anonymous-submission-acl2025 commited on
Commit
53c2420
·
1 Parent(s): f0afb21
112/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a1fac465f75f706e3e2a4d5774f01a112051ae8ed5bc4885413f969cce2de0b
3
+ size 78876
112/replication_package/PIPS_Codebook.rtf ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {\rtf1\ansi\ansicpg1252\cocoartf2513
2
+ \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
3
+ {\colortbl;\red255\green255\blue255;}
4
+ {\*\expandedcolortbl;;}
5
+ {\*\listtable{\list\listtemplateid1\listhybrid{\listlevel\levelnfc23\levelnfcn23\leveljc0\leveljcn0\levelfollow0\levelstartat1\levelspace360\levelindent0{\*\levelmarker \{disc\}}{\leveltext\leveltemplateid1\'01\uc0\u8226 ;}{\levelnumbers;}\fi-360\li720\lin720 }{\listname ;}\listid1}}
6
+ {\*\listoverridetable{\listoverride\listid1\listoverridecount0\ls1}}
7
+ \margl1440\margr1440\vieww10800\viewh8400\viewkind0
8
+ \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
9
+
10
+ \f0\fs24 \cf0 CodeBook for \'93The PhD Pipeline Initiative Works\'94\
11
+ Ryan Brutger 12-2-2022\
12
+ \
13
+ The following provides the coding rules for the variables used in the analysis\
14
+ \
15
+ Enrolled: an indicator variable for whether a student had enrolled AND completed the PIPS program when they took the survey (1=yes, 0=no)\
16
+ \
17
+ Enroll_Sem: \
18
+ 0=includes those who did not receive spots in PIPS or who had not yet enrolled in PIPS\
19
+ 1=enrolled in spring 2021\
20
+ 2= enrolled fall 2021 but had not yet completed PIPS \
21
+ \
22
+ firstgen: 1= those who self identify as "first generation college student", 0=otherwise\
23
+ \
24
+ \pard\tx220\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\li720\fi-720\pardirnatural\partightenfactor0
25
+ \ls1\ilvl0\cf0 For the race and ethnicity variables, each is an indicator for whether the respondent self-identified\
26
+ with the race or ethnicity identified (respondents could choose more than one) The options were:\
27
+ \
28
+ {\listtext \uc0\u8226 }American Indian or Alaska Native\
29
+ {\listtext \uc0\u8226 }Asian or Asian American\
30
+ {\listtext \uc0\u8226 }Black or African American\
31
+ {\listtext \uc0\u8226 }Hispanic, Latino, Latina, LatinX\
32
+ {\listtext \uc0\u8226 }Middle Eastern or Northern African\
33
+ {\listtext \uc0\u8226 }Native Hawaiian or Other Pacific Islander\
34
+ {\listtext \uc0\u8226 }White\
35
+ {\listtext \uc0\u8226 }Another option (please specify)\
36
+ {\listtext \uc0\u8226 }Prefer not to say\
37
+ \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
38
+ \cf0 \
39
+ Dependent Variables:\
40
+ \
41
+ Phd_interest: 4=very likely, 3=somewhat likely, 2=somewhat unlikely, 1=very unlikely\
42
+ Prep_app: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all\
43
+ Prep_diversity: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all\
44
+ Prep_research: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all\
45
+ Prep_letters: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all\
46
+ \
47
+ The coding for Phd_interest2, Prep_app2, Prep_diversity2, Prep_research2, Prep_letters2 is based on the previously described measured, but it they are dichotomized. If the earlier measure was a 3 or 4, then the dichotomous measure=1, otherwise it equals 0\
48
+ }
112/replication_package/PIPS_ReadMe.rtf ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {\rtf1\ansi\ansicpg1252\cocoartf2513
2
+ \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
3
+ {\colortbl;\red255\green255\blue255;}
4
+ {\*\expandedcolortbl;;}
5
+ \margl1440\margr1440\vieww10800\viewh8400\viewkind0
6
+ \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
7
+
8
+ \f0\fs24 \cf0 ReadMe for \'93The PhD Pipeline Initiative Works\'94\
9
+ Ryan Brutger 12-2-2022\
10
+ \
11
+ The replication files include:\
12
+ \
13
+ 1. \'93PIPS_Replication_Code_12-1-2022.R\'94 is the R file necessary to run the analysis for the manuscript and supporting appendix.\
14
+ \
15
+ All of the analyses were carried out using R version 4.0.1 on a Macbook Pro with Intel Core i5 processor using MacOS Catalina V. 10.15.7\
16
+ \
17
+ 2. \'93PIPS_Replication_Data_12-2-2022.csv\'94 contains the data file for the analysis.\
18
+ \
19
+ 3. \'93PIP_Codebook\'94 includes the coding rules for the variables used in the analysis.}
112/replication_package/PIPS_Replication_Code_12-1-2022.R ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Replication Code for "The PhD Pipeline Initiative Works"
2
+ ## Ryan Brutger, Last modified: 12-1-2022
3
+
4
+ ## This R file contains the code necessary to replicate the analysis, including those in the main text and supplementary appendix.
5
+ ## All of the following analyses were carried out using R version 4.0.1 on a Macbook Pro with Intel Core i5 processor using MacOS Catalina V. 10.15.7
6
+
7
+
8
+ #load packages for analysis
9
+ library(foreign)
10
+ library(ggplot2)
11
+ library(stargazer)
12
+ library(xtable)
13
+
14
+ setwd("ENTER DIRECTORY") # set working directory (change to your directory)
15
+
16
+ rm(list = ls(all = TRUE))
17
+ pips <- read.csv("PIPS_Replication_Data.csv")
18
+
19
+ # The following provides the coding rules for the variables used in the analysis
20
+
21
+ # Enrolled -> an indicator variable for whether a student had enrolled AND completed the PIPS program when they took the survey (1=yes, 0=no)
22
+ # Enroll_Sem -> 0=includes those who did not receive spots in PIPS or who had not yet enrolled in PIPS, 1=enrolled in spring 2021, 2= enrolled fall 2021 but had not yet completed PIPS
23
+
24
+ # firstgen -> 1= those who self identify as "first generation college student", 0=otherwise
25
+ # For the race and ethnicty variables, each is an indicator for whether the respondent self-identified with the race or ethnicity (they could choose more than one)
26
+ # The options were: American Indian or Alaska Native; Asian or Asian American; Black or African American; Hispanic, Latino, Latina, LatinX;
27
+ # Middle Eastern or Northern African; Native Hawaiian or Other Pacific Islander; White; Another option (please specify); Prefer not to say
28
+
29
+ # Dependent Variables:
30
+ #Phd_interest: 4=very likely, 3=somewhat likely, 2=somewhat unlikely, 1=very unlikely
31
+ #Prep_app: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all
32
+ #Prep_diversity: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all
33
+ #Prep_research: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all
34
+ #Prep_letters: 4=very prepared, 3=somewhat prepared, 2=not very prepared, 1=not prepared at all
35
+
36
+ # For Phd_interest2, Prep_app2, Prep_diversity2, Prep_research2, Prep_letters2 the earlier measures are dichotomized
37
+ # If the earlier measure was a 3 or 4, then the dichotmout measure=1, otherwise it equals 0
38
+
39
+
40
+ # Response rate calculations reported on page 5
41
+ # There were 85 students in the lottery who could have taken the pre-PIPS survey
42
+ length(pips$Enrolled[pips$Enrolled==0]) #42
43
+ 42/85# 0.49
44
+
45
+ #At the time of this analysis 38 students had completed PIPS (two dropped during the semester)
46
+ # the Spring 2022 enrolled students were in-progress and had not completed PIPS yet
47
+ length(pips$Enrolled[pips$Enrolled==1]) #20 out of 28 students who had completed PIPS also completed the followup survey
48
+ 20/38 # 0.53
49
+
50
+ # Demographics reported on page 6
51
+ #First Generation
52
+ length(pips$firstgen[pips$firstgen==1 & is.na(pips$firstgen)==FALSE]) #38 first generation
53
+ length(pips$firstgen[pips$firstgen==0 & is.na(pips$firstgen)==FALSE]) #19 not first generation
54
+ 38/(19+38) # 67% first generation
55
+
56
+ # Race/Ethinicty
57
+ # 11 identify as multiple races/ethnicities, which were counted manually
58
+ sum(pips$hispanic) #25
59
+ sum(pips$white) #16
60
+ sum(pips$middleE) #8
61
+ sum(pips$black) #4
62
+ sum(pips$native) #1
63
+ sum(pips$islander) #0
64
+
65
+ #Gender (not reported in paper)
66
+ sum(pips$male) #22
67
+ sum(pips$female) #31
68
+ sum(pips$non.binary) #3
69
+
70
+ # Generate Table 1 of paper
71
+ phd.interest2 <- lm(PhD_interest2 ~ Enrolled, data = pips)
72
+ prep.app2 <- lm(Prep_app2 ~ Enrolled, data = pips)
73
+ prep.diversity2 <- lm(Prep_diversity2 ~ Enrolled, data = pips)
74
+ prep.research2 <- lm(Prep_research2 ~ Enrolled, data = pips)
75
+ prep.letters2 <- lm(Prep_letters2 ~ Enrolled, data = pips)
76
+
77
+ stargazer(phd.interest2 , prep.app2, prep.diversity2, prep.research2, prep.letters2, omit.stat = c("rsq", "adj.rsq", "ser", "f"),
78
+ column.labels = c("PhD Interest", "Prepared \n to Apply", "Prepared \n Personal Statement", "Prepared \n SOP", "Prepared \n LORs"))
79
+
80
+
81
+ #Generate Appendix Table 3 of section 4
82
+ phd.interest <- lm(PhD_interest ~ Enrolled, data = pips)
83
+ prep.app <- lm(Prep_app ~ Enrolled, data = pips)
84
+ prep.diversity <- lm(Prep_diversity ~ Enrolled, data = pips)
85
+ prep.research <- lm(Prep_research ~ Enrolled, data = pips)
86
+ prep.letters <- lm(Prep_letters ~ Enrolled, data = pips)
87
+
88
+ stargazer(phd.interest , prep.app, prep.diversity, prep.research, prep.letters, omit.stat = c("rsq", "adj.rsq", "ser", "f"),
89
+ column.labels = c("PhD Interest", "Prepared \n to Apply", "Prepared \n Personal Statement", "Prepared \n SOP", "Prepared \n LORs"))
90
+
91
+ # Generate Appendix Table 4 of section 5
92
+ phd.interest2b <- lm(PhD_interest2 ~ Enrolled + male + white + firstgen, data = pips)
93
+ prep.app2b <- lm(Prep_app2 ~ Enrolled + male + white + firstgen, data = pips)
94
+ prep.diversity2b <- lm(Prep_diversity2 ~ Enrolled + male + white + firstgen, data = pips)
95
+ prep.research2b <- lm(Prep_research2 ~ Enrolled + male + white + firstgen, data = pips)
96
+ prep.letters2b <- lm(Prep_letters2 ~ Enrolled + male + white + firstgen, data = pips)
97
+
98
+ stargazer(phd.interest2b , prep.app2b, prep.diversity2b, prep.research2b, prep.letters2b, omit.stat = c("rsq", "adj.rsq", "ser", "f"),
99
+ column.labels = c("PhD Interest", "Prepared \n to Apply", "Prepared \n Personal Statement", "Prepared \n SOP", "Prepared \n LORs"))
100
+
101
+ # Generate Appendix Table 5 of section 6:
102
+ # Same as Table 1, but limits sample to only those who eventually enrolled in PIPS, comparing those who completed to those who had not yet started
103
+ pipsEnrolled <- subset(pips[pips$Enroll_Sem>0, ])
104
+
105
+ phd.interest2c <- lm(PhD_interest2 ~ Enrolled, data = pipsEnrolled)
106
+ prep.app2c <- lm(Prep_app2 ~ Enrolled, data = pipsEnrolled)
107
+ prep.diversity2c <- lm(Prep_diversity2 ~ Enrolled, data = pipsEnrolled)
108
+ prep.research2c <- lm(Prep_research2 ~ Enrolled, data = pipsEnrolled)
109
+ prep.letters2c <- lm(Prep_letters2 ~ Enrolled, data = pipsEnrolled)
110
+
111
+ stargazer(phd.interest2c , prep.app2c, prep.diversity2c, prep.research2c, prep.letters2c, omit.stat = c("rsq", "adj.rsq", "ser", "f"),
112
+ column.labels = c("PhD Interest", "Prepared \n to Apply", "Prepared \n Personal Statement", "Prepared \n SOP", "Prepared \n LORs"))
113
+
112/replication_package/PIPS_Replication_Data_12-2-2022.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4bb6dada2ed24cd4043cbd1099c063c54acf5b581e631ba49169b38aeea26eb
3
+ size 4158
112/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec9ba494b1c224c79726a1001cfd35d0e06041db4cff5061dd59f91a8dbc7522
3
+ size 7