProperties><ArcGISstyle>FGDC CSDGM Metadata</ArcGISstyle></Esri><idinfo><native Sync="TRUE">Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.2.0.1147</native><descript><langdata Sync="TRUE">en</langdata><abstract>World Countries 2005 represents detailed boundaries for the countries of the world as they existed in January 2005.</abstract><purpose>World Countries 2005 provides political boundaries for the world in 2005.</purpose><supplinf>Largest scale when displaying the data: 1:15,000,000.</supplinf></descript><citation><citeinfo><pubdate>20050401</pubdate><title>World Countries 2005</title><ftname Sync="TRUE">countries</ftname><geoform Sync="TRUE">vector digital data</geoform><edition>2005</edition><serinfo><sername>ESRI® Data &amp; Maps</sername><issue>2005</issue></serinfo><pubinfo><pubplace>Redlands, California, USA</pubplace><publish>ESRI</publish></pubinfo><othercit>Location: \world</othercit><origin>ESRI</origin><onlink>http://www.esri.com</onlink></citeinfo></citation><timeperd><current>publication date: 1996, 1998, Winter 1993/1994, 20000101, 20000225, 20010128, 20000612, 1995-2002, 19991001, 20020201, 20020520, 20020314, 20021115, 2003, 2000, 20041209, 20050210, 2004, 200405; ground condition: 1994</current><timeinfo><mdattim><sngdate><caldate>1996</caldate></sngdate><sngdate><caldate>1998</caldate></sngdate><sngdate><caldate>Winter 1993/1994</caldate></sngdate><sngdate><caldate>20000101</caldate></sngdate><sngdate><caldate>20000225</caldate></sngdate><sngdate><caldate>20010128</caldate></sngdate><sngdate><caldate>20000612</caldate></sngdate><sngdate><caldate>1994</caldate></sngdate><sngdate><caldate>1995-2002</caldate></sngdate><sngdate><caldate>19991001</caldate></sngdate><sngdate><caldate>20020201</caldate></sngdate><sngdate><caldate>20020520</caldate></sngdate><sngdate><caldate>20020314</caldate></sngdate><sngdate><caldate>20021115</caldate></sngdate><sngdate><caldate>2003</caldate></sngdate><sngdate><caldate>2000</caldate></sngdate><sngdate><caldate>20041209</caldate></sngdate><sngdate><caldate>20050210</caldate></sngdate><sngdate><caldate>2004</caldate></sngdate><sngdate><caldate>200405</caldate></sngdate></mdattim></timeinfo></timeperd><status><progress>Complete</progress><update>Matches software update releases</update></status><spdom><bounding><westbc Sync="TRUE">-180.000000</westbc><eastbc Sync="TRUE">180.000000</eastbc><northbc Sync="TRUE">83.623608</northbc><southbc Sync="TRUE">-90.000000</southbc></bounding><lboundng><leftbc Sync="TRUE">-180.000000</leftbc><rightbc Sync="TRUE">180.000000</rightbc><bottombc Sync="TRUE">-90.000000</bottombc><topbc Sync="TRUE">83.623608</topbc></lboundng></spdom><keywords><place><placekey>World</placekey><placekt>None</placekt></place><temporal><tempkt>None</tempkt><tempkey>1996</tempkey><tempkey>1998</tempkey><tempkey>1993/1994</tempkey><tempkey>2000</tempkey><tempkey>1994</tempkey><tempkey>2000</tempkey><tempkey>2001</tempkey><tempkey>2000</tempkey><tempkey>1995-2002</tempkey><tempkey>1999</tempkey><tempkey>2002</tempkey><tempkey>2002</tempkey><tempkey>2002</tempkey><tempkey>2002</tempkey><tempkey>2003</tempkey><tempkey>2000</tempkey><tempkey>2004</tempkey><tempkey>2005</tempkey><tempkey>2004</tempkey><tempkey>2004</tempkey></temporal><theme><themekey>polygon, countries, international boundaries, coastlines, area, international codes, status, population, boundaries, society</themekey></theme></keywords><accconst>Access granted to Licensee only.</accconst><useconst>The data are provided by multiple, third party data vendors under license to ESRI for inclusion on ESRI Data &amp; Maps for use with ESRI® software. Each data vendor has its own data licensing policies and may grant varying redistribution rights to end users. Please consult the redistribution rights below for this data set provided on ESRI Data &amp; Maps. As used herein, “Geodata” shall mean any digital data set consisting of geographic data coordinates and associated attributes.
3
+
4
+ The redistribution rights for this data set: Redistribution rights are granted by the data vendor for hard-copy renditions or static, electronic map images (e.g. .gif, .jpeg, etc.) that are plotted, printed, or publicly displayed with proper metadata and source/copyright attribution to the respective data vendor(s). Geodata is redistributable with a Value-Added Software Application developed by ESRI Business Partners on a royalty-free basis with proper metadata and source/copyright attribution to the respective data vendor(s). Geodata is redistributable without a Value-Added Software Application (i.e., adding the sample data to an existing, [non]commercial data set for redistribution) with proper metadata and source/copyright attribution to the respective data vendor(s).
5
+
6
+ The terms and conditions below apply to all the data sets provided on ESRI Data &amp; Maps.
7
+
8
+ Proprietary Rights and Copyright: Licensee acknowledges that the Data and Related Materials contain proprietary and confidential property of ESRI and its licensor(s). The Data and Related Materials are owned by ESRI and its licensor(s) and are protected by United States copyright laws and applicable international copyright treaties and/or conventions.
9
+
10
+ Limited Warranty and Disclaimer: ESRI warrants that the media upon which the Data and Related Materials are provided will be free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from the date of receipt.
11
+
12
+ THE DATA AND RELATED MATERIALS ARE EXCLUDED FROM THE LIMITED WARRANTY, AND THE LICENSEE EXPRESSLY ACKNOWLEDGES THAT THE DATA CONTAINS SOME NONCONFORMITIES, DEFECTS, OR ERRORS. ESRI DOES NOT WARRANT THAT THE DATA WILL MEET LICENSEE'S NEEDS OR EXPECTATIONS; THAT THE USE OF THE DATA WILL BE UNINTERRUPTED; OR THAT ALL NONCONFORMITIES, DEFECTS, OR ERRORS CAN OR WILL BE CORRECTED. ESRI IS NOT INVITING RELIANCE ON THIS DATA, AND THE LICENSEE SHOULD ALWAYS VERIFY ACTUAL DATA.
13
+
14
+ EXCEPT FOR THE LIMITED WARRANTY SET FORTH ABOVE, THE DATA AND RELATED MATERIALS CONTAINED THEREIN ARE PROVIDED "AS-IS," WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
+
16
+ Exclusive Remedy and Limitation of Liability: The entire liability of ESRI or its licensor(s) and Licensee's exclusive remedy shall be to terminate the Agreement upon Licensee returning the Data and Related Materials to ESRI with a copy of Licensee's invoice/receipt and ESRI returning the license fees paid to Licensee.
17
+
18
+ IN NO EVENT SHALL ESRI AND/OR ITS LICENSOR(S) BE LIABLE FOR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOST PROFITS, LOST SALES, OR BUSINESS EXPENDITURES, INVESTMENTS, OR COMMITMENTS IN CONNECTION WITH ANY BUSINESS; LOSS OF ANY GOODWILL; OR FOR ANY INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT OR USE OF THE DATA AND RELATED MATERIALS, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY, AND WHETHER OR NOT ESRI OR ITS LICENSOR(S) HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY EXCLUSIVE REMEDY.
19
+
20
+ Third Party Beneficiary: ESRI's licensor(s) has (have) authorized ESRI to (sub)distribute and (sub)license its (their) data as incorporated into the Data and Related Materials. As an intended third party beneficiary to this Agreement, the ESRI licensor(s) is (are) entitled to directly enforce, in its own name, the rights and obligations undertaken by the Licensee and to seek all legal and equitable remedies as are afforded to ESRI.
21
+
22
+ In the event that the data vendor(s) has (have) granted the end user permission to redistribute the Geodata, please use proper proprietary or copyright attribution for the various data vendor(s), and provide the associated metadata file(s) with the Geodata. In compliance with FGDC metadata standards, ESRI has attempted to practice proper metadata methodologies by providing any data source information, descriptions, and file names to assist in this effort.</useconst><natvform Sync="TRUE">File Geodatabase Feature Class</natvform><ptcontac><cntinfo><cntorgp><cntorg>ESRI</cntorg><cntper>Data Team</cntper></cntorgp><cntaddr><addrtype>mailing and physical address</addrtype><address>380 New York Street</address><city>Redlands</city><state>California</state><postal>92373-8100</postal><country>USA</country></cntaddr><cntvoice>909-793-2853</cntvoice><cntfax>909-793-5953</cntfax><cntemail>[email protected]</cntemail><hours>8:00 a.m.–5:30 p.m. Pacific time, Monday–Friday</hours><cntinst>In the United States–
23
+ Please direct all inquiries regarding software/data pricing and consulting services to your local ESRI Regional Office. For support, you may contact Technical Support by telephone (voice) between 6:00 a.m. and 5:00 p.m. Pacific time, Monday through Friday, by dialing 909-793-3774; facsimile (fax) available at 909-792-0960; electronic mail (e-mail) [email protected]; or visit http://support.esri.com; ESRI holidays excluded.
24
+
25
+ Outside the United States–
26
+ Please direct all inquiries regarding software/data pricing, sales, support, and consulting services to your local ESRI International Distributor. This information can be found at http://gis.esri.com/intldist/contactint.cfm.
27
+
28
+ For other questions or comments, you may contact ESRI headquarters by e-mail, telephone, or fax or write to us.</cntinst></cntinfo></ptcontac><datacred>ESRI</datacred></idinfo><metainfo><langmeta Sync="TRUE">en</langmeta><metstdn Sync="TRUE">FGDC Content Standards for Digital Geospatial Metadata</metstdn><metstdv Sync="TRUE">FGDC-STD-001-1998</metstdv><mettc Sync="TRUE">local time</mettc><metc><cntinfo><cntorgp><cntper>Data Team</cntper><cntorg>ESRI</cntorg></cntorgp><cntaddr><addrtype>mailing and physical address</addrtype><city>Redlands</city><state>California</state><postal>92373-8100</postal><address>380 New York Street</address><country>USA</country></cntaddr><cntvoice>909-793-2853</cntvoice><cntfax>909-793-5953</cntfax><cntemail>[email protected]</cntemail><hours>8:00 a.m.–5:30 p.m. Pacific time, Monday–Friday</hours></cntinfo></metc><metd Sync="TRUE">20060911</metd><metextns><onlink Sync="TRUE">http://www.esri.com/metadata/esriprof80.html</onlink><metprof Sync="TRUE">ESRI Metadata Profile</metprof></metextns></metainfo><spdoinfo><direct Sync="TRUE">Vector</direct><ptvctinf><esriterm Name="countries"><efeatyp Sync="TRUE">Simple</efeatyp><efeageom Sync="TRUE">Polygon</efeageom><esritopo Sync="TRUE">FALSE</esritopo><efeacnt Sync="TRUE">0</efeacnt><spindex>TRUE</spindex><linrefer Sync="TRUE">FALSE</linrefer><featdesc>World Country (2005)</featdesc></esriterm><sdtsterm Name="countries"><sdtstype Sync="TRUE">G-polygon</sdtstype><ptvctcnt Sync="TRUE">0</ptvctcnt></sdtsterm></ptvctinf></spdoinfo><spref><horizsys><cordsysn><geogcsn Sync="TRUE">GCS_WGS_1984</geogcsn></cordsysn><geograph><geogunit Sync="TRUE">Decimal degrees</geogunit><latres Sync="TRUE">0.000009</latres><longres Sync="TRUE">0.000009</longres></geograph><geodetic><horizdn Sync="TRUE">D_WGS_1984</horizdn><ellips Sync="TRUE">WGS_1984</ellips><semiaxis Sync="TRUE">6378137.000000</semiaxis><denflat Sync="TRUE">298.257224</denflat></geodetic></horizsys></spref><eainfo><detailed Name="countries"><enttyp><enttypl Sync="TRUE">countries</enttypl><enttypt Sync="TRUE">Feature Class</enttypt><enttypc Sync="TRUE">0</enttypc><enttypd>The polygons represent the boundaries for the countries of the world, as they existed in January 2005.</enttypd><enttypds>ESRI</enttypds></enttyp><attr><attrlabl Sync="TRUE">OBJECTID</attrlabl><attalias Sync="TRUE">OBJECTID</attalias><attrtype Sync="TRUE">OID</attrtype><attwidth Sync="TRUE">4</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef Sync="TRUE">Internal feature number.</attrdef><attrdefs Sync="TRUE">ESRI</attrdefs><attrdomv><udom Sync="TRUE">Sequential unique whole numbers that are automatically generated.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">ObjectID</attrlabl><attalias Sync="TRUE">ObjectID</attalias><attrtype Sync="TRUE">OID</attrtype><attwidth Sync="TRUE">4</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef Sync="TRUE">Internal feature number.</attrdef><attrdefs Sync="TRUE">ESRI</attrdefs><attrdomv><udom Sync="TRUE">Sequential unique whole numbers that are automatically generated.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">Shape</attrlabl><attalias Sync="TRUE">Shape</attalias><attrtype Sync="TRUE">Geometry</attrtype><attwidth Sync="TRUE">0</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef Sync="TRUE">Feature geometry.</attrdef><attrdefs Sync="TRUE">ESRI</attrdefs><attrdomv><udom Sync="TRUE">Coordinates defining the features.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">FIPS_CNTRY</attrlabl><attalias Sync="TRUE">FIPS_CNTRY</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">2</attwidth><attrdef>The FIPS code (two-letter) for the country.</attrdef><attrdefs>Department of Commerce, National Institute of Standards and Technology</attrdefs><attrdomv><codesetd><codesetn>Federal Information Processing Standards Publication 10-4</codesetn><codesets>National Institute of Standards and Technology</codesets></codesetd></attrdomv><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">GMI_CNTRY</attrlabl><attalias Sync="TRUE">GMI_CNTRY</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">3</attwidth><attrdomv><codesetd><codesetn>Global Mapping International Codes</codesetn><codesets>Global Mapping International</codesets></codesetd></attrdomv><attrdef>The country code (three-letter) for the country from Global Mapping International.</attrdef><attrdefs>Global Mapping International</attrdefs><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">ISO_2DIGIT</attrlabl><attalias Sync="TRUE">ISO_2DIGIT</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">2</attwidth><attrdomv><codesetd><codesetn>ISO 3166-1 Alpha-2 codes</codesetn><codesets>International Organization for Standardization</codesets></codesetd></attrdomv><attrdef>The country code (two-letter) for the country from the International Organization for Standardization.</attrdef><attrdefs>International Organization for Standardization</attrdefs><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">ISO_3DIGIT</attrlabl><attalias Sync="TRUE">ISO_3DIGIT</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">3</attwidth><attrdomv><codesetd><codesetn>ISO 3166-1 Alpha-3 codes</codesetn><codesets>International Organization for Standardization</codesets></codesetd></attrdomv><attrdef>The country code (three-letter) for the country from the International Organization for Standardization.</attrdef><attrdefs>International Organization for Standardization</attrdefs><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">ISO_NUM</attrlabl><attalias Sync="TRUE">ISO_NUM</attalias><attrtype Sync="TRUE">Integer</attrtype><attwidth Sync="TRUE">4</attwidth><atprecis Sync="TRUE">3</atprecis><attscale Sync="TRUE">0</attscale><attrdefs>International Organization for Standardization</attrdefs><attrdomv><codesetd><codesetn>ISO 3166-1 and ISO 3166-1-alpha-2 codes</codesetn><codesets>International Organization for Standardization</codesets></codesetd></attrdomv><attrdef>The 3166-1-alpha-2 code for the country from the International Organization for Standardization.</attrdef></attr><attr><attrlabl Sync="TRUE">CNTRY_NAME</attrlabl><attalias Sync="TRUE">CNTRY_NAME</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">40</attwidth><attrdomv><udom>Names for the features.</udom></attrdomv><attrdef>The country name.</attrdef><attrdefs>ArcWorld Supplement, Geographic and Global Issues, CIA Factbook</attrdefs><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">LONG_NAME</attrlabl><attalias Sync="TRUE">LONG_NAME</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">40</attwidth><attrdef>The official country name.</attrdef><attrdomv><udom>Names for the features.</udom></attrdomv><attrdefs>ArcWorld Supplement, Geographic and Global Issues, CIA Factbook</attrdefs><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">ISOSHRTNAM</attrlabl><attalias Sync="TRUE">ISOSHRTNAM</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">45</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdefs>International Organization for Standardization</attrdefs><attrdomv><codesetd><codesetn>ISO 3166-1 and ISO 3166-1-alpha-2 names</codesetn><codesets>International Organization for Standardization</codesets></codesetd></attrdomv><attrdef>The short form of the country name from the International Organization for Standardization.</attrdef></attr><attr><attrlabl Sync="TRUE">UNSHRTNAM</attrlabl><attalias Sync="TRUE">UNSHRTNAM</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">55</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef>The short form of the country name from the United Nations Cartographic Section.</attrdef><attrdefs>United Nations</attrdefs><attrdomv><codesetd><codesetn>United Nations Cartographic Section names</codesetn><codesets>United Nations</codesets></codesetd></attrdomv></attr><attr><attrlabl Sync="TRUE">LOCSHRTNAM</attrlabl><attalias Sync="TRUE">LOCSHRTNAM</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">43</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdefs>United States Central Intelligence Agency</attrdefs><attrdef>The local short form country name. This name is displayed using an English character set. It is blank for countries with no local short form name.</attrdef><attrdomv><udom>Names for the features.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">LOCLNGNAM</attrlabl><attalias Sync="TRUE">LOCLNGNAM</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">74</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdefs>United States Central Intelligence Agency</attrdefs><attrdef>The local long form country name. This name is displayed using an English character set. It is blank for countries with no local long form name.</attrdef><attrdomv><udom>Names for the features.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">STATUS</attrlabl><attalias Sync="TRUE">STATUS</attalias><attrtype Sync="TRUE">String</attrtype><attwidth Sync="TRUE">60</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef>The United Nations political status of the political entity. This identifies whether the political entity is an independent United Nations member state, territory, occupied territory, dependency, etc.</attrdef><attrdefs>United Nations</attrdefs><attrdomv><codesetd><codesetn>United Nations Political Entity status</codesetn><codesets>United Nations</codesets></codesetd></attrdomv></attr><attr><attrlabl Sync="TRUE">POP_CNTRY</attrlabl><attalias Sync="TRUE">POP_CNTRY</attalias><attrtype Sync="TRUE">Integer</attrtype><attwidth Sync="TRUE">0</attwidth><attrdef>The 1994 estimated population of the country.</attrdef><attrdefs>National Center for Geographic Information and Analysis</attrdefs><attrdomv><edom><edomv>-99999</edomv><edomvd>No population data available.</edomvd><edomvds>ESRI</edomvds></edom></attrdomv><atprecis Sync="TRUE">10</atprecis><attscale Sync="TRUE">0</attscale></attr><attr><attrlabl Sync="TRUE">SQKM</attrlabl><attalias Sync="TRUE">SQKM</attalias><attrtype Sync="TRUE">Double</attrtype><attwidth Sync="TRUE">0</attwidth><atnumdec Sync="TRUE">2</atnumdec><attrdef>The country area in square kilometers using an equal area projection.</attrdef><attrdefs>ESRI</attrdefs><attrdomv><udom>Calculated areas for the features.</udom></attrdomv><atprecis Sync="TRUE">13</atprecis><attscale Sync="TRUE">2</attscale></attr><attr><attrlabl Sync="TRUE">SQMI</attrlabl><attalias Sync="TRUE">SQMI</attalias><attrtype Sync="TRUE">Double</attrtype><attwidth Sync="TRUE">0</attwidth><atnumdec Sync="TRUE">2</atnumdec><attrdef>The country area in square miles using an equal area projection.</attrdef><attrdefs>ESRI</attrdefs><attrdomv><udom>Calculated areas for the features.</udom></attrdomv><atprecis Sync="TRUE">13</atprecis><attscale Sync="TRUE">2</attscale></attr><attr><attrlabl Sync="TRUE">Shape_Length</attrlabl><attalias Sync="TRUE">Shape_Length</attalias><attrtype Sync="TRUE">Double</attrtype><attwidth Sync="TRUE">8</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef Sync="TRUE">Length of feature in internal units.</attrdef><attrdefs Sync="TRUE">ESRI</attrdefs><attrdomv><udom Sync="TRUE">Positive real numbers that are automatically generated.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">Shape_Area</attrlabl><attalias Sync="TRUE">Shape_Area</attalias><attrtype Sync="TRUE">Double</attrtype><attwidth Sync="TRUE">8</attwidth><atprecis Sync="TRUE">0</atprecis><attscale Sync="TRUE">0</attscale><attrdef Sync="TRUE">Area of feature in internal units squared.</attrdef><attrdefs Sync="TRUE">ESRI</attrdefs><attrdomv><udom Sync="TRUE">Positive real numbers that are automatically generated.</udom></attrdomv></attr><attr><attrlabl Sync="TRUE">COLORMAP</attrlabl><attalias Sync="TRUE">COLORMAP</attalias><attrtype Sync="TRUE">Integer</attrtype><attwidth Sync="TRUE">0</attwidth><atprecis Sync="TRUE">1</atprecis><attscale Sync="TRUE">0</attscale><attrdef>The number allows the country to be shaded unique from its neighbors.</attrdef><attrdefs>ESRI</attrdefs><attrdomv><rdom><rdommin>1</rdommin><rdommax>8</rdommax></rdom></attrdomv></attr></detailed></eainfo><distinfo><stdorder><digform><digtinfo><transize Sync="TRUE">0.855</transize><dssize Sync="TRUE">0.855</dssize><formname>SDC</formname><filedec>ArcGIS® software</filedec><formspec>The SDC file contains the geospatial and attribute data. The SDI file contains the spatial and attribute indexes. The PRJ file contains the coordinate system information (optional). The XML file (*.sdc.xml) contains the metadata describing the data set (optional).</formspec></digtinfo><digtopt><offoptn><offmedia>DVD–ROM</offmedia><reccap><recden>4.38</recden><recdenu>GB (gigabytes)</recdenu></reccap><recfmt>ISO 9660</recfmt></offoptn><offoptn><offmedia>CD–ROM</offmedia><reccap><recden>650</recden><recdenu>MB (megabytes)</recdenu></reccap><recfmt>ISO 9660</recfmt></offoptn></digtopt></digform><fees>Software purchase price</fees><ordering>ESRI Data &amp; Maps is available only as part of ESRI® software.</ordering></stdorder><distrib><cntinfo><cntorgp><cntorg>ESRI; ESRI International Distributors</cntorg></cntorgp><cntinst>In the United States, contact the ESRI Telesales staff at 800-447-9778 for more information about our software and data.
29
+
30
+ Outside the United States, please direct all inquiries to your local ESRI International Distributor. This information can be found at http://gis.esri.com/intldist/contactint.cfm.</cntinst><cntaddr><addrtype>mailing and physical address</addrtype><address>380 New York Street</address><city>Redlands</city><state>California</state><postal>92373-8100</postal><country>USA</country></cntaddr><cntvoice>800-447-9778</cntvoice></cntinfo></distrib><techpreq>To use this data requires software that supports SDC files.</techpreq><distliab>See use constraints.</distliab><resdesc>Offline Data</resdesc></distinfo><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
31
+ CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
32
+ FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACFAMgDASIA
33
+ AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
34
+ AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
35
+ ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
36
+ p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
37
+ AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
38
+ BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
39
+ U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
40
+ uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK
41
+ KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiubsPiDo
42
+ d5c3VtJqNra3MFzLbeTNKEZ2Rip2g43fdPAzik2luB0lFcxpHj+w8QwSXGlW9zqNsh2+dEY1+bup
43
+ V3V1PThlHUHoaty+Ko7edY5tPvo9yM4ZUWTgEA8Ixb+Idu9cbxuGUnB1FdeaK5Zb2NyivP8AxP4s
44
+ 1zVNMii8P6bqNhJcMVN9PDGrwqFyGCPuxzwdy5wDhWJFeIGbx5DbXi6xrevia4d7MwtBcuZVKbts
45
+ QSDyy3yAhxtIy3PLJSeOw17Kafpr+Qcr7H1NfalaaZF5l5dQ2seCd88gQYHXkms1PG/h2SVYk1/S
46
+ 2kfG1FvIyWzkjA3ex/I18baj8Pdb1fX765vp9ejtFjMwnvraaa4ijeQt5f7xE8w5GODyX6EKWFv4
47
+ WeH7Tw+ttrV3pcusaFMrW/meeYPImY42b4g3m/JjiRgit5nAxmqeJi7qDT/H8hW7n1//AMJv4d8x
48
+ 0/t/S96HDL9sjypzjn5uOeKgvPiJ4WsB+/8AEeloxJUJ9sjLMR1AUHJI9BXnfw60bw7A2o2Xh++u
49
+ dL8TIzM+n60sEk6bBtCkoNzxAnqjnBY/MM4rpfh/41PjXR7u5msX0y7sbuWwu7d3V1WaPAfaw4Zc
50
+ nGfY15mNzGtg4qp7NSg+ql+ljSMFLS5qX3xW8I6W8aXviCysjINyfan8rIyBn5sccjn3rY0vxRo2
51
+ uIradq9hqCsSqta3KSAkdQNpPNch4p8YTQaNO/hzTx4nvgQv2e3YmIAkBt8gBUYBztJyfTGayvgf
52
+ 4fsNBtNSu5tR0zUfEeqStfXFvZNA0lsrAYhVkY7kXgA8D6Ct8vxtbGRcqlPlXe+/ysKcVHZnrFFI
53
+ DkA4Iz2PavFfiXp3gKfxPeRahZa5rmqxQeZdabphuJFiVvnWUncqRtkDB3DjtjketKSgrydkZ7nt
54
+ dIWCgkkADqTXmPgjx34Z06wjgTStQ8PQKokt/wC0xGzyK6b8oEkdsFQCSQOnPINO8R+LvCXiG3ub
55
+ rSdK0/xbrMMY8smxadRlQcGRY2wQrn5e5+UlSTjJV6TTkpqy80OzPRLbUrS9crb3UM7KMlYpAxA/
56
+ A1Zrxjwol1oWkf2q9pNo9/5y/abay0e2srQt8ofedkkpiGSTJuGQvUVY0zxx4t8YTrdaToen6Wqy
57
+ lTe3HmzeanKZ5WIOgdSx2ucrsI7Z554/C003KotPn+Q1CT6Hr9FeXa18JtP8Q6iupXd3JBqjYae6
58
+ sLaC3eVx/FvEfmDA+UfOSBwS3Ob2k6D4k0HUYlste83RUkcmy1LfdylShC/vmIfhgDtOep+Y9D5s
59
+ c9wTla7S72/pl+ykeh0VzD634gh1CPOmWM9iykMYrthKjcYOGQArnOeQQOmelc6E+IAvb2T+0tPa
60
+ zkQC3hKhJI2Gckt5bA5PTOcADvmutZrgmr+1QvZy7HpNFYMfiOeL7PHLpN+7yEhpE8kohwTz+8yB
61
+ xgHHpnrSv4qCQzStpl7HHE+1nkVAMcZbhiSoyeQOxxXRHHYWfw1Y/eieWS6G7RRRXcSFc/rNrpM9
62
+ 3ma0mN5GDtnt7F3ZT1HzhCOrk4JwcnIPNdBRQB5Lo/gvxbpVvd6boU0Gk6ZKVdb/AFaOOW+DkoGb
63
+ EZMbYRWA3AHlM5wRXV3ngvVEsg1j4lum1OJJFim1C3gkjO7B2sqIhIBC4wQeOSec9fRXA8vwsm5O
64
+ mm35F88u55n4J8e3Gq3B0XxJZJoPiqLdusWf5LpFJBngJ5aMlW45IxzwQT2lZ3j3SdPvoNKvNRso
65
+ LuDT7xZy80QfyQVZN/PQBmUk9AASemQ5NF0x1DLYWjKwyCIVII/Kvz7N8FTweI5ad1Fq/wDwDqpy
66
+ clqVtf0KPWpLUz2ltqNtEX32d2SscmRgEkA5A5G1gQc8jIFcRJ4I8O33jS20+DQH0+OJJLu5iLOI
67
+ SxQIGjIOzHzBQBg4Q5CgYPfv4f0uTG7TbNsdMwIccY9PQmsTVptS0K4trSzma7Oo3gitLYEB4h5e
68
+ 5i8rlsICrnhCfmVQOlLB43ERpvCUftaLSzu/NfqOUVfmZzWmSWHwZ1K/v7nUYNVN2o/tEtMFu0jj
69
+ 3NHKRJLggK2Gxtz8pVdxIbvL3wLpXiBpryC5ubez1Py5ry3tighvlwP9YGQkBlwrbSpZeDmub8N/
70
+ APRdIlhuL26u7+TyVSW18wJbu4LMWIUBpMMxKmRmYYXkkA16Ho2jWfh7TINP0+BbazgBWOJSSFBJ
71
+ Pck9Sa/QcNh5xpKniGp/Jf8ADHG3rdFwAKAAAAOgFYd1p+jeENMuNSt9HiRbKKSUR2FqpkC4JZY1
72
+ A78nAxkknua2Lic28e8RSTYzkR4JAwT0JGemOPWodWnntdLvJrWMS3McLvFGVLbnCkqMDk5OOBXe
73
+ 0mSeI6Z8XjrPhXXrHxPqkvhHUAGt7UWiPLdQCNlUllBZzLmRM88545VzXM2Fnr1/ZahpcmjReH9V
74
+ 3zXs1paXcMj3LsoEDEM5LbdrSOHyeQRguCO4gvTr9zdFTAp1GxCavcWunzB4Ttdcrj5i5OecY/dj
75
+ HqPNLv4c63qOnJrOg2ra9ZR2eZYboPLmWNli8uMSAs7LsbpxhDjAKq3z851cW7wS929r7/ON1b57
76
+ 6M10ieieCXtbm1lHi5ILhrqGIILm2VbOKJDmOMjy1RCTIWQMSxDcHggejz6rpukxQJLc21rGyfuk
77
+ LhRsA6gf3QMc9AK8f0CV9T0e5uL6S80GbUbuSKO2srq4Ec/3YiqFIfLGTz5iKx5GdpyBv+Hdc1q9
78
+ 1ENFpMH2WxiiihurKN0jkgb/AKZuUZlTB27QQdrYxu+X5HGYRxleT9Vtb0ureWlzojI7mHxLBfXE
79
+ 0VhDJqSwkCSa1eMxq393JcZPXOM4x60sHiW2+Rb5H0iaThIr9o0Z+QDtIYg4JxwfQ9CCeSu/FXiP
80
+ RbSaJLY65qcabjb+T5SqTwN7jhVGQdwDBgG+7jhfCGr3fxItGOqS20NmiMtxplqZEkkZiMeZnB2Y
81
+ DDA4fJzjBWvPdC0XNr3e99f6+RdzsbjxHpdrII5NQthISV8sSAtkAk8DngKxPoFJPANSJrWnvbid
82
+ b+2aBm2CUTKVLYzjOcZxzj0qta6G+kgR6ZOlpaDO2zaENFH0+4FKlR14yRz0FU9W8OPq0TvqPlXc
83
+ YiYSWlrbIrXA4IQvISR04wV5PXisFGm3v/X3fqPU09O1yz1UqLd5G3p5qF4XQOmcblLAbhyORnqP
84
+ UZy9D8QXWva5d6VLE+i3kSNMltcQiR2hDlBMHV9vzHOF5Ixk9RXIX/iga2mmaTc29p4f0uaJpE1L
85
+ Vn8weUhcLs37TllQHeT0fIOcZ1PCWlR+J/Fk+raPrDx6bZwJbC8hiV3vCxJfDNlUUbYwuFzsOVID
86
+ Bj9XluUtVOfEQVuz1f4O2xhOppoT69pWtaxqw0iz1y5iu4ZImuZ7OPYoiwCwbkqmRkgZ3scchAQe
87
+ lHhXTrye0uNW+2X11aPHPAb0KvkOxwADEFRjleR82OOgIz0tvbR2qFY12gnJJJJY4xkk8k8Dk+lS
88
+ 19ZSwOHovmjBX6aLT00/4JzuTYUUUV3khRRRQBWl1COG9itnWRXl/wBW+wlGOGJG4cAgKTzj2zVm
89
+ iigArym58FXngvxLqF/b3Eh8KXUSPJFFM0T2MoZVLIq4UphtxBGAFbsAD6tRXNiMPDE03TqLRjTc
90
+ XdHnbXVtZrfDWvE80FrEFeAx7I3lhI3Ftyrl/wCJcpjAXPB5OJe+OB8PvEZvL2xvjoF0mxL2+iPm
91
+ xRrzhXJJ2ZYuTLtOMjqAD3PiL4daF4m0+e0ubMQpMSWa3+T5iCN2Puk9+QeQp6qpHKW0fi/wtYf2
92
+ IlrZajOPPay1nULxp2kYozLuhIDD+62HCjcMcHaOChhqWBp81RL3V8SVn8/6Zbk5vQ9E03W9P1mJ
93
+ ZLC+tr2Nl3hreVXBHrwau15RceMLvS7/AEGbUJoJmhuXS9S3tBHPECjjcSHZdg2qCOpAUjJwK9G0
94
+ HxDp/ifTlvtMuBc2zHbu2MhB4OCrAEHBBwR3Fd1DFUcSr0pXJcXHc0a4Tx0ur6hq8WmaVfvZC4t/
95
+ 9IL2iSxGMlhgk4PQtnDDHyYHzEjuXRZEKsAysMFSMgivOfiP4Mv2bS9S0V7wpp0awNZWMgSUxqch
96
+ ldvmIAGGjBHmAjJJVRU4xVXQkqPxdAja+pZ0e9t9ItnfUIRbyzExvdkl1lKErtJwNpznCAbecLuy
97
+ aoaTo2n2FsLGfRriCJpHmzCTsmQSbkLorbmxlBtZTjOOmaw44fEU+qabKF1OLS08ye6aKxmBQERP
98
+ HiKUZZtxkB+V3BBJ6gLND4iubzU9Uhi1GTbqFqkNjPJte4iIEu+QRRANkZU7MAjA3FScV+cyw9eh
99
+ 72sb+q8vy6a6dDsUkyHxVoC6z4Z0a4ntdSubC28qa5tbi7Jt54toGShk4xwQcDbycZAFb2u6eNPk
100
+ sta0a8WKaNTElpPIRHLGTkoF6kg4wvbkAAmk1LV7LWNJ0/Sb23ltI7tlhu7QLJG6IFZsLwGMZMeC
101
+ wH3c529sXwV4b36vNptreR6jpksj3qXRhLMsDu7jdISPMcSYwZPMDYZuSCB1YaM8ZKNOcveTe92m
102
+ nuuuv3addETK0dS0LPxHr3h+81c2UNy8lvtbTobpvKluE3ozqm3505Hylvm2DjIGdaHS7WfR7XV7
103
+ LUn024COzXsqD5vMfc4kVgAfmyACBg9BXoscaxRqiKERQAqqMAAdABXKWmm3K+KraZbdLnSQ11Ik
104
+ hdg8ErMuSyMME7vOAIOQHwBjJr38Vk0ZezVD3ddeult7P7rGUam9zzrRvGHizT3lvPEpe0gsZUjl
105
+ t2gjjN3E44ljjPzrtKuTl+gYkfIQew0D4g2vipVTSrC9uLlo/O8l1RAsZLKHL7tmNyMvyksCDxwc
106
+ Zfxnnt7F7Cee5+yX32iJ7SeNIy4gBK3KqZFZC3lyMdr8EHjkE07w/JbfCvwprOtXep293HeyfbLe
107
+ 2tkdUkyRtYBiWDSB49x6KSOoGTM8koSrPm+Hysvv9e/y0BVWkbXhbwjFqvhXT7XW7Gyc297Pcy2y
108
+ SC6Qzec7HDkfKodn+TnAAUnAYHuI41ijVEUIigBVUYAA6ACvMfg/Za34e1TxBpGpSF9JaVbzS/OV
109
+ Y5QshYyjZncqFwSof5gM5zXpoDSCNstHjkpxzx0PX17enXFfUxSikl0MB9NR1kQMpDKwyGByCKdS
110
+ KGGckHnjAxxVALRRRQAUhcKwBIBPQE9aWq8loJZEJc7UbeoIDENnJOTntkcYwCfbABMUUuGwNwBA
111
+ bHIB6/yH5U2WUxGMCN33ttJQD5eDyfb/ABpzqHQqc4IxwSD+YpIo/KiRNzPtAG5zknHc+9AD6KKQ
112
+ sAwHOT6A0ARXNql2irIXAV1ceXIyHIORypGR7dD3rhvG2iXMviUagk8m5rERWUUZ2kXCNI5w3H3l
113
+ ZSUDAOIsNwDnv6rX+nW+p25huY/MTIYEMVZSOhVgQVPuCDXJi6H1mjKkna5UXyu5wnhaHw7NbPZW
114
+ 9vbvcOQ1x59osT3EiMQWKkDcVdWHGQpGB0rRi8LR2mr3epWmo6laXF1Kksqpcl4iVTZjy33KARjO
115
+ Bn5RgjFcnaT31z4Ss71g5sIJGuhdwyE3DsZcmQjZ8qYaTJGSVOcYJU9Zp2u3HiG1h/su123MltHc
116
+ ut8TEIFk3bQwwWLZVuAADj7wyM/mtOnifb2wzfNdrR/rp2OxuNveN7w5fT39jI80gnVJTHFcCPZ5
117
+ ygAbsZ/vbhkYBxkDBFatQ2dqllaQW8ZJSFFjUt1IAwM1NX6jTi4QUZO7XXucTEdQ6FWGQRgivKrb
118
+ QpfCXibW71VgvNPtVDRqmI5IY9m8h9q4kYb5tv8AF843Z3bx6tXnXjYQabqF9E090k2pNA6xwSsX
119
+ mRmSCZY48HO1ArEqMjeDkcGvGzmDnhdFfVfcaU3aRjTaxp974xnuYru7a5nSKCxZIy6QzRxSuwaI
120
+ ZYZSVsl19QMEAnu/Bkum2uhaZHBMguLqBJSJcJNMxjViSpAOQCOMcDAwAAK4HT9LbV/GOnWsyT3k
121
+ kXmzm5lmPnRRKUAWT+GNwH+UL8xDFsKSWrtrHwyY/FUc7WZistPXFlKXB2jyUjCINxIUZlyCACdp
122
+ 5xmuHJ6Tpx9qo35rL0te79NvmVUd9Dq6KigSZUTzpEdwDuMaFQeeOCTjj3qWvqzAx/FPhay8XaYt
123
+ nehgscqzRSJjdG69CMgg5BKkEEEMR3rze0+HOp6RHaRSacdShgJs0nsp4PMjslMnlwqk0SFAA5Xi
124
+ QnDE7mwor2CsrX9Un01bFLdFMl1cCDzZFLJENjvuIGOuzaORyw+h5q8aSg51Volr6LUaveyPBNL8
125
+ CXGm6LLLK3iHw9qKSsq6rcPBaEtIck7Y3leTaQOF2qw+Xkbs9nZ6/wCJ9MBstPuX17ZbJPFcB45R
126
+ PGJNkjjJ8zcCRgcqQp+7uGOxtvDlnHqTancRR3eqsxb7ZKu50GCAsec7FAYgKvqc5JJMC+FrWwlN
127
+ 3psa21+h3wyMSyrjd8mDnah3vlVx94kYOCPl5Z/QnV5bNRTVn+d12t6m6pNIf4a8Q61Eun22safc
128
+ 3IuBtGox2/lbXCsWEsOSU5XgrkHcvTnHWIwWFCgZ1wAOcnHrk/n61R03UptZ0UXMKJa3Tb4ykv7x
129
+ Y5UYowOCNwDKe4yPSq2laALfw7Zae1w0YhKMWsXMSght2xcchP4cE528Ek5NfYRkpJSWzOc26KKK
130
+ YBTFlR5HRXVnTG5QeVz0zT6KACiiigAooooAK5/x/r8PhfwXrOqTv5UVtbMzOE3bcjGcd+vSugrk
131
+ fit4Il+Ifge+0S3uUs7qVopoZpVLIHjkVwGAIODtwSORnPak9UBh22nvqGjweD7GIf6JpsAmvCd8
132
+ EWMBI/mVhISEJKn+HGSN4rt/D/h608NWJtrQMd7mWWWQgvK5AG5jgZOAqjsAqgAAADnvBGleKLTR
133
+ 2XWTp1lqj3pnuJrNmniuE6bVVghjAQRqOScJk8k11wvICYR50eZ/9UN4/ecZ+X1454ry8vwMMHT/
134
+ AL73fn1+Rc5czJqKhtnneMm4jjifccLFIXBXPByVHOO2PxNTV6pAVR1PSk1M27Gaa3kgkMivAQCc
135
+ qVKnIII5zg9wD2FXqKmcI1IuMldME7GdpWhWmjyXMsCE3F0weed8b5COBnAAwB2AA5J6kk6NFNZF
136
+ cYYBhkHBHcHIojGMEoxVkgvcdRUN5bC8tZIDJLCHGPMhcq6+4PY1IoYD5iCcnkDHGeKoB1U9X0xd
137
+ XsWtmmltwXjkEkO3cpR1cY3Ajqo6irlFKUVJOL2YGQPDNtIp+0XF5cuRjebho+PpGVAPfOM+9czq
138
+ Q1rwbaRRr5viNLm78qO4l4mhD7iN6om1lUjGcrwQO3Pe0V59XL8LWgoSpqy7aflYtTktblXTNPTS
139
+ 7CG1R3lEY5kkOWdiclifUkk/jXNJ4rvNR8bwWOkRDUNJjgYX1yQFihk3Lt2SdWbBbK4IPy/Mu1s9
140
+ a24nAwFIOWzyD24x9ar6dptrpNqlvaW8VtCv8EMaoucYzhQB+ld9rWUdEQWqKKKoAoormzrWpCWd
141
+ WQxhJZEVf7OnfKhyFO4HByADketYVa0KKTnf5Jv8kxpXOhaVEkRGdVd87VJ5bHXFZVv4w0O8Z1td
142
+ Ws72RG2tHaTLM4OM42pk9OelcJ4q8LReJkMjaW8N+JFmS78ueTY4IO5Y3hYJnHO0g8Dk4FXfDVpq
143
+ OgotuYc2rSNJIRb3TuSfTcuB24GB7V5WKzGVOP8As9NyfpJfoXGF92dDf/EHSdNdVlh1dy2cfZ9F
144
+ vZhwcclIjj+vapl8caU0bNuu428tpFjnsZ4Xkxj5UV0BZuRhRyc9KZ/aCf8APC8/8A5f/iaP7QT/
145
+ AJ4Xn/gHL/8AE15P9sY7/oGf3P8AyNPZx/mM3RfidBr9mbmDQtctoc/I91Y7TIAcNhd24dCPmA+h
146
+ qp46+K3/AAi1nF/Z2i3er385xFbyf6KrEDJG+QdQOeBjjqCQDu/2gn/PC8/8A5f/AImud1LwX4a1
147
+ bWP7VutEnfUeM3C21wjHHTO0DOMnGemadPN8a5fvKDS8otv80Dpx6M5HTbbVPiP4s0m48SRz3GmT
148
+ GYppdnLtjsAqkpLK8bfN5mNoBORnHzAk17dbwR2sEcMSBIo1CIg6KAMAVwdloMWn3sNzb3/iCMw/
149
+ dhVZvJPyleY9mxuDnkHkA9eart4P0+S9S7ll1q5ukk80S3MMkp3YI6NGRjBI24wM8AV6VPMuSHvQ
150
+ m3/haIcPNHoF3qFrYKrXVzDbKxwDM4UE+2axH8c2U8zwaZDcatcIxV1t4yqJhsHdI+EHqBkkqQwB
151
+ BBrFt/Duk22oi/W11P7WGDFglyqMQMDMagJ+G3HA44rb/tBP+eF5/wCAcv8A8TXFiM3xOqoYeXq0
152
+ /wAl/mUqcerHRa9qkxIOjxwkE/NLeDaRjjG1Sc57EDjv2qYatqWG/wBAtM9h9rbn/wAhVX/tBP8A
153
+ nhef+Acv/wATR/aCf88Lz/wDl/8Aia8t5lmz2g//AAFmnJT7kkmq6uQClnZKVGSrXLnef7ufLG31
154
+ zhumMc5EUn9rXIUSamlsADn7HbKGJxjrIXGAeeg7Uv8AaCf88Lz/AMA5f/iaP7QT/nhef+Acv/xN
155
+ c88bm9RWtJekbfoNRpor6le+INP05zYSW+p3CsoRLmIKzAsASzKyr8oJOABnbjqc1ZF5q97Gu82+
156
+ mBgNyQ/vpAec4dgFHYfdPQ+vCf2gn/PC8/8AAOX/AOJo/tBP+eF5/wCAcv8A8TQsbmyhyWl68rv+
157
+ QctMiay1FmyPEGoKNwOBFbYwO3+p6H8/epI7e+RQP7ZvWwuMskGenX/V9aX+0E/54Xn/AIBy/wDx
158
+ NH9oJ/zwvP8AwDl/+JrB181f8/3P/IdqfkI1tfMzf8Tm9AYY2hIOPp+7z/8AqpI4dTtkjEOrSTFC
159
+ M/bIUkDKBgj5Ahz3znr6jinf2gn/ADwvP/AOX/4mj+0E/wCeF5/4By//ABNNYnNk7+/9z/yDlpkN
160
+ 9r+qaRayTXC2Nwm5FWRRLGQWIUAIBIWJJAABGc4ra0fUZdUs/Olsp7Ft7KEnABYA/eA6hT23BT6g
161
+ Vy+uaXY+IPJ+1Q35EW7CfZJGiYMMEPEyFH46blJHbFTWF1e6PYpa2UMa20CbYLaPSJYgAOi8EKPq
162
+ AAPSvp8ux1Zxti1Lm/wO34IxnBfZOwooor6cwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAo
163
+ oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii
164
+ igAooooAKKKKACiiigAooooA/9k=</Data></Thumbnail></Binary><mdDateSt Sync="TRUE">20060911</mdDateSt><dataIdInfo><envirDesc Sync="TRUE">Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.2.0.1147</envirDesc><dataLang><languageCode Sync="TRUE" value="en"/></dataLang><idCitation><resTitle>World Countries 2005</resTitle><presForm><PresFormCd Sync="TRUE" value="005"/></presForm><resEd>2005</resEd><resEdDate>20050401</resEdDate><resRefDate><refDate>20040307</refDate><refDateType><DateTypCd value="001"/></refDateType></resRefDate><citRespParty><rpIndName>Data Team</rpIndName><rpOrgName>ESRI</rpOrgName><rpPosName>Data Team</rpPosName><role><RoleCd value="007"/></role><rpCntInfo><cntAddress><delPoint>380 New York Street</delPoint><city>Redlands</city><adminArea>California</adminArea><postCode>92373-8100</postCode><eMailAdd>[email protected]</eMailAdd><country>us</country></cntAddress><cntPhone><voiceNum>909-793-2853</voiceNum><faxNum>909-793-5953</faxNum></cntPhone></rpCntInfo></citRespParty><resRefDate><refDate>20050401</refDate><refDateType><DateTypCd value="002"/></refDateType></resRefDate><date><createDate>20040307</createDate><pubDate>20050401</pubDate></date></idCitation><spatRpType><SpatRepTypCd Sync="TRUE" value="001"/></spatRpType><dataExt><geoEle><GeoBndBox esriExtentType="native"><westBL Sync="TRUE">-180</westBL><eastBL Sync="TRUE">180.000000</eastBL><northBL Sync="TRUE">83.623608</northBL><southBL Sync="TRUE">-90</southBL><exTypeCode Sync="TRUE">1</exTypeCode></GeoBndBox></geoEle><tempEle><TempExtent><exTemp><TM_Period><tmBegin>199312</tmBegin><tmEnd>20050210</tmEnd></TM_Period><TM_GeometricPrimitive><TM_Period><begin>199312</begin><end>20050210</end></TM_Period></TM_GeometricPrimitive></exTemp></TempExtent></tempEle></dataExt><geoBox esriExtentType="decdegrees"><westBL Sync="TRUE">-180</westBL><eastBL Sync="TRUE">180</eastBL><northBL Sync="TRUE">83.623608</northBL><southBL Sync="TRUE">-90</southBL><exTypeCode Sync="TRUE">1</exTypeCode></geoBox><dataExt><geoEle><GeoBndBox esriExtentType="search"><westBL Sync="TRUE">-180</westBL><eastBL Sync="TRUE">180</eastBL><northBL Sync="TRUE">83.623608</northBL><southBL Sync="TRUE">-90</southBL><exTypeCode Sync="TRUE">1</exTypeCode></GeoBndBox></geoEle></dataExt><idAbs>&lt;DIV STYLE="text-align:Left;font-family:Microsoft Sans Serif;font-style:normal;font-weight:normal;font-size: medium;color:#000000;"&gt;&lt;DIV&gt;&lt;DIV&gt;&lt;P STYLE="font-family:times new roman;font-size: xx-large;margin:7 0 7 0;"&gt;&lt;SPAN STYLE="font-size: medium;"&gt;World Countries 2005 represents detailed boundaries for the countries of the world as they existed in January 2005.&lt;/SPAN&gt;&lt;/P&gt;&lt;P&gt;&lt;SPAN /&gt;&lt;/P&gt;&lt;/DIV&gt;&lt;/DIV&gt;&lt;/DIV&gt;</idAbs><resConst><Consts><useLimit>See legal constraints.</useLimit></Consts><LegConsts><accessConsts><RestrictCd value="005"/></accessConsts><othConsts>The data are provided by multiple, third party data vendors under license to ESRI for inclusion on ESRI Data &amp; Maps for use with ESRI® software. Each data vendor has its own data licensing policies and may grant varying redistribution rights to end users. Please consult the redistribution rights below for this data set provided on ESRI Data &amp; Maps. As used herein, “Geodata” shall mean any digital data set consisting of geographic data coordinates and associated attributes.
165
+
166
+ The redistribution rights for this data set: Redistribution rights are granted by the data vendor for hard-copy renditions or static, electronic map images (e.g. .gif, .jpeg, etc.) that are plotted, printed, or publicly displayed with proper metadata and source/copyright attribution to the respective data vendor(s). Geodata is redistributable with a Value-Added Software Application developed by ESRI Business Partners on a royalty-free basis with proper metadata and source/copyright attribution to the respective data vendor(s). Geodata is redistributable without a Value-Added Software Application (i.e., adding the sample data to an existing, [non]commercial data set for redistribution) with proper metadata and source/copyright attribution to the respective data vendor(s).
167
+
168
+ The terms and conditions below apply to all the data sets provided on ESRI Data &amp; Maps.
169
+
170
+ Proprietary Rights and Copyright: Licensee acknowledges that the Data and Related Materials contain proprietary and confidential property of ESRI and its licensor(s). The Data and Related Materials are owned by ESRI and its licensor(s) and are protected by United States copyright laws and applicable international copyright treaties and/or conventions.
171
+
172
+ Limited Warranty and Disclaimer: ESRI warrants that the media upon which the Data and Related Materials are provided will be free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from the date of receipt.
173
+
174
+ THE DATA AND RELATED MATERIALS ARE EXCLUDED FROM THE LIMITED WARRANTY, AND THE LICENSEE EXPRESSLY ACKNOWLEDGES THAT THE DATA CONTAINS SOME NONCONFORMITIES, DEFECTS, OR ERRORS. ESRI DOES NOT WARRANT THAT THE DATA WILL MEET LICENSEE'S NEEDS OR EXPECTATIONS; THAT THE USE OF THE DATA WILL BE UNINTERRUPTED; OR THAT ALL NONCONFORMITIES, DEFECTS, OR ERRORS CAN OR WILL BE CORRECTED. ESRI IS NOT INVITING RELIANCE ON THIS DATA, AND THE LICENSEE SHOULD ALWAYS VERIFY ACTUAL DATA.
175
+
176
+ EXCEPT FOR THE LIMITED WARRANTY SET FORTH ABOVE, THE DATA AND RELATED MATERIALS CONTAINED THEREIN ARE PROVIDED "AS-IS," WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
177
+
178
+ Exclusive Remedy and Limitation of Liability: The entire liability of ESRI or its licensor(s) and Licensee's exclusive remedy shall be to terminate the Agreement upon Licensee returning the Data and Related Materials to ESRI with a copy of Licensee's invoice/receipt and ESRI returning the license fees paid to Licensee.
179
+
180
+ IN NO EVENT SHALL ESRI AND/OR ITS LICENSOR(S) BE LIABLE FOR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOST PROFITS, LOST SALES, OR BUSINESS EXPENDITURES, INVESTMENTS, OR COMMITMENTS IN CONNECTION WITH ANY BUSINESS; LOSS OF ANY GOODWILL; OR FOR ANY INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT OR USE OF THE DATA AND RELATED MATERIALS, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY, AND WHETHER OR NOT ESRI OR ITS LICENSOR(S) HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY EXCLUSIVE REMEDY.
181
+
182
+ Third Party Beneficiary: ESRI's licensor(s) has (have) authorized ESRI to (sub)distribute and (sub)license its (their) data as incorporated into the Data and Related Materials. As an intended third party beneficiary to this Agreement, the ESRI licensor(s) is (are) entitled to directly enforce, in its own name, the rights and obligations undertaken by the Licensee and to seek all legal and equitable remedies as are afforded to ESRI.
183
+
184
+ In the event that the data vendor(s) has (have) granted the end user permission to redistribute the Geodata, please use proper proprietary or copyright attribution for the various data vendor(s), and provide the associated metadata file(s) with the Geodata. In compliance with FGDC metadata standards, ESRI has attempted to practice proper metadata methodologies by providing any data source information, descriptions, and file names to assist in this effort.</othConsts><useConsts><RestrictCd value="008"/></useConsts></LegConsts></resConst><dataScale><equScale><rfDenom>15000000</rfDenom></equScale></dataScale><descKeys KeyTypCd="005"><keyTyp><KeyTypCd value="005"/></keyTyp><keyword>polygon, countries, international boundaries, coastlines, area, international codes, status, population, boundaries, society</keyword></descKeys><themeKeys><keyword>polygon, countries, international boundaries, coastlines, area, international codes, status, population, boundaries, society</keyword></themeKeys><descKeys KeyTypCd="002"><keyTyp><KeyTypCd value="002"/></keyTyp><keyword>World</keyword></descKeys><placeKeys><keyword>World</keyword></placeKeys><descKeys KeyTypCd="004"><keyTyp><KeyTypCd value="004"/></keyTyp><keyword>1996, 1998, 1993/1994, 2000, 1994, 2000, 2001, 2000, 1995-2002, 1999, 2002, 2002, 2002, 2002, 2003, 2000, 2004, 2005, 2004, 2004</keyword></descKeys><tempKeys><keyword>1996, 1998, 1993/1994, 2000, 1994, 2000, 2001, 2000, 1995-2002, 1999, 2002, 2002, 2002, 2002, 2003, 2000, 2004, 2005, 2004, 2004</keyword></tempKeys><idPoC Sync="TRUE"><rpIndName Sync="TRUE">Data Team</rpIndName><rpOrgName Sync="TRUE">ESRI</rpOrgName><rpPosName Sync="TRUE">Data Team</rpPosName><rpCntInfo><cntPhone><voiceNum Sync="TRUE">909-793-2853</voiceNum><faxNum Sync="TRUE">909-793-5953</faxNum></cntPhone><cntAddress><delPoint Sync="TRUE">380 New York Street</delPoint><city Sync="TRUE">Redlands</city><adminArea Sync="TRUE">California</adminArea><postCode Sync="TRUE">92373-8100</postCode><country Sync="TRUE">us</country><eMailAdd Sync="TRUE">[email protected]</eMailAdd></cntAddress></rpCntInfo><role><RoleCd Sync="TRUE" value="007"/></role></idPoC><searchKeys><keyword>polygon</keyword><keyword>countries</keyword><keyword>international boundaries</keyword><keyword>coastlines</keyword><keyword>area</keyword><keyword>international codes</keyword><keyword>status</keyword><keyword>population</keyword><keyword>detailed boundaries</keyword><keyword>society</keyword><keyword>World</keyword><keyword>1996</keyword><keyword>1998</keyword><keyword>1993/1994</keyword><keyword>2000</keyword><keyword>1994</keyword><keyword>2000</keyword><keyword>2001</keyword><keyword>2000</keyword><keyword>1995-2002</keyword><keyword>1999</keyword><keyword>2002</keyword><keyword>2002</keyword><keyword>2002</keyword><keyword>2002</keyword><keyword>2003</keyword><keyword>2000</keyword><keyword>2004</keyword><keyword>2005</keyword><keyword>2004</keyword><keyword>2004</keyword></searchKeys><idPurp>World Countries 2005 provides political boundaries for the world in 2005.</idPurp><idCredit>ESRI</idCredit><tpCat><TopicCatCd value="003"/></tpCat><tpCat><TopicCatCd value="016"/></tpCat></dataIdInfo><mdLang><languageCode Sync="TRUE" value="en"/></mdLang><mdStanName Sync="TRUE">ISO 19115 Geographic Information - Metadata</mdStanName><mdStanVer Sync="TRUE">DIS_ESRI1.0</mdStanVer><mdChar><CharSetCd Sync="TRUE" value="004"/></mdChar><mdHrLv><ScopeCd Sync="TRUE" value="005"/></mdHrLv><mdHrLvName Sync="TRUE">dataset</mdHrLvName><distInfo><distributor><distorTran><onLineSrc><orDesc>003</orDesc><linkage Sync="TRUE">file://\\BIGBOWL\C$\Other files\Zness\learning_gis_with_arcgis\lesson8_writing\exercise_data\world.gdb</linkage><protocol Sync="TRUE">Local Area Network</protocol></onLineSrc><transSize Sync="TRUE">0.855</transSize><offLineMed><medName><MedNameCd value="003"/></medName><medName><MedNameCd value="001"/></medName></offLineMed></distorTran><distorFormat><formatName Sync="TRUE">File Geodatabase Feature Class</formatName></distorFormat><distorCont><rpOrgName>ESRI; ESRI International Distributors</rpOrgName><rpCntInfo><cntAddress><delPoint>380 New York Street</delPoint><city>Redlands</city><adminArea>California</adminArea><postCode>92373-8100</postCode><country>us</country></cntAddress><cntPhone><voiceNum>800-447-9778</voiceNum></cntPhone></rpCntInfo><role><RoleCd value="005"/></role></distorCont><distorOrdPrc><ordInstr>ESRI Data &amp; Maps is available only as part of ESRI® software.
185
+
186
+ In the United States, contact the ESRI Telesales staff at 800-447-9778 for more information about our software and data.
187
+
188
+ Outside the United States, please direct all inquiries to your local ESRI International Distributor. This information can be found at http://gis.esri.com/intldist/contactint.cfm.</ordInstr><resFees>Software purchase price. ESRI Data &amp; Maps is available only as part of ESRI® software. To use this data requires software that supports SDC files.</resFees></distorOrdPrc></distributor></distInfo><refSysInfo><RefSystem><refSysID><identCode Sync="TRUE">GCS_WGS_1984</identCode></refSysID></RefSystem></refSysInfo><spatRepInfo><VectSpatRep><topLvl><TopoLevCd Sync="TRUE" value="001"/></topLvl><geometObjs Name="countries"><geoObjTyp><GeoObjTypCd Sync="TRUE" value="001"/></geoObjTyp><geoObjCnt Sync="TRUE">0</geoObjCnt></geometObjs></VectSpatRep></spatRepInfo><mdContact><rpIndName>Data Team</rpIndName><rpOrgName>ESRI</rpOrgName><rpPosName>Data Team</rpPosName><rpCntInfo><cntAddress><delPoint>380 New York Street</delPoint><city>Redlands</city><adminArea>California</adminArea><postCode>92373-8100</postCode><eMailAdd>[email protected]</eMailAdd><country>us</country></cntAddress><cntPhone><voiceNum>909-793-2853</voiceNum><faxNum>909-793-5953</faxNum></cntPhone></rpCntInfo><role><RoleCd value="010"/></role></mdContact><dqInfo><dataLineage><statement>ArcWorld Supplement (source 1 of 12)
189
+
190
+ ESRI, 1996, ArcWorld™ Supplement: ESRI, Redlands, California, USA.
191
+
192
+ Type of source media: CD–ROM
193
+ Source scale denominator: 3000000
194
+ Source contribution:
195
+ Attribute and geospatial data
196
+
197
+
198
+ Geographic and Global Issues (source 2 of 12)
199
+
200
+ United States Department of State, Bureau of Intelligence and Research, Winter 1993/1994, Geographic and Global Issues Quarterly: Geographic and Global Issues Quarterly Volume 3, Number 4, United States Department of State, Bureau of Intelligence and Research, Washington, DC, USA.
201
+
202
+ Type of source media: paper
203
+ Source contribution:
204
+ Attribute data
205
+
206
+
207
+ CIA Factbook (source 3 of 12)
208
+
209
+ United States Central Intelligence Agency, 20000101, 2003, 20041209, 20050210, The World Factbook 2000; 2003; 2004; 2005: The World Factbook 2000; 2003; 2004; 2005, United States Central Intelligence Agency, Washington, DC, USA.
210
+
211
+ Online links:
212
+ http://www.cia.gov/cia/publications/factbook/index.html
213
+ http://www.cia.gov/cia/publications/factbook/appendix/appendix-d.html
214
+ http://www.odci.gov/cia/publications/factbook/fields/2142.html
215
+
216
+ Other citation details:
217
+ The Factbook has been an annual publication, but selected data and maps are updated periodically online.
218
+
219
+ Type of source media: online
220
+ Source contribution:
221
+ Attribute data
222
+
223
+
224
+ NCGIA (source 4 of 12)
225
+
226
+ National Center for Geographic Information and Analysis, 199504, World Demography Project: National Center for Geographic Information and Analysis at University of California, Santa Barbara, Santa Barbara, California, USA.
227
+
228
+ Type of source media: paper
229
+ Source contribution:
230
+ Attribute data
231
+
232
+
233
+ ESFN FIPS 10-4 20000225 (source 5 of 12)
234
+
235
+ Executive Secretary for Foreign Names - US Board on Geographic Names, 20000225, COUNTRIES, DEPENDENCIES, AREAS OF SPECIAL SOVEREIGNTY, AND THEIR PRINCIPAL ADMINISTRATIVE DIVISIONS: FIPS 10-4 , National Imagery and Mapping Agency, Bethesda, Maryland, USA.
236
+
237
+ Source contribution:
238
+ Attribute data
239
+
240
+
241
+ ESFN FIPS 10-4 20010128 (source 6 of 12)
242
+
243
+ Executive Secretary for Foreign Names - US Board on Geographic Names, 20010128, COUNTRIES, DEPENDENCIES, AREAS OF SPECIAL SOVEREIGNTY, AND THEIR PRINCIPAL ADMINISTRATIVE DIVISIONS: FIPS 10-4 , National Imagery and Mapping Agency, Bethesda, Maryland, USA.
244
+
245
+ Source contribution:
246
+ Attribute data
247
+
248
+
249
+ TREATY OF JEDDAH, 2000 (source 7 of 12)
250
+
251
+ International Border Treaty between the Republic of Yemen and the Kingdom of Saudi Arabia, 20000612, THE TREATY OF JEDDAH, 2000: Yemen Gateway - "BAB AL-YEMEN", online.
252
+
253
+ Online links:
254
+ http://www.al-bab.com/yemen/pol/int5.htm
255
+
256
+ Type of source media: online
257
+ Source contribution:
258
+ Attribute and geospatial data
259
+
260
+
261
+ http://europa.eu.int (source 8 of 12)
262
+
263
+ Europa, Euro Essentials: Europa, online.
264
+
265
+ Online links:
266
+ http://europa.eu.int/comm/economy_finance/euro/participating_member_states_map_en.htm
267
+
268
+ Other citation details:
269
+ Europa is the portal site of the European Union (http://europa.eu.int/). It provides up-to-date coverage of European Union affairs and essential information on European integration.
270
+
271
+ Type of source media: online
272
+ Source contribution:
273
+ Attribute data
274
+
275
+
276
+ http://www.iso.org (source 9 of 12)
277
+
278
+ International Organization for Standardization, 19991001, 20020201, 20020520, 20021115, 2004, &lt;front page&gt;: International Organization for Standardization, online.
279
+
280
+ Online links:
281
+ http://www.iso.ch/iso/en/ISOOnline.frontpage
282
+ http://www.iso.ch/iso/en/prods-services/iso3166ma/03updates-on-iso-3166/nlv6e-tl.html
283
+ www.iso.org/iso/en/prods-services/iso3166ma/02iso3166-code/li….?
284
+
285
+ Other citation details:
286
+ ISO 3166-1 NEWSLETTER No. V-6 [20021115]
287
+
288
+ Type of source media: online
289
+ Source contribution:
290
+ Attribute data
291
+
292
+
293
+ http://news.bbc.co.uk (source 10 of 12)
294
+
295
+ BBC News, 20020314, Yugoslav partners sign historic deal: BBC News Online March 14, 2002, BBC News, online.
296
+
297
+ Online links:
298
+ http://news.bbc.co.uk/1/hi/world/europe/1872070.stm
299
+
300
+ Type of source media: online
301
+ Source contribution:
302
+ Attribute data
303
+
304
+
305
+ GMI (source 11 of 12)
306
+
307
+ Global Mapping International, Missions Database: Global Mapping International, Colorado Springs, Colorado, USA.
308
+
309
+ Online links:
310
+ http://www.gmi.org
311
+
312
+ Type of source media: CD–ROM
313
+ Source contribution:
314
+ Attribute data
315
+
316
+
317
+ http://www.un.org (source 12 of 12)
318
+
319
+ United Nations, 200405, United Nations Cartographic Section Technical Paper: List of Territories: United Nations Cartographic Section Technical Paper May 2004, United Nations, New York, New York, USA.
320
+
321
+ Online links:
322
+ http://www.un.org/Depts/Cartographic/english/geoname.pdf#search='United%20Nations%20Cartographic%20Section%20Technical%20Paper'
323
+
324
+ Type of source media: online
325
+ Source contribution:
326
+ Attribute data
327
+
328
+
329
+ Date: 20020212 (change 1 of 4)
330
+ The following steps were performed by ESRI for Data &amp; Maps 2002: Updated Saudi Arabia - Yemen border. Updated attributes for East Timor, Yugoslavia, Saudi Arabia, and Yemen. Recalculated attributes based on area. Created ArcGIS® layer file (.lyr) and ArcView GIS legend file (.avl). Copied projection file (.prj) and created spatial indices.
331
+
332
+ The following steps were performed by ESRI: Extracted the features from ESRI Data &amp; Maps 1999 data set–cntry98.shp. Updated political boundaries and attributes for 2000 for Macau, Hong Kong, and East Timor. Extended political boundaries into the Caspian Sea and removed the shoreline. Created ArcGIS® layer file (.lyr). Created ArcView GIS legend file (.avl). Created projection file (.prj). Created spatial indices.
333
+
334
+ Data sources used in this process:
335
+ ArcWorld Supplement
336
+ Geographic and Global Issues
337
+ CIA Factbook
338
+ World Demography Project
339
+ ESFN FIPS 10-4 20000225
340
+ ESFN FIPS 10-4 20010128
341
+ TREATY OF JEDDAH, 2000
342
+
343
+
344
+ Date: 20020920 (change 2 of 4)
345
+ The following steps were performed by ESRI: Updated fields to reflect change from Yugoslavia to Serbia and Montenegro. Updated fields for East Timor, Romania, and Gaza Strip. Updated currency information for the European Euro. Created ArcGIS® layer file (.lyr), projection file (.prj), and spatial indices. Converted the data set to SDC.
346
+
347
+ Data sources used in this process:
348
+ http://europa.eu.int
349
+ http://www.iso.org
350
+ http://news.bbc.co.uk
351
+
352
+
353
+ Date: 20040307 (change 3 of 4)
354
+ The following steps were performed by ESRI: Updated attribute values for East Timor, Serbia &amp; Montenegro, and Taiwan. Recreated country regions, absorbing the province of Taiwan into the country of China. Removed the Paracel and Spratly island groups.
355
+
356
+ Data sources used in this process:
357
+ http://www.iso.org
358
+ GMI
359
+ CIA Factbook
360
+
361
+
362
+ Date: 20050222 (change 4 of 4)
363
+ The following steps were performed by ESRI: Added attributes ISO_NUM, ISOSHRTNAM, UNSHRTNAM, LOCSHRTNAM, LOCLNGNAM, and STATUS. Removed attributes SOVEREIGN, CURR_TYPE, CURR_CODE, and LANDLOCKED. Updated attribute values for LONG_NAME. Reduced the attribute width for CNTRY_NAME.
364
+
365
+ Data sources used in this process:
366
+ CIA Factbook
367
+ http://www.iso.org
368
+ http://www.un.org </statement></dataLineage><dqScope><scpLvl><ScopeCd value="005"/></scpLvl></dqScope></dqInfo><mdFileID Sync="TRUE">{579C23D8-87EA-403C-87CD-670CE10E2710}</mdFileID></metadata>
14/replication_package/Replication/Data/GIS_LatinAmerica/LatinAmerica.shx ADDED
Binary file (268 Bytes). View file
 
14/replication_package/Replication/Data/LR_reform_existence.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fedc57ec1cf1bfb88f8777d498a1b5cf6f9284260a113ba1328543e301d62bc
3
+ size 68995
14/replication_package/Replication/Data/Prices/Consejo Salvadoreno del Cafe/PRECIOS PAGADOS A LOS CAFICULTORES DOLARES POR 46 KILOGRAMOS DE CAFe.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:038cd7b23398bed04de823764c1d81577cbed12860ec743377947d1bb1a335e6
3
+ size 3050
14/replication_package/Replication/Data/Prices/Consejo Salvadoreno del Cafe/precio pagado productor 30 abril 2017.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f86c51d547c01222b2db7e174be983af91142634445dd54388b533c796e89fe
3
+ size 228284