anonymous-submission-acl2025 commited on
Commit
3403298
·
1 Parent(s): 39a18a8
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 39/paper.pdf +3 -0
  2. 39/replication_package/Do/Appendix.do +38 -0
  3. 39/replication_package/Do/Figure1.do +40 -0
  4. 39/replication_package/Do/Figure2.do +142 -0
  5. 39/replication_package/Do/FigureA1.do +166 -0
  6. 39/replication_package/Do/FigureA10.do +603 -0
  7. 39/replication_package/Do/FigureA11.do +527 -0
  8. 39/replication_package/Do/FigureA12.do +53 -0
  9. 39/replication_package/Do/FigureA13.do +954 -0
  10. 39/replication_package/Do/FigureA2.do +133 -0
  11. 39/replication_package/Do/FigureA3.do +87 -0
  12. 39/replication_package/Do/FigureA4.do +69 -0
  13. 39/replication_package/Do/FigureA5.do +120 -0
  14. 39/replication_package/Do/FigureA6.do +87 -0
  15. 39/replication_package/Do/FigureA7.do +437 -0
  16. 39/replication_package/Do/FigureA8.do +389 -0
  17. 39/replication_package/Do/FigureA9.do +600 -0
  18. 39/replication_package/Do/Main.do +22 -0
  19. 39/replication_package/Do/Table1.do +29 -0
  20. 39/replication_package/Do/Table2.do +56 -0
  21. 39/replication_package/Do/Table3.do +33 -0
  22. 39/replication_package/Do/Table4.do +25 -0
  23. 39/replication_package/Do/Table5.do +23 -0
  24. 39/replication_package/Do/Table6.do +93 -0
  25. 39/replication_package/Do/Table7.do +1170 -0
  26. 39/replication_package/Do/TableA1.do +9 -0
  27. 39/replication_package/Do/TableA10.do +21 -0
  28. 39/replication_package/Do/TableA11.do +41 -0
  29. 39/replication_package/Do/TableA12.do +96 -0
  30. 39/replication_package/Do/TableA13.do +18 -0
  31. 39/replication_package/Do/TableA2.do +33 -0
  32. 39/replication_package/Do/TableA3.do +78 -0
  33. 39/replication_package/Do/TableA4.do +27 -0
  34. 39/replication_package/Do/TableA5.do +22 -0
  35. 39/replication_package/Do/TableA6.do +103 -0
  36. 39/replication_package/Do/TableA7.do +11 -0
  37. 39/replication_package/Do/TableA8.do +86 -0
  38. 39/replication_package/Do/TableA9.do +17 -0
  39. 39/replication_package/Do/preparing_abrahamsun.do +2845 -0
  40. 39/replication_package/Do/preparing_abrahamsun_es.do +3168 -0
  41. 39/replication_package/Readme.pdf +3 -0
  42. 39/replication_package/data/allcandidates_rallies.dta +3 -0
  43. 39/replication_package/data/allcandidates_words.dta +3 -0
  44. 39/replication_package/data/blm.dta +3 -0
  45. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.cpg +1 -0
  46. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.dbf +3 -0
  47. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.prj +1 -0
  48. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp +3 -0
  49. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp.ea.iso.xml +404 -0
  50. 39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp.iso.xml +539 -0
39/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aafb2d39f391bab3089a8e02d16c4661a689243939626b446abbc6d8b0c0d355
3
+ size 548612
39/replication_package/Do/Appendix.do ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **********************************************************************
2
+ *** Replication File for "Inflammatory Political Campaigns and
3
+ *** Racial Bias in Policing" by Pauline Grosjean, Federico Masera, and
4
+ *** Hasin Yousaf. For Publication at The Quarterly Journal of Economics
5
+ **********************************************************************
6
+
7
+ *** Define your own course directory.
8
+ set more off
9
+ cd "SET YOUR OWN PATH"
10
+
11
+ do "Do\TableA1.do"
12
+ do "Do\TableA2.do"
13
+ do "Do\TableA3.do"
14
+ do "Do\TableA4.do"
15
+ do "Do\TableA5.do"
16
+ do "Do\TableA6.do"
17
+ do "Do\TableA7.do"
18
+ do "Do\TableA8.do"
19
+ do "Do\TableA9.do"
20
+ do "Do\TableA10.do"
21
+ do "Do\TableA11.do"
22
+ do "Do\TableA12.do"
23
+ do "Do\TableA13.do"
24
+
25
+
26
+ do "Do\FigureA1.do"
27
+ do "Do\FigureA2.do"
28
+ do "Do\FigureA3.do"
29
+ do "Do\FigureA4.do"
30
+ do "Do\FigureA5.do"
31
+ do "Do\FigureA6.do"
32
+ do "Do\FigureA7.do"
33
+ do "Do\FigureA8.do"
34
+ do "Do\FigureA9.do"
35
+ do "Do\FigureA10.do"
36
+ do "Do\FigureA11.do"
37
+ do "Do\FigureA12.do"
38
+ do "Do\FigureA13.do"
39/replication_package/Do/Figure1.do ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE 1
4
+ *** Counties with Campaign Events and Police Stops
5
+ **********************************************************************
6
+
7
+ shp2dta using "Data\county shapefile\cb_2016_us_county_500k", replace data("Data\county shapefile\county_data") coor("Data\county shapefile\county_coordinates")
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ collapse trumpcounties, by(county_fips)
11
+ g stopsdata=1
12
+
13
+ merge n:1 county_fips using "Data\allcandidates_rallies.dta"
14
+ drop _merge
15
+ replace stopsdata=0 if stopsdata==.
16
+ replace trumpcounties=0 if trumpcounties==.
17
+ g stopsNtrump=(stopsdata==1 & trumpcounties==1)
18
+ g stopsNONtrump=(stopsdata==1 & trumpcounties==0)
19
+ g category=0 if stopsdata==0
20
+ replace category=1 if trumpcounties==1
21
+ replace category=2 if stopsNONtrump==1
22
+ g county_fips2=string(county_fips)
23
+ replace county_fips2="0"+county_fips2 if length(county_fips2)==4
24
+ drop if county_fips>72000
25
+ label define category 0 "Not In Sample" 1 "Stops Data with Trump Rally" 2 "Stops Data without Trump Rally", modify
26
+
27
+ g GEOID=string(county_fips)
28
+ replace GEOID="0"+GEOID if length(GEOID)==4
29
+ drop if county_fips>72000
30
+ merge 1:1 GEOID using "Data\county shapefile\county_data"
31
+ replace category=0 if _merge==2
32
+ *keep if _merge==3
33
+ drop if STATEFP=="02" | STATEFP=="15" | STATEFP=="72" | STATEFP=="60" | STATEFP=="66" | STATEFP=="69" | STATEFP=="78"
34
+ keep county_fips category GEOID GEOID2 _ID
35
+
36
+ label values category category
37
+ spmap category using "Data\county shapefile\county_coordinates", id(_ID) ///
38
+ clmethod(unique) fcolor(Greys) ocolor(Black) ///
39
+ legstyle(3) legend(ring(1) position(3)) ///
40
+ plotregion(margin(vlarge)) legenda(on) legtitle("Legend")
39/replication_package/Do/Figure2.do ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE 2
4
+ *** Impact of Trump Rallies on the Probability of a Black Stop: Event-study Results
5
+ **********************************************************************
6
+
7
+ global start = -105
8
+ global end = 105
9
+ global bin_l = 15
10
+
11
+ use "Data\stoplevel_data.dta", clear
12
+
13
+ g n_stops = 1
14
+ foreach var of varlist black hispanic white api {
15
+ replace `var' = `var'/100
16
+ }
17
+
18
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
19
+
20
+ g black_ps = 100*black / n_stops
21
+ g hispanic_ps = 100*hispanic / n_stops
22
+ g white_ps = 100*white / n_stops
23
+ g asian_ps = 100*api / n_stops
24
+ g ln_stops = ln(n_stops)
25
+
26
+ g TRUMP_0 = 0
27
+ forval ii = 1/9 {
28
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
29
+ }
30
+
31
+ forval ii = 1($bin_l)$end{
32
+ local jj = `ii' + $bin_l - 1
33
+ g TRUMP_POST_`ii'_`jj' = 0
34
+ forval ee = 1/9 {
35
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
36
+ }
37
+ }
38
+
39
+ g TRUMP_POST_M$end = 0
40
+ forval ii = 1/9 {
41
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
42
+ }
43
+
44
+ forval ii = $start($bin_l)0 {
45
+ if `ii' < -$bin_l {
46
+ local jj = abs(`ii')
47
+ local zz = `jj' - $bin_l + 1
48
+ g TRUMP_PRE_`jj'_`zz' = 0
49
+ forval ee = 1/9 {
50
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
51
+ }
52
+ }
53
+ }
54
+
55
+ local jj = abs($start)
56
+ g TRUMP_PRE_M`jj' = 0
57
+ forval ii = 1/9 {
58
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
59
+ }
60
+
61
+ reghdfe black_ps 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
62
+
63
+ local temp = 1/$bin_l
64
+ local bin_neg = abs($start * `temp')
65
+ local bin_pos = $end * `temp'
66
+ local range = round(`bin_neg' + `bin_pos' + 3)
67
+
68
+ mat treat = J(`range',4,1)
69
+
70
+ local Nrange = `range' - 2
71
+
72
+ forval pos = 1/`Nrange' {
73
+ local lag = $start + $bin_l*`pos' - $bin_l
74
+ if `lag' > 0 {
75
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
76
+ }
77
+
78
+ local num = abs(`lag')
79
+
80
+ if `lag' == 0 {
81
+ mat treat[`pos',1] = 0
82
+ mat treat[`pos',2] = _b[1.TRUMP_0]
83
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
84
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
85
+ }
86
+ else if `lag' < -$bin_l {
87
+ local num2 = `num' - $bin_l + 1
88
+ local num1 = - `num'
89
+ mat treat[`pos',1] = `num1'
90
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
91
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
92
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
93
+ }
94
+ else if `lag' == -$bin_l {
95
+ mat treat[`pos',1] = -$bin_l
96
+ mat treat[`pos',2] = 0
97
+ mat treat[`pos',3] = 0
98
+ mat treat[`pos',4] = 0
99
+ }
100
+ else {
101
+ di "**"
102
+ di `lag'
103
+ di `pos'
104
+ local num2 = `num' + $bin_l - 1
105
+ mat treat[`pos',1] = `num2'
106
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
107
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
108
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
109
+ }
110
+ }
111
+ mat treat[`range'-1,1] = $start - $bin_l - 1
112
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
113
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
114
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
115
+
116
+ mat treat[`range',1] = $end + $bin_l + 1
117
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
118
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
119
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
120
+
121
+ g yy = treat[_n,1] in 1/`range'
122
+ g eff = treat[_n,2] in 1/`range'
123
+ g eff_5 = treat[_n,3] in 1/`range'
124
+ g eff_95 = treat[_n,4] in 1/`range'
125
+ sort yy
126
+
127
+ duplicates drop yy, force
128
+ keep eff eff_5 eff_95 yy
129
+
130
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-2(0.5)2) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Black Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
131
+ graph export "Results\Figure2.pdf", as(pdf) name("Graph") replace
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
39/replication_package/Do/FigureA1.do ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ use "Data\allcandidates_words.dta", clear
2
+
3
+ egen race2=rowtotal(racial race )
4
+ egen Race=rowtotal(race2 black african)
5
+
6
+ egen Crime2=rowtotal(crime crimin)
7
+ egen Crime=rowtotal(Crime2 drug rape)
8
+ egen Crime_strict=rowtotal(Crime2 rape)
9
+ gen Drug = drug
10
+
11
+
12
+ egen Terrorism =rowtotal(afghanistan iraq isi isis islam jihad syria syrian terror terrorist )
13
+
14
+ egen Business=rowtotal(busi businessman businessmen businesspeopl job tax manufactur manufacturing)
15
+
16
+ egen Corruption =rowtotal(rig cnn swamp media corrupt washington)
17
+
18
+ egen Trade =rowtotal(trade china nafta )
19
+
20
+ egen Mexico =rowtotal(mexican mexico )
21
+
22
+ egen OtherRace =rowtotal(gun prison riot thug urban )
23
+
24
+ egen Migration =rowtotal(migration migrat immigr migrat )
25
+
26
+ egen Police =rowtotal( polic policemen police )
27
+
28
+
29
+
30
+ egen Clinton = rowtotal (hilari hillari clinton email lock)
31
+
32
+ egen Implicit = rowtotal (crime crimin drug rape gun prison riot thug urban)
33
+ egen Allreferences=rowtotal(Implicit Race )
34
+
35
+ bysort candidate: su Allreferences Implicit Race Clinton Trade Terrorism Business Corruption
36
+
37
+
38
+ preserve
39
+ keep if candidate =="trump"
40
+ pwcorr Mexi Implicit
41
+ su Implicit if Mexic>0
42
+ su Implicit if Mexic==0
43
+ gen D_Mexico=(Mexic>0)
44
+ gen D_Implicit=(Implicit>0)
45
+
46
+ restore
47
+
48
+
49
+ foreach var of varlist Allreferences Implicit race2 Race Crime2 Crime Crime_strict Drug Terrorism Business Corruption Trade Mexico OtherRace Migration Police {
50
+ gen p`var'=(`var'/tot_words)*100
51
+ }
52
+
53
+ ren democrat democrat_trumpsp
54
+
55
+ gen democrat=.
56
+ replace democrat=0 if candidate == "mccain"|candidate == "romney"|candidate == "cruz" |candidate == "trump"
57
+ replace democrat=1 if candidate == "clinton"
58
+
59
+
60
+ gen pres_candidate_plot = .
61
+ replace pres_candidate_plot = 5 if candidate == "trump"
62
+ replace pres_candidate_plot = 4 if candidate == "cruz"
63
+ replace pres_candidate_plot = 3 if candidate == "clinton"
64
+ replace pres_candidate_plot = 2 if candidate == "romney"
65
+ replace pres_candidate_plot = 1 if candidate == "mccain"
66
+
67
+ label define pres_candidates 5 "Donald Trump (2016)" 4 "Ted Cruz (2016)" 3 "Hillary Clinton (2016)" 2 "Mitt Romney (2012)" 1 "John McCain (2008)"
68
+
69
+ cap drop coef* se*
70
+ cap drop u_coef* l_coef*
71
+
72
+ foreach x of varlist Allreferences Implicit race2 Race Crime2 Crime Crime_strict Drug Terrorism Business Corruption Trade Mexico OtherRace Migration Police {
73
+
74
+ bysort candidate: egen m`x'=mean(`x')
75
+ bysort candidate: egen sd`x'=sd(`x')
76
+
77
+ gen coef`x'=.
78
+ gen se`x'=.
79
+
80
+ bysort candidate: replace coef`x'=m`x'
81
+ }
82
+
83
+ foreach x of varlist Allreferences Implicit race2 Race Crime2 Crime Crime_strict Drug Terrorism Business Corruption Trade Mexico OtherRace Migration Police {
84
+ replace se`x'=(1.960*sd`x')/13.78 if candidate=="trump"
85
+ replace se`x'=(1.960*sd`x')/2.45 if candidate=="cruz"
86
+ replace se`x'=(1.960*sd`x')/13.93 if candidate=="clinton"
87
+ replace se`x'=(1.960*sd`x')/10.05 if candidate=="romney"
88
+ replace se`x'=(1.960*sd`x')/13.229 if candidate=="mccain"
89
+ }
90
+
91
+ collapse (mean) coef* democrat se*, by(pres_candidate_plot candidate)
92
+
93
+ foreach x in Allreferences Implicit race2 Race Crime2 Crime Crime_strict Drug Terrorism Business Corruption Trade Mexico OtherRace Migration Police {
94
+ *foreach x of varlist addict-weapon race2 race3 Race Crime Mexico Migration Crime2{
95
+ bysort candidate: gen u_coef`x' = coef`x' + se`x'
96
+ bysort candidate: gen l_coef`x' = coef`x' - se`x'
97
+ }
98
+
99
+ label values pres_candidate_plot pres_candidates
100
+
101
+ * Do plot
102
+ foreach x in Allreferences Implicit Race Crime {
103
+ *foreach x of varlist addict-weapon race2 race3 Race Crime Mexico Migration Crime2{
104
+
105
+ twoway (bar coef`x' pres_candidate_plot if democrat == 0, bcolor(black) ///
106
+ barwidth(0.9) horizontal) (bar coef`x' pres_candidate_plot if democrat == 1, ///
107
+ lcolor(black) fcolor(white) lwidth(medthick) barwidth(0.9) horizontal) (rcap l_coef`x' u_coef`x' ///
108
+ pres_candidate_plot, horizontal lcolor(black)) , xlabel(0(3)12) ylabel(1(1)5, ///
109
+ angle(horizontal) valuelabel labsize(*.8)) ytitle("") legend(off) ///
110
+ title("Mentions of words: `x'", size(medium) color(black)) ///
111
+ graphregion(fcolor(white) lcolor(white))
112
+
113
+ graph save Results/`x'_words.gph, replace
114
+ graph export Results/`x'_words.eps, replace
115
+
116
+ }
117
+
118
+ twoway (bar coefAllreferences pres_candidate_plot if democrat == 0, bcolor(black) ///
119
+ barwidth(0.9) horizontal) (bar coefAllreferences pres_candidate_plot if democrat == 1, ///
120
+ lcolor(black) fcolor(white) lwidth(medthick) barwidth(0.9) horizontal) (rcap l_coefAllreferences u_coefAllreferences ///
121
+ pres_candidate_plot, horizontal lcolor(black)) , xlabel(0(3)12) ylabel(1(1)5, ///
122
+ angle(horizontal) valuelabel labsize(*.8)) ytitle("") legend(off) ///
123
+ title("Explicit and Implicit Racial Mentions", size(medium) color(black)) ///
124
+ graphregion(fcolor(white) lcolor(white))
125
+
126
+ graph save Results/Allreferences_words.gph, replace
127
+ graph export Results/Allreferences_words.eps, replace
128
+
129
+ twoway (bar coefImplicit pres_candidate_plot if democrat == 0, bcolor(black) ///
130
+ barwidth(0.9) horizontal) (bar coefImplicit pres_candidate_plot if democrat == 1, ///
131
+ lcolor(black) fcolor(white) lwidth(medthick) barwidth(0.9) horizontal) (rcap l_coefImplicit u_coefImplicit ///
132
+ pres_candidate_plot, horizontal lcolor(black)) , xlabel(0(3)12) ylabel(1(1)5, ///
133
+ angle(horizontal) valuelabel labsize(*.8)) ytitle("") legend(off) ///
134
+ title("Implicit Racial Mentions", size(medium) color(black)) ///
135
+ graphregion(fcolor(white) lcolor(white))
136
+
137
+ graph save Results/Implicit_words.gph, replace
138
+ graph export Results/Implicit_words.eps, replace
139
+
140
+ twoway (bar coefRace pres_candidate_plot if democrat == 0, bcolor(black) ///
141
+ barwidth(0.9) horizontal) (bar coefRace pres_candidate_plot if democrat == 1, ///
142
+ lcolor(black) fcolor(white) lwidth(medthick) barwidth(0.9) horizontal) (rcap l_coefRace u_coefRace ///
143
+ pres_candidate_plot, horizontal lcolor(black)) , xlabel(0(3)12) ylabel(1(1)5, ///
144
+ angle(horizontal) valuelabel labsize(*.8)) ytitle("") legend(off) ///
145
+ title("Explicit Racial Mentions", size(medium) color(black)) ///
146
+ graphregion(fcolor(white) lcolor(white))
147
+
148
+ graph save Results/Race_words.gph, replace
149
+ graph export Results/Race_words.eps, replace
150
+
151
+ twoway (bar coefCrime_strict pres_candidate_plot if democrat == 0, bcolor(black) ///
152
+ barwidth(0.9) horizontal) (bar coefCrime_strict pres_candidate_plot if democrat == 1, ///
153
+ lcolor(black) fcolor(white) lwidth(medthick) barwidth(0.9) horizontal) (rcap l_coefCrime_strict u_coefCrime_strict ///
154
+ pres_candidate_plot, horizontal lcolor(black)) , xlabel(0(3)12) ylabel(1(1)5, ///
155
+ angle(horizontal) valuelabel labsize(*.8)) ytitle("") legend(off) ///
156
+ title("Crime", size(medium) color(black)) ///
157
+ graphregion(fcolor(white) lcolor(white))
158
+
159
+ graph save Results/Crime_strict_words.gph, replace
160
+ graph export Results/Crime_strict_words.eps, replace
161
+
162
+ graph combine Results/Allreferences_words.gph Results/Race_words.gph Results/Implicit_words.gph Results/Crime_strict_words.gph , scheme(s1mono)
163
+
164
+ graph export Results/FigureA1.pdf, replace
165
+ graph export Results/FigureA1.png, replace
166
+
39/replication_package/Do/FigureA10.do ADDED
@@ -0,0 +1,603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A10
4
+ *** Impact of Trump Rallies on the Number of Stops: Event-study Results
5
+ *** Without County-specific Linear Trends
6
+ **********************************************************************
7
+
8
+ global start = -105
9
+ global end = 105
10
+ global bin_l = 15
11
+ global var = "ihs_black"
12
+ global trend = 0
13
+
14
+ use "Data\stoplevel_data.dta", clear
15
+
16
+ g n_stops = 1
17
+ foreach var of varlist black hispanic white api {
18
+ replace `var' = `var'/100
19
+ }
20
+
21
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
22
+
23
+ g black_ps = 100*black / n_stops
24
+ g hispanic_ps = 100*hispanic / n_stops
25
+ g white_ps = 100*white / n_stops
26
+ g asian_ps = 100*api / n_stops
27
+ g ln_stops = ln(n_stops)
28
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
29
+ g white_nbps = 100*white / (n_stops-black)
30
+ g asian_nbps = 100*asian / (n_stops-black)
31
+
32
+ g ihs_black= log(black +(black +1)^(1/2))
33
+ g ln_black = ln(black +1)
34
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
35
+ g ln_hispanic = ln(hispanic+1)
36
+ g ihs_white = log(white+(white+1)^(1/2))
37
+ g ln_white = ln(white+1)
38
+ g ihs_asian = log(api+(api+1)^(1/2))
39
+ g ln_asian = ln(api+1)
40
+
41
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
42
+
43
+ g TRUMP_0 = 0
44
+ forval ii = 1/9 {
45
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
46
+ }
47
+
48
+ forval ii = 1($bin_l)$end{
49
+ local jj = `ii' + $bin_l - 1
50
+ g TRUMP_POST_`ii'_`jj' = 0
51
+ forval ee = 1/9 {
52
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
53
+ }
54
+ }
55
+ g TRUMP_POST_M$end = 0
56
+ forval ii = 1/9 {
57
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
58
+ }
59
+ *
60
+
61
+ forval ii = $start($bin_l)0 {
62
+ if `ii' < -$bin_l {
63
+ local jj = abs(`ii')
64
+ local zz = `jj' - $bin_l + 1
65
+ g TRUMP_PRE_`jj'_`zz' = 0
66
+ forval ee = 1/9 {
67
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
68
+ }
69
+ }
70
+ }
71
+ *
72
+ local jj = abs($start)
73
+ g TRUMP_PRE_M`jj' = 0
74
+ forval ii = 1/9 {
75
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
76
+ }
77
+
78
+ if $trend==1 {
79
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
80
+ }
81
+ else {
82
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
83
+ }
84
+ local temp = 1/$bin_l
85
+ local bin_neg = abs($start * `temp')
86
+ local bin_pos = $end * `temp'
87
+ local range = round(`bin_neg' + `bin_pos' + 3)
88
+
89
+ mat treat = J(`range',4,1)
90
+
91
+ local Nrange = `range' - 2
92
+
93
+ forval pos = 1/`Nrange' {
94
+ local lag = $start + $bin_l*`pos' - $bin_l
95
+ if `lag' > 0 {
96
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
97
+ }
98
+
99
+ local num = abs(`lag')
100
+
101
+ if `lag' == 0 {
102
+ mat treat[`pos',1] = 0
103
+ mat treat[`pos',2] = _b[1.TRUMP_0]
104
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
105
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
106
+ }
107
+ else if `lag' < -$bin_l {
108
+ local num2 = `num' - $bin_l + 1
109
+ local num1 = - `num'
110
+ mat treat[`pos',1] = `num1'
111
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
112
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
113
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
114
+ }
115
+ else if `lag' == -$bin_l {
116
+ mat treat[`pos',1] = -$bin_l
117
+ mat treat[`pos',2] = 0
118
+ mat treat[`pos',3] = 0
119
+ mat treat[`pos',4] = 0
120
+ }
121
+ else {
122
+ di "**"
123
+ di `lag'
124
+ di `pos'
125
+ local num2 = `num' + $bin_l - 1
126
+ mat treat[`pos',1] = `num2'
127
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
128
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
129
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
130
+ }
131
+ }
132
+ mat treat[`range'-1,1] = $start - $bin_l - 1
133
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
134
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
135
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
136
+
137
+ mat treat[`range',1] = $end + $bin_l + 1
138
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
139
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
140
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
141
+
142
+ g yy = treat[_n,1] in 1/`range'
143
+ g eff = treat[_n,2] in 1/`range'
144
+ g eff_5 = treat[_n,3] in 1/`range'
145
+ g eff_95 = treat[_n,4] in 1/`range'
146
+ sort yy
147
+
148
+ *keep if yy>`start'-1 & yy<`end'+1
149
+ duplicates drop yy, force
150
+ keep eff eff_5 eff_95 yy
151
+
152
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Black Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
153
+ graph export "Results\FigureA10A.pdf", as(pdf) replace
154
+
155
+ ******************************************************************************************************************************************************************
156
+
157
+ global start = -105
158
+ global end = 105
159
+ global bin_l = 15
160
+ global var = "ihs_hispanic"
161
+ global trend = 0
162
+
163
+ use "Data\stoplevel_data.dta", clear
164
+
165
+ g n_stops = 1
166
+ foreach var of varlist black hispanic white api {
167
+ replace `var' = `var'/100
168
+ }
169
+
170
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
171
+ g black_ps = 100*black / n_stops
172
+ g hispanic_ps = 100*hispanic / n_stops
173
+ g white_ps = 100*white / n_stops
174
+ g asian_ps = 100*api / n_stops
175
+ g ln_stops = ln(n_stops)
176
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
177
+ g white_nbps = 100*white / (n_stops-black)
178
+ g asian_nbps = 100*asian / (n_stops-black)
179
+
180
+ g ihs_black= log(black +(black +1)^(1/2))
181
+ g ln_black = ln(black +1)
182
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
183
+ g ln_hispanic = ln(hispanic+1)
184
+ g ihs_white = log(white+(white+1)^(1/2))
185
+ g ln_white = ln(white+1)
186
+ g ihs_asian = log(api+(api+1)^(1/2))
187
+ g ln_asian = ln(api+1)
188
+
189
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
190
+
191
+
192
+ g TRUMP_0 = 0
193
+ forval ii = 1/9 {
194
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
195
+ }
196
+
197
+ forval ii = 1($bin_l)$end{
198
+ local jj = `ii' + $bin_l - 1
199
+ g TRUMP_POST_`ii'_`jj' = 0
200
+ forval ee = 1/9 {
201
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
202
+ }
203
+ }
204
+ g TRUMP_POST_M$end = 0
205
+ forval ii = 1/9 {
206
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
207
+ }
208
+ *
209
+
210
+ forval ii = $start($bin_l)0 {
211
+ if `ii' < -$bin_l {
212
+ local jj = abs(`ii')
213
+ local zz = `jj' - $bin_l + 1
214
+ g TRUMP_PRE_`jj'_`zz' = 0
215
+ forval ee = 1/9 {
216
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
217
+ }
218
+ }
219
+ }
220
+ *
221
+ local jj = abs($start)
222
+ g TRUMP_PRE_M`jj' = 0
223
+ forval ii = 1/9 {
224
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
225
+ }
226
+
227
+ if $trend==1 {
228
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
229
+ }
230
+ else {
231
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
232
+ }
233
+ local temp = 1/$bin_l
234
+ local bin_neg = abs($start * `temp')
235
+ local bin_pos = $end * `temp'
236
+ local range = round(`bin_neg' + `bin_pos' + 3)
237
+
238
+ mat treat = J(`range',4,1)
239
+
240
+ local Nrange = `range' - 2
241
+
242
+ forval pos = 1/`Nrange' {
243
+ local lag = $start + $bin_l*`pos' - $bin_l
244
+ if `lag' > 0 {
245
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
246
+ }
247
+
248
+ local num = abs(`lag')
249
+
250
+ if `lag' == 0 {
251
+ mat treat[`pos',1] = 0
252
+ mat treat[`pos',2] = _b[1.TRUMP_0]
253
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
254
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
255
+ }
256
+ else if `lag' < -$bin_l {
257
+ local num2 = `num' - $bin_l + 1
258
+ local num1 = - `num'
259
+ mat treat[`pos',1] = `num1'
260
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
261
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
262
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
263
+ }
264
+ else if `lag' == -$bin_l {
265
+ mat treat[`pos',1] = -$bin_l
266
+ mat treat[`pos',2] = 0
267
+ mat treat[`pos',3] = 0
268
+ mat treat[`pos',4] = 0
269
+ }
270
+ else {
271
+ di "**"
272
+ di `lag'
273
+ di `pos'
274
+ local num2 = `num' + $bin_l - 1
275
+ mat treat[`pos',1] = `num2'
276
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
277
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
278
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
279
+ }
280
+ }
281
+ mat treat[`range'-1,1] = $start - $bin_l - 1
282
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
283
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
284
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
285
+
286
+ mat treat[`range',1] = $end + $bin_l + 1
287
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
288
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
289
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
290
+
291
+ g yy = treat[_n,1] in 1/`range'
292
+ g eff = treat[_n,2] in 1/`range'
293
+ g eff_5 = treat[_n,3] in 1/`range'
294
+ g eff_95 = treat[_n,4] in 1/`range'
295
+ sort yy
296
+
297
+ *keep if yy>`start'-1 & yy<`end'+1
298
+ duplicates drop yy, force
299
+ keep eff eff_5 eff_95 yy
300
+
301
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanic Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
302
+ graph export "Results\FigureA10B.pdf", as(pdf) replace
303
+
304
+ ******************************************************************************************************************************************************************
305
+
306
+ global start = -105
307
+ global end = 105
308
+ global bin_l = 15
309
+ global var = "ihs_white"
310
+ global trend = 0
311
+
312
+ use "Data\stoplevel_data.dta", clear
313
+
314
+ g n_stops = 1
315
+ foreach var of varlist black hispanic white api {
316
+ replace `var' = `var'/100
317
+ }
318
+
319
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
320
+
321
+ g black_ps = 100*black / n_stops
322
+ g hispanic_ps = 100*hispanic / n_stops
323
+ g white_ps = 100*white / n_stops
324
+ g asian_ps = 100*api / n_stops
325
+ g ln_stops = ln(n_stops)
326
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
327
+ g white_nbps = 100*white / (n_stops-black)
328
+ g asian_nbps = 100*asian / (n_stops-black)
329
+
330
+ g ihs_black= log(black +(black +1)^(1/2))
331
+ g ln_black = ln(black +1)
332
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
333
+ g ln_hispanic = ln(hispanic+1)
334
+ g ihs_white = log(white+(white+1)^(1/2))
335
+ g ln_white = ln(white+1)
336
+ g ihs_asian = log(api+(api+1)^(1/2))
337
+ g ln_asian = ln(api+1)
338
+
339
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
340
+
341
+
342
+ g TRUMP_0 = 0
343
+ forval ii = 1/9 {
344
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
345
+ }
346
+
347
+ forval ii = 1($bin_l)$end{
348
+ local jj = `ii' + $bin_l - 1
349
+ g TRUMP_POST_`ii'_`jj' = 0
350
+ forval ee = 1/9 {
351
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
352
+ }
353
+ }
354
+ g TRUMP_POST_M$end = 0
355
+ forval ii = 1/9 {
356
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
357
+ }
358
+ *
359
+
360
+ forval ii = $start($bin_l)0 {
361
+ if `ii' < -$bin_l {
362
+ local jj = abs(`ii')
363
+ local zz = `jj' - $bin_l + 1
364
+ g TRUMP_PRE_`jj'_`zz' = 0
365
+ forval ee = 1/9 {
366
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
367
+ }
368
+ }
369
+ }
370
+ *
371
+ local jj = abs($start)
372
+ g TRUMP_PRE_M`jj' = 0
373
+ forval ii = 1/9 {
374
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
375
+ }
376
+
377
+ if $trend==1 {
378
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
379
+ }
380
+ else {
381
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
382
+ }
383
+ local temp = 1/$bin_l
384
+ local bin_neg = abs($start * `temp')
385
+ local bin_pos = $end * `temp'
386
+ local range = round(`bin_neg' + `bin_pos' + 3)
387
+
388
+ mat treat = J(`range',4,1)
389
+
390
+ local Nrange = `range' - 2
391
+
392
+ forval pos = 1/`Nrange' {
393
+ local lag = $start + $bin_l*`pos' - $bin_l
394
+ if `lag' > 0 {
395
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
396
+ }
397
+
398
+ local num = abs(`lag')
399
+
400
+ if `lag' == 0 {
401
+ mat treat[`pos',1] = 0
402
+ mat treat[`pos',2] = _b[1.TRUMP_0]
403
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
404
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
405
+ }
406
+ else if `lag' < -$bin_l {
407
+ local num2 = `num' - $bin_l + 1
408
+ local num1 = - `num'
409
+ mat treat[`pos',1] = `num1'
410
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
411
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
412
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
413
+ }
414
+ else if `lag' == -$bin_l {
415
+ mat treat[`pos',1] = -$bin_l
416
+ mat treat[`pos',2] = 0
417
+ mat treat[`pos',3] = 0
418
+ mat treat[`pos',4] = 0
419
+ }
420
+ else {
421
+ di "**"
422
+ di `lag'
423
+ di `pos'
424
+ local num2 = `num' + $bin_l - 1
425
+ mat treat[`pos',1] = `num2'
426
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
427
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
428
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
429
+ }
430
+ }
431
+ mat treat[`range'-1,1] = $start - $bin_l - 1
432
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
433
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
434
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
435
+
436
+ mat treat[`range',1] = $end + $bin_l + 1
437
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
438
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
439
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
440
+
441
+ g yy = treat[_n,1] in 1/`range'
442
+ g eff = treat[_n,2] in 1/`range'
443
+ g eff_5 = treat[_n,3] in 1/`range'
444
+ g eff_95 = treat[_n,4] in 1/`range'
445
+ sort yy
446
+
447
+ *keep if yy>`start'-1 & yy<`end'+1
448
+ duplicates drop yy, force
449
+ keep eff eff_5 eff_95 yy
450
+
451
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on White Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
452
+ graph export "Results\FigureA10D.pdf", as(pdf) replace
453
+
454
+ ******************************************************************************************************************************************************************
455
+
456
+ global start = -105
457
+ global end = 105
458
+ global bin_l = 15
459
+ global var = "ihs_asian"
460
+ global trend = 0
461
+
462
+ use "Data\stoplevel_data.dta", clear
463
+
464
+ g n_stops = 1
465
+ foreach var of varlist black hispanic white api {
466
+ replace `var' = `var'/100
467
+ }
468
+
469
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
470
+
471
+ g black_ps = 100*black / n_stops
472
+ g hispanic_ps = 100*hispanic / n_stops
473
+ g white_ps = 100*white / n_stops
474
+ g asian_ps = 100*api / n_stops
475
+ g ln_stops = ln(n_stops)
476
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
477
+ g white_nbps = 100*white / (n_stops-black)
478
+ g asian_nbps = 100*asian / (n_stops-black)
479
+
480
+ g ihs_black= log(black +(black +1)^(1/2))
481
+ g ln_black = ln(black +1)
482
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
483
+ g ln_hispanic = ln(hispanic+1)
484
+ g ihs_white = log(white+(white+1)^(1/2))
485
+ g ln_white = ln(white+1)
486
+ g ihs_asian = log(api+(api+1)^(1/2))
487
+ g ln_asian = ln(api+1)
488
+
489
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
490
+
491
+
492
+ g TRUMP_0 = 0
493
+ forval ii = 1/9 {
494
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
495
+ }
496
+
497
+ forval ii = 1($bin_l)$end{
498
+ local jj = `ii' + $bin_l - 1
499
+ g TRUMP_POST_`ii'_`jj' = 0
500
+ forval ee = 1/9 {
501
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
502
+ }
503
+ }
504
+ g TRUMP_POST_M$end = 0
505
+ forval ii = 1/9 {
506
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
507
+ }
508
+ *
509
+
510
+ forval ii = $start($bin_l)0 {
511
+ if `ii' < -$bin_l {
512
+ local jj = abs(`ii')
513
+ local zz = `jj' - $bin_l + 1
514
+ g TRUMP_PRE_`jj'_`zz' = 0
515
+ forval ee = 1/9 {
516
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
517
+ }
518
+ }
519
+ }
520
+ *
521
+ local jj = abs($start)
522
+ g TRUMP_PRE_M`jj' = 0
523
+ forval ii = 1/9 {
524
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
525
+ }
526
+
527
+ if $trend==1 {
528
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
529
+ }
530
+ else {
531
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
532
+ }
533
+ local temp = 1/$bin_l
534
+ local bin_neg = abs($start * `temp')
535
+ local bin_pos = $end * `temp'
536
+ local range = round(`bin_neg' + `bin_pos' + 3)
537
+
538
+ mat treat = J(`range',4,1)
539
+
540
+ local Nrange = `range' - 2
541
+
542
+ forval pos = 1/`Nrange' {
543
+ local lag = $start + $bin_l*`pos' - $bin_l
544
+ if `lag' > 0 {
545
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
546
+ }
547
+
548
+ local num = abs(`lag')
549
+
550
+ if `lag' == 0 {
551
+ mat treat[`pos',1] = 0
552
+ mat treat[`pos',2] = _b[1.TRUMP_0]
553
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
554
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
555
+ }
556
+ else if `lag' < -$bin_l {
557
+ local num2 = `num' - $bin_l + 1
558
+ local num1 = - `num'
559
+ mat treat[`pos',1] = `num1'
560
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
561
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
562
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
563
+ }
564
+ else if `lag' == -$bin_l {
565
+ mat treat[`pos',1] = -$bin_l
566
+ mat treat[`pos',2] = 0
567
+ mat treat[`pos',3] = 0
568
+ mat treat[`pos',4] = 0
569
+ }
570
+ else {
571
+ di "**"
572
+ di `lag'
573
+ di `pos'
574
+ local num2 = `num' + $bin_l - 1
575
+ mat treat[`pos',1] = `num2'
576
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
577
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
578
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
579
+ }
580
+ }
581
+ mat treat[`range'-1,1] = $start - $bin_l - 1
582
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
583
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
584
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
585
+
586
+ mat treat[`range',1] = $end + $bin_l + 1
587
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
588
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
589
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
590
+
591
+ g yy = treat[_n,1] in 1/`range'
592
+ g eff = treat[_n,2] in 1/`range'
593
+ g eff_5 = treat[_n,3] in 1/`range'
594
+ g eff_95 = treat[_n,4] in 1/`range'
595
+ sort yy
596
+
597
+ duplicates drop yy, force
598
+ keep eff eff_5 eff_95 yy
599
+
600
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on API Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
601
+ graph export "Results\FigureA10C.pdf", as(pdf) replace
602
+
603
+
39/replication_package/Do/FigureA11.do ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A11
4
+ *** The Differential Effect of Trump and Other Political Rallies on the Probability
5
+ *** of a Black Stop: Event-study Results With and Without County-specific Linear Trends
6
+ **********************************************************************
7
+
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ g n_stops = 1
11
+ replace black = black/100
12
+
13
+ collapse (sum) n_stops black (first) dist_event*, by(county_fips day_id)
14
+
15
+ merge n:1 county_fips using "Data\allcandidates_rallies.dta"
16
+ drop if _merge==2
17
+
18
+ g black_ps = black / n_stops
19
+
20
+ local start = -105
21
+ local end = 105
22
+ local bin_l = 15
23
+
24
+ g TRUMP_0 = 0
25
+ forval ii = 1/9 {
26
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
27
+ }
28
+
29
+ forval ii = 1(`bin_l')`end'{
30
+ local jj = `ii' + `bin_l' - 1
31
+ g TRUMP_POST_`ii'_`jj' = 0
32
+ forval ee = 1/9 {
33
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
34
+ }
35
+ }
36
+ g TRUMP_POST_M`end' = 0
37
+ forval ii = 1/9 {
38
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
39
+ }
40
+ *
41
+
42
+ forval ii = `start'(`bin_l')0 {
43
+ if `ii' < -`bin_l' {
44
+ local jj = abs(`ii')
45
+ local zz = `jj' - `bin_l' + 1
46
+ g TRUMP_PRE_`jj'_`zz' = 0
47
+ forval ee = 1/9 {
48
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
49
+ }
50
+ }
51
+ }
52
+ *
53
+ local jj = abs(`start')
54
+ g TRUMP_PRE_M`jj' = 0
55
+ forval ii = 1/9 {
56
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
57
+ }
58
+
59
+ drop dist_event*
60
+
61
+ forval ii = 1/4 {
62
+ g dist_event`ii' = day_id - event_day_Cruz_`ii'
63
+ }
64
+
65
+ g CRUZ_0 = 0
66
+ forval ii = 1/4 {
67
+ replace CRUZ_0 = 1 if dist_event`ii' == 0
68
+ }
69
+
70
+ forval ii = 1(`bin_l')`end'{
71
+ local jj = `ii' + `bin_l' - 1
72
+ g CRUZ_POST_`ii'_`jj' = 0
73
+ forval ee = 1/4 {
74
+ replace CRUZ_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
75
+ }
76
+ }
77
+ g CRUZ_POST_M`end' = 0
78
+ forval ii = 1/4 {
79
+ replace CRUZ_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
80
+ }
81
+ *
82
+
83
+ forval ii = `start'(`bin_l')0 {
84
+ if `ii' < -`bin_l' {
85
+ local jj = abs(`ii')
86
+ local zz = `jj' - `bin_l' + 1
87
+ g CRUZ_PRE_`jj'_`zz' = 0
88
+ forval ee = 1/4 {
89
+ replace CRUZ_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
90
+ }
91
+ }
92
+ }
93
+ *
94
+ local jj = abs(`start')
95
+ g CRUZ_PRE_M`jj' = 0
96
+ forval ii = 1/4 {
97
+ replace CRUZ_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
98
+ }
99
+
100
+ drop dist_event*
101
+
102
+ forval ii = 1/10 {
103
+ g dist_event`ii' = day_id - event_day_Clinton_`ii'
104
+ }
105
+ g CLINTON_0 = 0
106
+ forval ii = 1/10 {
107
+ replace CLINTON_0 = 1 if dist_event`ii' == 0
108
+ }
109
+
110
+ forval ii = 1(`bin_l')`end'{
111
+ local jj = `ii' + `bin_l' - 1
112
+ g CLINTON_POST_`ii'_`jj' = 0
113
+ forval ee = 1/10 {
114
+ replace CLINTON_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
115
+ }
116
+ }
117
+ g CLINTON_POST_M`end' = 0
118
+ forval ii = 1/10 {
119
+ replace CLINTON_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
120
+ }
121
+ *
122
+
123
+ forval ii = `start'(`bin_l')0 {
124
+ if `ii' < -`bin_l' {
125
+ local jj = abs(`ii')
126
+ local zz = `jj' - `bin_l' + 1
127
+ g CLINTON_PRE_`jj'_`zz' = 0
128
+ forval ee = 1/10 {
129
+ replace CLINTON_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
130
+ }
131
+ }
132
+ }
133
+ *
134
+ local jj = abs(`start')
135
+ g CLINTON_PRE_M`jj' = 0
136
+ forval ii = 1/10 {
137
+ replace CLINTON_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
138
+ }
139
+
140
+ g ANYCANDIDATE_0 = (TRUMP_0==1) | (CRUZ_0==1) | (CLINTON_0==1)
141
+
142
+ forval ii = 1(`bin_l')`end'{
143
+ local jj = `ii' + `bin_l' - 1
144
+ g ANYCANDIDATE_POST_`ii'_`jj' = (TRUMP_POST_`ii'_`jj'==1) | (CRUZ_POST_`ii'_`jj'==1) | (CLINTON_POST_`ii'_`jj'==1)
145
+ }
146
+ g ANYCANDIDATE_POST_M`end' = (TRUMP_POST_M`end'==1) | (CRUZ_POST_M`end'==1) | (CLINTON_POST_M`end'==1)
147
+
148
+ forval ii = `start'(`bin_l')0 {
149
+ if `ii' < -`bin_l' {
150
+ local jj = abs(`ii')
151
+ local zz = `jj' - `bin_l' + 1
152
+ g ANYCANDIDATE_PRE_`jj'_`zz' = (TRUMP_PRE_`jj'_`zz'==1) | (CRUZ_PRE_`jj'_`zz'==1) | (CLINTON_PRE_`jj'_`zz'==1)
153
+ }
154
+ }
155
+ *
156
+ local jj = abs(`start')
157
+ g ANYCANDIDATE_PRE_M`jj' = (TRUMP_PRE_M`jj'==1) | (CRUZ_PRE_M`jj'==1) | (CLINTON_PRE_M`jj'==1)
158
+
159
+ reghdfe black_ps 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.ANYCANDIDATE_* 1.ANYCANDIDATE_0 1.ANYCANDIDATE_* [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id )
160
+
161
+ local temp = 1/`bin_l'
162
+ local bin_neg = abs(`start' * `temp')
163
+ local bin_pos = `end' * `temp'
164
+ local range = round(`bin_neg' + `bin_pos' + 3)
165
+
166
+ mat treat = J(`range',7,1)
167
+
168
+ local Nrange = `range' - 2
169
+
170
+ forval pos = 1/`Nrange' {
171
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
172
+ if `lag' > 0 {
173
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
174
+ }
175
+
176
+ local num = abs(`lag')
177
+
178
+ if `lag' == 0 {
179
+ mat treat[`pos',1] = 0
180
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_0]
181
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_0] + _se[1.ANYCANDIDATE_0]*invttail(e(N),0.05)
182
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_0] - _se[1.ANYCANDIDATE_0]*invttail(e(N),0.05)
183
+
184
+
185
+ lincom _b[1.ANYCANDIDATE_0] + _b[1.TRUMP_0]
186
+ mat treat[`pos',5] = r(estimate)
187
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
188
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
189
+
190
+ }
191
+ else if `lag' < -`bin_l' {
192
+ local num2 = `num' - `bin_l' + 1
193
+ local num1 = - `num'
194
+ mat treat[`pos',1] = `num1'
195
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_PRE_`num'_`num2']
196
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_PRE_`num'_`num2'] + _se[1.ANYCANDIDATE_PRE_`num'_`num2']*invttail(e(N),0.05)
197
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_PRE_`num'_`num2'] - _se[1.ANYCANDIDATE_PRE_`num'_`num2']*invttail(e(N),0.05)
198
+
199
+ lincom _b[1.ANYCANDIDATE_PRE_`num'_`num2'] + _b[1.TRUMP_PRE_`num'_`num2']
200
+ mat treat[`pos',5] = r(estimate)
201
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
202
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
203
+
204
+ }
205
+ else if `lag' == -`bin_l' {
206
+ mat treat[`pos',1] = -`bin_l'
207
+ mat treat[`pos',2] = 0
208
+ mat treat[`pos',3] = 0
209
+ mat treat[`pos',4] = 0
210
+
211
+ mat treat[`pos',5] = 0
212
+ mat treat[`pos',6] = 0
213
+ mat treat[`pos',7] = 0
214
+
215
+ }
216
+ else {
217
+ di "**"
218
+ di `lag'
219
+ di `pos'
220
+ local num2 = `num' + `bin_l' - 1
221
+ mat treat[`pos',1] = `num2'
222
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_POST_`num'_`num2']
223
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_POST_`num'_`num2'] + _se[1.ANYCANDIDATE_POST_`num'_`num2']*invttail(e(N),0.05)
224
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_POST_`num'_`num2'] - _se[1.ANYCANDIDATE_POST_`num'_`num2']*invttail(e(N),0.05)
225
+
226
+ lincom _b[1.ANYCANDIDATE_POST_`num'_`num2'] + _b[1.TRUMP_POST_`num'_`num2']
227
+ mat treat[`pos',5] = r(estimate)
228
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
229
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
230
+ }
231
+ }
232
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
233
+ mat treat[`range'-1,2] = _b[1.ANYCANDIDATE_PRE_M`jj']
234
+ mat treat[`range'-1,3] = _b[1.ANYCANDIDATE_PRE_M`jj'] + _se[1.ANYCANDIDATE_PRE_M`jj']*invttail(e(N),0.05)
235
+ mat treat[`range'-1,4] = _b[1.ANYCANDIDATE_PRE_M`jj'] - _se[1.ANYCANDIDATE_PRE_M`jj']*invttail(e(N),0.05)
236
+
237
+ lincom _b[1.ANYCANDIDATE_PRE_M`jj'] + _b[1.TRUMP_PRE_M`jj']
238
+ mat treat[`range'-1,5] = r(estimate)
239
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.05)
240
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.05)
241
+
242
+ mat treat[`range',1] = `end' + `bin_l' + 1
243
+ mat treat[`range',2] = _b[1.ANYCANDIDATE_POST_M`end']
244
+ mat treat[`range',3] = _b[1.ANYCANDIDATE_POST_M`end'] + _se[1.ANYCANDIDATE_POST_M`end']*invttail(e(N),0.05)
245
+ mat treat[`range',4] = _b[1.ANYCANDIDATE_POST_M`end'] - _se[1.ANYCANDIDATE_POST_M`end']*invttail(e(N),0.05)
246
+
247
+ lincom _b[1.ANYCANDIDATE_POST_M`end'] + _b[1.TRUMP_POST_M`end']
248
+ mat treat[`range',5] = r(estimate)
249
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.05)
250
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.05)
251
+
252
+ g yy = treat[_n,1] in 1/`range'
253
+ g eff_any = treat[_n,2] in 1/`range'
254
+ g eff_any_10 = treat[_n,3] in 1/`range'
255
+ g eff_any_90 = treat[_n,4] in 1/`range'
256
+ g eff_tr = treat[_n,5] in 1/`range'
257
+ g eff_tr_10 = treat[_n,6] in 1/`range'
258
+ g eff_tr_90 = treat[_n,7] in 1/`range'
259
+ sort yy
260
+
261
+ duplicates drop yy, force
262
+ keep eff_* eff_*_10 eff_*_90 yy
263
+
264
+ twoway (rcap eff_tr_10 eff_tr_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_tr yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_tr yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Probabilty Black Stop") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.02) saving(track,replace)
265
+ graph export "Results\FigureA11A.pdf", as(pdf) name("Graph") replace
266
+
267
+
268
+ **********************************************************************
269
+
270
+ use "Data\stoplevel_data.dta", clear
271
+
272
+ g n_stops = 1
273
+ replace black = black/100
274
+
275
+ collapse (sum) n_stops black (first) dist_event*, by(county_fips day_id)
276
+
277
+ merge n:1 county_fips using "Data\allcandidates_rallies.dta"
278
+ drop if _merge==2
279
+
280
+ g black_ps = black / n_stops
281
+
282
+ local start = -105
283
+ local end = 105
284
+ local bin_l = 15
285
+
286
+ g TRUMP_0 = 0
287
+ forval ii = 1/9 {
288
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
289
+ }
290
+
291
+ forval ii = 1(`bin_l')`end'{
292
+ local jj = `ii' + `bin_l' - 1
293
+ g TRUMP_POST_`ii'_`jj' = 0
294
+ forval ee = 1/9 {
295
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
296
+ }
297
+ }
298
+ g TRUMP_POST_M`end' = 0
299
+ forval ii = 1/9 {
300
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
301
+ }
302
+ *
303
+
304
+ forval ii = `start'(`bin_l')0 {
305
+ if `ii' < -`bin_l' {
306
+ local jj = abs(`ii')
307
+ local zz = `jj' - `bin_l' + 1
308
+ g TRUMP_PRE_`jj'_`zz' = 0
309
+ forval ee = 1/9 {
310
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
311
+ }
312
+ }
313
+ }
314
+ *
315
+ local jj = abs(`start')
316
+ g TRUMP_PRE_M`jj' = 0
317
+ forval ii = 1/9 {
318
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
319
+ }
320
+
321
+ drop dist_event*
322
+
323
+ forval ii = 1/4 {
324
+ g dist_event`ii' = day_id - event_day_Cruz_`ii'
325
+ }
326
+
327
+ g CRUZ_0 = 0
328
+ forval ii = 1/4 {
329
+ replace CRUZ_0 = 1 if dist_event`ii' == 0
330
+ }
331
+
332
+ forval ii = 1(`bin_l')`end'{
333
+ local jj = `ii' + `bin_l' - 1
334
+ g CRUZ_POST_`ii'_`jj' = 0
335
+ forval ee = 1/4 {
336
+ replace CRUZ_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
337
+ }
338
+ }
339
+ g CRUZ_POST_M`end' = 0
340
+ forval ii = 1/4 {
341
+ replace CRUZ_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
342
+ }
343
+ *
344
+
345
+ forval ii = `start'(`bin_l')0 {
346
+ if `ii' < -`bin_l' {
347
+ local jj = abs(`ii')
348
+ local zz = `jj' - `bin_l' + 1
349
+ g CRUZ_PRE_`jj'_`zz' = 0
350
+ forval ee = 1/4 {
351
+ replace CRUZ_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
352
+ }
353
+ }
354
+ }
355
+ *
356
+ local jj = abs(`start')
357
+ g CRUZ_PRE_M`jj' = 0
358
+ forval ii = 1/4 {
359
+ replace CRUZ_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
360
+ }
361
+
362
+ drop dist_event*
363
+
364
+ forval ii = 1/10 {
365
+ g dist_event`ii' = day_id - event_day_Clinton_`ii'
366
+ }
367
+ g CLINTON_0 = 0
368
+ forval ii = 1/10 {
369
+ replace CLINTON_0 = 1 if dist_event`ii' == 0
370
+ }
371
+
372
+ forval ii = 1(`bin_l')`end'{
373
+ local jj = `ii' + `bin_l' - 1
374
+ g CLINTON_POST_`ii'_`jj' = 0
375
+ forval ee = 1/10 {
376
+ replace CLINTON_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
377
+ }
378
+ }
379
+ g CLINTON_POST_M`end' = 0
380
+ forval ii = 1/10 {
381
+ replace CLINTON_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
382
+ }
383
+ *
384
+
385
+ forval ii = `start'(`bin_l')0 {
386
+ if `ii' < -`bin_l' {
387
+ local jj = abs(`ii')
388
+ local zz = `jj' - `bin_l' + 1
389
+ g CLINTON_PRE_`jj'_`zz' = 0
390
+ forval ee = 1/10 {
391
+ replace CLINTON_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
392
+ }
393
+ }
394
+ }
395
+ *
396
+ local jj = abs(`start')
397
+ g CLINTON_PRE_M`jj' = 0
398
+ forval ii = 1/10 {
399
+ replace CLINTON_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
400
+ }
401
+
402
+ g ANYCANDIDATE_0 = (TRUMP_0==1) | (CRUZ_0==1) | (CLINTON_0==1)
403
+
404
+ forval ii = 1(`bin_l')`end'{
405
+ local jj = `ii' + `bin_l' - 1
406
+ g ANYCANDIDATE_POST_`ii'_`jj' = (TRUMP_POST_`ii'_`jj'==1) | (CRUZ_POST_`ii'_`jj'==1) | (CLINTON_POST_`ii'_`jj'==1)
407
+ }
408
+ g ANYCANDIDATE_POST_M`end' = (TRUMP_POST_M`end'==1) | (CRUZ_POST_M`end'==1) | (CLINTON_POST_M`end'==1)
409
+
410
+ forval ii = `start'(`bin_l')0 {
411
+ if `ii' < -`bin_l' {
412
+ local jj = abs(`ii')
413
+ local zz = `jj' - `bin_l' + 1
414
+ g ANYCANDIDATE_PRE_`jj'_`zz' = (TRUMP_PRE_`jj'_`zz'==1) | (CRUZ_PRE_`jj'_`zz'==1) | (CLINTON_PRE_`jj'_`zz'==1)
415
+ }
416
+ }
417
+ *
418
+ local jj = abs(`start')
419
+ g ANYCANDIDATE_PRE_M`jj' = (TRUMP_PRE_M`jj'==1) | (CRUZ_PRE_M`jj'==1) | (CLINTON_PRE_M`jj'==1)
420
+
421
+ reghdfe black_ps 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.ANYCANDIDATE_* 1.ANYCANDIDATE_0 1.ANYCANDIDATE_* [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
422
+
423
+ local temp = 1/`bin_l'
424
+ local bin_neg = abs(`start' * `temp')
425
+ local bin_pos = `end' * `temp'
426
+ local range = round(`bin_neg' + `bin_pos' + 3)
427
+
428
+ mat treat = J(`range',7,1)
429
+
430
+ local Nrange = `range' - 2
431
+
432
+ forval pos = 1/`Nrange' {
433
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
434
+ if `lag' > 0 {
435
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
436
+ }
437
+
438
+ local num = abs(`lag')
439
+
440
+ if `lag' == 0 {
441
+ mat treat[`pos',1] = 0
442
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_0]
443
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_0] + _se[1.ANYCANDIDATE_0]*invttail(e(N),0.05)
444
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_0] - _se[1.ANYCANDIDATE_0]*invttail(e(N),0.05)
445
+
446
+
447
+ lincom _b[1.ANYCANDIDATE_0] + _b[1.TRUMP_0]
448
+ mat treat[`pos',5] = r(estimate)
449
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
450
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
451
+
452
+ }
453
+ else if `lag' < -`bin_l' {
454
+ local num2 = `num' - `bin_l' + 1
455
+ local num1 = - `num'
456
+ mat treat[`pos',1] = `num1'
457
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_PRE_`num'_`num2']
458
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_PRE_`num'_`num2'] + _se[1.ANYCANDIDATE_PRE_`num'_`num2']*invttail(e(N),0.05)
459
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_PRE_`num'_`num2'] - _se[1.ANYCANDIDATE_PRE_`num'_`num2']*invttail(e(N),0.05)
460
+
461
+ lincom _b[1.ANYCANDIDATE_PRE_`num'_`num2'] + _b[1.TRUMP_PRE_`num'_`num2']
462
+ mat treat[`pos',5] = r(estimate)
463
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
464
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
465
+
466
+ }
467
+ else if `lag' == -`bin_l' {
468
+ mat treat[`pos',1] = -`bin_l'
469
+ mat treat[`pos',2] = 0
470
+ mat treat[`pos',3] = 0
471
+ mat treat[`pos',4] = 0
472
+
473
+ mat treat[`pos',5] = 0
474
+ mat treat[`pos',6] = 0
475
+ mat treat[`pos',7] = 0
476
+
477
+ }
478
+ else {
479
+ di "**"
480
+ di `lag'
481
+ di `pos'
482
+ local num2 = `num' + `bin_l' - 1
483
+ mat treat[`pos',1] = `num2'
484
+ mat treat[`pos',2] = _b[1.ANYCANDIDATE_POST_`num'_`num2']
485
+ mat treat[`pos',3] = _b[1.ANYCANDIDATE_POST_`num'_`num2'] + _se[1.ANYCANDIDATE_POST_`num'_`num2']*invttail(e(N),0.05)
486
+ mat treat[`pos',4] = _b[1.ANYCANDIDATE_POST_`num'_`num2'] - _se[1.ANYCANDIDATE_POST_`num'_`num2']*invttail(e(N),0.05)
487
+
488
+ lincom _b[1.ANYCANDIDATE_POST_`num'_`num2'] + _b[1.TRUMP_POST_`num'_`num2']
489
+ mat treat[`pos',5] = r(estimate)
490
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.05)
491
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.05)
492
+ }
493
+ }
494
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
495
+ mat treat[`range'-1,2] = _b[1.ANYCANDIDATE_PRE_M`jj']
496
+ mat treat[`range'-1,3] = _b[1.ANYCANDIDATE_PRE_M`jj'] + _se[1.ANYCANDIDATE_PRE_M`jj']*invttail(e(N),0.05)
497
+ mat treat[`range'-1,4] = _b[1.ANYCANDIDATE_PRE_M`jj'] - _se[1.ANYCANDIDATE_PRE_M`jj']*invttail(e(N),0.05)
498
+
499
+ lincom _b[1.ANYCANDIDATE_PRE_M`jj'] + _b[1.TRUMP_PRE_M`jj']
500
+ mat treat[`range'-1,5] = r(estimate)
501
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.05)
502
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.05)
503
+
504
+ mat treat[`range',1] = `end' + `bin_l' + 1
505
+ mat treat[`range',2] = _b[1.ANYCANDIDATE_POST_M`end']
506
+ mat treat[`range',3] = _b[1.ANYCANDIDATE_POST_M`end'] + _se[1.ANYCANDIDATE_POST_M`end']*invttail(e(N),0.05)
507
+ mat treat[`range',4] = _b[1.ANYCANDIDATE_POST_M`end'] - _se[1.ANYCANDIDATE_POST_M`end']*invttail(e(N),0.05)
508
+
509
+ lincom _b[1.ANYCANDIDATE_POST_M`end'] + _b[1.TRUMP_POST_M`end']
510
+ mat treat[`range',5] = r(estimate)
511
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.05)
512
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.05)
513
+
514
+ g yy = treat[_n,1] in 1/`range'
515
+ g eff_any = treat[_n,2] in 1/`range'
516
+ g eff_any_10 = treat[_n,3] in 1/`range'
517
+ g eff_any_90 = treat[_n,4] in 1/`range'
518
+ g eff_tr = treat[_n,5] in 1/`range'
519
+ g eff_tr_10 = treat[_n,6] in 1/`range'
520
+ g eff_tr_90 = treat[_n,7] in 1/`range'
521
+ sort yy
522
+
523
+ duplicates drop yy, force
524
+ keep eff_* eff_*_10 eff_*_90 yy
525
+
526
+ twoway (rcap eff_tr_10 eff_tr_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_tr yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_tr yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Probabilty Black Stop") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.02) saving(track,replace)
527
+ graph export "Results\FigureA11B.pdf", as(pdf) name("Graph") replace
39/replication_package/Do/FigureA12.do ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A12
4
+ *** Geographic Spillovers
5
+ **********************************************************************
6
+
7
+ use "Data\distance_spillovers.dta", clear
8
+
9
+ g black_ps = black / n_stops
10
+
11
+ mat treat = J(15,4,1)
12
+
13
+ qui:{
14
+ forval kk = 10(10)150 {
15
+
16
+ noisily: di `kk' "km out of 150"
17
+
18
+ g TRUMP_POST_1_30_`kk'km = 0
19
+ forval ii = 1/30 {
20
+ replace TRUMP_POST_1_30_`kk'km = 1 if (dist_event_`kk'km_`ii' > 0 & dist_event_`kk'km_`ii'<=30 & dist_event_`kk'km_`ii'!=.)
21
+ }
22
+ g TRUMP_POST_M30_`kk'km = 0
23
+ forval ii = 1/30 {
24
+ replace TRUMP_POST_M30_`kk'km = 1 if (dist_event_`kk'km_`ii' >30 & dist_event_`kk'km_`ii'!=.)
25
+ }
26
+
27
+ g TRUMP_PRE_M30_`kk'km = 0
28
+ forval ii = 1/30 {
29
+ replace TRUMP_PRE_M30_`kk'km = 1 if (dist_event_`kk'km_`ii' <-30 & dist_event_`kk'km_`ii'!=.)
30
+ }
31
+
32
+
33
+ noisily: reghdfe black_ps 1.TRUMP_*_`kk'km [w=n_stops], a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_fips day_id )
34
+
35
+
36
+ lincom (1.TRUMP_POST_1_30_`kk'km)
37
+
38
+ local pos = `kk'/10
39
+ mat treat[`pos',1] = `kk'
40
+ mat treat[`pos',2] = r(estimate)
41
+ mat treat[`pos',3] = r(estimate) + r(se)*invttail(e(N),0.025)
42
+ mat treat[`pos',4] = r(estimate) - r(se)*invttail(e(N),0.025)
43
+
44
+ }
45
+ }
46
+ g xx = treat[_n,1] in 1/15
47
+
48
+ g eff = treat[_n,2] in 1/15
49
+ g eff10 = treat[_n,3] in 1/15
50
+ g eff90 = treat[_n,4] in 1/15
51
+
52
+ twoway (rcap eff10 eff90 xx) (scatter eff xx,yline(0,lp(-) lc(red))) , scheme(s1mono) title(" ") ytitle("Effect of Trump Rally") xtitle(Distance in Km) xlabel(10 "(0,10)" 20 "(0,20)" 30 "(0,30)" 40 "(0,40)" 50 "(0,50)" 60 "(0,60)" 70 "(0,70)" 80 "(0,80)" 90 "(0,90)" 100 "(0,100)" 110 "(0,110)" 120 "(0,120)" 130 "(0,130)" 140 "(0,140)" 150 "(0,150)", angle(45)) legend(order(1 "95% Confidence Interval" 2 "Effect"))
53
+ graph export "Results\FigureA12.pdf", as(pdf) name("Graph") replace
39/replication_package/Do/FigureA13.do ADDED
@@ -0,0 +1,954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A13
4
+ *** Role of Local Characteristics in the Effect of Trump Rallies on the
5
+ *** Probability of a Black Stop: Event-study Results
6
+ **********************************************************************
7
+
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ g n_stops = 1
11
+ replace black = black/100
12
+
13
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec any_slaves_1860, by(county_fips day_id)
14
+
15
+ g black_ps = 100*black / n_stops
16
+
17
+ summ racial_resent_a [aweight=n_stops]
18
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
19
+
20
+ summ racial_resent_b [aweight=n_stops]
21
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
22
+
23
+ summ alt_cottonsui [aweight=n_stops]
24
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
25
+
26
+ su ihsbl_lynch [aweight=n_stops]
27
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
28
+
29
+ su ihsbl_exec [aweight=n_stops]
30
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
31
+
32
+ local start = -105
33
+ local end = 105
34
+ local bin_l = 15
35
+ local var_het = "racial_resent_a"
36
+
37
+ g TRUMP_0 = 0
38
+ forval ii = 1/9 {
39
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
40
+ }
41
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
42
+
43
+ forval ii = 1(`bin_l')`end'{
44
+ local jj = `ii' + `bin_l' - 1
45
+ g TRUMP_POST_`ii'_`jj' = 0
46
+ forval ee = 1/9 {
47
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
48
+ }
49
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
50
+ }
51
+ g TRUMP_POST_M`end' = 0
52
+ forval ii = 1/9 {
53
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
54
+ }
55
+ *
56
+
57
+ forval ii = `start'(`bin_l')0 {
58
+ if `ii' < -`bin_l' {
59
+ local jj = abs(`ii')
60
+ local zz = `jj' - `bin_l' + 1
61
+ g TRUMP_PRE_`jj'_`zz' = 0
62
+ forval ee = 1/9 {
63
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
64
+ }
65
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
66
+ }
67
+ }
68
+ *
69
+
70
+ local jj = abs(`start')
71
+ g TRUMP_PRE_M`jj' = 0
72
+ forval ii = 1/9 {
73
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
74
+ }
75
+ *
76
+ g TRUMP_POST_M15 = 0
77
+ forval ii = 1/9 {
78
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
79
+ }
80
+
81
+ g TRUMP_PRE_M15 = 0
82
+ forval ii = 1/9 {
83
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
84
+ }
85
+
86
+ g TRUMP_POST_1_30 = 0
87
+ forval ii = 1/9 {
88
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
89
+ }
90
+
91
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
92
+
93
+ local temp = 1/`bin_l'
94
+ local bin_neg = abs(`start' * `temp')
95
+ local bin_pos = `end' * `temp'
96
+ local range = round(`bin_neg' + `bin_pos' + 3)
97
+
98
+ mat treat = J(`range',4,1)
99
+
100
+ local Nrange = `range' - 2
101
+
102
+ forval pos = 1/`Nrange' {
103
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
104
+ if `lag' > 0 {
105
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
106
+ }
107
+
108
+ local num = abs(`lag')
109
+
110
+ if `lag' == 0 {
111
+ mat treat[`pos',1] = 0
112
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
113
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
114
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
115
+ }
116
+ else if `lag' < -`bin_l' {
117
+ local num2 = `num' - `bin_l' + 1
118
+ local num1 = - `num'
119
+ mat treat[`pos',1] = `num1'
120
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
121
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
122
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
123
+ }
124
+ else if `lag' == -`bin_l' {
125
+ mat treat[`pos',1] = -`bin_l'
126
+ mat treat[`pos',2] = 0
127
+ mat treat[`pos',3] = 0
128
+ mat treat[`pos',4] = 0
129
+ }
130
+ else {
131
+ di "**"
132
+ di `lag'
133
+ di `pos'
134
+ local num2 = `num' + `bin_l' - 1
135
+ mat treat[`pos',1] = `num2'
136
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
137
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
138
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
139
+ }
140
+ }
141
+ local jj = abs(`start')
142
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
143
+ mat treat[`range'-1,2] = 0
144
+ mat treat[`range'-1,3] = 0
145
+ mat treat[`range'-1,4] = 0
146
+
147
+ mat treat[`range',1] = `end' + `bin_l' + 1
148
+ mat treat[`range',2] = 0
149
+ mat treat[`range',3] = 0
150
+ mat treat[`range',4] = 0
151
+
152
+
153
+ g yy = treat[_n,1] in 1/`range'
154
+ g eff = treat[_n,2] in 1/`range'
155
+ g eff_10 = treat[_n,3] in 1/`range'
156
+ g eff_90 = treat[_n,4] in 1/`range'
157
+ sort yy
158
+
159
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Racial Resentment A") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
160
+ graph export "Results\FigureA13A.pdf", as(pdf) name("Graph") replace
161
+
162
+ ******************************************************************************************************************************************************************
163
+
164
+ use "Data\stoplevel_data.dta", clear
165
+
166
+ g n_stops = 1
167
+ replace black = black/100
168
+
169
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec, by(county_fips day_id)
170
+
171
+ g black_ps = 100*black / n_stops
172
+
173
+ summ racial_resent_a [aweight=n_stops]
174
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
175
+
176
+ summ racial_resent_b [aweight=n_stops]
177
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
178
+
179
+ summ alt_cottonsui [aweight=n_stops]
180
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
181
+
182
+ su ihsbl_lynch [aweight=n_stops]
183
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
184
+
185
+ su ihsbl_exec [aweight=n_stops]
186
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
187
+
188
+ local start = -105
189
+ local end = 105
190
+ local bin_l = 15
191
+ local var_het = "racial_resent_b"
192
+
193
+ g TRUMP_0 = 0
194
+ forval ii = 1/9 {
195
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
196
+ }
197
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
198
+ *
199
+
200
+ forval ii = 1(`bin_l')`end'{
201
+ local jj = `ii' + `bin_l' - 1
202
+ g TRUMP_POST_`ii'_`jj' = 0
203
+ forval ee = 1/9 {
204
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
205
+ }
206
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
207
+ }
208
+ g TRUMP_POST_M`end' = 0
209
+ forval ii = 1/9 {
210
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
211
+ }
212
+ *
213
+
214
+ forval ii = `start'(`bin_l')0 {
215
+ if `ii' < -`bin_l' {
216
+ local jj = abs(`ii')
217
+ local zz = `jj' - `bin_l' + 1
218
+ g TRUMP_PRE_`jj'_`zz' = 0
219
+ forval ee = 1/9 {
220
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
221
+ }
222
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
223
+ }
224
+ }
225
+ *
226
+
227
+ local jj = abs(`start')
228
+ g TRUMP_PRE_M`jj' = 0
229
+ forval ii = 1/9 {
230
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
231
+ }
232
+ *
233
+ g TRUMP_POST_M15 = 0
234
+ forval ii = 1/9 {
235
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
236
+ }
237
+
238
+ g TRUMP_PRE_M15 = 0
239
+ forval ii = 1/9 {
240
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
241
+ }
242
+
243
+ g TRUMP_POST_1_30 = 0
244
+ forval ii = 1/9 {
245
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
246
+ }
247
+
248
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
249
+
250
+ local temp = 1/`bin_l'
251
+ local bin_neg = abs(`start' * `temp')
252
+ local bin_pos = `end' * `temp'
253
+ local range = round(`bin_neg' + `bin_pos' + 3)
254
+
255
+ mat treat = J(`range',4,1)
256
+
257
+ local Nrange = `range' - 2
258
+
259
+ forval pos = 1/`Nrange' {
260
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
261
+ if `lag' > 0 {
262
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
263
+ }
264
+
265
+ local num = abs(`lag')
266
+
267
+ if `lag' == 0 {
268
+ mat treat[`pos',1] = 0
269
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
270
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
271
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
272
+ }
273
+ else if `lag' < -`bin_l' {
274
+ local num2 = `num' - `bin_l' + 1
275
+ local num1 = - `num'
276
+ mat treat[`pos',1] = `num1'
277
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
278
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
279
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
280
+ }
281
+ else if `lag' == -`bin_l' {
282
+ mat treat[`pos',1] = -`bin_l'
283
+ mat treat[`pos',2] = 0
284
+ mat treat[`pos',3] = 0
285
+ mat treat[`pos',4] = 0
286
+ }
287
+ else {
288
+ di "**"
289
+ di `lag'
290
+ di `pos'
291
+ local num2 = `num' + `bin_l' - 1
292
+ mat treat[`pos',1] = `num2'
293
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
294
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
295
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
296
+ }
297
+ }
298
+ local jj = abs(`start')
299
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
300
+ mat treat[`range'-1,2] = 0
301
+ mat treat[`range'-1,3] = 0
302
+ mat treat[`range'-1,4] = 0
303
+
304
+ mat treat[`range',1] = `end' + `bin_l' + 1
305
+ mat treat[`range',2] = 0
306
+ mat treat[`range',3] = 0
307
+ mat treat[`range',4] = 0
308
+
309
+ g yy = treat[_n,1] in 1/`range'
310
+ g eff = treat[_n,2] in 1/`range'
311
+ g eff_10 = treat[_n,3] in 1/`range'
312
+ g eff_90 = treat[_n,4] in 1/`range'
313
+ sort yy
314
+
315
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Racial Resentment B") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
316
+ graph export "Results\FigureA13B.pdf", as(pdf) name("Graph") replace
317
+
318
+ ******************************************************************************************************************************************************************
319
+
320
+ use "Data\stoplevel_data.dta", clear
321
+
322
+ g n_stops = 1
323
+ replace black = black/100
324
+
325
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec any_slaves_1860, by(county_fips day_id)
326
+
327
+ g black_ps = 100*black / n_stops
328
+
329
+ summ racial_resent_a [aweight=n_stops]
330
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
331
+
332
+ summ racial_resent_b [aweight=n_stops]
333
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
334
+
335
+ summ alt_cottonsui [aweight=n_stops]
336
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
337
+
338
+ su ihsbl_lynch [aweight=n_stops]
339
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
340
+
341
+ su ihsbl_exec [aweight=n_stops]
342
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
343
+
344
+ local start = -105
345
+ local end = 105
346
+ local bin_l = 15
347
+ local var_het = "any_slaves_1860"
348
+
349
+ g TRUMP_0 = 0
350
+ forval ii = 1/9 {
351
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
352
+ }
353
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
354
+ *
355
+
356
+ forval ii = 1(`bin_l')`end'{
357
+ local jj = `ii' + `bin_l' - 1
358
+ g TRUMP_POST_`ii'_`jj' = 0
359
+ forval ee = 1/9 {
360
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
361
+ }
362
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
363
+ }
364
+ g TRUMP_POST_M`end' = 0
365
+ forval ii = 1/9 {
366
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
367
+ }
368
+ *
369
+
370
+ forval ii = `start'(`bin_l')0 {
371
+ if `ii' < -`bin_l' {
372
+ local jj = abs(`ii')
373
+ local zz = `jj' - `bin_l' + 1
374
+ g TRUMP_PRE_`jj'_`zz' = 0
375
+ forval ee = 1/9 {
376
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
377
+ }
378
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
379
+ }
380
+ }
381
+ *
382
+
383
+ local jj = abs(`start')
384
+ g TRUMP_PRE_M`jj' = 0
385
+ forval ii = 1/9 {
386
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
387
+ }
388
+ *
389
+ g TRUMP_POST_M15 = 0
390
+ forval ii = 1/9 {
391
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
392
+ }
393
+
394
+ g TRUMP_PRE_M15 = 0
395
+ forval ii = 1/9 {
396
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
397
+ }
398
+
399
+ g TRUMP_POST_1_30 = 0
400
+ forval ii = 1/9 {
401
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
402
+ }
403
+
404
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
405
+
406
+ local temp = 1/`bin_l'
407
+ local bin_neg = abs(`start' * `temp')
408
+ local bin_pos = `end' * `temp'
409
+ local range = round(`bin_neg' + `bin_pos' + 3)
410
+
411
+ mat treat = J(`range',4,1)
412
+
413
+
414
+ local Nrange = `range' - 2
415
+
416
+ forval pos = 1/`Nrange' {
417
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
418
+ if `lag' > 0 {
419
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
420
+ }
421
+
422
+ local num = abs(`lag')
423
+
424
+ if `lag' == 0 {
425
+ mat treat[`pos',1] = 0
426
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
427
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
428
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
429
+ }
430
+ else if `lag' < -`bin_l' {
431
+ local num2 = `num' - `bin_l' + 1
432
+ local num1 = - `num'
433
+ mat treat[`pos',1] = `num1'
434
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
435
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
436
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
437
+ }
438
+ else if `lag' == -`bin_l' {
439
+ mat treat[`pos',1] = -`bin_l'
440
+ mat treat[`pos',2] = 0
441
+ mat treat[`pos',3] = 0
442
+ mat treat[`pos',4] = 0
443
+ }
444
+ else {
445
+ di "**"
446
+ di `lag'
447
+ di `pos'
448
+ local num2 = `num' + `bin_l' - 1
449
+ mat treat[`pos',1] = `num2'
450
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
451
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
452
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
453
+ }
454
+ }
455
+ local jj = abs(`start')
456
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
457
+ mat treat[`range'-1,2] = 0
458
+ mat treat[`range'-1,3] = 0
459
+ mat treat[`range'-1,4] = 0
460
+
461
+ mat treat[`range',1] = `end' + `bin_l' + 1
462
+ mat treat[`range',2] = 0
463
+ mat treat[`range',3] = 0
464
+ mat treat[`range',4] = 0
465
+
466
+
467
+ g yy = treat[_n,1] in 1/`range'
468
+ g eff = treat[_n,2] in 1/`range'
469
+ g eff_10 = treat[_n,3] in 1/`range'
470
+ g eff_90 = treat[_n,4] in 1/`range'
471
+ sort yy
472
+
473
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Presence of Slaves") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
474
+ graph export "Results\FigureA13C.pdf", as(pdf) name("Graph") replace
475
+
476
+
477
+ ******************************************************************************************************************************************************************
478
+
479
+ use "Data\stoplevel_data.dta", clear
480
+
481
+ g n_stops = 1
482
+ replace black = black/100
483
+
484
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec, by(county_fips day_id)
485
+
486
+ g black_ps = 100*black / n_stops
487
+
488
+ summ racial_resent_a [aweight=n_stops]
489
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
490
+
491
+ summ racial_resent_b [aweight=n_stops]
492
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
493
+
494
+ summ alt_cottonsui [aweight=n_stops]
495
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
496
+
497
+ su ihsbl_lynch [aweight=n_stops]
498
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
499
+
500
+ su ihsbl_exec [aweight=n_stops]
501
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
502
+
503
+ local start = -105
504
+ local end = 105
505
+ local bin_l = 15
506
+ local var_het = "alt_cottonsui"
507
+
508
+ g TRUMP_0 = 0
509
+ forval ii = 1/9 {
510
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
511
+ }
512
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
513
+ *
514
+
515
+ forval ii = 1(`bin_l')`end'{
516
+ local jj = `ii' + `bin_l' - 1
517
+ g TRUMP_POST_`ii'_`jj' = 0
518
+ forval ee = 1/9 {
519
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
520
+ }
521
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
522
+ }
523
+ g TRUMP_POST_M`end' = 0
524
+ forval ii = 1/9 {
525
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
526
+ }
527
+ *
528
+
529
+ forval ii = `start'(`bin_l')0 {
530
+ if `ii' < -`bin_l' {
531
+ local jj = abs(`ii')
532
+ local zz = `jj' - `bin_l' + 1
533
+ g TRUMP_PRE_`jj'_`zz' = 0
534
+ forval ee = 1/9 {
535
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
536
+ }
537
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
538
+ }
539
+ }
540
+ *
541
+
542
+ local jj = abs(`start')
543
+ g TRUMP_PRE_M`jj' = 0
544
+ forval ii = 1/9 {
545
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
546
+ }
547
+ *
548
+ g TRUMP_POST_M15 = 0
549
+ forval ii = 1/9 {
550
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
551
+ }
552
+
553
+ g TRUMP_PRE_M15 = 0
554
+ forval ii = 1/9 {
555
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
556
+ }
557
+
558
+ g TRUMP_POST_1_30 = 0
559
+ forval ii = 1/9 {
560
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
561
+ }
562
+
563
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
564
+
565
+ local temp = 1/`bin_l'
566
+ local bin_neg = abs(`start' * `temp')
567
+ local bin_pos = `end' * `temp'
568
+ local range = round(`bin_neg' + `bin_pos' + 3)
569
+
570
+ mat treat = J(`range',4,1)
571
+
572
+ local Nrange = `range' - 2
573
+
574
+ forval pos = 1/`Nrange' {
575
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
576
+ if `lag' > 0 {
577
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
578
+ }
579
+
580
+ local num = abs(`lag')
581
+
582
+ if `lag' == 0 {
583
+ mat treat[`pos',1] = 0
584
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
585
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
586
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
587
+ }
588
+ else if `lag' < -`bin_l' {
589
+ local num2 = `num' - `bin_l' + 1
590
+ local num1 = - `num'
591
+ mat treat[`pos',1] = `num1'
592
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
593
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
594
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
595
+ }
596
+ else if `lag' == -`bin_l' {
597
+ mat treat[`pos',1] = -`bin_l'
598
+ mat treat[`pos',2] = 0
599
+ mat treat[`pos',3] = 0
600
+ mat treat[`pos',4] = 0
601
+ }
602
+ else {
603
+ di "**"
604
+ di `lag'
605
+ di `pos'
606
+ local num2 = `num' + `bin_l' - 1
607
+ mat treat[`pos',1] = `num2'
608
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
609
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
610
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
611
+ }
612
+ }
613
+ local jj = abs(`start')
614
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
615
+ mat treat[`range'-1,2] = 0
616
+ mat treat[`range'-1,3] = 0
617
+ mat treat[`range'-1,4] = 0
618
+
619
+ mat treat[`range',1] = `end' + `bin_l' + 1
620
+ mat treat[`range',2] = 0
621
+ mat treat[`range',3] = 0
622
+ mat treat[`range',4] = 0
623
+
624
+
625
+ g yy = treat[_n,1] in 1/`range'
626
+ g eff = treat[_n,2] in 1/`range'
627
+ g eff_10 = treat[_n,3] in 1/`range'
628
+ g eff_90 = treat[_n,4] in 1/`range'
629
+ sort yy
630
+
631
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Cotton Suitability") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
632
+ graph export "Results\FigureA13D.pdf", as(pdf) name("Graph") replace
633
+
634
+ ******************************************************************************************************************************************************************
635
+
636
+ use "Data\stoplevel_data.dta", clear
637
+
638
+ g n_stops = 1
639
+ replace black = black/100
640
+
641
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec, by(county_fips day_id)
642
+
643
+ g black_ps = 100*black / n_stops
644
+
645
+ summ racial_resent_a [aweight=n_stops]
646
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
647
+
648
+ summ racial_resent_b [aweight=n_stops]
649
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
650
+
651
+ summ alt_cottonsui [aweight=n_stops]
652
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
653
+
654
+ su ihsbl_lynch [aweight=n_stops]
655
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
656
+
657
+ su ihsbl_exec [aweight=n_stops]
658
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
659
+
660
+ local start = -105
661
+ local end = 105
662
+ local bin_l = 15
663
+ local var_het = "ihsbl_lynch"
664
+
665
+ g TRUMP_0 = 0
666
+ forval ii = 1/9 {
667
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
668
+ }
669
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
670
+ *
671
+
672
+ forval ii = 1(`bin_l')`end'{
673
+ local jj = `ii' + `bin_l' - 1
674
+ g TRUMP_POST_`ii'_`jj' = 0
675
+ forval ee = 1/9 {
676
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
677
+ }
678
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
679
+ }
680
+ g TRUMP_POST_M`end' = 0
681
+ forval ii = 1/9 {
682
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
683
+ }
684
+ *
685
+
686
+ forval ii = `start'(`bin_l')0 {
687
+ if `ii' < -`bin_l' {
688
+ local jj = abs(`ii')
689
+ local zz = `jj' - `bin_l' + 1
690
+ g TRUMP_PRE_`jj'_`zz' = 0
691
+ forval ee = 1/9 {
692
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
693
+ }
694
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
695
+ }
696
+ }
697
+ *
698
+
699
+ local jj = abs(`start')
700
+ g TRUMP_PRE_M`jj' = 0
701
+ forval ii = 1/9 {
702
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
703
+ }
704
+ *
705
+ g TRUMP_POST_M15 = 0
706
+ forval ii = 1/9 {
707
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
708
+ }
709
+
710
+ g TRUMP_PRE_M15 = 0
711
+ forval ii = 1/9 {
712
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
713
+ }
714
+
715
+ g TRUMP_POST_1_30 = 0
716
+ forval ii = 1/9 {
717
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
718
+ }
719
+
720
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
721
+
722
+ local temp = 1/`bin_l'
723
+ local bin_neg = abs(`start' * `temp')
724
+ local bin_pos = `end' * `temp'
725
+ local range = round(`bin_neg' + `bin_pos' + 3)
726
+
727
+ mat treat = J(`range',4,1)
728
+
729
+ local Nrange = `range' - 2
730
+
731
+ forval pos = 1/`Nrange' {
732
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
733
+ if `lag' > 0 {
734
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
735
+ }
736
+
737
+ local num = abs(`lag')
738
+
739
+ if `lag' == 0 {
740
+ mat treat[`pos',1] = 0
741
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
742
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
743
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
744
+ }
745
+ else if `lag' < -`bin_l' {
746
+ local num2 = `num' - `bin_l' + 1
747
+ local num1 = - `num'
748
+ mat treat[`pos',1] = `num1'
749
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
750
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
751
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
752
+ }
753
+ else if `lag' == -`bin_l' {
754
+ mat treat[`pos',1] = -`bin_l'
755
+ mat treat[`pos',2] = 0
756
+ mat treat[`pos',3] = 0
757
+ mat treat[`pos',4] = 0
758
+ }
759
+ else {
760
+ di "**"
761
+ di `lag'
762
+ di `pos'
763
+ local num2 = `num' + `bin_l' - 1
764
+ mat treat[`pos',1] = `num2'
765
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
766
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
767
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
768
+ }
769
+ }
770
+ local jj = abs(`start')
771
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
772
+ mat treat[`range'-1,2] = 0
773
+ mat treat[`range'-1,3] = 0
774
+ mat treat[`range'-1,4] = 0
775
+
776
+ mat treat[`range',1] = `end' + `bin_l' + 1
777
+ mat treat[`range',2] = 0
778
+ mat treat[`range',3] = 0
779
+ mat treat[`range',4] = 0
780
+
781
+
782
+ g yy = treat[_n,1] in 1/`range'
783
+ g eff = treat[_n,2] in 1/`range'
784
+ g eff_10 = treat[_n,3] in 1/`range'
785
+ g eff_90 = treat[_n,4] in 1/`range'
786
+ sort yy
787
+
788
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Lynchings") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
789
+ graph export "Results\FigureA13E.pdf", as(pdf) name("Graph") replace
790
+
791
+ ******************************************************************************************************************************************************************
792
+
793
+ use "Data\stoplevel_data.dta", clear
794
+
795
+ g n_stops = 1
796
+ replace black = black/100
797
+
798
+ collapse (sum) n_stops black (first) dist_event* racial_resent_a racial_resent_b alt_cottonsui ihsbl_lynch ihsbl_exec, by(county_fips day_id)
799
+
800
+ g black_ps = 100*black / n_stops
801
+
802
+ summ racial_resent_a [aweight=n_stops]
803
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
804
+
805
+ summ racial_resent_b [aweight=n_stops]
806
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
807
+
808
+ summ alt_cottonsui [aweight=n_stops]
809
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
810
+
811
+ su ihsbl_lynch [aweight=n_stops]
812
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
813
+
814
+ su ihsbl_exec [aweight=n_stops]
815
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
816
+
817
+ local start = -105
818
+ local end = 105
819
+ local bin_l = 15
820
+ local var_het = "ihsbl_exec"
821
+
822
+ g TRUMP_0 = 0
823
+ forval ii = 1/9 {
824
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
825
+ }
826
+ g INT_TRUMP_0 = TRUMP_0 * `var_het'
827
+ *
828
+
829
+ forval ii = 1(`bin_l')`end'{
830
+ local jj = `ii' + `bin_l' - 1
831
+ g TRUMP_POST_`ii'_`jj' = 0
832
+ forval ee = 1/9 {
833
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
834
+ }
835
+ g INT_TRUMP_POST_`ii'_`jj' = TRUMP_POST_`ii'_`jj' * `var_het'
836
+ }
837
+ g TRUMP_POST_M`end' = 0
838
+ forval ii = 1/9 {
839
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
840
+ }
841
+ *
842
+
843
+ forval ii = `start'(`bin_l')0 {
844
+ if `ii' < -`bin_l' {
845
+ local jj = abs(`ii')
846
+ local zz = `jj' - `bin_l' + 1
847
+ g TRUMP_PRE_`jj'_`zz' = 0
848
+ forval ee = 1/9 {
849
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
850
+ }
851
+ g INT_TRUMP_PRE_`jj'_`zz' = TRUMP_PRE_`jj'_`zz' * `var_het'
852
+ }
853
+ }
854
+ *
855
+
856
+ local jj = abs(`start')
857
+ g TRUMP_PRE_M`jj' = 0
858
+ forval ii = 1/9 {
859
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
860
+ }
861
+ *
862
+ g TRUMP_POST_M15 = 0
863
+ forval ii = 1/9 {
864
+ replace TRUMP_POST_M15 = 1 if (dist_event`ii' >15 & dist_event`ii'!=.)
865
+ }
866
+
867
+ g TRUMP_PRE_M15 = 0
868
+ forval ii = 1/9 {
869
+ replace TRUMP_PRE_M15 = 1 if (dist_event`ii' <-15 & dist_event`ii'!=.)
870
+ }
871
+
872
+ g TRUMP_POST_1_30 = 0
873
+ forval ii = 1/9 {
874
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
875
+ }
876
+
877
+ reghdfe black_ps 1.TRUMP_PRE_M15 1.TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M15 INT_* c.day_id#c.`var_het' [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
878
+
879
+ local temp = 1/`bin_l'
880
+ local bin_neg = abs(`start' * `temp')
881
+ local bin_pos = `end' * `temp'
882
+ local range = round(`bin_neg' + `bin_pos' + 3)
883
+
884
+ mat treat = J(`range',4,1)
885
+
886
+ local Nrange = `range' - 2
887
+
888
+ forval pos = 1/`Nrange' {
889
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
890
+ if `lag' > 0 {
891
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
892
+ }
893
+
894
+ local num = abs(`lag')
895
+
896
+ if `lag' == 0 {
897
+ mat treat[`pos',1] = 0
898
+ mat treat[`pos',2] = _b[INT_TRUMP_0]
899
+ mat treat[`pos',3] = _b[INT_TRUMP_0] + _se[INT_TRUMP_0]*invttail(e(N),0.05)
900
+ mat treat[`pos',4] = _b[INT_TRUMP_0] - _se[INT_TRUMP_0]*invttail(e(N),0.05)
901
+ }
902
+ else if `lag' < -`bin_l' {
903
+ local num2 = `num' - `bin_l' + 1
904
+ local num1 = - `num'
905
+ mat treat[`pos',1] = `num1'
906
+ mat treat[`pos',2] = _b[INT_TRUMP_PRE_`num'_`num2']
907
+ mat treat[`pos',3] = _b[INT_TRUMP_PRE_`num'_`num2'] + _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
908
+ mat treat[`pos',4] = _b[INT_TRUMP_PRE_`num'_`num2'] - _se[INT_TRUMP_PRE_`num'_`num2']*invttail(e(N),0.05)
909
+ }
910
+ else if `lag' == -`bin_l' {
911
+ mat treat[`pos',1] = -`bin_l'
912
+ mat treat[`pos',2] = 0
913
+ mat treat[`pos',3] = 0
914
+ mat treat[`pos',4] = 0
915
+ }
916
+ else {
917
+ di "**"
918
+ di `lag'
919
+ di `pos'
920
+ local num2 = `num' + `bin_l' - 1
921
+ mat treat[`pos',1] = `num2'
922
+ mat treat[`pos',2] = _b[INT_TRUMP_POST_`num'_`num2']
923
+ mat treat[`pos',3] = _b[INT_TRUMP_POST_`num'_`num2'] + _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
924
+ mat treat[`pos',4] = _b[INT_TRUMP_POST_`num'_`num2'] - _se[INT_TRUMP_POST_`num'_`num2']*invttail(e(N),0.05)
925
+ }
926
+ }
927
+ local jj = abs(`start')
928
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
929
+ mat treat[`range'-1,2] = 0
930
+ mat treat[`range'-1,3] = 0
931
+ mat treat[`range'-1,4] = 0
932
+
933
+ mat treat[`range',1] = `end' + `bin_l' + 1
934
+ mat treat[`range',2] = 0
935
+ mat treat[`range',3] = 0
936
+ mat treat[`range',4] = 0
937
+
938
+ g yy = treat[_n,1] in 1/`range'
939
+ g eff = treat[_n,2] in 1/`range'
940
+ g eff_10 = treat[_n,3] in 1/`range'
941
+ g eff_90 = treat[_n,4] in 1/`range'
942
+ sort yy
943
+
944
+
945
+ twoway (rcap eff_10 eff_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1) (scatter eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1)(line eff yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) graphregion(fcolor(white)) title("Executions") xtitle("Days From Trump") ytitle("Differential Trump Effect on Black Stops by") legend(order(1 "90% CI" 2 "Effect"))
946
+ graph export "Results\FigureA13F.pdf", as(pdf) name("Graph") replace
947
+
948
+
949
+
950
+
951
+
952
+
953
+
954
+
39/replication_package/Do/FigureA2.do ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A2
4
+ *** Impact of Trump Rallies on the Probability of a Black Stop: Event-study
5
+ *** Results Without County-specific Linear Trends
6
+ **********************************************************************
7
+
8
+ global start = -105
9
+ global end = 105
10
+ global bin_l = 15
11
+
12
+ use "Data\stoplevel_data.dta", clear
13
+
14
+ g n_stops = 1
15
+ foreach var of varlist black hispanic white api {
16
+ replace `var' = `var'/100
17
+ }
18
+
19
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
20
+
21
+ g black_ps = 100*black / n_stops
22
+ g hispanic_ps = 100*hispanic / n_stops
23
+ g white_ps = 100*white / n_stops
24
+ g asian_ps = 100*api / n_stops
25
+ g ln_stops = ln(n_stops)
26
+
27
+ g TRUMP_0 = 0
28
+ forval ii = 1/9 {
29
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
30
+ }
31
+
32
+ forval ii = 1($bin_l)$end{
33
+ local jj = `ii' + $bin_l - 1
34
+ g TRUMP_POST_`ii'_`jj' = 0
35
+ forval ee = 1/9 {
36
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
37
+ }
38
+ }
39
+
40
+ g TRUMP_POST_M$end = 0
41
+ forval ii = 1/9 {
42
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
43
+ }
44
+
45
+ forval ii = $start($bin_l)0 {
46
+ if `ii' < -$bin_l {
47
+ local jj = abs(`ii')
48
+ local zz = `jj' - $bin_l + 1
49
+ g TRUMP_PRE_`jj'_`zz' = 0
50
+ forval ee = 1/9 {
51
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
52
+ }
53
+ }
54
+ }
55
+
56
+ local jj = abs($start)
57
+ g TRUMP_PRE_M`jj' = 0
58
+ forval ii = 1/9 {
59
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
60
+ }
61
+
62
+ reghdfe black_ps 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
63
+
64
+ local temp = 1/$bin_l
65
+ local bin_neg = abs($start * `temp')
66
+ local bin_pos = $end * `temp'
67
+ local range = round(`bin_neg' + `bin_pos' + 3)
68
+
69
+ mat treat = J(`range',4,1)
70
+
71
+ local Nrange = `range' - 2
72
+
73
+ forval pos = 1/`Nrange' {
74
+ local lag = $start + $bin_l*`pos' - $bin_l
75
+ if `lag' > 0 {
76
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
77
+ }
78
+
79
+ local num = abs(`lag')
80
+
81
+ if `lag' == 0 {
82
+ mat treat[`pos',1] = 0
83
+ mat treat[`pos',2] = _b[1.TRUMP_0]
84
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
85
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
86
+ }
87
+ else if `lag' < -$bin_l {
88
+ local num2 = `num' - $bin_l + 1
89
+ local num1 = - `num'
90
+ mat treat[`pos',1] = `num1'
91
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
92
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
93
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
94
+ }
95
+ else if `lag' == -$bin_l {
96
+ mat treat[`pos',1] = -$bin_l
97
+ mat treat[`pos',2] = 0
98
+ mat treat[`pos',3] = 0
99
+ mat treat[`pos',4] = 0
100
+ }
101
+ else {
102
+ di "**"
103
+ di `lag'
104
+ di `pos'
105
+ local num2 = `num' + $bin_l - 1
106
+ mat treat[`pos',1] = `num2'
107
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
108
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
109
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
110
+ }
111
+ }
112
+ mat treat[`range'-1,1] = $start - $bin_l - 1
113
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
114
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
115
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
116
+
117
+ mat treat[`range',1] = $end + $bin_l + 1
118
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
119
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
120
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
121
+
122
+ g yy = treat[_n,1] in 1/`range'
123
+ g eff = treat[_n,2] in 1/`range'
124
+ g eff_5 = treat[_n,3] in 1/`range'
125
+ g eff_95 = treat[_n,4] in 1/`range'
126
+ sort yy
127
+
128
+ duplicates drop yy, force
129
+ keep eff eff_5 eff_95 yy
130
+
131
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-2(0.5)2) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Black Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
132
+ graph export "Results\figureA2.pdf", as(pdf) name("Graph") replace
133
+
39/replication_package/Do/FigureA3.do ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A3
4
+ *** Distribution of Weights of the Difference-in-Differences Estimator
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ g n_stops = 1
10
+ foreach var of varlist black hispanic white api {
11
+ replace `var' = `var'/100
12
+ }
13
+
14
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
15
+
16
+ egen county_id = group(county_fips)
17
+ g black_ps = black / n_stops
18
+ keep if year==2015 | year==2016 | year==2017
19
+
20
+ g TRUMP_0 = 0
21
+ forval ii = 1/9 {
22
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
23
+ }
24
+ *
25
+ g TRUMP_POST30 = 0
26
+ forval ii = 1/9 {
27
+ replace TRUMP_POST30 = 1 if (dist_event`ii' >= 1 & dist_event`ii'<=30 & dist_event`ii'!=.)
28
+ }
29
+ g TRUMP_PREM30 = 0
30
+ forval ii = 1/9 {
31
+ replace TRUMP_PREM30 = 1 if (dist_event`ii' < -30 & dist_event`ii'!=.)
32
+ }
33
+ g TRUMP_POSTM30 = 0
34
+ forval ii = 1/9 {
35
+ replace TRUMP_POSTM30 = 1 if (dist_event`ii' > 30 & dist_event`ii'!=.)
36
+ }
37
+
38
+ forval i = 1/1478 {
39
+ g trend_`i' = (county_id==`i') * day_id
40
+ }
41
+ twowayfeweights black_ps county_id day_id TRUMP_POST30, type(feTR) controls(TRUMP_PREM30 TRUMP_0 TRUMP_POSTM30 trend_*) path("Results\weights_u")
42
+
43
+ use "Results\weights_u",clear
44
+ hist weight if weight!=0, graphregion(color(white)) bin(50) percent graphregion(color(white)) scheme(s1mono)
45
+ graph export "Results\figureA3A.pdf", as(pdf) name("Graph") replace
46
+
47
+ ***
48
+ use "Data\stoplevel_data.dta", clear
49
+
50
+ g n_stops = 1
51
+ foreach var of varlist black hispanic white api {
52
+ replace `var' = `var'/100
53
+ }
54
+
55
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
56
+
57
+ g black_ps = black / n_stops
58
+ keep if year==2015 | year==2016 | year==2017
59
+
60
+ egen county_id = group(county_fips)
61
+
62
+ g TRUMP_0 = 0
63
+ forval ii = 1/9 {
64
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
65
+ }
66
+ *
67
+ g TRUMP_POST30 = 0
68
+ forval ii = 1/9 {
69
+ replace TRUMP_POST30 = 1 if (dist_event`ii' >= 1 & dist_event`ii'<=30 & dist_event`ii'!=.)
70
+ }
71
+ g TRUMP_PREM30 = 0
72
+ forval ii = 1/9 {
73
+ replace TRUMP_PREM30 = 1 if (dist_event`ii' < -30 & dist_event`ii'!=.)
74
+ }
75
+ g TRUMP_POSTM30 = 0
76
+ forval ii = 1/9 {
77
+ replace TRUMP_POSTM30 = 1 if (dist_event`ii' > 30 & dist_event`ii'!=.)
78
+ }
79
+
80
+ forval i = 1/1478 {
81
+ g trend_`i' = (county_id==`i') * day_id
82
+ }
83
+ twowayfeweights black_ps county_id day_id TRUMP_POST30, type(feTR) controls(TRUMP_PREM30 TRUMP_0 TRUMP_POSTM30 trend_*) weight(n_stops) path("Results\weights_w")
84
+
85
+ use "Results\weights_w",clear
86
+ hist weight if weight!=0 & weight<0.0005, graphregion(color(white)) bin(50) percent graphregion(color(white)) scheme(s1mono)
87
+ graph export "Results\figureA3B.pdf", as(pdf) name("Graph") replace
39/replication_package/Do/FigureA4.do ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ **********************************************************************
4
+ *** FIGURE A4
5
+ *** Distribution of the Difference-in-Differences Effects
6
+ **********************************************************************
7
+
8
+ use "Data\county_day_data.dta", clear
9
+
10
+ keep if year==2015 | year==2016 | year==2017
11
+
12
+ rename TRUMP_POST_1_30 TRUMP_POST30
13
+ rename TRUMP_PRE_M30 TRUMP_PREM30
14
+ rename TRUMP_POST_M30 TRUMP_POSTM30
15
+
16
+ ***number of counties 1,478
17
+ qui: {
18
+ forval ii = 1/1478 {
19
+ su n_stops if county_id==`ii' & TRUMP_POST30==1
20
+ if r(N) != 0 {
21
+ total n_stops if county_id==`ii' & TRUMP_POST30==1
22
+ global stops`ii' = _b[n_stops]
23
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
24
+ }
25
+ }
26
+ }
27
+ **I drop the first for collinearity
28
+ drop TREATED_COUNTY_9
29
+
30
+ reghdfe black_ps 1.TRUMP_POST30 1.TRUMP_POST30#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_PREM30 TRUMP_0 TRUMP_POSTM30) cluster(county_id day_id)
31
+
32
+ mat treat = 999* J(1478,2,1)
33
+
34
+ local numerator = 0
35
+ local denominator = 0
36
+ forval ii = 1/1478 {
37
+ qui: su n_stops if county_id==`ii' & TRUMP_POST30==1
38
+ if r(N) != 0 {
39
+ if `ii' == 9{
40
+ mat treat[`ii',1] = (_b[1.TRUMP_POST30])
41
+ mat treat[`ii',2] = (${stops`ii'})
42
+ local numerator = `numerator' + ((_b[1.TRUMP_POST30]) * ${stops`ii'})
43
+ local denominator = `denominator' + ${stops`ii'}
44
+ }
45
+ else {
46
+ mat treat[`ii',1] = (_b[1.TRUMP_POST30] + _b[1.TRUMP_POST30#1.TREATED_COUNTY_`ii'])
47
+ mat treat[`ii',2] = (${stops`ii'})
48
+ local numerator = `numerator' + ((_b[1.TRUMP_POST30] + _b[1.TRUMP_POST30#1.TREATED_COUNTY_`ii']) * ${stops`ii'})
49
+ local denominator = `denominator' + ${stops`ii'}
50
+ }
51
+ }
52
+ }
53
+
54
+ local effect = `numerator' / `denominator'
55
+
56
+ di `effect'
57
+
58
+ g yy = treat[_n,1] in 1/1478
59
+ g ww = treat[_n,2] in 1/1478
60
+ replace yy = . if yy==999
61
+ replace ww = . if ww==999
62
+
63
+ graph twoway (hist yy [fweight=ww] if yy>-10 & yy<10, frac xtitle("Treatment Effects")) (scatteri 0 1.053357 0.2 1.053357, recast(line) lw(0.5)), legend(label(1 "Distribution Effects") label(2 "Average Effect")) graphregion(color(white)) scheme(s1mono)
64
+ graph export "Results\figureA4.pdf", as(pdf) name("Graph") replace
65
+
66
+ keep yy ww
67
+ drop if yy==.
68
+ save "Results\SA.dta", replace
69
+
39/replication_package/Do/FigureA5.do ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A5
4
+ *** Impact of Trump Rallies on the Probability of a Black Stop: Event-study
5
+ *** Results Corrected using Sun and Abraham (2021) Methodology
6
+ **********************************************************************
7
+ qui: do "Do\preparing_abrahamsun_es.do"
8
+
9
+ use "Results\SA_TRUMP_POST_1_15.dta", clear
10
+ g x = 15
11
+
12
+ append using "Results\SA_TRUMP_POST_16_30.dta"
13
+ replace x = 30 if _n == _N
14
+
15
+ append using "Results\SA_TRUMP_POST_31_45.dta"
16
+ replace x = 45 if _n == _N
17
+
18
+ append using "Results\SA_TRUMP_POST_46_60.dta"
19
+ replace x = 60 if _n == _N
20
+
21
+ append using "Results\SA_TRUMP_POST_61_75.dta"
22
+ replace x = 75 if _n == _N
23
+
24
+ append using "Results\SA_TRUMP_POST_76_90.dta"
25
+ replace x = 90 if _n == _N
26
+
27
+ append using "Results\SA_TRUMP_POST_91_105.dta"
28
+ replace x = 105 if _n == _N
29
+
30
+ append using "Results\SA_TRUMP_0.dta"
31
+ replace x = 0 if _n == _N
32
+
33
+ set obs `=_N+1'
34
+ replace x = -15 if _n == _N
35
+ replace beta = 0 if _n == _N
36
+ replace CI_lb = . if _n == _N
37
+ replace CI_ub = . if _n == _N
38
+
39
+ append using "Results\SA_TRUMP_PRE_30_16.dta"
40
+ replace x = -30 if _n == _N
41
+
42
+ append using "Results\SA_TRUMP_PRE_45_31.dta"
43
+ replace x = -45 if _n == _N
44
+
45
+ append using "Results\SA_TRUMP_PRE_60_46.dta"
46
+ replace x = -60 if _n == _N
47
+
48
+ append using "Results\SA_TRUMP_PRE_75_61.dta"
49
+ replace x = -75 if _n == _N
50
+
51
+ append using "Results\SA_TRUMP_PRE_90_76.dta"
52
+ replace x = -90 if _n == _N
53
+
54
+ append using "Results\SA_TRUMP_PRE_105_91.dta"
55
+ replace x = -105 if _n == _N
56
+
57
+ sort x
58
+ replace CI_lb = CI_lb * 100
59
+ replace CI_ub = CI_ub * 100
60
+ replace beta = beta * 100
61
+
62
+ twoway (rcap CI_lb CI_ub x) (scatter beta x)(line beta x, xline(0,lp(-)) yline(0,lc(red) lp(-))) , ylabel(-2(0.5)2.5) xtitle("Days From Trump") ytitle("Effect on Stops") legend(order(1 "95% confidence interval" 2 "Effect")) graphregion(fcolor(white))
63
+ graph export "Results\FigureA5A.pdf", as(pdf) name("Graph") replace
64
+
65
+ ***
66
+ use "Results\SA_TRUMP_POST_1_15_NT.dta", clear
67
+ g x = 15
68
+
69
+ append using "Results\SA_TRUMP_POST_16_30_NT.dta"
70
+ replace x = 30 if _n == _N
71
+
72
+ append using "Results\SA_TRUMP_POST_31_45_NT.dta"
73
+ replace x = 45 if _n == _N
74
+
75
+ append using "Results\SA_TRUMP_POST_46_60_NT.dta"
76
+ replace x = 60 if _n == _N
77
+
78
+ append using "Results\SA_TRUMP_POST_61_75_NT.dta"
79
+ replace x = 75 if _n == _N
80
+
81
+ append using "Results\SA_TRUMP_POST_76_90_NT.dta"
82
+ replace x = 90 if _n == _N
83
+
84
+ append using "Results\SA_TRUMP_POST_91_105_NT.dta"
85
+ replace x = 105 if _n == _N
86
+
87
+ append using "Results\SA_TRUMP_0_NT.dta"
88
+ replace x = 0 if _n == _N
89
+
90
+ set obs `=_N+1'
91
+ replace x = -15 if _n == _N
92
+ replace beta = 0 if _n == _N
93
+ replace CI_lb = . if _n == _N
94
+ replace CI_ub = . if _n == _N
95
+
96
+ append using "Results\SA_TRUMP_PRE_30_16_NT.dta"
97
+ replace x = -30 if _n == _N
98
+
99
+ append using "Results\SA_TRUMP_PRE_45_31_NT.dta"
100
+ replace x = -45 if _n == _N
101
+
102
+ append using "Results\SA_TRUMP_PRE_60_46_NT.dta"
103
+ replace x = -60 if _n == _N
104
+
105
+ append using "Results\SA_TRUMP_PRE_75_61_NT.dta"
106
+ replace x = -75 if _n == _N
107
+
108
+ append using "Results\SA_TRUMP_PRE_90_76_NT.dta"
109
+ replace x = -90 if _n == _N
110
+
111
+ append using "Results\SA_TRUMP_PRE_105_91_NT.dta"
112
+ replace x = -105 if _n == _N
113
+
114
+ sort x
115
+ replace CI_lb = CI_lb * 100
116
+ replace CI_ub = CI_ub * 100
117
+ replace beta = beta * 100
118
+
119
+ twoway (rcap CI_lb CI_ub x) (scatter beta x)(line beta x, xline(0,lp(-)) yline(0,lc(red) lp(-))) , ylabel(-2(0.5)2.5) xtitle("Days From Trump") ytitle("Effect on Stops") legend(order(1 "95% confidence interval" 2 "Effect")) graphregion(fcolor(white))
120
+ graph export "Results\FigureA5B.pdf", as(pdf) name("Graph") replace
39/replication_package/Do/FigureA6.do ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A6
4
+ *** Permutation Inference
5
+ **********************************************************************
6
+
7
+ use "Data\county_day_data.dta", clear
8
+
9
+ keep if year==2015 | year==2016 | year==2017
10
+ drop year TRUMP_*
11
+
12
+ ***number of counties 1,478
13
+ ***number of rallies 196
14
+ g FAKE_EFFECT = .
15
+ forval iter = 1/1000 {
16
+ di "ITERATION " `iter'
17
+ qui: {
18
+ g random_date = floor(runiform(20256,20765))
19
+ g random_order = runiform()
20
+ g random_county = floor(runiform(1,1479))
21
+ sort random_order
22
+
23
+ g FAKE_event_day_Trump_1 = .
24
+ g FAKE_event_day_Trump_2 = .
25
+ g FAKE_event_day_Trump_3 = .
26
+ g FAKE_event_day_Trump_4 = .
27
+ g FAKE_event_day_Trump_5 = .
28
+ g FAKE_event_day_Trump_6 = .
29
+ g FAKE_event_day_Trump_7 = .
30
+ g FAKE_event_day_Trump_8 = .
31
+ g FAKE_event_day_Trump_9 = .
32
+
33
+ forval ii=1/196 {
34
+ local completed = 0
35
+ local counter = 1
36
+ while `completed' == 0 {
37
+
38
+ su FAKE_event_day_Trump_`counter' if county_id == random_county[`ii']
39
+
40
+ if r(N) == 0 {
41
+ replace FAKE_event_day_Trump_`counter' = random_date[`ii'] if county_id==random_county[`ii']
42
+ local completed = 1
43
+ }
44
+ else {
45
+ local counter = `counter' + 1
46
+ }
47
+ }
48
+ }
49
+
50
+
51
+ forval ii = 1/9 {
52
+ g dist_event`ii' = day_id - FAKE_event_day_Trump_`ii'
53
+ }
54
+
55
+ g TRUMP_0 = 0
56
+ forval ii = 1/9 {
57
+ replace TRUMP_0 = 1 if dist_event`ii' == 0 & dist_event`ii'!=.
58
+ }
59
+ *
60
+
61
+ g TRUMP_POST_1_30 = 0
62
+ forval ii = 1/9 {
63
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
64
+ }
65
+
66
+
67
+ g TRUMP_POST_M30 = 0
68
+ forval ii = 1/9 {
69
+ replace TRUMP_POST_M30 = 1 if (dist_event`ii' >30 & dist_event`ii'!=.)
70
+ }
71
+
72
+ g TRUMP_PRE_M30 = 0
73
+ forval ii = 1/9 {
74
+ replace TRUMP_PRE_M30 = 1 if (dist_event`ii' <-30 & dist_event`ii'!=.)
75
+ }
76
+
77
+ reghdfe black_ps 1.TRUMP_* [w=n_stops], a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
78
+ replace FAKE_EFFECT = _b[1.TRUMP_POST_1_30] in `iter'
79
+
80
+ drop FAKE_event_day_Trump_* random_* dist_event* TRUMP_*
81
+ }
82
+ }
83
+
84
+ drop if FAKE_EFFECT == .
85
+
86
+ hist FAKE_EFFECT if FAKE_EFFECT>-1.5 & FAKE_EFFECT<2, xline(1.07, lwidth(1)) percent xtitle("Coefficient on Fake Trump Rally") xlabel(-1.5(0.5)2) graphregion(color(white)) scheme(s1mono)
87
+ graph export "Results\FigureA6.pdf", as(pdf) name("Graph") replace
39/replication_package/Do/FigureA7.do ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A7
4
+ *** Impact of Trump Rallies on the Relative Probability of Stop With Respect to Whites: Event-study Results
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ g n_stops = 1
10
+ foreach var of varlist black hispanic white api {
11
+ replace `var' = `var'/100
12
+ }
13
+
14
+ collapse (first) year dist* (sum) n_stops black hispanic white api, by(county_fips day_id subject_race)
15
+
16
+ g stops = black + hispanic + white + api
17
+
18
+ drop n_stops
19
+ bysort day_id county_fips: egen n_stops = total(stops)
20
+
21
+ drop if subject_race == 4
22
+
23
+ g prob_stop_race = black / n_stops if subject_race == 2
24
+ replace prob_stop_race = hispanic / n_stops if subject_race == 3
25
+ replace prob_stop_race = api / n_stops if subject_race == 1
26
+
27
+ rename black black_stops
28
+ rename hispanic hispanic_stop
29
+ rename api asian_stop
30
+
31
+ g black = (subject_race == 2)
32
+ g hispanic = (subject_race == 3)
33
+ g asian = (subject_race == 1)
34
+
35
+ local start = -105
36
+ local end = 105
37
+ local bin_l = 15
38
+
39
+ g TRUMP_0 = 0
40
+ forval ii = 1/9 {
41
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
42
+ }
43
+
44
+ forval ii = 1(`bin_l')`end'{
45
+ local jj = `ii' + `bin_l' - 1
46
+ g TRUMP_POST_`ii'_`jj' = 0
47
+ forval ee = 1/9 {
48
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
49
+ }
50
+ }
51
+ g TRUMP_POST_M`end' = 0
52
+ forval ii = 1/9 {
53
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
54
+ }
55
+ *
56
+
57
+ forval ii = `start'(`bin_l')0 {
58
+ if `ii' < -`bin_l' {
59
+ local jj = abs(`ii')
60
+ local zz = `jj' - `bin_l' + 1
61
+ g TRUMP_PRE_`jj'_`zz' = 0
62
+ forval ee = 1/9 {
63
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
64
+ }
65
+ }
66
+ }
67
+ *
68
+ local jj = abs(`start')
69
+ g TRUMP_PRE_M`jj' = 0
70
+ forval ii = 1/9 {
71
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
72
+ }
73
+
74
+ reghdfe prob_stop_race 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.TRUMP_PRE_*#1.black 1.TRUMP_0#1.black 1.TRUMP_POST_*#1.black 1.TRUMP_PRE_*#1.asian 1.TRUMP_0#1.asian 1.TRUMP_POST_*#1.asian [w=n_stops], a(i.county_fips##i.black i.county_fips##i.asian i.day_id##i.black i.day_id##i.asian i.county_fips#c.day_id i.black#i.county_fips#c.day_id i.asian#i.county_fips#c.day_id) cluster(county_fips day_id )
75
+
76
+ local temp = 1/`bin_l'
77
+ local bin_neg = abs(`start' * `temp')
78
+ local bin_pos = `end' * `temp'
79
+ local range = round(`bin_neg' + `bin_pos' + 3)
80
+
81
+ mat treat = J(`range',10,1)
82
+
83
+ local Nrange = `range' - 2
84
+
85
+ forval pos = 1/`Nrange' {
86
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
87
+ if `lag' > 0 {
88
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
89
+ }
90
+
91
+ local num = abs(`lag')
92
+
93
+ if `lag' == 0 {
94
+ mat treat[`pos',1] = 0
95
+ mat treat[`pos',2] = _b[1.TRUMP_0]
96
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
97
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
98
+
99
+
100
+ lincom _b[1.TRUMP_0#1.black] + _b[1.TRUMP_0]
101
+ mat treat[`pos',5] = r(estimate)
102
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
103
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
104
+
105
+ lincom _b[1.TRUMP_0#1.asian] + _b[1.TRUMP_0]
106
+ mat treat[`pos',8] = r(estimate)
107
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
108
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
109
+ }
110
+ else if `lag' < -`bin_l' {
111
+ local num2 = `num' - `bin_l' + 1
112
+ local num1 = - `num'
113
+ mat treat[`pos',1] = `num1'
114
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
115
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
116
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
117
+
118
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.black] + _b[1.TRUMP_PRE_`num'_`num2']
119
+ mat treat[`pos',5] = r(estimate)
120
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
121
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
122
+
123
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.asian] + _b[1.TRUMP_PRE_`num'_`num2']
124
+ mat treat[`pos',8] = r(estimate)
125
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
126
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
127
+ }
128
+ else if `lag' == -`bin_l' {
129
+ mat treat[`pos',1] = -`bin_l'
130
+ mat treat[`pos',2] = 0
131
+ mat treat[`pos',3] = 0
132
+ mat treat[`pos',4] = 0
133
+
134
+ mat treat[`pos',5] = 0
135
+ mat treat[`pos',6] = 0
136
+ mat treat[`pos',7] = 0
137
+
138
+ mat treat[`pos',8] = 0
139
+ mat treat[`pos',9] = 0
140
+ mat treat[`pos',10] = 0
141
+ }
142
+ else {
143
+ di "**"
144
+ di `lag'
145
+ di `pos'
146
+ local num2 = `num' + `bin_l' - 1
147
+ mat treat[`pos',1] = `num2'
148
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
149
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
150
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
151
+
152
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.black] + _b[1.TRUMP_POST_`num'_`num2']
153
+ mat treat[`pos',5] = r(estimate)
154
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
155
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
156
+
157
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.asian] + _b[1.TRUMP_POST_`num'_`num2']
158
+ mat treat[`pos',8] = r(estimate)
159
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
160
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
161
+ }
162
+ }
163
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
164
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
165
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
166
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
167
+
168
+ lincom _b[1.TRUMP_PRE_M`jj'#1.black] + _b[1.TRUMP_PRE_M`jj']
169
+ mat treat[`range'-1,5] = r(estimate)
170
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.025)
171
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.025)
172
+
173
+ lincom _b[1.TRUMP_PRE_M`jj'#1.asian] + _b[1.TRUMP_PRE_M`jj']
174
+ mat treat[`range'-1,8] = r(estimate)
175
+ mat treat[`range'-1,9] = r(estimate) + r(se)*invttail(e(N),0.025)
176
+ mat treat[`range'-1,10] = r(estimate) - r(se)*invttail(e(N),0.025)
177
+
178
+
179
+ mat treat[`range',1] = `end' + `bin_l' + 1
180
+ mat treat[`range',2] = _b[1.TRUMP_POST_M`end']
181
+ mat treat[`range',3] = _b[1.TRUMP_POST_M`end'] + _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
182
+ mat treat[`range',4] = _b[1.TRUMP_POST_M`end'] - _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
183
+
184
+ lincom _b[1.TRUMP_POST_M`end'#1.black] + _b[1.TRUMP_POST_M`end']
185
+ mat treat[`range',5] = r(estimate)
186
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.025)
187
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.025)
188
+
189
+ lincom _b[1.TRUMP_POST_M`end'#1.asian] + _b[1.TRUMP_POST_M`end']
190
+ mat treat[`range',8] = r(estimate)
191
+ mat treat[`range',9] = r(estimate) + r(se)*invttail(e(N),0.025)
192
+ mat treat[`range',10] = r(estimate) - r(se)*invttail(e(N),0.025)
193
+
194
+
195
+ g yy = treat[_n,1] in 1/`range'
196
+ g eff_hisp = treat[_n,2] in 1/`range'
197
+ g eff_hisp_10 = treat[_n,3] in 1/`range'
198
+ g eff_hisp_90 = treat[_n,4] in 1/`range'
199
+ g eff_bl = treat[_n,5] in 1/`range'
200
+ g eff_bl_10 = treat[_n,6] in 1/`range'
201
+ g eff_bl_90 = treat[_n,7] in 1/`range'
202
+ g eff_as = treat[_n,8] in 1/`range'
203
+ g eff_as_10 = treat[_n,9] in 1/`range'
204
+ g eff_as_90 = treat[_n,10] in 1/`range'
205
+ sort yy
206
+
207
+ *keep if yy>`start'-1 & yy<`end'+1
208
+ duplicates drop yy, force
209
+ keep eff_* eff_*_10 eff_*_90 yy
210
+
211
+ twoway (rcap eff_hisp_10 eff_hisp_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) ) (scatter eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(green) msymbol(triangle)) (line eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanics") legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(hisp,replace)
212
+ graph export "Results\FigureA7A.pdf", as(pdf) replace
213
+
214
+
215
+ twoway (rcap eff_bl_10 eff_bl_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Blacks") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(black,replace)
216
+ graph export "Results\FigureA7B.pdf", as(pdf) replace
217
+
218
+ twoway (rcap eff_as_10 eff_as_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(red)) (scatter eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(red)) (line eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(red) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on APIs") legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(asian,replace)
219
+ graph export "Results\FigureA7C.pdf", as(pdf) replace
220
+
221
+
222
+ ****************************************************************************************************************************************
223
+
224
+ use "Data\stoplevel_data.dta", clear
225
+
226
+ g n_stops = 1
227
+ foreach var of varlist black hispanic white api {
228
+ replace `var' = `var'/100
229
+ }
230
+
231
+ collapse (first) year dist* (sum) n_stops black hispanic white api, by(county_fips day_id subject_race)
232
+
233
+ g stops = black + hispanic + white + api
234
+
235
+ drop n_stops
236
+ bysort day_id county_fips: egen n_stops = total(stops)
237
+
238
+ drop if subject_race == 4
239
+
240
+ g prob_stop_race = black / n_stops if subject_race == 2
241
+ replace prob_stop_race = hispanic / n_stops if subject_race == 3
242
+ replace prob_stop_race = api / n_stops if subject_race == 1
243
+
244
+ rename black black_stops
245
+ rename hispanic hispanic_stop
246
+ rename api asian_stop
247
+
248
+ g black = (subject_race == 2)
249
+ g hispanic = (subject_race == 3)
250
+ g asian = (subject_race == 1)
251
+
252
+ local start = -105
253
+ local end = 105
254
+ local bin_l = 15
255
+
256
+ g TRUMP_0 = 0
257
+ forval ii = 1/9 {
258
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
259
+ }
260
+
261
+ forval ii = 1(`bin_l')`end'{
262
+ local jj = `ii' + `bin_l' - 1
263
+ g TRUMP_POST_`ii'_`jj' = 0
264
+ forval ee = 1/9 {
265
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
266
+ }
267
+ }
268
+ g TRUMP_POST_M`end' = 0
269
+ forval ii = 1/9 {
270
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
271
+ }
272
+ *
273
+
274
+ forval ii = `start'(`bin_l')0 {
275
+ if `ii' < -`bin_l' {
276
+ local jj = abs(`ii')
277
+ local zz = `jj' - `bin_l' + 1
278
+ g TRUMP_PRE_`jj'_`zz' = 0
279
+ forval ee = 1/9 {
280
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
281
+ }
282
+ }
283
+ }
284
+ *
285
+ local jj = abs(`start')
286
+ g TRUMP_PRE_M`jj' = 0
287
+ forval ii = 1/9 {
288
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
289
+ }
290
+
291
+ reghdfe prob_stop_race 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.TRUMP_PRE_*#1.black 1.TRUMP_0#1.black 1.TRUMP_POST_*#1.black 1.TRUMP_PRE_*#1.asian 1.TRUMP_0#1.asian 1.TRUMP_POST_*#1.asian [w=n_stops], a(i.county_fips##i.black i.county_fips##i.asian i.day_id##i.black i.day_id##i.asian) cluster(county_fips day_id)
292
+
293
+
294
+ local temp = 1/`bin_l'
295
+ local bin_neg = abs(`start' * `temp')
296
+ local bin_pos = `end' * `temp'
297
+ local range = round(`bin_neg' + `bin_pos' + 3)
298
+
299
+ mat treat = J(`range',10,1)
300
+
301
+ local Nrange = `range' - 2
302
+
303
+ forval pos = 1/`Nrange' {
304
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
305
+ if `lag' > 0 {
306
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
307
+ }
308
+
309
+ local num = abs(`lag')
310
+
311
+ if `lag' == 0 {
312
+ mat treat[`pos',1] = 0
313
+ mat treat[`pos',2] = _b[1.TRUMP_0]
314
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
315
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
316
+
317
+
318
+ lincom _b[1.TRUMP_0#1.black] + _b[1.TRUMP_0]
319
+ mat treat[`pos',5] = r(estimate)
320
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
321
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
322
+
323
+ lincom _b[1.TRUMP_0#1.asian] + _b[1.TRUMP_0]
324
+ mat treat[`pos',8] = r(estimate)
325
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
326
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
327
+ }
328
+ else if `lag' < -`bin_l' {
329
+ local num2 = `num' - `bin_l' + 1
330
+ local num1 = - `num'
331
+ mat treat[`pos',1] = `num1'
332
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
333
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
334
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
335
+
336
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.black] + _b[1.TRUMP_PRE_`num'_`num2']
337
+ mat treat[`pos',5] = r(estimate)
338
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
339
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
340
+
341
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.asian] + _b[1.TRUMP_PRE_`num'_`num2']
342
+ mat treat[`pos',8] = r(estimate)
343
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
344
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
345
+ }
346
+ else if `lag' == -`bin_l' {
347
+ mat treat[`pos',1] = -`bin_l'
348
+ mat treat[`pos',2] = 0
349
+ mat treat[`pos',3] = 0
350
+ mat treat[`pos',4] = 0
351
+
352
+ mat treat[`pos',5] = 0
353
+ mat treat[`pos',6] = 0
354
+ mat treat[`pos',7] = 0
355
+
356
+ mat treat[`pos',8] = 0
357
+ mat treat[`pos',9] = 0
358
+ mat treat[`pos',10] = 0
359
+ }
360
+ else {
361
+ di "**"
362
+ di `lag'
363
+ di `pos'
364
+ local num2 = `num' + `bin_l' - 1
365
+ mat treat[`pos',1] = `num2'
366
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
367
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
368
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
369
+
370
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.black] + _b[1.TRUMP_POST_`num'_`num2']
371
+ mat treat[`pos',5] = r(estimate)
372
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
373
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
374
+
375
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.asian] + _b[1.TRUMP_POST_`num'_`num2']
376
+ mat treat[`pos',8] = r(estimate)
377
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
378
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
379
+ }
380
+ }
381
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
382
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
383
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
384
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
385
+
386
+ lincom _b[1.TRUMP_PRE_M`jj'#1.black] + _b[1.TRUMP_PRE_M`jj']
387
+ mat treat[`range'-1,5] = r(estimate)
388
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.025)
389
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.025)
390
+
391
+ lincom _b[1.TRUMP_PRE_M`jj'#1.asian] + _b[1.TRUMP_PRE_M`jj']
392
+ mat treat[`range'-1,8] = r(estimate)
393
+ mat treat[`range'-1,9] = r(estimate) + r(se)*invttail(e(N),0.025)
394
+ mat treat[`range'-1,10] = r(estimate) - r(se)*invttail(e(N),0.025)
395
+
396
+
397
+ mat treat[`range',1] = `end' + `bin_l' + 1
398
+ mat treat[`range',2] = _b[1.TRUMP_POST_M`end']
399
+ mat treat[`range',3] = _b[1.TRUMP_POST_M`end'] + _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
400
+ mat treat[`range',4] = _b[1.TRUMP_POST_M`end'] - _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
401
+
402
+ lincom _b[1.TRUMP_POST_M`end'#1.black] + _b[1.TRUMP_POST_M`end']
403
+ mat treat[`range',5] = r(estimate)
404
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.025)
405
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.025)
406
+
407
+ lincom _b[1.TRUMP_POST_M`end'#1.asian] + _b[1.TRUMP_POST_M`end']
408
+ mat treat[`range',8] = r(estimate)
409
+ mat treat[`range',9] = r(estimate) + r(se)*invttail(e(N),0.025)
410
+ mat treat[`range',10] = r(estimate) - r(se)*invttail(e(N),0.025)
411
+
412
+
413
+ g yy = treat[_n,1] in 1/`range'
414
+ g eff_hisp = treat[_n,2] in 1/`range'
415
+ g eff_hisp_10 = treat[_n,3] in 1/`range'
416
+ g eff_hisp_90 = treat[_n,4] in 1/`range'
417
+ g eff_bl = treat[_n,5] in 1/`range'
418
+ g eff_bl_10 = treat[_n,6] in 1/`range'
419
+ g eff_bl_90 = treat[_n,7] in 1/`range'
420
+ g eff_as = treat[_n,8] in 1/`range'
421
+ g eff_as_10 = treat[_n,9] in 1/`range'
422
+ g eff_as_90 = treat[_n,10] in 1/`range'
423
+ sort yy
424
+
425
+ *keep if yy>`start'-1 & yy<`end'+1
426
+ duplicates drop yy, force
427
+ keep eff_* eff_*_10 eff_*_90 yy
428
+
429
+ twoway (rcap eff_hisp_10 eff_hisp_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) ) (scatter eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(green) msymbol(triangle)) (line eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanics") legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(hisp,replace)
430
+ graph export "Results\FigureA7D.pdf", as(pdf) replace
431
+
432
+
433
+ twoway (rcap eff_bl_10 eff_bl_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Blacks") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(black,replace)
434
+ graph export "Results\FigureA7E.pdf", as(pdf) replace
435
+
436
+ twoway (rcap eff_as_10 eff_as_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(red)) (scatter eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(red)) (line eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(red) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on APIs") legend(off) xlabel(-105(15)105) ylabel(-0.01(0.005)0.025) saving(asian,replace)
437
+ graph export "Results\FigureA7F.pdf", as(pdf) replace
39/replication_package/Do/FigureA8.do ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A8
4
+ *** Impact of Trump Rallies on the Number of Stops With Respect to Whites: Event-study Results
5
+ **********************************************************************
6
+
7
+ use "Data\countydayrace_data.dta", clear
8
+
9
+ drop TRUMP*
10
+
11
+ local start = -105
12
+ local end = 105
13
+ local bin_l = 15
14
+
15
+ g TRUMP_0 = 0
16
+ forval ii = 1/9 {
17
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
18
+ }
19
+
20
+ forval ii = 1(`bin_l')`end'{
21
+ local jj = `ii' + `bin_l' - 1
22
+ g TRUMP_POST_`ii'_`jj' = 0
23
+ forval ee = 1/9 {
24
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
25
+ }
26
+ }
27
+ g TRUMP_POST_M`end' = 0
28
+ forval ii = 1/9 {
29
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
30
+ }
31
+ *
32
+
33
+ forval ii = `start'(`bin_l')0 {
34
+ if `ii' < -`bin_l' {
35
+ local jj = abs(`ii')
36
+ local zz = `jj' - `bin_l' + 1
37
+ g TRUMP_PRE_`jj'_`zz' = 0
38
+ forval ee = 1/9 {
39
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
40
+ }
41
+ }
42
+ }
43
+ *
44
+ local jj = abs(`start')
45
+ g TRUMP_PRE_M`jj' = 0
46
+ forval ii = 1/9 {
47
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
48
+ }
49
+
50
+ reghdfe ihs_stop_race 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.TRUMP_PRE_*#1.black 1.TRUMP_0#1.black 1.TRUMP_POST_*#1.black 1.TRUMP_PRE_*#1.asian 1.TRUMP_0#1.asian 1.TRUMP_POST_*#1.asian ihs_stops [w=n_stops], a(i.county_id##i.black i.county_id##i.asian i.day_id##i.black i.day_id##i.asian i.county_id#c.day_id i.black#i.county_id#c.day_id i.asian#i.county_id#c.day_id) cluster(county_id day_id )
51
+
52
+ local temp = 1/`bin_l'
53
+ local bin_neg = abs(`start' * `temp')
54
+ local bin_pos = `end' * `temp'
55
+ local range = round(`bin_neg' + `bin_pos' + 3)
56
+
57
+ mat treat = J(`range',10,1)
58
+
59
+ local Nrange = `range' - 2
60
+
61
+ forval pos = 1/`Nrange' {
62
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
63
+ if `lag' > 0 {
64
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
65
+ }
66
+
67
+ local num = abs(`lag')
68
+
69
+ if `lag' == 0 {
70
+ mat treat[`pos',1] = 0
71
+ mat treat[`pos',2] = _b[1.TRUMP_0]
72
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
73
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
74
+
75
+
76
+ lincom _b[1.TRUMP_0#1.black] + _b[1.TRUMP_0]
77
+ mat treat[`pos',5] = r(estimate)
78
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
79
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
80
+
81
+ lincom _b[1.TRUMP_0#1.asian] + _b[1.TRUMP_0]
82
+ mat treat[`pos',8] = r(estimate)
83
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
84
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
85
+ }
86
+ else if `lag' < -`bin_l' {
87
+ local num2 = `num' - `bin_l' + 1
88
+ local num1 = - `num'
89
+ mat treat[`pos',1] = `num1'
90
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
91
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
92
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
93
+
94
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.black] + _b[1.TRUMP_PRE_`num'_`num2']
95
+ mat treat[`pos',5] = r(estimate)
96
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
97
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
98
+
99
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.asian] + _b[1.TRUMP_PRE_`num'_`num2']
100
+ mat treat[`pos',8] = r(estimate)
101
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
102
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
103
+ }
104
+ else if `lag' == -`bin_l' {
105
+ mat treat[`pos',1] = -`bin_l'
106
+ mat treat[`pos',2] = 0
107
+ mat treat[`pos',3] = 0
108
+ mat treat[`pos',4] = 0
109
+
110
+ mat treat[`pos',5] = 0
111
+ mat treat[`pos',6] = 0
112
+ mat treat[`pos',7] = 0
113
+
114
+ mat treat[`pos',8] = 0
115
+ mat treat[`pos',9] = 0
116
+ mat treat[`pos',10] = 0
117
+ }
118
+ else {
119
+ di "**"
120
+ di `lag'
121
+ di `pos'
122
+ local num2 = `num' + `bin_l' - 1
123
+ mat treat[`pos',1] = `num2'
124
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
125
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
126
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
127
+
128
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.black] + _b[1.TRUMP_POST_`num'_`num2']
129
+ mat treat[`pos',5] = r(estimate)
130
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
131
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
132
+
133
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.asian] + _b[1.TRUMP_POST_`num'_`num2']
134
+ mat treat[`pos',8] = r(estimate)
135
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
136
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
137
+ }
138
+ }
139
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
140
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
141
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
142
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
143
+
144
+ lincom _b[1.TRUMP_PRE_M`jj'#1.black] + _b[1.TRUMP_PRE_M`jj']
145
+ mat treat[`range'-1,5] = r(estimate)
146
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.025)
147
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.025)
148
+
149
+ lincom _b[1.TRUMP_PRE_M`jj'#1.asian] + _b[1.TRUMP_PRE_M`jj']
150
+ mat treat[`range'-1,8] = r(estimate)
151
+ mat treat[`range'-1,9] = r(estimate) + r(se)*invttail(e(N),0.025)
152
+ mat treat[`range'-1,10] = r(estimate) - r(se)*invttail(e(N),0.025)
153
+
154
+
155
+ mat treat[`range',1] = `end' + `bin_l' + 1
156
+ mat treat[`range',2] = _b[1.TRUMP_POST_M`end']
157
+ mat treat[`range',3] = _b[1.TRUMP_POST_M`end'] + _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
158
+ mat treat[`range',4] = _b[1.TRUMP_POST_M`end'] - _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
159
+
160
+ lincom _b[1.TRUMP_POST_M`end'#1.black] + _b[1.TRUMP_POST_M`end']
161
+ mat treat[`range',5] = r(estimate)
162
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.025)
163
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.025)
164
+
165
+ lincom _b[1.TRUMP_POST_M`end'#1.asian] + _b[1.TRUMP_POST_M`end']
166
+ mat treat[`range',8] = r(estimate)
167
+ mat treat[`range',9] = r(estimate) + r(se)*invttail(e(N),0.025)
168
+ mat treat[`range',10] = r(estimate) - r(se)*invttail(e(N),0.025)
169
+
170
+
171
+ g yy = treat[_n,1] in 1/`range'
172
+ g eff_hisp = treat[_n,2] in 1/`range'
173
+ g eff_hisp_10 = treat[_n,3] in 1/`range'
174
+ g eff_hisp_90 = treat[_n,4] in 1/`range'
175
+ g eff_bl = treat[_n,5] in 1/`range'
176
+ g eff_bl_10 = treat[_n,6] in 1/`range'
177
+ g eff_bl_90 = treat[_n,7] in 1/`range'
178
+ g eff_as = treat[_n,8] in 1/`range'
179
+ g eff_as_10 = treat[_n,9] in 1/`range'
180
+ g eff_as_90 = treat[_n,10] in 1/`range'
181
+ sort yy
182
+
183
+ *keep if yy>`start'-1 & yy<`end'+1
184
+ duplicates drop yy, force
185
+ keep eff_* eff_*_10 eff_*_90 yy
186
+
187
+ twoway (rcap eff_hisp_10 eff_hisp_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) ) (scatter eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(green) msymbol(triangle)) (line eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanics") legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.25) saving(hisp,replace)
188
+ graph export "Results\FigureA8A.pdf", as(pdf) replace
189
+
190
+
191
+ twoway (rcap eff_bl_10 eff_bl_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Blacks") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.25) saving(black,replace)
192
+ graph export "Results\FigureA8B.pdf", as(pdf) replace
193
+
194
+ twoway (rcap eff_as_10 eff_as_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(red)) (scatter eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(red)) (line eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(red) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on APIs") legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.25) saving(asian,replace)
195
+ graph export "Results\FigureA8C.pdf", as(pdf) replace
196
+
197
+ ****************************************************************************************************************************************
198
+
199
+ use "Data\countydayrace_data.dta", clear
200
+
201
+ drop TRUMP*
202
+
203
+ local start = -105
204
+ local end = 105
205
+ local bin_l = 15
206
+
207
+ g TRUMP_0 = 0
208
+ forval ii = 1/9 {
209
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
210
+ }
211
+
212
+ forval ii = 1(`bin_l')`end'{
213
+ local jj = `ii' + `bin_l' - 1
214
+ g TRUMP_POST_`ii'_`jj' = 0
215
+ forval ee = 1/9 {
216
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
217
+ }
218
+ }
219
+ g TRUMP_POST_M`end' = 0
220
+ forval ii = 1/9 {
221
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
222
+ }
223
+ *
224
+
225
+ forval ii = `start'(`bin_l')0 {
226
+ if `ii' < -`bin_l' {
227
+ local jj = abs(`ii')
228
+ local zz = `jj' - `bin_l' + 1
229
+ g TRUMP_PRE_`jj'_`zz' = 0
230
+ forval ee = 1/9 {
231
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
232
+ }
233
+ }
234
+ }
235
+ *
236
+ local jj = abs(`start')
237
+ g TRUMP_PRE_M`jj' = 0
238
+ forval ii = 1/9 {
239
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
240
+ }
241
+
242
+ reghdfe ihs_stop_race 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* 1.TRUMP_PRE_*#1.black 1.TRUMP_0#1.black 1.TRUMP_POST_*#1.black 1.TRUMP_PRE_*#1.asian 1.TRUMP_0#1.asian 1.TRUMP_POST_*#1.asian ihs_stops [w=n_stops], a(i.county_id##i.black i.county_id##i.asian i.day_id##i.black i.day_id##i.asian) cluster(county_id day_id)
243
+
244
+
245
+ local temp = 1/`bin_l'
246
+ local bin_neg = abs(`start' * `temp')
247
+ local bin_pos = `end' * `temp'
248
+ local range = round(`bin_neg' + `bin_pos' + 3)
249
+
250
+ mat treat = J(`range',10,1)
251
+
252
+ local Nrange = `range' - 2
253
+
254
+ forval pos = 1/`Nrange' {
255
+ local lag = `start' + `bin_l'*`pos' - `bin_l'
256
+ if `lag' > 0 {
257
+ local lag = `start' + `bin_l'*`pos' - `bin_l' - `bin_l' + 1
258
+ }
259
+
260
+ local num = abs(`lag')
261
+
262
+ if `lag' == 0 {
263
+ mat treat[`pos',1] = 0
264
+ mat treat[`pos',2] = _b[1.TRUMP_0]
265
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
266
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
267
+
268
+
269
+ lincom _b[1.TRUMP_0#1.black] + _b[1.TRUMP_0]
270
+ mat treat[`pos',5] = r(estimate)
271
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
272
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
273
+
274
+ lincom _b[1.TRUMP_0#1.asian] + _b[1.TRUMP_0]
275
+ mat treat[`pos',8] = r(estimate)
276
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
277
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
278
+ }
279
+ else if `lag' < -`bin_l' {
280
+ local num2 = `num' - `bin_l' + 1
281
+ local num1 = - `num'
282
+ mat treat[`pos',1] = `num1'
283
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
284
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
285
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
286
+
287
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.black] + _b[1.TRUMP_PRE_`num'_`num2']
288
+ mat treat[`pos',5] = r(estimate)
289
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
290
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
291
+
292
+ lincom _b[1.TRUMP_PRE_`num'_`num2'#1.asian] + _b[1.TRUMP_PRE_`num'_`num2']
293
+ mat treat[`pos',8] = r(estimate)
294
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
295
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
296
+ }
297
+ else if `lag' == -`bin_l' {
298
+ mat treat[`pos',1] = -`bin_l'
299
+ mat treat[`pos',2] = 0
300
+ mat treat[`pos',3] = 0
301
+ mat treat[`pos',4] = 0
302
+
303
+ mat treat[`pos',5] = 0
304
+ mat treat[`pos',6] = 0
305
+ mat treat[`pos',7] = 0
306
+
307
+ mat treat[`pos',8] = 0
308
+ mat treat[`pos',9] = 0
309
+ mat treat[`pos',10] = 0
310
+ }
311
+ else {
312
+ di "**"
313
+ di `lag'
314
+ di `pos'
315
+ local num2 = `num' + `bin_l' - 1
316
+ mat treat[`pos',1] = `num2'
317
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
318
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
319
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
320
+
321
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.black] + _b[1.TRUMP_POST_`num'_`num2']
322
+ mat treat[`pos',5] = r(estimate)
323
+ mat treat[`pos',6] = r(estimate) + r(se)*invttail(e(N),0.025)
324
+ mat treat[`pos',7] = r(estimate) - r(se)*invttail(e(N),0.025)
325
+
326
+ lincom _b[1.TRUMP_POST_`num'_`num2'#1.asian] + _b[1.TRUMP_POST_`num'_`num2']
327
+ mat treat[`pos',8] = r(estimate)
328
+ mat treat[`pos',9] = r(estimate) + r(se)*invttail(e(N),0.025)
329
+ mat treat[`pos',10] = r(estimate) - r(se)*invttail(e(N),0.025)
330
+ }
331
+ }
332
+ mat treat[`range'-1,1] = `start' - `bin_l' - 1
333
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
334
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
335
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
336
+
337
+ lincom _b[1.TRUMP_PRE_M`jj'#1.black] + _b[1.TRUMP_PRE_M`jj']
338
+ mat treat[`range'-1,5] = r(estimate)
339
+ mat treat[`range'-1,6] = r(estimate) + r(se)*invttail(e(N),0.025)
340
+ mat treat[`range'-1,7] = r(estimate) - r(se)*invttail(e(N),0.025)
341
+
342
+ lincom _b[1.TRUMP_PRE_M`jj'#1.asian] + _b[1.TRUMP_PRE_M`jj']
343
+ mat treat[`range'-1,8] = r(estimate)
344
+ mat treat[`range'-1,9] = r(estimate) + r(se)*invttail(e(N),0.025)
345
+ mat treat[`range'-1,10] = r(estimate) - r(se)*invttail(e(N),0.025)
346
+
347
+
348
+ mat treat[`range',1] = `end' + `bin_l' + 1
349
+ mat treat[`range',2] = _b[1.TRUMP_POST_M`end']
350
+ mat treat[`range',3] = _b[1.TRUMP_POST_M`end'] + _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
351
+ mat treat[`range',4] = _b[1.TRUMP_POST_M`end'] - _se[1.TRUMP_POST_M`end']*invttail(e(N),0.025)
352
+
353
+ lincom _b[1.TRUMP_POST_M`end'#1.black] + _b[1.TRUMP_POST_M`end']
354
+ mat treat[`range',5] = r(estimate)
355
+ mat treat[`range',6] = r(estimate) + r(se)*invttail(e(N),0.025)
356
+ mat treat[`range',7] = r(estimate) - r(se)*invttail(e(N),0.025)
357
+
358
+ lincom _b[1.TRUMP_POST_M`end'#1.asian] + _b[1.TRUMP_POST_M`end']
359
+ mat treat[`range',8] = r(estimate)
360
+ mat treat[`range',9] = r(estimate) + r(se)*invttail(e(N),0.025)
361
+ mat treat[`range',10] = r(estimate) - r(se)*invttail(e(N),0.025)
362
+
363
+
364
+ g yy = treat[_n,1] in 1/`range'
365
+ g eff_hisp = treat[_n,2] in 1/`range'
366
+ g eff_hisp_10 = treat[_n,3] in 1/`range'
367
+ g eff_hisp_90 = treat[_n,4] in 1/`range'
368
+ g eff_bl = treat[_n,5] in 1/`range'
369
+ g eff_bl_10 = treat[_n,6] in 1/`range'
370
+ g eff_bl_90 = treat[_n,7] in 1/`range'
371
+ g eff_as = treat[_n,8] in 1/`range'
372
+ g eff_as_10 = treat[_n,9] in 1/`range'
373
+ g eff_as_90 = treat[_n,10] in 1/`range'
374
+ sort yy
375
+
376
+ *keep if yy>`start'-1 & yy<`end'+1
377
+ duplicates drop yy, force
378
+ keep eff_* eff_*_10 eff_*_90 yy
379
+
380
+ twoway (rcap eff_hisp_10 eff_hisp_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) ) (scatter eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(green) msymbol(triangle)) (line eff_hisp yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(green) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanics") legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.2) saving(hisp,replace)
381
+ graph export "Results\FigureA8D.pdf", as(pdf) replace
382
+
383
+
384
+ twoway (rcap eff_bl_10 eff_bl_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(blue)) (scatter eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(blue)) (line eff_bl yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(blue) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Blacks") xlabel(-105(15)105) legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.2) saving(black,replace)
385
+ graph export "Results\FigureA8E.pdf", as(pdf) replace
386
+
387
+ twoway (rcap eff_as_10 eff_as_90 yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,lc(red)) (scatter eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1,mc(red)) (line eff_as yy if yy>`start' - `bin_l' - 1 & yy<`end' + `bin_l' + 1, lc(red) xline(0,lp(-)) yline(0,lp(-))) , graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on APIs") legend(off) xlabel(-105(15)105) ylabel(-0.15(0.05)0.2) saving(asian,replace)
388
+ graph export "Results\FigureA8F.pdf", as(pdf) replace
389
+
39/replication_package/Do/FigureA9.do ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** FIGURE A9
4
+ *** Impact of Trump Rallies on the Number of Stops: Event-study Results
5
+ **********************************************************************
6
+
7
+ global start = -105
8
+ global end = 105
9
+ global bin_l = 15
10
+ global var = "ihs_black"
11
+ global trend = 1
12
+
13
+ use "Data\stoplevel_data.dta", clear
14
+
15
+ g n_stops = 1
16
+ foreach var of varlist black hispanic white api {
17
+ replace `var' = `var'/100
18
+ }
19
+
20
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
21
+
22
+ g black_ps = 100*black / n_stops
23
+ g hispanic_ps = 100*hispanic / n_stops
24
+ g white_ps = 100*white / n_stops
25
+ g asian_ps = 100*api / n_stops
26
+ g ln_stops = ln(n_stops)
27
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
28
+ g white_nbps = 100*white / (n_stops-black)
29
+ g asian_nbps = 100*asian / (n_stops-black)
30
+
31
+ g ihs_black= log(black +(black +1)^(1/2))
32
+ g ln_black = ln(black +1)
33
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
34
+ g ln_hispanic = ln(hispanic+1)
35
+ g ihs_white = log(white+(white+1)^(1/2))
36
+ g ln_white = ln(white+1)
37
+ g ihs_asian = log(api+(api+1)^(1/2))
38
+ g ln_asian = ln(api+1)
39
+
40
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
41
+
42
+ g TRUMP_0 = 0
43
+ forval ii = 1/9 {
44
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
45
+ }
46
+
47
+ forval ii = 1($bin_l)$end{
48
+ local jj = `ii' + $bin_l - 1
49
+ g TRUMP_POST_`ii'_`jj' = 0
50
+ forval ee = 1/9 {
51
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
52
+ }
53
+ }
54
+ g TRUMP_POST_M$end = 0
55
+ forval ii = 1/9 {
56
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
57
+ }
58
+ *
59
+
60
+ forval ii = $start($bin_l)0 {
61
+ if `ii' < -$bin_l {
62
+ local jj = abs(`ii')
63
+ local zz = `jj' - $bin_l + 1
64
+ g TRUMP_PRE_`jj'_`zz' = 0
65
+ forval ee = 1/9 {
66
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
67
+ }
68
+ }
69
+ }
70
+ *
71
+ local jj = abs($start)
72
+ g TRUMP_PRE_M`jj' = 0
73
+ forval ii = 1/9 {
74
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
75
+ }
76
+
77
+ if $trend==1 {
78
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
79
+ }
80
+ else {
81
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
82
+ }
83
+ local temp = 1/$bin_l
84
+ local bin_neg = abs($start * `temp')
85
+ local bin_pos = $end * `temp'
86
+ local range = round(`bin_neg' + `bin_pos' + 3)
87
+
88
+ mat treat = J(`range',4,1)
89
+
90
+ local Nrange = `range' - 2
91
+
92
+ forval pos = 1/`Nrange' {
93
+ local lag = $start + $bin_l*`pos' - $bin_l
94
+ if `lag' > 0 {
95
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
96
+ }
97
+
98
+ local num = abs(`lag')
99
+
100
+ if `lag' == 0 {
101
+ mat treat[`pos',1] = 0
102
+ mat treat[`pos',2] = _b[1.TRUMP_0]
103
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
104
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
105
+ }
106
+ else if `lag' < -$bin_l {
107
+ local num2 = `num' - $bin_l + 1
108
+ local num1 = - `num'
109
+ mat treat[`pos',1] = `num1'
110
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
111
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
112
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
113
+ }
114
+ else if `lag' == -$bin_l {
115
+ mat treat[`pos',1] = -$bin_l
116
+ mat treat[`pos',2] = 0
117
+ mat treat[`pos',3] = 0
118
+ mat treat[`pos',4] = 0
119
+ }
120
+ else {
121
+ di "**"
122
+ di `lag'
123
+ di `pos'
124
+ local num2 = `num' + $bin_l - 1
125
+ mat treat[`pos',1] = `num2'
126
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
127
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
128
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
129
+ }
130
+ }
131
+ mat treat[`range'-1,1] = $start - $bin_l - 1
132
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
133
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
134
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
135
+
136
+ mat treat[`range',1] = $end + $bin_l + 1
137
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
138
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
139
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
140
+
141
+ g yy = treat[_n,1] in 1/`range'
142
+ g eff = treat[_n,2] in 1/`range'
143
+ g eff_5 = treat[_n,3] in 1/`range'
144
+ g eff_95 = treat[_n,4] in 1/`range'
145
+ sort yy
146
+
147
+ *keep if yy>`start'-1 & yy<`end'+1
148
+ duplicates drop yy, force
149
+ keep eff eff_5 eff_95 yy
150
+
151
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Black Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
152
+ graph export "Results\FigureA9A.pdf", as(pdf) replace
153
+
154
+ ******************************************************************************************************************************************************************
155
+
156
+ global start = -105
157
+ global end = 105
158
+ global bin_l = 15
159
+ global var = "ihs_hispanic"
160
+ global trend = 1
161
+
162
+ use "Data\stoplevel_data.dta", clear
163
+
164
+ g n_stops = 1
165
+ foreach var of varlist black hispanic white api {
166
+ replace `var' = `var'/100
167
+ }
168
+
169
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
170
+ g black_ps = 100*black / n_stops
171
+ g hispanic_ps = 100*hispanic / n_stops
172
+ g white_ps = 100*white / n_stops
173
+ g asian_ps = 100*api / n_stops
174
+ g ln_stops = ln(n_stops)
175
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
176
+ g white_nbps = 100*white / (n_stops-black)
177
+ g asian_nbps = 100*asian / (n_stops-black)
178
+
179
+ g ihs_black= log(black +(black +1)^(1/2))
180
+ g ln_black = ln(black +1)
181
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
182
+ g ln_hispanic = ln(hispanic+1)
183
+ g ihs_white = log(white+(white+1)^(1/2))
184
+ g ln_white = ln(white+1)
185
+ g ihs_asian = log(api+(api+1)^(1/2))
186
+ g ln_asian = ln(api+1)
187
+
188
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
189
+
190
+
191
+ g TRUMP_0 = 0
192
+ forval ii = 1/9 {
193
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
194
+ }
195
+
196
+ forval ii = 1($bin_l)$end{
197
+ local jj = `ii' + $bin_l - 1
198
+ g TRUMP_POST_`ii'_`jj' = 0
199
+ forval ee = 1/9 {
200
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
201
+ }
202
+ }
203
+ g TRUMP_POST_M$end = 0
204
+ forval ii = 1/9 {
205
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
206
+ }
207
+ *
208
+
209
+ forval ii = $start($bin_l)0 {
210
+ if `ii' < -$bin_l {
211
+ local jj = abs(`ii')
212
+ local zz = `jj' - $bin_l + 1
213
+ g TRUMP_PRE_`jj'_`zz' = 0
214
+ forval ee = 1/9 {
215
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
216
+ }
217
+ }
218
+ }
219
+ *
220
+ local jj = abs($start)
221
+ g TRUMP_PRE_M`jj' = 0
222
+ forval ii = 1/9 {
223
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
224
+ }
225
+
226
+ if $trend==1 {
227
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
228
+ }
229
+ else {
230
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
231
+ }
232
+ local temp = 1/$bin_l
233
+ local bin_neg = abs($start * `temp')
234
+ local bin_pos = $end * `temp'
235
+ local range = round(`bin_neg' + `bin_pos' + 3)
236
+
237
+ mat treat = J(`range',4,1)
238
+
239
+ local Nrange = `range' - 2
240
+
241
+ forval pos = 1/`Nrange' {
242
+ local lag = $start + $bin_l*`pos' - $bin_l
243
+ if `lag' > 0 {
244
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
245
+ }
246
+
247
+ local num = abs(`lag')
248
+
249
+ if `lag' == 0 {
250
+ mat treat[`pos',1] = 0
251
+ mat treat[`pos',2] = _b[1.TRUMP_0]
252
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
253
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
254
+ }
255
+ else if `lag' < -$bin_l {
256
+ local num2 = `num' - $bin_l + 1
257
+ local num1 = - `num'
258
+ mat treat[`pos',1] = `num1'
259
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
260
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
261
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
262
+ }
263
+ else if `lag' == -$bin_l {
264
+ mat treat[`pos',1] = -$bin_l
265
+ mat treat[`pos',2] = 0
266
+ mat treat[`pos',3] = 0
267
+ mat treat[`pos',4] = 0
268
+ }
269
+ else {
270
+ di "**"
271
+ di `lag'
272
+ di `pos'
273
+ local num2 = `num' + $bin_l - 1
274
+ mat treat[`pos',1] = `num2'
275
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
276
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
277
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
278
+ }
279
+ }
280
+ mat treat[`range'-1,1] = $start - $bin_l - 1
281
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
282
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
283
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
284
+
285
+ mat treat[`range',1] = $end + $bin_l + 1
286
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
287
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
288
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
289
+
290
+ g yy = treat[_n,1] in 1/`range'
291
+ g eff = treat[_n,2] in 1/`range'
292
+ g eff_5 = treat[_n,3] in 1/`range'
293
+ g eff_95 = treat[_n,4] in 1/`range'
294
+ sort yy
295
+
296
+ *keep if yy>`start'-1 & yy<`end'+1
297
+ duplicates drop yy, force
298
+ keep eff eff_5 eff_95 yy
299
+
300
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on Hispanic Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
301
+ graph export "Results\FigureA9B.pdf", as(pdf) replace
302
+
303
+ ******************************************************************************************************************************************************************
304
+
305
+ global start = -105
306
+ global end = 105
307
+ global bin_l = 15
308
+ global var = "ihs_white"
309
+ global trend = 1
310
+
311
+ use "Data\stoplevel_data.dta", clear
312
+
313
+ g n_stops = 1
314
+ foreach var of varlist black hispanic white api {
315
+ replace `var' = `var'/100
316
+ }
317
+
318
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
319
+
320
+ g black_ps = 100*black / n_stops
321
+ g hispanic_ps = 100*hispanic / n_stops
322
+ g white_ps = 100*white / n_stops
323
+ g asian_ps = 100*api / n_stops
324
+ g ln_stops = ln(n_stops)
325
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
326
+ g white_nbps = 100*white / (n_stops-black)
327
+ g asian_nbps = 100*asian / (n_stops-black)
328
+
329
+ g ihs_black= log(black +(black +1)^(1/2))
330
+ g ln_black = ln(black +1)
331
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
332
+ g ln_hispanic = ln(hispanic+1)
333
+ g ihs_white = log(white+(white+1)^(1/2))
334
+ g ln_white = ln(white+1)
335
+ g ihs_asian = log(api+(api+1)^(1/2))
336
+ g ln_asian = ln(api+1)
337
+
338
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
339
+
340
+
341
+ g TRUMP_0 = 0
342
+ forval ii = 1/9 {
343
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
344
+ }
345
+
346
+ forval ii = 1($bin_l)$end{
347
+ local jj = `ii' + $bin_l - 1
348
+ g TRUMP_POST_`ii'_`jj' = 0
349
+ forval ee = 1/9 {
350
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
351
+ }
352
+ }
353
+ g TRUMP_POST_M$end = 0
354
+ forval ii = 1/9 {
355
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
356
+ }
357
+ *
358
+
359
+ forval ii = $start($bin_l)0 {
360
+ if `ii' < -$bin_l {
361
+ local jj = abs(`ii')
362
+ local zz = `jj' - $bin_l + 1
363
+ g TRUMP_PRE_`jj'_`zz' = 0
364
+ forval ee = 1/9 {
365
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
366
+ }
367
+ }
368
+ }
369
+ *
370
+ local jj = abs($start)
371
+ g TRUMP_PRE_M`jj' = 0
372
+ forval ii = 1/9 {
373
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
374
+ }
375
+
376
+ if $trend==1 {
377
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
378
+ }
379
+ else {
380
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
381
+ }
382
+ local temp = 1/$bin_l
383
+ local bin_neg = abs($start * `temp')
384
+ local bin_pos = $end * `temp'
385
+ local range = round(`bin_neg' + `bin_pos' + 3)
386
+
387
+ mat treat = J(`range',4,1)
388
+
389
+ local Nrange = `range' - 2
390
+
391
+ forval pos = 1/`Nrange' {
392
+ local lag = $start + $bin_l*`pos' - $bin_l
393
+ if `lag' > 0 {
394
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
395
+ }
396
+
397
+ local num = abs(`lag')
398
+
399
+ if `lag' == 0 {
400
+ mat treat[`pos',1] = 0
401
+ mat treat[`pos',2] = _b[1.TRUMP_0]
402
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
403
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
404
+ }
405
+ else if `lag' < -$bin_l {
406
+ local num2 = `num' - $bin_l + 1
407
+ local num1 = - `num'
408
+ mat treat[`pos',1] = `num1'
409
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
410
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
411
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
412
+ }
413
+ else if `lag' == -$bin_l {
414
+ mat treat[`pos',1] = -$bin_l
415
+ mat treat[`pos',2] = 0
416
+ mat treat[`pos',3] = 0
417
+ mat treat[`pos',4] = 0
418
+ }
419
+ else {
420
+ di "**"
421
+ di `lag'
422
+ di `pos'
423
+ local num2 = `num' + $bin_l - 1
424
+ mat treat[`pos',1] = `num2'
425
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
426
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
427
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
428
+ }
429
+ }
430
+ mat treat[`range'-1,1] = $start - $bin_l - 1
431
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
432
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
433
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
434
+
435
+ mat treat[`range',1] = $end + $bin_l + 1
436
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
437
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
438
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
439
+
440
+ g yy = treat[_n,1] in 1/`range'
441
+ g eff = treat[_n,2] in 1/`range'
442
+ g eff_5 = treat[_n,3] in 1/`range'
443
+ g eff_95 = treat[_n,4] in 1/`range'
444
+ sort yy
445
+
446
+ *keep if yy>`start'-1 & yy<`end'+1
447
+ duplicates drop yy, force
448
+ keep eff eff_5 eff_95 yy
449
+
450
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on White Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
451
+ graph export "Results\FigureA9D.pdf", as(pdf) replace
452
+
453
+ ******************************************************************************************************************************************************************
454
+
455
+ global start = -105
456
+ global end = 105
457
+ global bin_l = 15
458
+ global var = "ihs_asian"
459
+ global trend = 1
460
+
461
+ use "Data\stoplevel_data.dta", clear
462
+
463
+ g n_stops = 1
464
+ foreach var of varlist black hispanic white api {
465
+ replace `var' = `var'/100
466
+ }
467
+
468
+ collapse (sum) n_stops black hispanic white api (first) dist_event* , by(county_fips day_id)
469
+
470
+ g black_ps = 100*black / n_stops
471
+ g hispanic_ps = 100*hispanic / n_stops
472
+ g white_ps = 100*white / n_stops
473
+ g asian_ps = 100*api / n_stops
474
+ g ln_stops = ln(n_stops)
475
+ g hispanic_nbps = 100*hispanic / (n_stops-black)
476
+ g white_nbps = 100*white / (n_stops-black)
477
+ g asian_nbps = 100*asian / (n_stops-black)
478
+
479
+ g ihs_black= log(black +(black +1)^(1/2))
480
+ g ln_black = ln(black +1)
481
+ g ihs_hispanic = log(hispanic+(hispanic+1)^(1/2))
482
+ g ln_hispanic = ln(hispanic+1)
483
+ g ihs_white = log(white+(white+1)^(1/2))
484
+ g ln_white = ln(white+1)
485
+ g ihs_asian = log(api+(api+1)^(1/2))
486
+ g ln_asian = ln(api+1)
487
+
488
+ g ihs_stops = log(n_stops+(n_stops+1)^(1/2))
489
+
490
+
491
+ g TRUMP_0 = 0
492
+ forval ii = 1/9 {
493
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
494
+ }
495
+
496
+ forval ii = 1($bin_l)$end{
497
+ local jj = `ii' + $bin_l - 1
498
+ g TRUMP_POST_`ii'_`jj' = 0
499
+ forval ee = 1/9 {
500
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
501
+ }
502
+ }
503
+ g TRUMP_POST_M$end = 0
504
+ forval ii = 1/9 {
505
+ replace TRUMP_POST_M$end = 1 if (dist_event`ii' > $end & dist_event`ii'!=.)
506
+ }
507
+ *
508
+
509
+ forval ii = $start($bin_l)0 {
510
+ if `ii' < -$bin_l {
511
+ local jj = abs(`ii')
512
+ local zz = `jj' - $bin_l + 1
513
+ g TRUMP_PRE_`jj'_`zz' = 0
514
+ forval ee = 1/9 {
515
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
516
+ }
517
+ }
518
+ }
519
+ *
520
+ local jj = abs($start)
521
+ g TRUMP_PRE_M`jj' = 0
522
+ forval ii = 1/9 {
523
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < $start & dist_event`ii'!=.)
524
+ }
525
+
526
+ if $trend==1 {
527
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
528
+ }
529
+ else {
530
+ reghdfe $var 1.TRUMP_PRE_* 1.TRUMP_0 1.TRUMP_POST_* ihs_stops [w=n_stops], a(i.county_fips i.day_id) cluster(county_fips day_id)
531
+ }
532
+ local temp = 1/$bin_l
533
+ local bin_neg = abs($start * `temp')
534
+ local bin_pos = $end * `temp'
535
+ local range = round(`bin_neg' + `bin_pos' + 3)
536
+
537
+ mat treat = J(`range',4,1)
538
+
539
+ local Nrange = `range' - 2
540
+
541
+ forval pos = 1/`Nrange' {
542
+ local lag = $start + $bin_l*`pos' - $bin_l
543
+ if `lag' > 0 {
544
+ local lag = $start + $bin_l*`pos' - $bin_l - $bin_l + 1
545
+ }
546
+
547
+ local num = abs(`lag')
548
+
549
+ if `lag' == 0 {
550
+ mat treat[`pos',1] = 0
551
+ mat treat[`pos',2] = _b[1.TRUMP_0]
552
+ mat treat[`pos',3] = _b[1.TRUMP_0] + _se[1.TRUMP_0]*invttail(e(N),0.025)
553
+ mat treat[`pos',4] = _b[1.TRUMP_0] - _se[1.TRUMP_0]*invttail(e(N),0.025)
554
+ }
555
+ else if `lag' < -$bin_l {
556
+ local num2 = `num' - $bin_l + 1
557
+ local num1 = - `num'
558
+ mat treat[`pos',1] = `num1'
559
+ mat treat[`pos',2] = _b[1.TRUMP_PRE_`num'_`num2']
560
+ mat treat[`pos',3] = _b[1.TRUMP_PRE_`num'_`num2'] + _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
561
+ mat treat[`pos',4] = _b[1.TRUMP_PRE_`num'_`num2'] - _se[1.TRUMP_PRE_`num'_`num2']*invttail(e(N),0.025)
562
+ }
563
+ else if `lag' == -$bin_l {
564
+ mat treat[`pos',1] = -$bin_l
565
+ mat treat[`pos',2] = 0
566
+ mat treat[`pos',3] = 0
567
+ mat treat[`pos',4] = 0
568
+ }
569
+ else {
570
+ di "**"
571
+ di `lag'
572
+ di `pos'
573
+ local num2 = `num' + $bin_l - 1
574
+ mat treat[`pos',1] = `num2'
575
+ mat treat[`pos',2] = _b[1.TRUMP_POST_`num'_`num2']
576
+ mat treat[`pos',3] = _b[1.TRUMP_POST_`num'_`num2'] + _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
577
+ mat treat[`pos',4] = _b[1.TRUMP_POST_`num'_`num2'] - _se[1.TRUMP_POST_`num'_`num2']*invttail(e(N),0.025)
578
+ }
579
+ }
580
+ mat treat[`range'-1,1] = $start - $bin_l - 1
581
+ mat treat[`range'-1,2] = _b[1.TRUMP_PRE_M`jj']
582
+ mat treat[`range'-1,3] = _b[1.TRUMP_PRE_M`jj'] + _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
583
+ mat treat[`range'-1,4] = _b[1.TRUMP_PRE_M`jj'] - _se[1.TRUMP_PRE_M`jj']*invttail(e(N),0.025)
584
+
585
+ mat treat[`range',1] = $end + $bin_l + 1
586
+ mat treat[`range',2] = _b[1.TRUMP_POST_M$end]
587
+ mat treat[`range',3] = _b[1.TRUMP_POST_M$end] + _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
588
+ mat treat[`range',4] = _b[1.TRUMP_POST_M$end] - _se[1.TRUMP_POST_M$end] *invttail(e(N),0.025)
589
+
590
+ g yy = treat[_n,1] in 1/`range'
591
+ g eff = treat[_n,2] in 1/`range'
592
+ g eff_5 = treat[_n,3] in 1/`range'
593
+ g eff_95 = treat[_n,4] in 1/`range'
594
+ sort yy
595
+
596
+ duplicates drop yy, force
597
+ keep eff eff_5 eff_95 yy
598
+
599
+ twoway (rcap eff_5 eff_95 yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1) (scatter eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1)(line eff yy if yy>$start - $bin_l - 1 & yy<$end + $bin_l + 1, xline(0,lp(-)) yline(0,lp(-))) , xlabel(-105(15)105) ylabel(-0.1(0.05)0.1) graphregion(fcolor(white)) xtitle("Days From Trump") ytitle("Effect on API Stops") legend(order(1 "95% Confidence Interval" 2 "Effect"))
600
+ graph export "Results\FigureA9C.pdf", as(pdf) replace
39/replication_package/Do/Main.do ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **********************************************************************
2
+ *** Replication File for "Inflammatory Political Campaigns and
3
+ *** Racial Bias in Policing" by Pauline Grosjean, Federico Masera, and
4
+ *** Hasin Yousaf. For Publication at The Quarterly Journal of Economics
5
+ **********************************************************************
6
+
7
+ *** Define your own course directory.
8
+ set more off
9
+ cd "SET YOUR OWN PATH"
10
+
11
+
12
+ do "Do\Table1.do"
13
+ do "Do\Table2.do"
14
+ do "Do\Table3.do"
15
+ do "Do\Table4.do"
16
+ do "Do\Table5.do"
17
+ do "Do\Table6.do"
18
+ do "Do\Table7.do"
19
+
20
+
21
+ do "Do\Figure1.do"
22
+ do "Do\Figure2.do"
39/replication_package/Do/Table1.do ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 1
4
+ *** Impact of Trump Rallies on the Probability of a Black Stop
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
10
+ outreg2 using "Results\Table1.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
11
+
12
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_31_60 TRUMP_POST_61_90 TRUMP_POST_M90 TRUMP_PRE_M90, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
13
+ outreg2 using "Results\Table1.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 TRUMP_POST_31_60 TRUMP_POST_61_90) label nonotes nocons noni
14
+
15
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id) cluster(county_fips day_id)
16
+ outreg2 using "Results\Table1.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
17
+
18
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id i.county_fips#c.day_sq) cluster(county_fips day_id)
19
+ outreg2 using "Results\Table1.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
20
+ summ black
21
+
22
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 if around30days==1 | trumpcounties==0, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
23
+ outreg2 using "Results\Table1.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
24
+ summ black if around30days==1 | trumpcounties==0
25
+
26
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if trumpcounties==1, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
27
+ outreg2 using "Results\Table1.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
28
+ summ black if trumpcounties==1
29
+
39/replication_package/Do/Table2.do ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 2
4
+ *** Triple Difference Results: Probability and Number of Stops by Race or Ethnicity
5
+ **********************************************************************
6
+
7
+ *do "Do\preparing_countydayrace_data"
8
+
9
+ use "Data\countydayrace_data.dta", clear
10
+
11
+
12
+ reghdfe prob_stop_race 1.TRUMP_*30#1.black 1.TRUMP_*30#1.hispanic 1.TRUMP_*30#1.asian [w=n_stops] if subject_race!=4, a(i.county_id##i.hispanic i.county_id##i.asian i.day_id##i.hispanic i.day_id##i.asian i.hispanic#i.county_id#c.day_id i.asian#i.county_id#c.day_id i.county_id#c.day_id) cluster(county_id day_id)
13
+ ***Effect on blacks (vs whites)
14
+ lincom _b[1.TRUMP_POST_1_30#1.black]
15
+ local est_black_white = `r(estimate)'
16
+ local se_black_white = `r(se)'
17
+ ***Effect on blacks (vs hispanics)
18
+ lincom _b[1.TRUMP_POST_1_30#1.black] - _b[1.TRUMP_POST_1_30#1.hispanic]
19
+ local est_black_hisp = `r(estimate)'
20
+ local se_black_hisp = `r(se)'
21
+ ***Effect on blacks (vs asians)
22
+ lincom _b[1.TRUMP_POST_1_30#1.black] - _b[1.TRUMP_POST_1_30#1.asian]
23
+ local est_black_api = `r(estimate)'
24
+ local se_black_api = `r(se)'
25
+ ***Effect on hispanics (vs whites)
26
+ lincom _b[1.TRUMP_POST_1_30#1.hispanic]
27
+ ***Effect on asian (vs whites)
28
+ lincom _b[1.TRUMP_POST_1_30#1.asian]
29
+ ***Effect on asian (vs hispanic)
30
+ lincom _b[1.TRUMP_POST_1_30#1.asian] - _b[1.TRUMP_POST_1_30#1.hispanic]
31
+ outreg2 using "Results/Table2.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) label nonotes nocons noni
32
+ summ prob_stop_race if subject_race!=4
33
+
34
+ reghdfe ihs_stop_race 1.TRUMP_*30#1.black 1.TRUMP_*30#1.hispanic 1.TRUMP_*30#1.asian ihn_stops [w=n_stops] if subject_race!=4, a(i.county_id##i.hispanic i.county_id##i.asian i.day_id##i.hispanic i.day_id##i.asian i.hispanic#i.county_id#c.day_id i.asian#i.county_id#c.day_id i.county_id#c.day_id) cluster(county_id day_id)
35
+ ***Effect on blacks (vs whites)
36
+ lincom _b[1.TRUMP_POST_1_30#1.black]
37
+ local est_black_white = `r(estimate)'
38
+ local se_black_white = `r(se)'
39
+ ***Effect on blacks (vs hispanics)
40
+ lincom _b[1.TRUMP_POST_1_30#1.black] - _b[1.TRUMP_POST_1_30#1.hispanic]
41
+ local est_black_hisp = `r(estimate)'
42
+ local se_black_hisp = `r(se)'
43
+ ***Effect on blacks (vs asians)
44
+ lincom _b[1.TRUMP_POST_1_30#1.black] - _b[1.TRUMP_POST_1_30#1.asian]
45
+ local est_black_api = `r(estimate)'
46
+ local se_black_api = `r(se)'
47
+ ***Effect on hispanics (vs whites)
48
+ lincom _b[1.TRUMP_POST_1_30#1.hispanic]
49
+ ***Effect on asian (vs whites)
50
+ lincom _b[1.TRUMP_POST_1_30#1.asian]
51
+ ***Effect on asian (vs hispanic)
52
+ lincom _b[1.TRUMP_POST_1_30#1.asian] - _b[1.TRUMP_POST_1_30#1.hispanic]
53
+ outreg2 using "Results/Table2.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) label nonotes nocons noni
54
+ summ ihs_stop_race if subject_race!=4
55
+
56
+
39/replication_package/Do/Table3.do ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 3
4
+ *** Driver Behavior
5
+ **********************************************************************
6
+
7
+ *** Panel A
8
+ use "Data\fars_data.dta"
9
+
10
+ reghdfe ihsinc 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_PRE_M30 1.TRUMP_POST_M30 [aweight=incidents], a(i.county_fips i.date) cluster(county_fips date)
11
+ outreg2 using "Results/Table3A.txt", replace keep(1.TRUMP_POST_1_30) dec(3) nocons
12
+
13
+ foreach y in ihsfatal ihsfatalviolation ihsblack ihsnonblack ihswhite ihshispani ihsmexican {
14
+ reghdfe `y' 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_PRE_M30 1.TRUMP_POST_M30 [aweight=incidents], a(i.county_fips i.date) cluster(county_fips date)
15
+ outreg2 using "Results/Table3A.txt", append keep(1.TRUMP_POST_1_30) dec(3) nocons
16
+
17
+ }
18
+
19
+ *** Panel B
20
+ use "Data\stoplevel_data.dta", clear
21
+
22
+ reghdfe blackcollision TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
23
+ outreg2 using "Results/Table3B.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
24
+
25
+ foreach var of varlist nonblackcollision whitecollision hispaniccollision blackradar nonblackradar whiteradar hispanicradar {
26
+ reghdfe `var' TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
27
+ outreg2 using "Results/Table3B.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
28
+ }
29
+
30
+ summ blackcollision
31
+ foreach var of varlist nonblackcollision whitecollision hispaniccollision blackradar nonblackradar whiteradar hispanicradar {
32
+ summ `var'
33
+ }
39/replication_package/Do/Table4.do ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 4
4
+ *** Police Behavior
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ reghdfe black 1.TRUMP_POST_1_30 1.TRUMP_POST_1_30#0.state_pd TRUMP_0 TRUMP_POST_M30 TRUMP_PRE_M30 , a(i.state_pd i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id )
10
+ outreg2 using "Results/Table4.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30 1.TRUMP_POST_1_30#0.state_pd) addtext("County FE", "YES", "Day FE", "YES", "CountyXDay", "YES", "Additional FE" , "Agency") label nonotes nocons noni
11
+ lincom 1.TRUMP_POST_1_30 + 1.TRUMP_POST_1_30#0.state_pd
12
+
13
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id i.hour) cluster(county_fips day_id)
14
+ outreg2 using "Results/Table4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) addtext("County FE", "YES", "Day FE", "YES", "CountyXDay", "YES", "Additional FE" , "Hour of Stop") label nonotes nocons noni
15
+
16
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id i.county_fips#i.state_pd) cluster(county_fips day_id)
17
+ outreg2 using "Results/Table4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) addtext("County FE", "YES", "Day FE", "YES", "CountyXDay", "YES", "Additional FE" , "Agency") label nonotes nocons noni
18
+
19
+ egen officer_id=group(officer_id_hash)
20
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id i.officer_id) cluster(county_fips day_id)
21
+ outreg2 using "Results/Table4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) addtext("County FE", "YES", "Day FE", "YES", "CountyXDay", "YES", "Additional FE" , "Officer") label nonotes nocons
22
+
23
+ summ black if state_pd!=.
24
+ summ black if hour!=.
25
+ summ black if officer_id_hash!=""
39/replication_package/Do/Table5.do ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 5
4
+ *** Role of Estimated Offcer Bias in the Effect of Trump Rallies on the Probability of a Black Stop
5
+ **********************************************************************
6
+
7
+ use "Data\officerbias.dta", clear
8
+
9
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 bias_int1 if officer_id_hash!="" , a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
10
+ outreg2 using "Results/Table5.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off1 bias_int1) label nonotes nocons noni
11
+
12
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 bias_int1 if officer_id_hash!="" , a(i.officer_id i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
13
+ outreg2 using "Results/Table5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off1 bias_int1) label nonotes nocons noni
14
+
15
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 bias_int2 if officer_id_hash!="" , a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
16
+ outreg2 using "Results/Table5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off2 bias_int2) label nonotes nocons noni
17
+
18
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 bias_int2 if officer_id_hash!="" , a(i.officer_id i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
19
+ outreg2 using "Results/Table5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off2 bias_int2) label nonotes nocons noni
20
+
21
+
22
+
23
+
39/replication_package/Do/Table6.do ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 6
4
+ *** Role of Local Characteristics in the Effect of Trump Rallies on the Probability of a Black Stop
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ keep black county_fips day_id TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 racial_resent_a racial_resent_b any_slaves_1860 alt_cottonsui ihsbl_lynch ihsbl_exec dem_p rep medianincome coll d_tradeusch_pw d_tradeotch_pw_lag
10
+
11
+ mat treat = J(11,4,1)
12
+
13
+ summ racial_resent_a
14
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
15
+ g interaction = TRUMP_POST_1_30 * racial_resent_asd
16
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.racial_resent_a, a(i.county_fips i.day_id) cluster(county_fips)
17
+ outreg2 using "Results/Table6.txt", replace dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Racial Resentment A","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
18
+ drop interaction
19
+
20
+ summ racial_resent_b
21
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
22
+ g interaction = TRUMP_POST_1_30 * racial_resent_bsd
23
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.racial_resent_b, a(i.county_fips i.day_id) cluster(county_fips)
24
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Racial Resentment B","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
25
+ drop interaction
26
+
27
+ g interaction = TRUMP_POST_1_30 * any_slaves_1860
28
+ reghdfe black 1.TRUMP_* interaction c.day_id#1.any_slaves_1860 , a(i.county_fips i.day_id) cluster(county_fips)
29
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Any Slaves","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
30
+ drop interaction
31
+
32
+ su alt_cottonsui , detail
33
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
34
+ g interaction = TRUMP_POST_1_30 * alt_cottonsuisd
35
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.alt_cottonsui , a(i.county_fips i.day_id) cluster(county_fips)
36
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Cotton","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
37
+ drop interaction
38
+
39
+ su ihsbl_lynch , detail
40
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
41
+ g interaction = TRUMP_POST_1_30 * ihsbl_lynchsd
42
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.ihsbl_lynch , a(i.county_fips i.day_id) cluster(county_fips)
43
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Lynchings","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
44
+ drop interaction
45
+
46
+ su ihsbl_exec , detail
47
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
48
+ g interaction = TRUMP_POST_1_30 * ihsbl_execsd
49
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.ihsbl_exec , a(i.county_fips i.day_id) cluster(county_fips)
50
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","IHS Executations","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
51
+ drop interaction
52
+
53
+ **** PANEL B
54
+ su dem_p , detail
55
+ g dem_psd = ( dem_p - r(mean))/r(sd)
56
+ local sd = r(sd)
57
+ g interaction = TRUMP_POST_1_30 * dem_psd
58
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.dem_p , a(i.county_fips i.day_id) cluster(county_fips)
59
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","DEM Share","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
60
+ drop interaction
61
+
62
+ g interaction = TRUMP_POST_1_30 * rep
63
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.rep , a(i.county_fips i.day_id) cluster(county_fips)
64
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","County Sheriff","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
65
+ drop interaction
66
+
67
+ su medianincome , detail
68
+ g incomesd = ( medianincome - r(mean))/r(sd)
69
+ g interaction = TRUMP_POST_1_30 * incomesd
70
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.medianincome , a(i.county_fips i.day_id) cluster(county_fips)
71
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Income","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
72
+ drop interaction
73
+
74
+ su coll , detail
75
+ g collsd = ( coll - r(mean))/r(sd)
76
+ g interaction = TRUMP_POST_1_30 * collsd
77
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.coll , a(i.county_fips i.day_id) cluster(county_fips)
78
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","College","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
79
+ drop interaction
80
+
81
+ su d_tradeusch_pw , detail
82
+ g d_tradeusch_pwsd = ( d_tradeusch_pw - r(mean))/r(sd)
83
+ g interaction = TRUMP_POST_1_30 * d_tradeusch_pwsd
84
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.d_tradeusch_pw , a(i.county_fips i.day_id) cluster(county_fips)
85
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","China Shock","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
86
+ drop interaction
87
+
88
+ su d_tradeotch_pw_lag , detail
89
+ g dtrdothchsd = ( d_tradeotch_pw_lag - r(mean))/r(sd)
90
+ g interaction = TRUMP_POST_1_30 * dtrdothchsd
91
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.dtrdothch , a(i.county_fips i.day_id) cluster(county_fips)
92
+ outreg2 using "Results/Table6.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","China Shock IV","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
93
+ drop interaction
39/replication_package/Do/Table7.do ADDED
@@ -0,0 +1,1170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE 7
4
+ *** Role of Local Characteristics in the Effect of Trump Rallies on the Probability of a Black Stop
5
+ **********************************************************************
6
+
7
+ qui:{
8
+
9
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
10
+ set obs 2655
11
+ replace A="totnonstopwords" in 2655
12
+ foreach v of varlist B-GI {
13
+ egen totwordsX=total(`v')
14
+ replace `v'=totwordsX in 2655
15
+ drop totwordsX
16
+ }
17
+ foreach v of varlist B-GI {
18
+ local x : variable label `v'
19
+ rename `v' v`x'
20
+ }
21
+ keep if A=="DRUG" | A=="CRIME" | A=="RAPE" | A=="CRIMIN" | A=="GUN" | A=="PRISON" | A=="RIOT" | A=="THUG" | A=="URBAN" | A=="AFRICAN" | A=="BLACK" | A=="RACE" | A=="RACIAL" | A=="RACIST" | A=="totnonstopwords"
22
+ keep A v*
23
+
24
+ reshape long v, i(A) j(id)
25
+ sort id
26
+ by id: egen B = total(v) if A!="totnonstopwords"
27
+ by id: egen C = max(B)
28
+ keep if A=="totnonstopwords"
29
+ keep id v C
30
+ rename C A
31
+ replace A=0 if A==.
32
+ rename v totnonstopwords
33
+ rename A word
34
+ merge 1:1 id using "Data\speech_data.dta"
35
+ drop if _merge==2
36
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
37
+ replace totwords=-999 if totnonstopwords==-999
38
+ g inspeechdata = (_merge==3)
39
+ drop state A _merge id
40
+ destring county_fips, replace
41
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
42
+ drop if county_fips==.
43
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
44
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
45
+
46
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
47
+ keep if _merge!=1
48
+
49
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
50
+ forval ee = 9(-1)1 {
51
+ g abs_dist_event`ee' = abs(dist_event`ee')
52
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
53
+ }
54
+
55
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
56
+ g nwords = .
57
+ forval ee = 9(-1)1 {
58
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
59
+ }
60
+
61
+ su nwords
62
+ replace nwords = (nwords - r(mean)) / r(sd)
63
+
64
+ su bias_off1
65
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
66
+
67
+ g TPXnwords = TRUMP_POST_1_30*nwords
68
+ replace TPXnwords = 0 if NEVER_TREATED==1
69
+
70
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
71
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
72
+
73
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
74
+
75
+ noisily: di "ALL REFERENCES: "
76
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
77
+ outreg2 using "Results/Table7A.txt", replace dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Explicit+Implicit") label nonotes nocons noni
78
+
79
+ ****explicit
80
+
81
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
82
+ set obs 2655
83
+ replace A="totnonstopwords" in 2655
84
+ foreach v of varlist B-GI {
85
+ egen totwordsX=total(`v')
86
+ replace `v'=totwordsX in 2655
87
+ drop totwordsX
88
+ }
89
+ foreach v of varlist B-GI {
90
+ local x : variable label `v'
91
+ rename `v' v`x'
92
+ }
93
+ keep if A=="AFRICAN" | A=="BLACK" | A=="RACE" | A=="RACIAL" | A=="RACIST" | A=="totnonstopwords"
94
+ keep A v*
95
+
96
+
97
+ reshape long v, i(A) j(id)
98
+ sort id
99
+ by id: egen B = total(v) if A!="totnonstopwords"
100
+ by id: egen C = max(B)
101
+ keep if A=="totnonstopwords"
102
+ keep id v C
103
+ rename C A
104
+ replace A=0 if A==.
105
+ rename v totnonstopwords
106
+ rename A word
107
+ merge 1:1 id using "Data\speech_data.dta"
108
+ drop if _merge==2
109
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
110
+ replace totwords=-999 if totnonstopwords==-999
111
+ g inspeechdata = (_merge==3)
112
+ drop state A _merge id
113
+ destring county_fips, replace
114
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
115
+ drop if county_fips==.
116
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
117
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
118
+
119
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
120
+ keep if _merge!=1
121
+
122
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
123
+ forval ee = 9(-1)1 {
124
+ g abs_dist_event`ee' = abs(dist_event`ee')
125
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
126
+ }
127
+
128
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
129
+ g nwords = .
130
+ forval ee = 9(-1)1 {
131
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
132
+ }
133
+
134
+ su nwords
135
+ replace nwords = (nwords - r(mean)) / r(sd)
136
+
137
+ su bias_off1
138
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
139
+
140
+ g TPXnwords = TRUMP_POST_1_30*nwords
141
+ replace TPXnwords = 0 if NEVER_TREATED==1
142
+
143
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
144
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
145
+
146
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
147
+
148
+
149
+ noisily: di "EXPLICIT REFERENCES"
150
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
151
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Explicit") label nonotes nocons noni
152
+
153
+
154
+
155
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
156
+ set obs 2655
157
+ replace A="totnonstopwords" in 2655
158
+ foreach v of varlist B-GI {
159
+ egen totwordsX=total(`v')
160
+ replace `v'=totwordsX in 2655
161
+ drop totwordsX
162
+ }
163
+ foreach v of varlist B-GI {
164
+ local x : variable label `v'
165
+ rename `v' v`x'
166
+ }
167
+ keep if A=="DRUG" | A=="CRIME" | A=="RAPE" | A=="CRIMIN" | A=="GUN" | A=="PRISON" | A=="RIOT" | A=="THUG" | A=="URBAN" | A=="totnonstopwords"
168
+ keep A v*
169
+
170
+ reshape long v, i(A) j(id)
171
+ sort id
172
+ by id: egen B = total(v) if A!="totnonstopwords"
173
+ by id: egen C = max(B)
174
+ keep if A=="totnonstopwords"
175
+ keep id v C
176
+ rename C A
177
+ replace A=0 if A==.
178
+ rename v totnonstopwords
179
+ rename A word
180
+ merge 1:1 id using "Data\speech_data.dta"
181
+ drop if _merge==2
182
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
183
+ replace totwords=-999 if totnonstopwords==-999
184
+ g inspeechdata = (_merge==3)
185
+ drop state A _merge id
186
+ destring county_fips, replace
187
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
188
+ drop if county_fips==.
189
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
190
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
191
+
192
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
193
+ keep if _merge!=1
194
+
195
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
196
+ forval ee = 9(-1)1 {
197
+ g abs_dist_event`ee' = abs(dist_event`ee')
198
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
199
+ }
200
+
201
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
202
+ g nwords = .
203
+ forval ee = 9(-1)1 {
204
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
205
+ }
206
+
207
+ su nwords
208
+ replace nwords = (nwords - r(mean)) / r(sd)
209
+
210
+ su bias_off1
211
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
212
+
213
+ g TPXnwords = TRUMP_POST_1_30*nwords
214
+ replace TPXnwords = 0 if NEVER_TREATED==1
215
+
216
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
217
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
218
+
219
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
220
+
221
+ noisily: di "IMPLICIT: "
222
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
223
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Implicit") label nonotes nocons noni
224
+
225
+
226
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
227
+ set obs 2655
228
+ replace A="totnonstopwords" in 2655
229
+ foreach v of varlist B-GI {
230
+ egen totwordsX=total(`v')
231
+ replace `v'=totwordsX in 2655
232
+ drop totwordsX
233
+ }
234
+ foreach v of varlist B-GI {
235
+ local x : variable label `v'
236
+ rename `v' v`x'
237
+ }
238
+ keep if A=="CHINA" | A=="TRADE" | A=="NAFTA" | A=="totnonstopwords"
239
+ keep A v*
240
+
241
+ reshape long v, i(A) j(id)
242
+ sort id
243
+ by id: egen B = total(v) if A!="totnonstopwords"
244
+ by id: egen C = max(B)
245
+ keep if A=="totnonstopwords"
246
+ keep id v C
247
+ rename C A
248
+ replace A=0 if A==.
249
+ rename v totnonstopwords
250
+ rename A word
251
+ merge 1:1 id using "Data\speech_data.dta"
252
+ drop if _merge==2
253
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
254
+ replace totwords=-999 if totnonstopwords==-999
255
+ g inspeechdata = (_merge==3)
256
+ drop state A _merge id
257
+ destring county_fips, replace
258
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
259
+ drop if county_fips==.
260
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
261
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
262
+
263
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
264
+ keep if _merge!=1
265
+
266
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
267
+ forval ee = 9(-1)1 {
268
+ g abs_dist_event`ee' = abs(dist_event`ee')
269
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
270
+ }
271
+
272
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
273
+ g nwords = .
274
+ forval ee = 9(-1)1 {
275
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
276
+ }
277
+
278
+ su nwords
279
+ replace nwords = (nwords - r(mean)) / r(sd)
280
+
281
+ su bias_off1
282
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
283
+
284
+ g TPXnwords = TRUMP_POST_1_30*nwords
285
+ replace TPXnwords = 0 if NEVER_TREATED==1
286
+
287
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
288
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
289
+
290
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
291
+
292
+ noisily: di "TRADE: "
293
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
294
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Trade") label nonotes nocons noni
295
+
296
+
297
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
298
+ set obs 2655
299
+ replace A="totnonstopwords" in 2655
300
+ foreach v of varlist B-GI {
301
+ egen totwordsX=total(`v')
302
+ replace `v'=totwordsX in 2655
303
+ drop totwordsX
304
+ }
305
+ foreach v of varlist B-GI {
306
+ local x : variable label `v'
307
+ rename `v' v`x'
308
+ }
309
+ keep if A=="HILARI" | A=="CLINTON" | A=="EMAIL" | A=="LOCK" | A=="totnonstopwords"
310
+ keep A v*
311
+
312
+ reshape long v, i(A) j(id)
313
+ sort id
314
+ by id: egen B = total(v) if A!="totnonstopwords"
315
+ by id: egen C = max(B)
316
+ keep if A=="totnonstopwords"
317
+ keep id v C
318
+ rename C A
319
+ replace A=0 if A==.
320
+ rename v totnonstopwords
321
+ rename A word
322
+ merge 1:1 id using "Data\speech_data.dta"
323
+ drop if _merge==2
324
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
325
+ replace totwords=-999 if totnonstopwords==-999
326
+ g inspeechdata = (_merge==3)
327
+ drop state A _merge id
328
+ destring county_fips, replace
329
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
330
+ drop if county_fips==.
331
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
332
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
333
+
334
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
335
+ keep if _merge!=1
336
+
337
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
338
+ forval ee = 9(-1)1 {
339
+ g abs_dist_event`ee' = abs(dist_event`ee')
340
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
341
+ }
342
+
343
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
344
+ g nwords = .
345
+ forval ee = 9(-1)1 {
346
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
347
+ }
348
+
349
+ su nwords
350
+ replace nwords = (nwords - r(mean)) / r(sd)
351
+
352
+ su bias_off1
353
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
354
+
355
+ g TPXnwords = TRUMP_POST_1_30*nwords
356
+ replace TPXnwords = 0 if NEVER_TREATED==1
357
+
358
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
359
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
360
+
361
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
362
+
363
+ noisily: di "CLINTON: "
364
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
365
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Clinton") label nonotes nocons noni
366
+
367
+
368
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
369
+ set obs 2655
370
+ replace A="totnonstopwords" in 2655
371
+ foreach v of varlist B-GI {
372
+ egen totwordsX=total(`v')
373
+ replace `v'=totwordsX in 2655
374
+ drop totwordsX
375
+ }
376
+ foreach v of varlist B-GI {
377
+ local x : variable label `v'
378
+ rename `v' v`x'
379
+ }
380
+ keep if A=="ISI" | A=="SYRIA" | A=="IRAQ" | A=="TERRORIST" | A=="AFGHANISTAN" | A=="ISLAM" | A=="totnonstopwords"
381
+ keep A v*
382
+
383
+ reshape long v, i(A) j(id)
384
+ sort id
385
+ by id: egen B = total(v) if A!="totnonstopwords"
386
+ by id: egen C = max(B)
387
+ keep if A=="totnonstopwords"
388
+ keep id v C
389
+ rename C A
390
+ replace A=0 if A==.
391
+ rename v totnonstopwords
392
+ rename A word
393
+ merge 1:1 id using "Data\speech_data.dta"
394
+ drop if _merge==2
395
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
396
+ replace totwords=-999 if totnonstopwords==-999
397
+ g inspeechdata = (_merge==3)
398
+ drop state A _merge id
399
+ destring county_fips, replace
400
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
401
+ drop if county_fips==.
402
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
403
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
404
+
405
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
406
+ keep if _merge!=1
407
+
408
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
409
+ forval ee = 9(-1)1 {
410
+ g abs_dist_event`ee' = abs(dist_event`ee')
411
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
412
+ }
413
+
414
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
415
+ g nwords = .
416
+ forval ee = 9(-1)1 {
417
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
418
+ }
419
+
420
+ su nwords
421
+ replace nwords = (nwords - r(mean)) / r(sd)
422
+
423
+ su bias_off1
424
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
425
+
426
+ g TPXnwords = TRUMP_POST_1_30*nwords
427
+ replace TPXnwords = 0 if NEVER_TREATED==1
428
+
429
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
430
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
431
+
432
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
433
+
434
+ noisily: di "TERROR: "
435
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
436
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Terror") label nonotes nocons noni
437
+
438
+
439
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
440
+ set obs 2655
441
+ replace A="totnonstopwords" in 2655
442
+ foreach v of varlist B-GI {
443
+ egen totwordsX=total(`v')
444
+ replace `v'=totwordsX in 2655
445
+ drop totwordsX
446
+ }
447
+ foreach v of varlist B-GI {
448
+ local x : variable label `v'
449
+ rename `v' v`x'
450
+ }
451
+ keep if A=="BUSI" | A=="JOB" | A=="MANUFACTUR" | A=="TAX" | A=="totnonstopwords"
452
+ keep A v*
453
+
454
+ reshape long v, i(A) j(id)
455
+ sort id
456
+ by id: egen B = total(v) if A!="totnonstopwords"
457
+ by id: egen C = max(B)
458
+ keep if A=="totnonstopwords"
459
+ keep id v C
460
+ rename C A
461
+ replace A=0 if A==.
462
+ rename v totnonstopwords
463
+ rename A word
464
+ merge 1:1 id using "Data\speech_data.dta"
465
+ drop if _merge==2
466
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
467
+ replace totwords=-999 if totnonstopwords==-999
468
+ g inspeechdata = (_merge==3)
469
+ drop state A _merge id
470
+ destring county_fips, replace
471
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
472
+ drop if county_fips==.
473
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
474
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
475
+
476
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
477
+ keep if _merge!=1
478
+
479
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
480
+ forval ee = 9(-1)1 {
481
+ g abs_dist_event`ee' = abs(dist_event`ee')
482
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
483
+ }
484
+
485
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
486
+ g nwords = .
487
+ forval ee = 9(-1)1 {
488
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
489
+ }
490
+
491
+ su nwords
492
+ replace nwords = (nwords - r(mean)) / r(sd)
493
+
494
+ su bias_off1
495
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
496
+
497
+ g TPXnwords = TRUMP_POST_1_30*nwords
498
+ replace TPXnwords = 0 if NEVER_TREATED==1
499
+
500
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
501
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
502
+
503
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
504
+
505
+ noisily: di "JOB: "
506
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
507
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Job") label nonotes nocons noni
508
+
509
+
510
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
511
+ set obs 2655
512
+ replace A="totnonstopwords" in 2655
513
+ foreach v of varlist B-GI {
514
+ egen totwordsX=total(`v')
515
+ replace `v'=totwordsX in 2655
516
+ drop totwordsX
517
+ }
518
+ foreach v of varlist B-GI {
519
+ local x : variable label `v'
520
+ rename `v' v`x'
521
+ }
522
+ keep if A=="RIG" | A=="MEDIA" | A=="CNN" | A=="WASHINGTON" | A=="CORRUPT" | A=="SWAMP" | A=="totnonstopwords"
523
+ keep A v*
524
+
525
+ reshape long v, i(A) j(id)
526
+ sort id
527
+ by id: egen B = total(v) if A!="totnonstopwords"
528
+ by id: egen C = max(B)
529
+ keep if A=="totnonstopwords"
530
+ keep id v C
531
+ rename C A
532
+ replace A=0 if A==.
533
+ rename v totnonstopwords
534
+ rename A word
535
+ merge 1:1 id using "Data\speech_data.dta"
536
+ drop if _merge==2
537
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
538
+ replace totwords=-999 if totnonstopwords==-999
539
+ g inspeechdata = (_merge==3)
540
+ drop state A _merge id
541
+ destring county_fips, replace
542
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
543
+ drop if county_fips==.
544
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
545
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
546
+
547
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
548
+ keep if _merge!=1
549
+
550
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
551
+ forval ee = 9(-1)1 {
552
+ g abs_dist_event`ee' = abs(dist_event`ee')
553
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
554
+ }
555
+
556
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
557
+ g nwords = .
558
+ forval ee = 9(-1)1 {
559
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
560
+ }
561
+
562
+ su nwords
563
+ replace nwords = (nwords - r(mean)) / r(sd)
564
+
565
+ su bias_off1
566
+ replace bias_off1 = (bias_off1 - r(mean)) / r(sd)
567
+
568
+ g TPXnwords = TRUMP_POST_1_30*nwords
569
+ replace TPXnwords = 0 if NEVER_TREATED==1
570
+
571
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off1*nwords
572
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
573
+
574
+ g TPXbias = TRUMP_POST_1_30 * bias_off1
575
+
576
+ noisily: di "CORRUPTION: "
577
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
578
+ outreg2 using "Results/Table7A.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off1 TPXbias TPXbiasXnwords) addtext("Words","Corruption") label nonotes nocons noni
579
+
580
+
581
+
582
+
583
+
584
+
585
+
586
+ ***********************************************************************************************************************************************************************************************************
587
+
588
+
589
+
590
+ **********************************************************************
591
+ *** TABLE 7
592
+ *** Role of Local Characteristics in the Effect of Trump Rallies on the Probability of a Black Stop
593
+ **********************************************************************
594
+
595
+ qui:{
596
+
597
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
598
+ set obs 2655
599
+ replace A="totnonstopwords" in 2655
600
+ foreach v of varlist B-GI {
601
+ egen totwordsX=total(`v')
602
+ replace `v'=totwordsX in 2655
603
+ drop totwordsX
604
+ }
605
+ foreach v of varlist B-GI {
606
+ local x : variable label `v'
607
+ rename `v' v`x'
608
+ }
609
+ keep if A=="DRUG" | A=="CRIME" | A=="RAPE" | A=="CRIMIN" | A=="GUN" | A=="PRISON" | A=="RIOT" | A=="THUG" | A=="URBAN" | A=="AFRICAN" | A=="BLACK" | A=="RACE" | A=="RACIAL" | A=="RACIST" | A=="totnonstopwords"
610
+ keep A v*
611
+
612
+ reshape long v, i(A) j(id)
613
+ sort id
614
+ by id: egen B = total(v) if A!="totnonstopwords"
615
+ by id: egen C = max(B)
616
+ keep if A=="totnonstopwords"
617
+ keep id v C
618
+ rename C A
619
+ replace A=0 if A==.
620
+ rename v totnonstopwords
621
+ rename A word
622
+ merge 1:1 id using "Data\speech_data.dta"
623
+ drop if _merge==2
624
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
625
+ replace totwords=-999 if totnonstopwords==-999
626
+ g inspeechdata = (_merge==3)
627
+ drop state A _merge id
628
+ destring county_fips, replace
629
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
630
+ drop if county_fips==.
631
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
632
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
633
+
634
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
635
+ keep if _merge!=1
636
+
637
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
638
+ forval ee = 9(-1)1 {
639
+ g abs_dist_event`ee' = abs(dist_event`ee')
640
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
641
+ }
642
+
643
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
644
+ g nwords = .
645
+ forval ee = 9(-1)1 {
646
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
647
+ }
648
+
649
+ su nwords
650
+ replace nwords = (nwords - r(mean)) / r(sd)
651
+
652
+ su bias_off2
653
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
654
+
655
+ g TPXnwords = TRUMP_POST_1_30*nwords
656
+ replace TPXnwords = 0 if NEVER_TREATED==1
657
+
658
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
659
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
660
+
661
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
662
+
663
+ noisily: di "ALL REFERENCES: "
664
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
665
+ outreg2 using "Results/Table7B.txt", replace dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Explicit+Implicit") label nonotes nocons noni
666
+
667
+ ****explicit
668
+
669
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
670
+ set obs 2655
671
+ replace A="totnonstopwords" in 2655
672
+ foreach v of varlist B-GI {
673
+ egen totwordsX=total(`v')
674
+ replace `v'=totwordsX in 2655
675
+ drop totwordsX
676
+ }
677
+ foreach v of varlist B-GI {
678
+ local x : variable label `v'
679
+ rename `v' v`x'
680
+ }
681
+ keep if A=="AFRICAN" | A=="BLACK" | A=="RACE" | A=="RACIAL" | A=="RACIST" | A=="totnonstopwords"
682
+ keep A v*
683
+
684
+
685
+ reshape long v, i(A) j(id)
686
+ sort id
687
+ by id: egen B = total(v) if A!="totnonstopwords"
688
+ by id: egen C = max(B)
689
+ keep if A=="totnonstopwords"
690
+ keep id v C
691
+ rename C A
692
+ replace A=0 if A==.
693
+ rename v totnonstopwords
694
+ rename A word
695
+ merge 1:1 id using "Data\speech_data.dta"
696
+ drop if _merge==2
697
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
698
+ replace totwords=-999 if totnonstopwords==-999
699
+ g inspeechdata = (_merge==3)
700
+ drop state A _merge id
701
+ destring county_fips, replace
702
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
703
+ drop if county_fips==.
704
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
705
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
706
+
707
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
708
+ keep if _merge!=1
709
+
710
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
711
+ forval ee = 9(-1)1 {
712
+ g abs_dist_event`ee' = abs(dist_event`ee')
713
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
714
+ }
715
+
716
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
717
+ g nwords = .
718
+ forval ee = 9(-1)1 {
719
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
720
+ }
721
+
722
+ su nwords
723
+ replace nwords = (nwords - r(mean)) / r(sd)
724
+
725
+ su bias_off2
726
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
727
+
728
+ g TPXnwords = TRUMP_POST_1_30*nwords
729
+ replace TPXnwords = 0 if NEVER_TREATED==1
730
+
731
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
732
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
733
+
734
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
735
+
736
+
737
+ noisily: di "EXPLICIT REFERENCES"
738
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
739
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Explicit") label nonotes nocons noni
740
+
741
+
742
+
743
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
744
+ set obs 2655
745
+ replace A="totnonstopwords" in 2655
746
+ foreach v of varlist B-GI {
747
+ egen totwordsX=total(`v')
748
+ replace `v'=totwordsX in 2655
749
+ drop totwordsX
750
+ }
751
+ foreach v of varlist B-GI {
752
+ local x : variable label `v'
753
+ rename `v' v`x'
754
+ }
755
+ keep if A=="DRUG" | A=="CRIME" | A=="RAPE" | A=="CRIMIN" | A=="GUN" | A=="PRISON" | A=="RIOT" | A=="THUG" | A=="URBAN" | A=="totnonstopwords"
756
+ keep A v*
757
+
758
+ reshape long v, i(A) j(id)
759
+ sort id
760
+ by id: egen B = total(v) if A!="totnonstopwords"
761
+ by id: egen C = max(B)
762
+ keep if A=="totnonstopwords"
763
+ keep id v C
764
+ rename C A
765
+ replace A=0 if A==.
766
+ rename v totnonstopwords
767
+ rename A word
768
+ merge 1:1 id using "Data\speech_data.dta"
769
+ drop if _merge==2
770
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
771
+ replace totwords=-999 if totnonstopwords==-999
772
+ g inspeechdata = (_merge==3)
773
+ drop state A _merge id
774
+ destring county_fips, replace
775
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
776
+ drop if county_fips==.
777
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
778
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
779
+
780
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
781
+ keep if _merge!=1
782
+
783
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
784
+ forval ee = 9(-1)1 {
785
+ g abs_dist_event`ee' = abs(dist_event`ee')
786
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
787
+ }
788
+
789
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
790
+ g nwords = .
791
+ forval ee = 9(-1)1 {
792
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
793
+ }
794
+
795
+ su nwords
796
+ replace nwords = (nwords - r(mean)) / r(sd)
797
+
798
+ su bias_off2
799
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
800
+
801
+ g TPXnwords = TRUMP_POST_1_30*nwords
802
+ replace TPXnwords = 0 if NEVER_TREATED==1
803
+
804
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
805
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
806
+
807
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
808
+
809
+ noisily: di "IMPLICIT: "
810
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
811
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Implicit") label nonotes nocons noni
812
+
813
+
814
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
815
+ set obs 2655
816
+ replace A="totnonstopwords" in 2655
817
+ foreach v of varlist B-GI {
818
+ egen totwordsX=total(`v')
819
+ replace `v'=totwordsX in 2655
820
+ drop totwordsX
821
+ }
822
+ foreach v of varlist B-GI {
823
+ local x : variable label `v'
824
+ rename `v' v`x'
825
+ }
826
+ keep if A=="CHINA" | A=="TRADE" | A=="NAFTA" | A=="totnonstopwords"
827
+ keep A v*
828
+
829
+ reshape long v, i(A) j(id)
830
+ sort id
831
+ by id: egen B = total(v) if A!="totnonstopwords"
832
+ by id: egen C = max(B)
833
+ keep if A=="totnonstopwords"
834
+ keep id v C
835
+ rename C A
836
+ replace A=0 if A==.
837
+ rename v totnonstopwords
838
+ rename A word
839
+ merge 1:1 id using "Data\speech_data.dta"
840
+ drop if _merge==2
841
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
842
+ replace totwords=-999 if totnonstopwords==-999
843
+ g inspeechdata = (_merge==3)
844
+ drop state A _merge id
845
+ destring county_fips, replace
846
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
847
+ drop if county_fips==.
848
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
849
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
850
+
851
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
852
+ keep if _merge!=1
853
+
854
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
855
+ forval ee = 9(-1)1 {
856
+ g abs_dist_event`ee' = abs(dist_event`ee')
857
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
858
+ }
859
+
860
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
861
+ g nwords = .
862
+ forval ee = 9(-1)1 {
863
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
864
+ }
865
+
866
+ su nwords
867
+ replace nwords = (nwords - r(mean)) / r(sd)
868
+
869
+ su bias_off2
870
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
871
+
872
+ g TPXnwords = TRUMP_POST_1_30*nwords
873
+ replace TPXnwords = 0 if NEVER_TREATED==1
874
+
875
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
876
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
877
+
878
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
879
+
880
+ noisily: di "TRADE: "
881
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
882
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Trade") label nonotes nocons noni
883
+
884
+
885
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
886
+ set obs 2655
887
+ replace A="totnonstopwords" in 2655
888
+ foreach v of varlist B-GI {
889
+ egen totwordsX=total(`v')
890
+ replace `v'=totwordsX in 2655
891
+ drop totwordsX
892
+ }
893
+ foreach v of varlist B-GI {
894
+ local x : variable label `v'
895
+ rename `v' v`x'
896
+ }
897
+ keep if A=="HILARI" | A=="CLINTON" | A=="EMAIL" | A=="LOCK" | A=="totnonstopwords"
898
+ keep A v*
899
+
900
+ reshape long v, i(A) j(id)
901
+ sort id
902
+ by id: egen B = total(v) if A!="totnonstopwords"
903
+ by id: egen C = max(B)
904
+ keep if A=="totnonstopwords"
905
+ keep id v C
906
+ rename C A
907
+ replace A=0 if A==.
908
+ rename v totnonstopwords
909
+ rename A word
910
+ merge 1:1 id using "Data\speech_data.dta"
911
+ drop if _merge==2
912
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
913
+ replace totwords=-999 if totnonstopwords==-999
914
+ g inspeechdata = (_merge==3)
915
+ drop state A _merge id
916
+ destring county_fips, replace
917
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
918
+ drop if county_fips==.
919
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
920
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
921
+
922
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
923
+ keep if _merge!=1
924
+
925
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
926
+ forval ee = 9(-1)1 {
927
+ g abs_dist_event`ee' = abs(dist_event`ee')
928
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
929
+ }
930
+
931
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
932
+ g nwords = .
933
+ forval ee = 9(-1)1 {
934
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
935
+ }
936
+
937
+ su nwords
938
+ replace nwords = (nwords - r(mean)) / r(sd)
939
+
940
+ su bias_off2
941
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
942
+
943
+ g TPXnwords = TRUMP_POST_1_30*nwords
944
+ replace TPXnwords = 0 if NEVER_TREATED==1
945
+
946
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
947
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
948
+
949
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
950
+
951
+ noisily: di "CLINTON: "
952
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
953
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Clinton") label nonotes nocons noni
954
+
955
+
956
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
957
+ set obs 2655
958
+ replace A="totnonstopwords" in 2655
959
+ foreach v of varlist B-GI {
960
+ egen totwordsX=total(`v')
961
+ replace `v'=totwordsX in 2655
962
+ drop totwordsX
963
+ }
964
+ foreach v of varlist B-GI {
965
+ local x : variable label `v'
966
+ rename `v' v`x'
967
+ }
968
+ keep if A=="ISI" | A=="SYRIA" | A=="IRAQ" | A=="TERRORIST" | A=="AFGHANISTAN" | A=="ISLAM" | A=="totnonstopwords"
969
+ keep A v*
970
+
971
+ reshape long v, i(A) j(id)
972
+ sort id
973
+ by id: egen B = total(v) if A!="totnonstopwords"
974
+ by id: egen C = max(B)
975
+ keep if A=="totnonstopwords"
976
+ keep id v C
977
+ rename C A
978
+ replace A=0 if A==.
979
+ rename v totnonstopwords
980
+ rename A word
981
+ merge 1:1 id using "Data\speech_data.dta"
982
+ drop if _merge==2
983
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
984
+ replace totwords=-999 if totnonstopwords==-999
985
+ g inspeechdata = (_merge==3)
986
+ drop state A _merge id
987
+ destring county_fips, replace
988
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
989
+ drop if county_fips==.
990
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
991
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
992
+
993
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
994
+ keep if _merge!=1
995
+
996
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
997
+ forval ee = 9(-1)1 {
998
+ g abs_dist_event`ee' = abs(dist_event`ee')
999
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
1000
+ }
1001
+
1002
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
1003
+ g nwords = .
1004
+ forval ee = 9(-1)1 {
1005
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
1006
+ }
1007
+
1008
+ su nwords
1009
+ replace nwords = (nwords - r(mean)) / r(sd)
1010
+
1011
+ su bias_off2
1012
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
1013
+
1014
+ g TPXnwords = TRUMP_POST_1_30*nwords
1015
+ replace TPXnwords = 0 if NEVER_TREATED==1
1016
+
1017
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
1018
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
1019
+
1020
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
1021
+
1022
+ noisily: di "TERROR: "
1023
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
1024
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Terror") label nonotes nocons noni
1025
+
1026
+
1027
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
1028
+ set obs 2655
1029
+ replace A="totnonstopwords" in 2655
1030
+ foreach v of varlist B-GI {
1031
+ egen totwordsX=total(`v')
1032
+ replace `v'=totwordsX in 2655
1033
+ drop totwordsX
1034
+ }
1035
+ foreach v of varlist B-GI {
1036
+ local x : variable label `v'
1037
+ rename `v' v`x'
1038
+ }
1039
+ keep if A=="BUSI" | A=="JOB" | A=="MANUFACTUR" | A=="TAX" | A=="totnonstopwords"
1040
+ keep A v*
1041
+
1042
+ reshape long v, i(A) j(id)
1043
+ sort id
1044
+ by id: egen B = total(v) if A!="totnonstopwords"
1045
+ by id: egen C = max(B)
1046
+ keep if A=="totnonstopwords"
1047
+ keep id v C
1048
+ rename C A
1049
+ replace A=0 if A==.
1050
+ rename v totnonstopwords
1051
+ rename A word
1052
+ merge 1:1 id using "Data\speech_data.dta"
1053
+ drop if _merge==2
1054
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
1055
+ replace totwords=-999 if totnonstopwords==-999
1056
+ g inspeechdata = (_merge==3)
1057
+ drop state A _merge id
1058
+ destring county_fips, replace
1059
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
1060
+ drop if county_fips==.
1061
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
1062
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
1063
+
1064
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
1065
+ keep if _merge!=1
1066
+
1067
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
1068
+ forval ee = 9(-1)1 {
1069
+ g abs_dist_event`ee' = abs(dist_event`ee')
1070
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
1071
+ }
1072
+
1073
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
1074
+ g nwords = .
1075
+ forval ee = 9(-1)1 {
1076
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
1077
+ }
1078
+
1079
+ su nwords
1080
+ replace nwords = (nwords - r(mean)) / r(sd)
1081
+
1082
+ su bias_off2
1083
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
1084
+
1085
+ g TPXnwords = TRUMP_POST_1_30*nwords
1086
+ replace TPXnwords = 0 if NEVER_TREATED==1
1087
+
1088
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
1089
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
1090
+
1091
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
1092
+
1093
+ noisily: di "JOB: "
1094
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
1095
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Job") label nonotes nocons noni
1096
+
1097
+
1098
+ import excel "Data\wordcount-eachspeech-all.xlsx", sheet("Sheet1") firstrow clear
1099
+ set obs 2655
1100
+ replace A="totnonstopwords" in 2655
1101
+ foreach v of varlist B-GI {
1102
+ egen totwordsX=total(`v')
1103
+ replace `v'=totwordsX in 2655
1104
+ drop totwordsX
1105
+ }
1106
+ foreach v of varlist B-GI {
1107
+ local x : variable label `v'
1108
+ rename `v' v`x'
1109
+ }
1110
+ keep if A=="RIG" | A=="MEDIA" | A=="CNN" | A=="WASHINGTON" | A=="CORRUPT" | A=="SWAMP" | A=="totnonstopwords"
1111
+ keep A v*
1112
+
1113
+ reshape long v, i(A) j(id)
1114
+ sort id
1115
+ by id: egen B = total(v) if A!="totnonstopwords"
1116
+ by id: egen C = max(B)
1117
+ keep if A=="totnonstopwords"
1118
+ keep id v C
1119
+ rename C A
1120
+ replace A=0 if A==.
1121
+ rename v totnonstopwords
1122
+ rename A word
1123
+ merge 1:1 id using "Data\speech_data.dta"
1124
+ drop if _merge==2
1125
+ replace totnonstopwords=-999 if totnonstopwords==0 | totnonstopwords==.
1126
+ replace totwords=-999 if totnonstopwords==-999
1127
+ g inspeechdata = (_merge==3)
1128
+ drop state A _merge id
1129
+ destring county_fips, replace
1130
+ reshape wide word event_day_Trump_ totnonstopwords totwords inspeechdata, i(county_fips) j(rally_number)
1131
+ drop if county_fips==.
1132
+ egen inspeechdata=rowmax(inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9)
1133
+ drop inspeechdata1 inspeechdata2 inspeechdata3 inspeechdata4 inspeechdata5 inspeechdata6 inspeechdata7 inspeechdata8 inspeechdata9 totwords*
1134
+
1135
+ merge 1:m county_fips using "Data/full_data_tomergewithspeech.dta"
1136
+ keep if _merge!=1
1137
+
1138
+ *** event_day_Trump is missing if they are not in speech data, while dist_event & abs_dist_event are non-missing (because they are defined based on all rallies).
1139
+ forval ee = 9(-1)1 {
1140
+ g abs_dist_event`ee' = abs(dist_event`ee')
1141
+ replace totnonstopwords`ee'=-999 if totnonstopwords`ee'==. & abs_dist_event`ee'!=.
1142
+ }
1143
+
1144
+ egen closestevent=rowmin(abs_dist_event1 abs_dist_event2 abs_dist_event3 abs_dist_event4 abs_dist_event5 abs_dist_event6 abs_dist_event7 abs_dist_event8 abs_dist_event9)
1145
+ g nwords = .
1146
+ forval ee = 9(-1)1 {
1147
+ replace nwords = word`ee' if abs_dist_event`ee'==closestevent & totnonstopwords`ee'!=-999
1148
+ }
1149
+
1150
+ su nwords
1151
+ replace nwords = (nwords - r(mean)) / r(sd)
1152
+
1153
+ su bias_off2
1154
+ replace bias_off2 = (bias_off2 - r(mean)) / r(sd)
1155
+
1156
+ g TPXnwords = TRUMP_POST_1_30*nwords
1157
+ replace TPXnwords = 0 if NEVER_TREATED==1
1158
+
1159
+ g TPXbiasXnwords=TRUMP_POST_1_30*bias_off2*nwords
1160
+ replace TPXbiasXnwords = 0 if NEVER_TREATED==1
1161
+
1162
+ g TPXbias = TRUMP_POST_1_30 * bias_off2
1163
+
1164
+ noisily: di "CORRUPTION: "
1165
+ noisily: reghdfe black 1.TRUMP_PRE_M30 1.TRUMP_0 1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords 1.TRUMP_POST_M30, a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id)
1166
+ outreg2 using "Results/Table7B.txt", append dec(3) keep(1.TRUMP_POST_1_30 TPXnwords bias_off2 TPXbias TPXbiasXnwords) addtext("Words","Corruption") label nonotes nocons noni
1167
+
1168
+ }
1169
+
1170
+ }
39/replication_package/Do/TableA1.do ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A1
4
+ *** Summary Statistics
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ summ TRUMP_POST_1_30 black hispanic api white
39/replication_package/Do/TableA10.do ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A10
4
+ *** Role of Estimated Officer Bias in the Effect of Trump Rallies on
5
+ *** the Probability of a Black Stop: Robustness to Agency-Day Fixed
6
+ *** Effects
7
+ **********************************************************************
8
+
9
+ use "Data\officerbias.dta", clear
10
+
11
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 bias_int1 if officer_id_hash!="" , a(i.county_id i.day_id i.county_id#c.day_id i.county_id#i.state_pd#c.day_id) cluster(i.county_id i.day_id)
12
+ outreg2 using "Results/TableA10.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off1 bias_int1) label nonotes nocons noni addtext("Officer FE", "NO", "Bias Measure", "Method 1")
13
+
14
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 bias_int1 if officer_id_hash!="" , a(i.officer_id i.county_id i.day_id i.county_id#c.day_id i.county_id#i.state_pd#c.day_id) cluster(i.county_id i.day_id)
15
+ outreg2 using "Results/TableA10.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off1 bias_int1) label nonotes nocons noni addtext("Officer FE", "YES", "Bias Measure", "Method 1")
16
+
17
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 bias_int2 if officer_id_hash!="" , a(i.county_id i.day_id i.county_id#c.day_id i.county_id#i.state_pd#c.day_id) cluster(i.county_id i.day_id)
18
+ outreg2 using "Results/TableA10.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off2 bias_int2) label nonotes nocons noni addtext("Officer FE", "NO", "Bias Measure", "Method 2")
19
+
20
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 bias_int2 if officer_id_hash!="" , a(i.officer_id i.county_id i.day_id i.county_id#c.day_id i.county_id#i.state_pd#c.day_id) cluster(i.county_id i.day_id)
21
+ outreg2 using "Results/TableA10.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30 bias_off2 bias_int2) label nonotes nocons noni addtext("Officer FE", "YES", "Bias Measure", "Method 1")
39/replication_package/Do/TableA11.do ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A11
4
+ *** Role of Estimated Officer Bias in the Effect of Trump Rallies on
5
+ *** the Probability of a Black Stop: Additional Robustness
6
+ **********************************************************************
7
+
8
+ use "Data\officerbias.dta", clear
9
+
10
+ drop if officer_id==.
11
+
12
+ forvalues j=1(1)2{
13
+ centile bias_off`j' if bias_off`j'!=., c(33)
14
+ local bias_p33 = `r(c_1)'
15
+
16
+ centile bias_off`j' if bias_off`j'!=., c(67)
17
+ local bias_p67 = `r(c_1)'
18
+
19
+ g bias_off`j'_33 = (bias_off`j'<`bias_p33')
20
+ g bias_off`j'_33_67 = (bias_off`j'>=`bias_p33' & bias_off`j'<`bias_p67')
21
+ g bias_off`j'_u67 = (bias_off`j'<`bias_p67')
22
+ g bias_off`j'_67 = (bias_off`j'>=`bias_p67')
23
+
24
+ g TP_1_30Xbias_off`j'_33 = TRUMP_POST_1_30*bias_off`j'_33
25
+ g TP_1_30Xbias_off`j'_33_67 = TRUMP_POST_1_30*bias_off`j'_33_67
26
+ g TP_1_30Xbias_off`j'_u67 = TRUMP_POST_1_30*bias_off`j'_u67
27
+ g TP_1_30Xbias_off`j'_67 = TRUMP_POST_1_30*bias_off`j'_67
28
+ }
29
+
30
+ reghdfe black TRUMP_0 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 TP_1_30Xbias_off1_33 TP_1_30Xbias_off1_33_67 TP_1_30Xbias_off1_67, a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
31
+ outreg2 using "Results/TableA11.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TP_1_30Xbias_off1_33 TP_1_30Xbias_off1_33_67 TP_1_30Xbias_off1_67) label nonotes nocons noni
32
+
33
+ reghdfe black TRUMP_0 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off1 TP_1_30Xbias_off1_u67 TP_1_30Xbias_off1_67 , a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
34
+ outreg2 using "Results/TableA11.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TP_1_30Xbias_off1_u67 TP_1_30Xbias_off1_67) label nonotes nocons noni
35
+
36
+ reghdfe black TRUMP_0 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 TP_1_30Xbias_off2_33 TP_1_30Xbias_off2_33_67 TP_1_30Xbias_off2_67, a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
37
+ outreg2 using "Results/TableA11.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TP_1_30Xbias_off2_33 TP_1_30Xbias_off2_33_67 TP_1_30Xbias_off2_67) label nonotes nocons noni
38
+
39
+ reghdfe black TRUMP_0 TRUMP_POST_M30 TRUMP_PRE_M30 bias_off2 TP_1_30Xbias_off2_u67 TP_1_30Xbias_off2_67 , a(i.county_id i.day_id i.county_id#c.day_id) cluster(i.county_id i.day_id)
40
+ outreg2 using "Results/TableA11.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TP_1_30Xbias_off2_u67 TP_1_30Xbias_off2_67) label nonotes nocons noni
41
+
39/replication_package/Do/TableA12.do ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A12
4
+ *** Role of Local Characteristics in the Eff ect of Trump Rallies on
5
+ *** the Probability of a Black Stop Controlling for a Linear Time
6
+ *** Trend Interacted with the Share of Black People in the County
7
+ **********************************************************************
8
+
9
+ use "Data\stoplevel_data.dta", clear
10
+
11
+ mat treat = J(11,4,1)
12
+
13
+ keep black county_fips day_id TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 racial_resent_a racial_resent_b any_slaves_1860 alt_cottonsui ihsbl_lynch ihsbl_exec dem_p rep medianincome coll d_tradeusch_pw d_tradeotch_pw_lag countyblack
14
+ drop if black==.
15
+
16
+ summ racial_resent_a
17
+ g racial_resent_asd = ( racial_resent_a - r(mean))/r(sd)
18
+ g interaction = TRUMP_POST_1_30 * racial_resent_asd
19
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.racial_resent_a c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
20
+ outreg2 using "Results/TableA12.txt", replace dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Racial Resentment A","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
21
+ drop interaction
22
+
23
+ summ racial_resent_b
24
+ g racial_resent_bsd = ( racial_resent_b - r(mean))/r(sd)
25
+ g interaction = TRUMP_POST_1_30 * racial_resent_bsd
26
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.racial_resent_b c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
27
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Racial Resentment B","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
28
+ drop interaction
29
+
30
+ g interaction = TRUMP_POST_1_30 * any_slaves_1860
31
+ reghdfe black 1.TRUMP_* interaction c.day_id#1.any_slaves_1860 c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
32
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Any Slaves","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
33
+ drop interaction
34
+
35
+ su alt_cottonsui , detail
36
+ g alt_cottonsuisd = ( alt_cottonsui - r(mean))/r(sd)
37
+ g interaction = TRUMP_POST_1_30 * alt_cottonsuisd
38
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.alt_cottonsui c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
39
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Cotton","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
40
+ drop interaction
41
+
42
+ su ihsbl_lynch , detail
43
+ g ihsbl_lynchsd = ( ihsbl_lynch - r(mean))/r(sd)
44
+ g interaction = TRUMP_POST_1_30 * ihsbl_lynchsd
45
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.ihsbl_lynch c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
46
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","IHS Slaves","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
47
+ drop interaction
48
+
49
+ su ihsbl_exec , detail
50
+ g ihsbl_execsd = ( ihsbl_exec - r(mean))/r(sd)
51
+ g interaction = TRUMP_POST_1_30 * ihsbl_execsd
52
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.ihsbl_exec c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
53
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","IHS Executations","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
54
+ drop interaction
55
+
56
+ **** PANEL B
57
+ su dem_p , detail
58
+ g dem_psd = ( dem_p - r(mean))/r(sd)
59
+ local sd = r(sd)
60
+ g interaction = TRUMP_POST_1_30 * dem_psd
61
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.dem_p c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
62
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","DEM Share","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
63
+ drop interaction
64
+
65
+ g interaction = TRUMP_POST_1_30 * rep
66
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.rep c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
67
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","County Sheriff","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
68
+ drop interaction
69
+
70
+ su medianincome , detail
71
+ g incomesd = ( medianincome - r(mean))/r(sd)
72
+ g interaction = TRUMP_POST_1_30 * incomesd
73
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.medianincome c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
74
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","Income","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
75
+ drop interaction
76
+
77
+ su coll , detail
78
+ g collsd = ( coll - r(mean))/r(sd)
79
+ g interaction = TRUMP_POST_1_30 * collsd
80
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.coll c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
81
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","College","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
82
+ drop interaction
83
+
84
+ su d_tradeusch_pw , detail
85
+ g d_tradeusch_pwsd = ( d_tradeusch_pw - r(mean))/r(sd)
86
+ g interaction = TRUMP_POST_1_30 * d_tradeusch_pwsd
87
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.d_tradeusch_pw c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
88
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","China Shock","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
89
+ drop interaction
90
+
91
+ su d_tradeotch_pw_lag , detail
92
+ g dtrdothchsd = ( d_tradeotch_pw_lag - r(mean))/r(sd)
93
+ g interaction = TRUMP_POST_1_30 * dtrdothchsd
94
+ reghdfe black 1.TRUMP_* interaction c.day_id#c.dtrdothch c.day_id#c.countyblack, a(i.county_fips i.day_id) cluster(county_fips)
95
+ outreg2 using "Results/TableA12.txt", append dec(3) keep(1.TRUMP_POST_1_30 interaction) addtext("Interaction","China Shock IV","County FE", "YES", "Daily FE", "YES") label nonotes nocons noni
96
+ drop interaction
39/replication_package/Do/TableA13.do ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A13
4
+ *** Correlations Between Trumps' Rally Speech and County Covariates
5
+ **********************************************************************
6
+
7
+ use "Data\speech_countydata.dta", clear
8
+
9
+ foreach y in Explicit Implicit trade clinton terror business corruption {
10
+ gen ihs`y'= log(`y'+(`y'^2+1)^0.5)
11
+ reg ihs`y' racial_resent_asd racial_resent_bsd any_slaves_1860 cottonmeansd bexecrtsd blynchtsd popsd dem_psd rep medianincomesd collsd d_tradeusch_pwsd $miss, rob
12
+ xi: outreg2 racial_resent_asd racial_resent_bsd any_slaves_1860 cottonmeansd bexecrtsd blynchtsd dem_psd rep medianincomesd collsd d_tradeusch_pwsd using "Results/TableA13.xls", se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) nocons bfmt(fc) append
13
+
14
+ }
15
+
16
+
17
+
18
+
39/replication_package/Do/TableA2.do ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A2
4
+ *** Differences in the Probability of a Black Stop Before Treatment
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ forvalues j=5(5)30 {
10
+ g TRUMP_PRE`j' = 0
11
+ forval ii = 1/9 {
12
+ replace TRUMP_PRE`j' = 1 if (dist_event`ii' < 0 & dist_event`ii'>=-`j' & dist_event`ii'!=.)
13
+ }
14
+
15
+ bysort day_id: egen insample`j' = max(TRUMP_PRE`j')
16
+ label variable TRUMP_PRE`j' "Pre-Trump `j'"
17
+
18
+ }
19
+
20
+ keep black TRUMP* insample* day_id county_fips
21
+ compress
22
+
23
+ reghdfe black TRUMP_PRE5 if insample5==1 , a(i.day_id) cluster(county_fips day_id)
24
+ outreg2 using "Results\TableA2.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_PRE5) addtext("Window", "5 days") label nonotes nocons noni
25
+
26
+ forvalues j=10(5)30 {
27
+ reghdfe black TRUMP_PRE`j' if insample`j'==1 , a(i.day_id) cluster(county_fips day_id)
28
+ outreg2 using "Results\TableA2.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_PRE`j') addtext("Window", "`j' days") label nonotes nocons noni
29
+ }
30
+
31
+ forvalues j=5(5)30 {
32
+ summ black if insample`j'==1
33
+ }
39/replication_package/Do/TableA3.do ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A3
4
+ *** Impact of Trump Rallies on the Probability of a Black Stop:
5
+ *** Alternative Methods to Deal with Multiple Rallies
6
+ **********************************************************************
7
+
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ keep black dist* county_fips day_id
11
+
12
+ g TRUMP_0 = 0
13
+ forval ii = 1/9 {
14
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
15
+ }
16
+
17
+ g TRUMP_POST_M30 = 0
18
+ forval ii = 1(1)9{
19
+ replace TRUMP_POST_M30 = 1 if (dist_event`ii' >=31 & dist_event`ii'!=.)
20
+ }
21
+ g TRUMP_PRE_M30 = 0
22
+ forval ii = 1(1)9{
23
+ replace TRUMP_PRE_M30 = 1 if (dist_event`ii' <=-31 & dist_event`ii'!=.)
24
+ }
25
+
26
+ g TRUMP_POST_1_30 = 0
27
+ replace TRUMP_POST_1_30 = 1 if (dist_event1 >=1 & dist_event1<=30 & dist_event1!=.)
28
+ replace TRUMP_POST_1_30 = 2 if (dist_event2 >=1 & dist_event2<=30 & dist_event2!=.)
29
+ replace TRUMP_POST_1_30 = 3 if (dist_event3 >=1 & dist_event3<=30 & dist_event3!=.)
30
+ replace TRUMP_POST_1_30 = 4 if (dist_event4 >=1 & dist_event4<=30 & dist_event4!=.)
31
+ replace TRUMP_POST_1_30 = 5 if (dist_event5 >=1 & dist_event5<=30 & dist_event5!=.)
32
+ replace TRUMP_POST_1_30 = 6 if (dist_event6 >=1 & dist_event6<=30 & dist_event6!=.)
33
+ replace TRUMP_POST_1_30 = 7 if (dist_event7 >=1 & dist_event7<=30 & dist_event7!=.)
34
+ replace TRUMP_POST_1_30 = 8 if (dist_event8 >=1 & dist_event8<=30 & dist_event8!=.)
35
+ replace TRUMP_POST_1_30 = 9 if (dist_event9 >=1 & dist_event9<=30 & dist_event9!=.)
36
+
37
+ reghdfe black 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_POST_M30 1.TRUMP_PRE_M30, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
38
+ outreg2 using "Results\TableA3.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) addtext("Sample","Sum Event") keep(1.TRUMP_POST_1_30) label nonotes nocons noni
39
+
40
+ **************************
41
+ use "Data\stoplevel_data.dta", clear
42
+
43
+ keep black dist* county_fips day_id
44
+ g stopid = _n
45
+
46
+ g eventexists=0
47
+ forval ii=1/9 {
48
+ replace eventexists = eventexists+1 if dist_event`ii'!=.
49
+ }
50
+
51
+ expand eventexists, generate(copy)
52
+ sort stopid eventexists
53
+ by stopid eventexists: g number=cond(_N==1,0,_n)
54
+ replace number=1 if number==0 & dist_event1!=.
55
+ replace eventexists=1 if eventexists==0
56
+ g invnrallies=1/(eventexists)
57
+ ***
58
+ g dist_event=.
59
+ forval ii = 9(-1)1 {
60
+ replace dist_event = dist_event`ii' if number==`ii' & dist_event==.
61
+ }
62
+
63
+ g TRUMP_0 = 0
64
+ forval ii = 1/9 {
65
+ replace TRUMP_0 = 1 if dist_event == 0
66
+ }
67
+
68
+ g TRUMP_POST_1_30 = 0
69
+ replace TRUMP_POST_1_30 = 1 if (dist_event >=1 & dist_event<=30 & dist_event!=.)
70
+
71
+ g TRUMP_POST_M30 = 0
72
+ replace TRUMP_POST_M30 = 1 if (dist_event >=31 & dist_event!=.)
73
+
74
+ g TRUMP_PRE_M30 = 0
75
+ replace TRUMP_PRE_M30 = 1 if (dist_event <=-31 & dist_event!=.)
76
+
77
+ reghdfe black 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_POST_M30 1.TRUMP_PRE_M30 [aweight=invnrallies], a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
78
+ outreg2 using "Results\TableA3.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) addtext("Sample","Event Panel") keep(1.TRUMP_POST_1_30) label nonotes nocons noni
39/replication_package/Do/TableA4.do ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A4
4
+ *** Impact of Trump Rallies on the Relative Probability that a Stopped
5
+ *** Driver is of a Race or Ethnicity Relative to Another: Split Samples
6
+ **********************************************************************
7
+
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if black==100 | white==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
11
+ outreg2 using "Results\TableA4.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
12
+
13
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if black==100 | hispanic==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
14
+ outreg2 using "Results\TableA4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
15
+
16
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if black==100 | api==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
17
+ outreg2 using "Results\TableA4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
18
+
19
+ reghdfe hispanic TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if hispanic==100 | white==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
20
+ outreg2 using "Results\TableA4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
21
+
22
+ reghdfe hispanic TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if hispanic==100 | api==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
23
+ outreg2 using "Results\TableA4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
24
+
25
+ reghdfe api TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 if api==100 | white==100, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
26
+ outreg2 using "Results\TableA4.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(TRUMP_POST_1_30) label nonotes nocons noni
27
+
39/replication_package/Do/TableA5.do ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A5
4
+ *** Impact of Trump Rallies on the Number of Stops by Race or Ethnicity
5
+ **********************************************************************
6
+
7
+ use "Data\county_day_data.dta", clear
8
+
9
+ reghdfe ihsblack 1.TRUMP_0 1.TRUMP_PRE* 1.TRUMP_POST* ihsstops [aweight=n_stops], a(i.county_fips i.day_id i.county_fips##c.day_id) cluster(county_fips day_id)
10
+ outreg2 using "Results\TableA5.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30) label nonotes nocons noni
11
+
12
+ reghdfe ihshispanic 1.TRUMP_0 1.TRUMP_PRE* 1.TRUMP_POST* ihsstops [aweight=n_stops], a(i.county_fips i.day_id i.county_fips##c.day_id) cluster(county_fips day_id)
13
+ outreg2 using "Results\TableA5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30) label nonotes nocons noni
14
+
15
+ reghdfe ihswhite 1.TRUMP_0 1.TRUMP_PRE* 1.TRUMP_POST* ihsstops [aweight=n_stops], a(i.county_fips i.day_id i.county_fips##c.day_id) cluster(county_fips day_id)
16
+ outreg2 using "Results\TableA5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30) label nonotes nocons noni
17
+
18
+ reghdfe ihsapi 1.TRUMP_0 1.TRUMP_PRE* 1.TRUMP_POST* ihsstops [aweight=n_stops], a(i.county_fips i.day_id i.county_fips##c.day_id) cluster(county_fips day_id)
19
+ outreg2 using "Results\TableA5.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30) label nonotes nocons noni
20
+
21
+ summ ihsblack_pc ihshispanic_pc ihswhite_pc ihsapi_pc [aweight=n_stops]
22
+
39/replication_package/Do/TableA6.do ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A6
4
+ *** The Differential Effect of Trump and Other Political Rallies on
5
+ *** the Probability of a Black Stop
6
+ **********************************************************************
7
+
8
+ use "Data\stoplevel_data.dta", clear
9
+
10
+ merge n:1 county_fips using "Data\allcandidates_rallies.dta"
11
+
12
+ keep if year==2015 | year==2016 | year==2017
13
+ drop dist_event*
14
+
15
+ forval ii = 1/4 {
16
+ g dist_event`ii' = day_id - event_day_Cruz_`ii'
17
+ }
18
+ g CRUZ_0 = 0
19
+ forval ii = 1/4 {
20
+ replace CRUZ_0 = 1 if dist_event`ii' == 0 & dist_event`ii'!=.
21
+ }
22
+ *
23
+ g CRUZ_POST_1_30 = 0
24
+ forval ii = 1/4 {
25
+ replace CRUZ_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
26
+ }
27
+ g CRUZ_POST_M30 = 0
28
+ forval ii = 1/4 {
29
+ replace CRUZ_POST_M30 = 1 if (dist_event`ii' >30 & dist_event`ii'!=.)
30
+ }
31
+ g CRUZ_PRE_M30 = 0
32
+ forval ii = 1/4 {
33
+ replace CRUZ_PRE_M30 = 1 if (dist_event`ii' <-30 & dist_event`ii'!=.)
34
+ }
35
+ drop dist_event*
36
+
37
+ forval ii = 1/10 {
38
+ g dist_event`ii' = day_id - event_day_Clinton_`ii'
39
+ }
40
+ g CLINTON_0 = 0
41
+ forval ii = 1/10 {
42
+ replace CLINTON_0 = 1 if dist_event`ii' == 0 & dist_event`ii'!=.
43
+ }
44
+ *
45
+ g CLINTON_POST_1_30 = 0
46
+ forval ii = 1/10 {
47
+ replace CLINTON_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
48
+ }
49
+ g CLINTON_POST_M30 = 0
50
+ forval ii = 1/10 {
51
+ replace CLINTON_POST_M30 = 1 if (dist_event`ii' >30 & dist_event`ii'!=.)
52
+ }
53
+ g CLINTON_PRE_M30 = 0
54
+ forval ii = 1/10 {
55
+ replace CLINTON_PRE_M30 = 1 if (dist_event`ii' <-30 & dist_event`ii'!=.)
56
+ }
57
+ drop dist_event*
58
+ drop black
59
+ g black = (subject_race==2) * 100
60
+
61
+ egen t = group(day_id)
62
+
63
+ g anyrally_0 = (TRUMP_0==1 | CRUZ_0==1 | CLINTON_0==1)
64
+ g anyrally_1_30 = (TRUMP_POST_1_30==1 | CRUZ_POST_1_30==1 | CLINTON_POST_1_30==1)
65
+ g anyrally_POST_M30 = (TRUMP_POST_M30==1 | CRUZ_POST_M30==1 | CLINTON_POST_M30==1)
66
+ g anyrally_PRE_M30 = (TRUMP_PRE_M30==1 | CRUZ_PRE_M30==1 | CLINTON_PRE_M30==1)
67
+
68
+ reghdfe black TRUMP_0 TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30 anyrally_0 anyrally_1_30 anyrally_POST_M30 anyrally_PRE_M30, absorb(county_fips day_id county_fips#c.day_id) cluster(county_fips day_id)
69
+ outreg2 using "Results\TableA6.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(anyrally_1_30 TRUMP_POST_1_30) label nonotes nocons noni
70
+
71
+ *******************************************************************************************************************
72
+ use "Data\stops_2007_09.dta", clear
73
+
74
+ forval ii = 1/3 {
75
+ g dist_event`ii' = day_id - event_day_Obama_`ii'
76
+ }
77
+
78
+ g OBAMA_0 = 0
79
+ forval ii = 1/3 {
80
+ replace OBAMA_0 = 1 if dist_event`ii' == 0 & dist_event`ii'!=.
81
+ }
82
+ *
83
+ g OBAMA_POST_1_30 = 0
84
+ forval ii = 1/3 {
85
+ replace OBAMA_POST_1_30 = 1 if (dist_event`ii' > 0 & dist_event`ii'<=30 & dist_event`ii'!=.)
86
+ }
87
+ g OBAMA_POST_M30 = 0
88
+ forval ii = 1/3 {
89
+ replace OBAMA_POST_M30 = 1 if (dist_event`ii' >30 & dist_event`ii'!=.)
90
+ }
91
+ g OBAMA_PRE_M30 = 0
92
+ forval ii = 1/3 {
93
+ replace OBAMA_PRE_M30 = 1 if (dist_event`ii' <-30& dist_event`ii'!=.)
94
+ }
95
+ g black = 100*(subject_race == 2)
96
+
97
+ g sep = "-"
98
+ egen state_county = concat(state sep county_name)
99
+ drop sep
100
+ egen county_id = group(state_county)
101
+
102
+ reghdfe black 1.OBAMA_* , a(i.county_id i.day_id i.county_id#c.day_id) cluster(county_id day_id )
103
+ outreg2 using "Results\TableA6.txt", append se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.OBAMA_POST_1_30) label nonotes nocons noni
39/replication_package/Do/TableA7.do ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A7
4
+ *** Social Spillover Effects of Trump Rallies
5
+ **********************************************************************
6
+
7
+ use "Data\network_spillovers.dta", clear
8
+
9
+ reghdfe black 1.TRUMP_* s_network_effect_TRUMP_POST_1_30, a(i.county_fips i.day_id i.county_fips#c.day_id) cluster(county_fips day_id)
10
+ outreg2 using "Results\TableA7.txt", replace se bdec(3) sdec(3) rdec(3) coefastr alpha(0.01, 0.05, 0.10) symbol(***, **, *) bfmt(fc) keep(1.TRUMP_POST_1_30 s_network_effect_TRUMP_POST_1_30) label nonotes nocons noni
11
+
39/replication_package/Do/TableA8.do ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A8
4
+ *** Driver Behavior: Rectangular Panel
5
+ **********************************************************************
6
+
7
+ use "Data\fars_data.dta", clear
8
+
9
+ egen county_id=group(county_fips)
10
+ drop if county_id==.
11
+ drop if date==.
12
+
13
+ xtset county_id date
14
+
15
+ tsfill, full
16
+ sort county_id date
17
+
18
+ bysort county_id: egen county_fips2 = mean(county_fips)
19
+ replace county_fips = county_fips2
20
+ drop county_fips2
21
+
22
+ foreach var of varlist incidents Fatal Violation Drug FatalViolation FatalDrug Black Mexican MexicanViolation MexicanDrug Asian BlackViolation BlackDrug Hispanic HispanicViolation HispanicDrug White {
23
+ replace `var' = 0 if `var'==.
24
+ }
25
+
26
+ sort county_fips date
27
+ forval ii=1/9 {
28
+ by county_fips: egen event_day_Trump2_`ii' = mean(event_day_Trump_`ii')
29
+ replace event_day_Trump_`ii' = event_day_Trump2_`ii'
30
+ }
31
+
32
+ forval ii = 1/9 {
33
+ g dist_event`ii' = date - event_day_Trump_`ii'
34
+ }
35
+
36
+ replace TRUMP_0 = 0
37
+ forval ii = 1/9 {
38
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
39
+ }
40
+
41
+ replace TRUMP_POST_1_30 = 0
42
+ forval ii = 1(1)9{
43
+ forval ee = 1/9 {
44
+ replace TRUMP_POST_1_30 = 1 if (dist_event`ee' >=1 & dist_event`ee'<=30 & dist_event`ee'!=.)
45
+ }
46
+ }
47
+
48
+ replace TRUMP_POST_M30 = 0
49
+ forval ii = 1(1)9{
50
+ forval ee = 1/9 {
51
+ replace TRUMP_POST_M30 = 1 if (dist_event`ee' >=31 & dist_event`ee'!=.)
52
+ }
53
+ }
54
+
55
+ replace TRUMP_PRE_M30 = 0
56
+ forval ii = 1(1)9{
57
+ forval ee = 1/9 {
58
+ replace TRUMP_PRE_M30 = 1 if (dist_event`ee' <=-31 & dist_event`ee'!=.)
59
+ }
60
+ }
61
+
62
+ replace nonblack=Fatal-Black
63
+
64
+ replace ihsblack=100*log(Black+(Black^2+1)^0.5)
65
+ replace ihsfatal=100*log(Fatal+(Fatal^2+1)^0.5)
66
+ replace ihsfatalviolation=100*log(FatalViolation+(FatalViolation^2+1)^0.5)
67
+ replace ihsfataldrug=100*log(FatalDrug+(FatalDrug^2+1)^0.5)
68
+ replace ihsnonblack=100*log(nonblack+(nonblack^2+1)^0.5)
69
+ replace ihswhite=100*log(White+(White^2+1)^0.5)
70
+ replace ihsmexican=100*log(Mexican+(Mexican^2+1)^0.5)
71
+ replace ihshispani=100*log(Hispanic+(Hispanic^2+1)^0.5)
72
+ replace ihsBlackViolation=100*log(BlackViolation+(BlackViolation^2+1)^0.5)
73
+ replace ihsBlackDrug=100*log(BlackDrug+(BlackDrug^2+1)^0.5)
74
+ foreach x in Violation Drug incidents HispanicViolation HispanicDrug MexicanViolation MexicanDrug{
75
+ replace ihs`x'=100*log(`x'+(`x'^2+1)^0.5)
76
+ }
77
+
78
+ reghdfe ihsinc 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_PRE_M30 1.TRUMP_POST_M30, a(i.county_fips i.date) cluster(county_fips date)
79
+ outreg2 using "Results/TableA8.txt", replace keep(1.TRUMP_POST_1_30) dec(3) nocons
80
+
81
+ foreach y in ihsfatal ihsfatalviolation ihsblack ihsnonblack ihswhite ihshispani ihsmexican {
82
+ reghdfe `y' 1.TRUMP_0 1.TRUMP_POST_1_30 1.TRUMP_PRE_M30 1.TRUMP_POST_M30 ihsincidents, a(i.county_fips i.date) cluster(county_fips date)
83
+ outreg2 using "Results/TableA8.txt", append keep(1.TRUMP_POST_1_30) dec(3) nocons
84
+
85
+ }
86
+ summ ihsinc ihsfatal ihsfatalviolation ihsblack ihsnonblack ihswhite ihshispani ihsmexican
39/replication_package/Do/TableA9.do ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **********************************************************************
3
+ *** TABLE A9
4
+ *** Impact of Trump Rallies on BLM Protests
5
+ **********************************************************************
6
+
7
+ use "Data\stoplevel_data.dta", clear
8
+
9
+ merge m:1 county_fips day_id using "Data\blm.dta"
10
+ drop if _merge==2
11
+ replace blm_protest = 0 if blm_protest==.
12
+ replace blm_protest = 100*blm_protest
13
+
14
+ reghdfe blm_protest TRUMP_0 1.TRUMP_POST_1_30 TRUMP_POST_M30 TRUMP_PRE_M30, a(i.county_fips i.day_id c.day_id#i.county_fips) cluster(county_fips day_id)
15
+ outreg2 using "Results/TableA9.txt", replace keep(1.TRUMP_POST_1_30) dec(3) nocons
16
+ g esample = (e(sample)==1)
17
+ summ blm_protest if esample==1
39/replication_package/Do/preparing_abrahamsun.do ADDED
@@ -0,0 +1,2845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ use "Data\stoplevel_data.dta", clear
3
+
4
+ g n_stops = 1
5
+ foreach var of varlist black hispanic white api {
6
+ replace `var' = `var'/100
7
+ }
8
+
9
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
10
+
11
+ g black_ps = black / n_stops
12
+ keep if year==2015 | year==2016 | year==2017
13
+
14
+ local start = -105
15
+ local end = 105
16
+ local bin_l = 15
17
+
18
+ g TRUMP_0 = 0
19
+ forval ii = 1/9 {
20
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
21
+ }
22
+
23
+ forval ii = 1(`bin_l')`end'{
24
+ local jj = `ii' + `bin_l' - 1
25
+ g TRUMP_POST_`ii'_`jj' = 0
26
+ forval ee = 1/9 {
27
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
28
+ }
29
+ }
30
+ g TRUMP_POST_M`end' = 0
31
+ forval ii = 1/9 {
32
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
33
+ }
34
+ *
35
+
36
+ forval ii = `start'(`bin_l')0 {
37
+ if `ii' < -`bin_l' {
38
+ local jj = abs(`ii')
39
+ local zz = `jj' - `bin_l' + 1
40
+ g TRUMP_PRE_`jj'_`zz' = 0
41
+ forval ee = 1/9 {
42
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
43
+ }
44
+ }
45
+ }
46
+ *
47
+ local jj = abs(`start')
48
+ g TRUMP_PRE_M`jj' = 0
49
+ forval ii = 1/9 {
50
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
51
+ }
52
+
53
+ ***number of counties 1,478
54
+ qui: {
55
+ forval ii = 1/1478 {
56
+ su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
57
+ if r(N) != 0 {
58
+ total n_stops if county_id==`ii' & TRUMP_POST_1_15==1
59
+ global stops`ii' = _b[n_stops]
60
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
61
+ }
62
+ }
63
+ }
64
+ *** Drop the first for collinearity
65
+ drop TREATED_COUNTY_9
66
+
67
+ reghdfe black_ps 1.TRUMP_POST_1_15 1.TRUMP_POST_1_15#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
68
+
69
+ mat treat = 999* J(1478,2,1)
70
+
71
+ local numerator = 0
72
+ local denominator = 0
73
+ forval ii = 1/1478 {
74
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
75
+ if r(N) != 0 {
76
+ if `ii' == 9{
77
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15])
78
+ mat treat[`ii',2] = (${stops`ii'})
79
+ }
80
+ else {
81
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15] + _b[1.TRUMP_POST_1_15#1.TREATED_COUNTY_`ii'])
82
+ mat treat[`ii',2] = (${stops`ii'})
83
+ }
84
+ }
85
+ }
86
+
87
+ g yy = treat[_n,1] in 1/1478
88
+ g ww = treat[_n,2] in 1/1478
89
+ replace yy = . if yy==999
90
+ replace ww = . if ww==999
91
+
92
+ keep yy ww
93
+
94
+ g county_id = _n
95
+ drop if county_id > 1478
96
+
97
+ save "Results\SA_TRUMP_POST_1_15_TE.dta", replace
98
+
99
+ ************************************************************************************************************************************
100
+ use "Data\stoplevel_data.dta", clear
101
+
102
+ g n_stops = 1
103
+ foreach var of varlist black hispanic white api {
104
+ replace `var' = `var'/100
105
+ }
106
+
107
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
108
+
109
+ g black_ps = black / n_stops
110
+ keep if year==2015 | year==2016 | year==2017
111
+
112
+ local start = -105
113
+ local end = 105
114
+ local bin_l = 15
115
+
116
+ g TRUMP_0 = 0
117
+ forval ii = 1/9 {
118
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
119
+ }
120
+
121
+ forval ii = 1(`bin_l')`end'{
122
+ local jj = `ii' + `bin_l' - 1
123
+ g TRUMP_POST_`ii'_`jj' = 0
124
+ forval ee = 1/9 {
125
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
126
+ }
127
+ }
128
+ g TRUMP_POST_M`end' = 0
129
+ forval ii = 1/9 {
130
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
131
+ }
132
+ *
133
+
134
+ forval ii = `start'(`bin_l')0 {
135
+ if `ii' < -`bin_l' {
136
+ local jj = abs(`ii')
137
+ local zz = `jj' - `bin_l' + 1
138
+ g TRUMP_PRE_`jj'_`zz' = 0
139
+ forval ee = 1/9 {
140
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
141
+ }
142
+ }
143
+ }
144
+ *
145
+ local jj = abs(`start')
146
+ g TRUMP_PRE_M`jj' = 0
147
+ forval ii = 1/9 {
148
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
149
+ }
150
+
151
+ ***number of counties 1,478
152
+ qui: {
153
+ forval ii = 1/1478 {
154
+ su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
155
+ if r(N) != 0 {
156
+ total n_stops if county_id==`ii' & TRUMP_POST_16_30==1
157
+ global stops`ii' = _b[n_stops]
158
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
159
+ }
160
+ }
161
+ }
162
+ *** Drop the first for collinearity
163
+ drop TREATED_COUNTY_9
164
+
165
+ reghdfe black_ps 1.TRUMP_POST_16_30 1.TRUMP_POST_16_30#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
166
+
167
+ mat treat = 999* J(1478,2,1)
168
+
169
+ local numerator = 0
170
+ local denominator = 0
171
+ forval ii = 1/1478 {
172
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
173
+ if r(N) != 0 {
174
+ if `ii' == 9{
175
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30])
176
+ mat treat[`ii',2] = (${stops`ii'})
177
+ }
178
+ else {
179
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30] + _b[1.TRUMP_POST_16_30#1.TREATED_COUNTY_`ii'])
180
+ mat treat[`ii',2] = (${stops`ii'})
181
+ }
182
+ }
183
+ }
184
+
185
+ g yy = treat[_n,1] in 1/1478
186
+ g ww = treat[_n,2] in 1/1478
187
+ replace yy = . if yy==999
188
+ replace ww = . if ww==999
189
+
190
+ keep yy ww
191
+
192
+ g county_id = _n
193
+ drop if county_id > 1478
194
+
195
+ save "Results\SA_TRUMP_POST_16_30_TE.dta", replace
196
+
197
+ ************************************************************************************************************************************
198
+ use "data\Jack Police\full_dataset_CD.dta", clear
199
+
200
+ g black_ps = black / n_stops
201
+ keep if year==2015 | year==2016 | year==2017
202
+
203
+ local start = -105
204
+ local end = 105
205
+ local bin_l = 15
206
+
207
+ g TRUMP_0 = 0
208
+ forval ii = 1/9 {
209
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
210
+ }
211
+
212
+
213
+ forval ii = 1(`bin_l')`end'{
214
+ local jj = `ii' + `bin_l' - 1
215
+ g TRUMP_POST_`ii'_`jj' = 0
216
+ forval ee = 1/9 {
217
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
218
+ }
219
+ }
220
+ g TRUMP_POST_M`end' = 0
221
+ forval ii = 1/9 {
222
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
223
+ }
224
+ *
225
+
226
+ forval ii = `start'(`bin_l')0 {
227
+ if `ii' < -`bin_l' {
228
+ local jj = abs(`ii')
229
+ local zz = `jj' - `bin_l' + 1
230
+ g TRUMP_PRE_`jj'_`zz' = 0
231
+ forval ee = 1/9 {
232
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
233
+ }
234
+ }
235
+ }
236
+ *
237
+ local jj = abs(`start')
238
+ g TRUMP_PRE_M`jj' = 0
239
+ forval ii = 1/9 {
240
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
241
+ }
242
+
243
+ ***number of counties 1,478
244
+ qui: {
245
+ forval ii = 1/1478 {
246
+ su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
247
+ if r(N) != 0 {
248
+ total n_stops if county_id==`ii' & TRUMP_POST_31_45==1
249
+ global stops`ii' = _b[n_stops]
250
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
251
+ }
252
+ }
253
+ }
254
+ *** Drop the first for collinearity
255
+ drop TREATED_COUNTY_9
256
+
257
+ reghdfe black_ps 1.TRUMP_POST_31_45 1.TRUMP_POST_31_45#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
258
+
259
+ mat treat = 999* J(1478,2,1)
260
+
261
+ local numerator = 0
262
+ local denominator = 0
263
+ forval ii = 1/1478 {
264
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
265
+ if r(N) != 0 {
266
+ if `ii' == 9{
267
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45])
268
+ mat treat[`ii',2] = (${stops`ii'})
269
+ }
270
+ else {
271
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45] + _b[1.TRUMP_POST_31_45#1.TREATED_COUNTY_`ii'])
272
+ mat treat[`ii',2] = (${stops`ii'})
273
+ }
274
+ }
275
+ }
276
+
277
+ g yy = treat[_n,1] in 1/1478
278
+ g ww = treat[_n,2] in 1/1478
279
+ replace yy = . if yy==999
280
+ replace ww = . if ww==999
281
+
282
+ keep yy ww
283
+
284
+ g county_id = _n
285
+ drop if county_id > 1478
286
+
287
+ save "Results\SA_TRUMP_POST_31_45_TE.dta", replace
288
+
289
+ ************************************************************************************************************************************
290
+ use "Data\stoplevel_data.dta", clear
291
+
292
+ g n_stops = 1
293
+ foreach var of varlist black hispanic white api {
294
+ replace `var' = `var'/100
295
+ }
296
+
297
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
298
+
299
+ g black_ps = black / n_stops
300
+ keep if year==2015 | year==2016 | year==2017
301
+
302
+ local start = -105
303
+ local end = 105
304
+ local bin_l = 15
305
+
306
+ g TRUMP_0 = 0
307
+ forval ii = 1/9 {
308
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
309
+ }
310
+
311
+ forval ii = 1(`bin_l')`end'{
312
+ local jj = `ii' + `bin_l' - 1
313
+ g TRUMP_POST_`ii'_`jj' = 0
314
+ forval ee = 1/9 {
315
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
316
+ }
317
+ }
318
+ g TRUMP_POST_M`end' = 0
319
+ forval ii = 1/9 {
320
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
321
+ }
322
+ *
323
+
324
+ forval ii = `start'(`bin_l')0 {
325
+ if `ii' < -`bin_l' {
326
+ local jj = abs(`ii')
327
+ local zz = `jj' - `bin_l' + 1
328
+ g TRUMP_PRE_`jj'_`zz' = 0
329
+ forval ee = 1/9 {
330
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
331
+ }
332
+ }
333
+ }
334
+ *
335
+ local jj = abs(`start')
336
+ g TRUMP_PRE_M`jj' = 0
337
+ forval ii = 1/9 {
338
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
339
+ }
340
+
341
+ ***number of counties 1,478
342
+ qui: {
343
+ forval ii = 1/1478 {
344
+ su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
345
+ if r(N) != 0 {
346
+ total n_stops if county_id==`ii' & TRUMP_POST_46_60==1
347
+ global stops`ii' = _b[n_stops]
348
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
349
+ }
350
+ }
351
+ }
352
+ *** Drop the first for collinearity
353
+ drop TREATED_COUNTY_9
354
+
355
+ reghdfe black_ps 1.TRUMP_POST_46_60 1.TRUMP_POST_46_60#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
356
+
357
+ mat treat = 999* J(1478,2,1)
358
+
359
+ local numerator = 0
360
+ local denominator = 0
361
+ forval ii = 1/1478 {
362
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
363
+ if r(N) != 0 {
364
+ if `ii' == 9{
365
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60])
366
+ mat treat[`ii',2] = (${stops`ii'})
367
+ }
368
+ else {
369
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60] + _b[1.TRUMP_POST_46_60#1.TREATED_COUNTY_`ii'])
370
+ mat treat[`ii',2] = (${stops`ii'})
371
+ }
372
+ }
373
+ }
374
+
375
+ g yy = treat[_n,1] in 1/1478
376
+ g ww = treat[_n,2] in 1/1478
377
+ replace yy = . if yy==999
378
+ replace ww = . if ww==999
379
+
380
+ keep yy ww
381
+
382
+ g county_id = _n
383
+ drop if county_id > 1478
384
+
385
+ save "Results\SA_TRUMP_POST_46_60_TE.dta", replace
386
+
387
+ ************************************************************************************************************************************
388
+
389
+ use "Data\stoplevel_data.dta", clear
390
+
391
+ g n_stops = 1
392
+ foreach var of varlist black hispanic white api {
393
+ replace `var' = `var'/100
394
+ }
395
+
396
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
397
+
398
+ g black_ps = black / n_stops
399
+ keep if year==2015 | year==2016 | year==2017
400
+
401
+ local start = -105
402
+ local end = 105
403
+ local bin_l = 15
404
+
405
+ g TRUMP_0 = 0
406
+ forval ii = 1/9 {
407
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
408
+ }
409
+
410
+
411
+ forval ii = 1(`bin_l')`end'{
412
+ local jj = `ii' + `bin_l' - 1
413
+ g TRUMP_POST_`ii'_`jj' = 0
414
+ forval ee = 1/9 {
415
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
416
+ }
417
+ }
418
+ g TRUMP_POST_M`end' = 0
419
+ forval ii = 1/9 {
420
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
421
+ }
422
+ *
423
+
424
+
425
+ forval ii = `start'(`bin_l')0 {
426
+ if `ii' < -`bin_l' {
427
+ local jj = abs(`ii')
428
+ local zz = `jj' - `bin_l' + 1
429
+ g TRUMP_PRE_`jj'_`zz' = 0
430
+ forval ee = 1/9 {
431
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
432
+ }
433
+ }
434
+ }
435
+ *
436
+ local jj = abs(`start')
437
+ g TRUMP_PRE_M`jj' = 0
438
+ forval ii = 1/9 {
439
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
440
+ }
441
+
442
+ ***number of counties 1,478
443
+ qui: {
444
+ forval ii = 1/1478 {
445
+ su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
446
+ if r(N) != 0 {
447
+ total n_stops if county_id==`ii' & TRUMP_POST_61_75==1
448
+ global stops`ii' = _b[n_stops]
449
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
450
+ }
451
+ }
452
+ }
453
+ *** Drop the first for collinearity
454
+ drop TREATED_COUNTY_9
455
+
456
+ reghdfe black_ps 1.TRUMP_POST_61_75 1.TRUMP_POST_61_75#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
457
+
458
+
459
+ mat treat = 999* J(1478,2,1)
460
+
461
+ local numerator = 0
462
+ local denominator = 0
463
+ forval ii = 1/1478 {
464
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
465
+ if r(N) != 0 {
466
+ if `ii' == 9{
467
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75])
468
+ mat treat[`ii',2] = (${stops`ii'})
469
+ }
470
+ else {
471
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75] + _b[1.TRUMP_POST_61_75#1.TREATED_COUNTY_`ii'])
472
+ mat treat[`ii',2] = (${stops`ii'})
473
+ }
474
+ }
475
+ }
476
+
477
+ g yy = treat[_n,1] in 1/1478
478
+ g ww = treat[_n,2] in 1/1478
479
+ replace yy = . if yy==999
480
+ replace ww = . if ww==999
481
+
482
+ keep yy ww
483
+
484
+ g county_id = _n
485
+ drop if county_id > 1478
486
+
487
+
488
+ save "Results\SA_TRUMP_POST_61_75_TE.dta", replace
489
+
490
+ ************************************************************************************************************************************
491
+
492
+ use "Data\stoplevel_data.dta", clear
493
+
494
+ g n_stops = 1
495
+ foreach var of varlist black hispanic white api {
496
+ replace `var' = `var'/100
497
+ }
498
+
499
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
500
+
501
+ g black_ps = black / n_stops
502
+ keep if year==2015 | year==2016 | year==2017
503
+
504
+ local start = -105
505
+ local end = 105
506
+ local bin_l = 15
507
+
508
+ g TRUMP_0 = 0
509
+ forval ii = 1/9 {
510
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
511
+ }
512
+
513
+
514
+ forval ii = 1(`bin_l')`end'{
515
+ local jj = `ii' + `bin_l' - 1
516
+ g TRUMP_POST_`ii'_`jj' = 0
517
+ forval ee = 1/9 {
518
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
519
+ }
520
+ }
521
+ g TRUMP_POST_M`end' = 0
522
+ forval ii = 1/9 {
523
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
524
+ }
525
+ *
526
+
527
+
528
+ forval ii = `start'(`bin_l')0 {
529
+ if `ii' < -`bin_l' {
530
+ local jj = abs(`ii')
531
+ local zz = `jj' - `bin_l' + 1
532
+ g TRUMP_PRE_`jj'_`zz' = 0
533
+ forval ee = 1/9 {
534
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
535
+ }
536
+ }
537
+ }
538
+ *
539
+ local jj = abs(`start')
540
+ g TRUMP_PRE_M`jj' = 0
541
+ forval ii = 1/9 {
542
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
543
+ }
544
+
545
+ ***number of counties 1,478
546
+ qui: {
547
+ forval ii = 1/1478 {
548
+ su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
549
+ if r(N) != 0 {
550
+ total n_stops if county_id==`ii' & TRUMP_POST_76_90==1
551
+ global stops`ii' = _b[n_stops]
552
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
553
+ }
554
+ }
555
+ }
556
+ *** Drop the first for collinearity
557
+ drop TREATED_COUNTY_9
558
+
559
+ reghdfe black_ps 1.TRUMP_POST_76_90 1.TRUMP_POST_76_90#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
560
+
561
+ mat treat = 999* J(1478,2,1)
562
+
563
+ local numerator = 0
564
+ local denominator = 0
565
+ forval ii = 1/1478 {
566
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
567
+ if r(N) != 0 {
568
+ if `ii' == 9{
569
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90])
570
+ mat treat[`ii',2] = (${stops`ii'})
571
+ }
572
+ else {
573
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90] + _b[1.TRUMP_POST_76_90#1.TREATED_COUNTY_`ii'])
574
+ mat treat[`ii',2] = (${stops`ii'})
575
+ }
576
+ }
577
+ }
578
+
579
+ g yy = treat[_n,1] in 1/1478
580
+ g ww = treat[_n,2] in 1/1478
581
+ replace yy = . if yy==999
582
+ replace ww = . if ww==999
583
+
584
+ keep yy ww
585
+
586
+ g county_id = _n
587
+ drop if county_id > 1478
588
+
589
+ save "Results\SA_TRUMP_POST_76_90_TE.dta", replace
590
+
591
+
592
+ ************************************************************************************************************************************
593
+
594
+ use "Data\stoplevel_data.dta", clear
595
+
596
+ g n_stops = 1
597
+ foreach var of varlist black hispanic white api {
598
+ replace `var' = `var'/100
599
+ }
600
+
601
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
602
+
603
+ g black_ps = black / n_stops
604
+ keep if year==2015 | year==2016 | year==2017
605
+
606
+ local start = -105
607
+ local end = 105
608
+ local bin_l = 15
609
+
610
+ g TRUMP_0 = 0
611
+ forval ii = 1/9 {
612
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
613
+ }
614
+
615
+
616
+ forval ii = 1(`bin_l')`end'{
617
+ local jj = `ii' + `bin_l' - 1
618
+ g TRUMP_POST_`ii'_`jj' = 0
619
+ forval ee = 1/9 {
620
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
621
+ }
622
+ }
623
+ g TRUMP_POST_M`end' = 0
624
+ forval ii = 1/9 {
625
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
626
+ }
627
+ *
628
+
629
+
630
+ forval ii = `start'(`bin_l')0 {
631
+ if `ii' < -`bin_l' {
632
+ local jj = abs(`ii')
633
+ local zz = `jj' - `bin_l' + 1
634
+ g TRUMP_PRE_`jj'_`zz' = 0
635
+ forval ee = 1/9 {
636
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
637
+ }
638
+ }
639
+ }
640
+ *
641
+ local jj = abs(`start')
642
+ g TRUMP_PRE_M`jj' = 0
643
+ forval ii = 1/9 {
644
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
645
+ }
646
+
647
+ ***number of counties 1,478
648
+ qui: {
649
+ forval ii = 1/1478 {
650
+ su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
651
+ if r(N) != 0 {
652
+ total n_stops if county_id==`ii' & TRUMP_POST_91_105==1
653
+ global stops`ii' = _b[n_stops]
654
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
655
+ }
656
+ }
657
+ }
658
+ *** Drop the first for collinearity
659
+ drop TREATED_COUNTY_9
660
+
661
+ reghdfe black_ps 1.TRUMP_POST_91_105 1.TRUMP_POST_91_105#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
662
+
663
+
664
+ mat treat = 999* J(1478,2,1)
665
+
666
+ local numerator = 0
667
+ local denominator = 0
668
+ forval ii = 1/1478 {
669
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
670
+ if r(N) != 0 {
671
+ if `ii' == 9{
672
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105])
673
+ mat treat[`ii',2] = (${stops`ii'})
674
+ }
675
+ else {
676
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105] + _b[1.TRUMP_POST_91_105#1.TREATED_COUNTY_`ii'])
677
+ mat treat[`ii',2] = (${stops`ii'})
678
+ }
679
+ }
680
+ }
681
+
682
+ g yy = treat[_n,1] in 1/1478
683
+ g ww = treat[_n,2] in 1/1478
684
+ replace yy = . if yy==999
685
+ replace ww = . if ww==999
686
+
687
+
688
+
689
+ keep yy ww
690
+
691
+ g county_id = _n
692
+ drop if county_id > 1478
693
+
694
+
695
+ save "Results\SA_TRUMP_POST_91_105_TE.dta", replace
696
+
697
+
698
+ ************************************************************************************************************************************
699
+
700
+ use "Data\stoplevel_data.dta", clear
701
+
702
+ g n_stops = 1
703
+ foreach var of varlist black hispanic white api {
704
+ replace `var' = `var'/100
705
+ }
706
+
707
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
708
+
709
+ g black_ps = black / n_stops
710
+ keep if year==2015 | year==2016 | year==2017
711
+
712
+ local start = -105
713
+ local end = 105
714
+ local bin_l = 15
715
+
716
+ forval ii = 1/9 {
717
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
718
+ }
719
+ *
720
+
721
+
722
+ g TRUMP_0 = 0
723
+ forval ii = 1/9 {
724
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
725
+ }
726
+
727
+
728
+ forval ii = 1(`bin_l')`end'{
729
+ local jj = `ii' + `bin_l' - 1
730
+ g TRUMP_POST_`ii'_`jj' = 0
731
+ forval ee = 1/9 {
732
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
733
+ }
734
+ }
735
+ g TRUMP_POST_M`end' = 0
736
+ forval ii = 1/9 {
737
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
738
+ }
739
+ *
740
+
741
+
742
+ forval ii = `start'(`bin_l')0 {
743
+ if `ii' < -`bin_l' {
744
+ local jj = abs(`ii')
745
+ local zz = `jj' - `bin_l' + 1
746
+ g TRUMP_PRE_`jj'_`zz' = 0
747
+ forval ee = 1/9 {
748
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
749
+ }
750
+ }
751
+ }
752
+ *
753
+ local jj = abs(`start')
754
+ g TRUMP_PRE_M`jj' = 0
755
+ forval ii = 1/9 {
756
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
757
+ }
758
+
759
+ ***number of counties 1,478
760
+ qui: {
761
+ forval ii = 1/1478 {
762
+ su n_stops if county_id==`ii' & TRUMP_0==1
763
+ if r(N) != 0 {
764
+ total n_stops if county_id==`ii' & TRUMP_0==1
765
+ global stops`ii' = _b[n_stops]
766
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
767
+ }
768
+ }
769
+ }
770
+ *** Drop the first for collinearity
771
+ drop TREATED_COUNTY_9
772
+
773
+
774
+ reghdfe black_ps 1.TRUMP_0 1.TRUMP_0#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
775
+
776
+
777
+ mat treat = 999* J(1478,2,1)
778
+
779
+ local numerator = 0
780
+ local denominator = 0
781
+ forval ii = 1/1478 {
782
+ qui: su n_stops if county_id==`ii' & TRUMP_0==1
783
+ if r(N) != 0 {
784
+ if `ii' == 9{
785
+ mat treat[`ii',1] = (_b[1.TRUMP_0])
786
+ mat treat[`ii',2] = (${stops`ii'})
787
+ }
788
+ else {
789
+ mat treat[`ii',1] = (_b[1.TRUMP_0] + _b[1.TRUMP_0#1.TREATED_COUNTY_`ii'])
790
+ mat treat[`ii',2] = (${stops`ii'})
791
+ }
792
+ }
793
+ }
794
+
795
+ g yy = treat[_n,1] in 1/1478
796
+ g ww = treat[_n,2] in 1/1478
797
+ replace yy = . if yy==999
798
+ replace ww = . if ww==999
799
+
800
+
801
+
802
+ keep yy ww
803
+
804
+ g county_id = _n
805
+ drop if county_id > 1478
806
+
807
+
808
+ save "Results\SA_TRUMP_0_TE.dta", replace
809
+
810
+ ************************************************************************************************************************************
811
+
812
+ use "Data\stoplevel_data.dta", clear
813
+
814
+ g n_stops = 1
815
+ foreach var of varlist black hispanic white api {
816
+ replace `var' = `var'/100
817
+ }
818
+
819
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
820
+
821
+ g black_ps = black / n_stops
822
+ keep if year==2015 | year==2016 | year==2017
823
+
824
+ local start = -105
825
+ local end = 105
826
+ local bin_l = 15
827
+
828
+ g TRUMP_0 = 0
829
+ forval ii = 1/9 {
830
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
831
+ }
832
+
833
+
834
+ forval ii = 1(`bin_l')`end'{
835
+ local jj = `ii' + `bin_l' - 1
836
+ g TRUMP_POST_`ii'_`jj' = 0
837
+ forval ee = 1/9 {
838
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
839
+ }
840
+ }
841
+ g TRUMP_POST_M`end' = 0
842
+ forval ii = 1/9 {
843
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
844
+ }
845
+ *
846
+
847
+
848
+ forval ii = `start'(`bin_l')0 {
849
+ if `ii' < -`bin_l' {
850
+ local jj = abs(`ii')
851
+ local zz = `jj' - `bin_l' + 1
852
+ g TRUMP_PRE_`jj'_`zz' = 0
853
+ forval ee = 1/9 {
854
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
855
+ }
856
+ }
857
+ }
858
+ *
859
+ local jj = abs(`start')
860
+ g TRUMP_PRE_M`jj' = 0
861
+ forval ii = 1/9 {
862
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
863
+ }
864
+
865
+ ***number of counties 1,478
866
+ qui: {
867
+ forval ii = 1/1478 {
868
+ su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
869
+ if r(N) != 0 {
870
+ total n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
871
+ global stops`ii' = _b[n_stops]
872
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
873
+ }
874
+ }
875
+ }
876
+ *** Drop the first for collinearity
877
+ drop TREATED_COUNTY_9
878
+
879
+
880
+ reghdfe black_ps 1.TRUMP_PRE_30_16 1.TRUMP_PRE_30_16#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_M105) cluster(county_id day_id)
881
+
882
+
883
+ mat treat = 999* J(1478,2,1)
884
+
885
+ local numerator = 0
886
+ local denominator = 0
887
+ forval ii = 1/1478 {
888
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
889
+ if r(N) != 0 {
890
+ if `ii' == 9{
891
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16])
892
+ mat treat[`ii',2] = (${stops`ii'})
893
+ }
894
+ else {
895
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16] + _b[1.TRUMP_PRE_30_16#1.TREATED_COUNTY_`ii'])
896
+ mat treat[`ii',2] = (${stops`ii'})
897
+ }
898
+ }
899
+ }
900
+
901
+ g yy = treat[_n,1] in 1/1478
902
+ g ww = treat[_n,2] in 1/1478
903
+ replace yy = . if yy==999
904
+ replace ww = . if ww==999
905
+
906
+ keep yy ww
907
+
908
+ g county_id = _n
909
+ drop if county_id > 1478
910
+
911
+ save "Results\SA_TRUMP_PRE_30_16_TE.dta", replace
912
+
913
+ ************************************************************************************************************************************
914
+
915
+ use "Data\stoplevel_data.dta", clear
916
+
917
+ g n_stops = 1
918
+ foreach var of varlist black hispanic white api {
919
+ replace `var' = `var'/100
920
+ }
921
+
922
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
923
+
924
+ g black_ps = black / n_stops
925
+ keep if year==2015 | year==2016 | year==2017
926
+
927
+ local start = -105
928
+ local end = 105
929
+ local bin_l = 15
930
+
931
+ g TRUMP_0 = 0
932
+ forval ii = 1/9 {
933
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
934
+ }
935
+
936
+
937
+ forval ii = 1(`bin_l')`end'{
938
+ local jj = `ii' + `bin_l' - 1
939
+ g TRUMP_POST_`ii'_`jj' = 0
940
+ forval ee = 1/9 {
941
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
942
+ }
943
+ }
944
+ g TRUMP_POST_M`end' = 0
945
+ forval ii = 1/9 {
946
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
947
+ }
948
+ *
949
+
950
+ forval ii = `start'(`bin_l')0 {
951
+ if `ii' < -`bin_l' {
952
+ local jj = abs(`ii')
953
+ local zz = `jj' - `bin_l' + 1
954
+ g TRUMP_PRE_`jj'_`zz' = 0
955
+ forval ee = 1/9 {
956
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
957
+ }
958
+ }
959
+ }
960
+ *
961
+ local jj = abs(`start')
962
+ g TRUMP_PRE_M`jj' = 0
963
+ forval ii = 1/9 {
964
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
965
+ }
966
+
967
+ ***number of counties 1,478
968
+ qui: {
969
+ forval ii = 1/1478 {
970
+ su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
971
+ if r(N) != 0 {
972
+ total n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
973
+ global stops`ii' = _b[n_stops]
974
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
975
+ }
976
+ }
977
+ }
978
+ *** Drop the first for collinearity
979
+ drop TREATED_COUNTY_9
980
+
981
+ reghdfe black_ps 1.TRUMP_PRE_45_31 1.TRUMP_PRE_45_31#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
982
+
983
+ mat treat = 999* J(1478,2,1)
984
+
985
+ local numerator = 0
986
+ local denominator = 0
987
+ forval ii = 1/1478 {
988
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
989
+ if r(N) != 0 {
990
+ if `ii' == 9{
991
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31])
992
+ mat treat[`ii',2] = (${stops`ii'})
993
+ }
994
+ else {
995
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31] + _b[1.TRUMP_PRE_45_31#1.TREATED_COUNTY_`ii'])
996
+ mat treat[`ii',2] = (${stops`ii'})
997
+ }
998
+ }
999
+ }
1000
+
1001
+ g yy = treat[_n,1] in 1/1478
1002
+ g ww = treat[_n,2] in 1/1478
1003
+ replace yy = . if yy==999
1004
+ replace ww = . if ww==999
1005
+
1006
+ keep yy ww
1007
+
1008
+ g county_id = _n
1009
+ drop if county_id > 1478
1010
+
1011
+ save "Results\SA_TRUMP_PRE_45_31_TE.dta", replace
1012
+
1013
+ ************************************************************************************************************************************
1014
+
1015
+ use "Data\stoplevel_data.dta", clear
1016
+
1017
+ g n_stops = 1
1018
+ foreach var of varlist black hispanic white api {
1019
+ replace `var' = `var'/100
1020
+ }
1021
+
1022
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1023
+
1024
+ g black_ps = black / n_stops
1025
+ keep if year==2015 | year==2016 | year==2017
1026
+
1027
+ local start = -105
1028
+ local end = 105
1029
+ local bin_l = 15
1030
+
1031
+ g TRUMP_0 = 0
1032
+ forval ii = 1/9 {
1033
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1034
+ }
1035
+
1036
+
1037
+ forval ii = 1(`bin_l')`end'{
1038
+ local jj = `ii' + `bin_l' - 1
1039
+ g TRUMP_POST_`ii'_`jj' = 0
1040
+ forval ee = 1/9 {
1041
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1042
+ }
1043
+ }
1044
+ g TRUMP_POST_M`end' = 0
1045
+ forval ii = 1/9 {
1046
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1047
+ }
1048
+ *
1049
+
1050
+
1051
+ forval ii = `start'(`bin_l')0 {
1052
+ if `ii' < -`bin_l' {
1053
+ local jj = abs(`ii')
1054
+ local zz = `jj' - `bin_l' + 1
1055
+ g TRUMP_PRE_`jj'_`zz' = 0
1056
+ forval ee = 1/9 {
1057
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1058
+ }
1059
+ }
1060
+ }
1061
+ *
1062
+ local jj = abs(`start')
1063
+ g TRUMP_PRE_M`jj' = 0
1064
+ forval ii = 1/9 {
1065
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1066
+ }
1067
+
1068
+ ***number of counties 1,478
1069
+ qui: {
1070
+ forval ii = 1/1478 {
1071
+ su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1072
+ if r(N) != 0 {
1073
+ total n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1074
+ global stops`ii' = _b[n_stops]
1075
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1076
+ }
1077
+ }
1078
+ }
1079
+ *** Drop the first for collinearity
1080
+ drop TREATED_COUNTY_9
1081
+
1082
+ reghdfe black_ps 1.TRUMP_PRE_60_46 1.TRUMP_PRE_60_46#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1083
+
1084
+
1085
+ mat treat = 999* J(1478,2,1)
1086
+
1087
+ local numerator = 0
1088
+ local denominator = 0
1089
+ forval ii = 1/1478 {
1090
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1091
+ if r(N) != 0 {
1092
+ if `ii' == 9{
1093
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46])
1094
+ mat treat[`ii',2] = (${stops`ii'})
1095
+ }
1096
+ else {
1097
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46] + _b[1.TRUMP_PRE_60_46#1.TREATED_COUNTY_`ii'])
1098
+ mat treat[`ii',2] = (${stops`ii'})
1099
+ }
1100
+ }
1101
+ }
1102
+
1103
+ g yy = treat[_n,1] in 1/1478
1104
+ g ww = treat[_n,2] in 1/1478
1105
+ replace yy = . if yy==999
1106
+ replace ww = . if ww==999
1107
+
1108
+ keep yy ww
1109
+
1110
+ g county_id = _n
1111
+ drop if county_id > 1478
1112
+
1113
+
1114
+ save "Results\SA_TRUMP_PRE_60_46_TE.dta", replace
1115
+
1116
+ ************************************************************************************************************************************
1117
+
1118
+ use "Data\stoplevel_data.dta", clear
1119
+
1120
+ g n_stops = 1
1121
+ foreach var of varlist black hispanic white api {
1122
+ replace `var' = `var'/100
1123
+ }
1124
+
1125
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1126
+
1127
+ g black_ps = black / n_stops
1128
+ keep if year==2015 | year==2016 | year==2017
1129
+
1130
+ local start = -105
1131
+ local end = 105
1132
+ local bin_l = 15
1133
+
1134
+ g TRUMP_0 = 0
1135
+ forval ii = 1/9 {
1136
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1137
+ }
1138
+
1139
+
1140
+ forval ii = 1(`bin_l')`end'{
1141
+ local jj = `ii' + `bin_l' - 1
1142
+ g TRUMP_POST_`ii'_`jj' = 0
1143
+ forval ee = 1/9 {
1144
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1145
+ }
1146
+ }
1147
+ g TRUMP_POST_M`end' = 0
1148
+ forval ii = 1/9 {
1149
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1150
+ }
1151
+ *
1152
+
1153
+
1154
+ forval ii = `start'(`bin_l')0 {
1155
+ if `ii' < -`bin_l' {
1156
+ local jj = abs(`ii')
1157
+ local zz = `jj' - `bin_l' + 1
1158
+ g TRUMP_PRE_`jj'_`zz' = 0
1159
+ forval ee = 1/9 {
1160
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1161
+ }
1162
+ }
1163
+ }
1164
+ *
1165
+ local jj = abs(`start')
1166
+ g TRUMP_PRE_M`jj' = 0
1167
+ forval ii = 1/9 {
1168
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1169
+ }
1170
+
1171
+ ***number of counties 1,478
1172
+ qui: {
1173
+ forval ii = 1/1478 {
1174
+ su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1175
+ if r(N) != 0 {
1176
+ total n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1177
+ global stops`ii' = _b[n_stops]
1178
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1179
+ }
1180
+ }
1181
+ }
1182
+ *** Drop the first for collinearity
1183
+ drop TREATED_COUNTY_9
1184
+
1185
+ reghdfe black_ps 1.TRUMP_PRE_75_61 1.TRUMP_PRE_75_61#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1186
+
1187
+ mat treat = 999* J(1478,2,1)
1188
+
1189
+ local numerator = 0
1190
+ local denominator = 0
1191
+ forval ii = 1/1478 {
1192
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1193
+ if r(N) != 0 {
1194
+ if `ii' == 9{
1195
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61])
1196
+ mat treat[`ii',2] = (${stops`ii'})
1197
+ }
1198
+ else {
1199
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61] + _b[1.TRUMP_PRE_75_61#1.TREATED_COUNTY_`ii'])
1200
+ mat treat[`ii',2] = (${stops`ii'})
1201
+ }
1202
+ }
1203
+ }
1204
+
1205
+ g yy = treat[_n,1] in 1/1478
1206
+ g ww = treat[_n,2] in 1/1478
1207
+ replace yy = . if yy==999
1208
+ replace ww = . if ww==999
1209
+
1210
+ keep yy ww
1211
+
1212
+ g county_id = _n
1213
+ drop if county_id > 1478
1214
+
1215
+ save "Results\SA_TRUMP_PRE_75_61_TE.dta", replace
1216
+
1217
+ ************************************************************************************************************************************
1218
+
1219
+ use "Data\stoplevel_data.dta", clear
1220
+
1221
+ g n_stops = 1
1222
+ foreach var of varlist black hispanic white api {
1223
+ replace `var' = `var'/100
1224
+ }
1225
+
1226
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1227
+
1228
+ g black_ps = black / n_stops
1229
+ keep if year==2015 | year==2016 | year==2017
1230
+
1231
+ local start = -105
1232
+ local end = 105
1233
+ local bin_l = 15
1234
+
1235
+ g TRUMP_0 = 0
1236
+ forval ii = 1/9 {
1237
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1238
+ }
1239
+
1240
+
1241
+ forval ii = 1(`bin_l')`end'{
1242
+ local jj = `ii' + `bin_l' - 1
1243
+ g TRUMP_POST_`ii'_`jj' = 0
1244
+ forval ee = 1/9 {
1245
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1246
+ }
1247
+ }
1248
+ g TRUMP_POST_M`end' = 0
1249
+ forval ii = 1/9 {
1250
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1251
+ }
1252
+ *
1253
+
1254
+
1255
+ forval ii = `start'(`bin_l')0 {
1256
+ if `ii' < -`bin_l' {
1257
+ local jj = abs(`ii')
1258
+ local zz = `jj' - `bin_l' + 1
1259
+ g TRUMP_PRE_`jj'_`zz' = 0
1260
+ forval ee = 1/9 {
1261
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1262
+ }
1263
+ }
1264
+ }
1265
+ *
1266
+ local jj = abs(`start')
1267
+ g TRUMP_PRE_M`jj' = 0
1268
+ forval ii = 1/9 {
1269
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1270
+ }
1271
+
1272
+ ***number of counties 1,478
1273
+ qui: {
1274
+ forval ii = 1/1478 {
1275
+ su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1276
+ if r(N) != 0 {
1277
+ total n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1278
+ global stops`ii' = _b[n_stops]
1279
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1280
+ }
1281
+ }
1282
+ }
1283
+ *** Drop the first for collinearity
1284
+ drop TREATED_COUNTY_9
1285
+
1286
+ reghdfe black_ps 1.TRUMP_PRE_90_76 1.TRUMP_PRE_90_76#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1287
+
1288
+
1289
+ mat treat = 999* J(1478,2,1)
1290
+
1291
+ local numerator = 0
1292
+ local denominator = 0
1293
+ forval ii = 1/1478 {
1294
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1295
+ if r(N) != 0 {
1296
+ if `ii' == 9{
1297
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76])
1298
+ mat treat[`ii',2] = (${stops`ii'})
1299
+ }
1300
+ else {
1301
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76] + _b[1.TRUMP_PRE_90_76#1.TREATED_COUNTY_`ii'])
1302
+ mat treat[`ii',2] = (${stops`ii'})
1303
+ }
1304
+ }
1305
+ }
1306
+
1307
+ g yy = treat[_n,1] in 1/1478
1308
+ g ww = treat[_n,2] in 1/1478
1309
+ replace yy = . if yy==999
1310
+ replace ww = . if ww==999
1311
+
1312
+ keep yy ww
1313
+
1314
+ g county_id = _n
1315
+ drop if county_id > 1478
1316
+
1317
+
1318
+ save "Results\SA_TRUMP_PRE_90_76_TE.dta", replace
1319
+
1320
+ ************************************************************************************************************************************
1321
+
1322
+ use "Data\stoplevel_data.dta", clear
1323
+
1324
+ g n_stops = 1
1325
+ foreach var of varlist black hispanic white api {
1326
+ replace `var' = `var'/100
1327
+ }
1328
+
1329
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1330
+
1331
+ g black_ps = black / n_stops
1332
+ keep if year==2015 | year==2016 | year==2017
1333
+
1334
+ local start = -105
1335
+ local end = 105
1336
+ local bin_l = 15
1337
+
1338
+ g TRUMP_0 = 0
1339
+ forval ii = 1/9 {
1340
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1341
+ }
1342
+
1343
+
1344
+ forval ii = 1(`bin_l')`end'{
1345
+ local jj = `ii' + `bin_l' - 1
1346
+ g TRUMP_POST_`ii'_`jj' = 0
1347
+ forval ee = 1/9 {
1348
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1349
+ }
1350
+ }
1351
+ g TRUMP_POST_M`end' = 0
1352
+ forval ii = 1/9 {
1353
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1354
+ }
1355
+ *
1356
+
1357
+
1358
+ forval ii = `start'(`bin_l')0 {
1359
+ if `ii' < -`bin_l' {
1360
+ local jj = abs(`ii')
1361
+ local zz = `jj' - `bin_l' + 1
1362
+ g TRUMP_PRE_`jj'_`zz' = 0
1363
+ forval ee = 1/9 {
1364
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1365
+ }
1366
+ }
1367
+ }
1368
+ *
1369
+ local jj = abs(`start')
1370
+ g TRUMP_PRE_M`jj' = 0
1371
+ forval ii = 1/9 {
1372
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1373
+ }
1374
+
1375
+ ***number of counties 1,478
1376
+ qui: {
1377
+ forval ii = 1/1478 {
1378
+ su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1379
+ if r(N) != 0 {
1380
+ total n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1381
+ global stops`ii' = _b[n_stops]
1382
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1383
+ }
1384
+ }
1385
+ }
1386
+ *** Drop the first for collinearity
1387
+ drop TREATED_COUNTY_9
1388
+
1389
+ reghdfe black_ps 1.TRUMP_PRE_105_91 1.TRUMP_PRE_105_91#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1390
+
1391
+ mat treat = 999* J(1478,2,1)
1392
+
1393
+ local numerator = 0
1394
+ local denominator = 0
1395
+ forval ii = 1/1478 {
1396
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1397
+ if r(N) != 0 {
1398
+ if `ii' == 9{
1399
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91])
1400
+ mat treat[`ii',2] = (${stops`ii'})
1401
+ }
1402
+ else {
1403
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91] + _b[1.TRUMP_PRE_105_91#1.TREATED_COUNTY_`ii'])
1404
+ mat treat[`ii',2] = (${stops`ii'})
1405
+ }
1406
+ }
1407
+ }
1408
+
1409
+ g yy = treat[_n,1] in 1/1478
1410
+ g ww = treat[_n,2] in 1/1478
1411
+ replace yy = . if yy==999
1412
+ replace ww = . if ww==999
1413
+
1414
+ keep yy ww
1415
+
1416
+ g county_id = _n
1417
+ drop if county_id > 1478
1418
+
1419
+ save "Results\SA_TRUMP_PRE_105_91_TE.dta", replace
1420
+
1421
+
1422
+
1423
+ ******************************************************************************************************************************************************************************************************************
1424
+
1425
+ use "Data\stoplevel_data.dta", clear
1426
+
1427
+ g n_stops = 1
1428
+ foreach var of varlist black hispanic white api {
1429
+ replace `var' = `var'/100
1430
+ }
1431
+
1432
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1433
+
1434
+ g black_ps = black / n_stops
1435
+ keep if year==2015 | year==2016 | year==2017
1436
+
1437
+ local start = -105
1438
+ local end = 105
1439
+ local bin_l = 15
1440
+
1441
+ g TRUMP_0 = 0
1442
+ forval ii = 1/9 {
1443
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1444
+ }
1445
+
1446
+ forval ii = 1(`bin_l')`end'{
1447
+ local jj = `ii' + `bin_l' - 1
1448
+ g TRUMP_POST_`ii'_`jj' = 0
1449
+ forval ee = 1/9 {
1450
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1451
+ }
1452
+ }
1453
+ g TRUMP_POST_M`end' = 0
1454
+ forval ii = 1/9 {
1455
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1456
+ }
1457
+ *
1458
+
1459
+ forval ii = `start'(`bin_l')0 {
1460
+ if `ii' < -`bin_l' {
1461
+ local jj = abs(`ii')
1462
+ local zz = `jj' - `bin_l' + 1
1463
+ g TRUMP_PRE_`jj'_`zz' = 0
1464
+ forval ee = 1/9 {
1465
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1466
+ }
1467
+ }
1468
+ }
1469
+ *
1470
+ local jj = abs(`start')
1471
+ g TRUMP_PRE_M`jj' = 0
1472
+ forval ii = 1/9 {
1473
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1474
+ }
1475
+
1476
+ ***number of counties 1,478
1477
+ qui: {
1478
+ forval ii = 1/1478 {
1479
+ su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1480
+ if r(N) != 0 {
1481
+ total n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1482
+ global stops`ii' = _b[n_stops]
1483
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1484
+ }
1485
+ }
1486
+ }
1487
+ *** Drop the first for collinearity
1488
+ drop TREATED_COUNTY_9
1489
+
1490
+ reghdfe black_ps 1.TRUMP_POST_1_15 1.TRUMP_POST_1_15#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1491
+
1492
+ mat treat = 999* J(1478,2,1)
1493
+
1494
+ local numerator = 0
1495
+ local denominator = 0
1496
+ forval ii = 1/1478 {
1497
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1498
+ if r(N) != 0 {
1499
+ if `ii' == 9{
1500
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15])
1501
+ mat treat[`ii',2] = (${stops`ii'})
1502
+ }
1503
+ else {
1504
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15] + _b[1.TRUMP_POST_1_15#1.TREATED_COUNTY_`ii'])
1505
+ mat treat[`ii',2] = (${stops`ii'})
1506
+ }
1507
+ }
1508
+ }
1509
+
1510
+ g yy = treat[_n,1] in 1/1478
1511
+ g ww = treat[_n,2] in 1/1478
1512
+ replace yy = . if yy==999
1513
+ replace ww = . if ww==999
1514
+
1515
+ keep yy ww
1516
+
1517
+ g county_id = _n
1518
+ drop if county_id > 1478
1519
+
1520
+ save "Results\SA_TRUMP_POST_1_15_TE_NT.dta", replace
1521
+
1522
+ ************************************************************************************************************************************
1523
+ use "Data\stoplevel_data.dta", clear
1524
+
1525
+ g n_stops = 1
1526
+ foreach var of varlist black hispanic white api {
1527
+ replace `var' = `var'/100
1528
+ }
1529
+
1530
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1531
+
1532
+ g black_ps = black / n_stops
1533
+ keep if year==2015 | year==2016 | year==2017
1534
+
1535
+ local start = -105
1536
+ local end = 105
1537
+ local bin_l = 15
1538
+
1539
+ g TRUMP_0 = 0
1540
+ forval ii = 1/9 {
1541
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1542
+ }
1543
+
1544
+ forval ii = 1(`bin_l')`end'{
1545
+ local jj = `ii' + `bin_l' - 1
1546
+ g TRUMP_POST_`ii'_`jj' = 0
1547
+ forval ee = 1/9 {
1548
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1549
+ }
1550
+ }
1551
+ g TRUMP_POST_M`end' = 0
1552
+ forval ii = 1/9 {
1553
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1554
+ }
1555
+ *
1556
+
1557
+ forval ii = `start'(`bin_l')0 {
1558
+ if `ii' < -`bin_l' {
1559
+ local jj = abs(`ii')
1560
+ local zz = `jj' - `bin_l' + 1
1561
+ g TRUMP_PRE_`jj'_`zz' = 0
1562
+ forval ee = 1/9 {
1563
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1564
+ }
1565
+ }
1566
+ }
1567
+ *
1568
+ local jj = abs(`start')
1569
+ g TRUMP_PRE_M`jj' = 0
1570
+ forval ii = 1/9 {
1571
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1572
+ }
1573
+
1574
+ ***number of counties 1,478
1575
+ qui: {
1576
+ forval ii = 1/1478 {
1577
+ su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1578
+ if r(N) != 0 {
1579
+ total n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1580
+ global stops`ii' = _b[n_stops]
1581
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1582
+ }
1583
+ }
1584
+ }
1585
+ *** Drop the first for collinearity
1586
+ drop TREATED_COUNTY_9
1587
+
1588
+ reghdfe black_ps 1.TRUMP_POST_16_30 1.TRUMP_POST_16_30#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1589
+
1590
+ mat treat = 999* J(1478,2,1)
1591
+
1592
+ local numerator = 0
1593
+ local denominator = 0
1594
+ forval ii = 1/1478 {
1595
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1596
+ if r(N) != 0 {
1597
+ if `ii' == 9{
1598
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30])
1599
+ mat treat[`ii',2] = (${stops`ii'})
1600
+ }
1601
+ else {
1602
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30] + _b[1.TRUMP_POST_16_30#1.TREATED_COUNTY_`ii'])
1603
+ mat treat[`ii',2] = (${stops`ii'})
1604
+ }
1605
+ }
1606
+ }
1607
+
1608
+ g yy = treat[_n,1] in 1/1478
1609
+ g ww = treat[_n,2] in 1/1478
1610
+ replace yy = . if yy==999
1611
+ replace ww = . if ww==999
1612
+
1613
+ keep yy ww
1614
+
1615
+ g county_id = _n
1616
+ drop if county_id > 1478
1617
+
1618
+ save "Results\SA_TRUMP_POST_16_30_TE_NT.dta", replace
1619
+
1620
+ ************************************************************************************************************************************
1621
+ use "data\Jack Police\full_dataset_CD.dta", clear
1622
+
1623
+ g black_ps = black / n_stops
1624
+ keep if year==2015 | year==2016 | year==2017
1625
+
1626
+ local start = -105
1627
+ local end = 105
1628
+ local bin_l = 15
1629
+
1630
+ g TRUMP_0 = 0
1631
+ forval ii = 1/9 {
1632
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1633
+ }
1634
+
1635
+
1636
+ forval ii = 1(`bin_l')`end'{
1637
+ local jj = `ii' + `bin_l' - 1
1638
+ g TRUMP_POST_`ii'_`jj' = 0
1639
+ forval ee = 1/9 {
1640
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1641
+ }
1642
+ }
1643
+ g TRUMP_POST_M`end' = 0
1644
+ forval ii = 1/9 {
1645
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1646
+ }
1647
+ *
1648
+
1649
+ forval ii = `start'(`bin_l')0 {
1650
+ if `ii' < -`bin_l' {
1651
+ local jj = abs(`ii')
1652
+ local zz = `jj' - `bin_l' + 1
1653
+ g TRUMP_PRE_`jj'_`zz' = 0
1654
+ forval ee = 1/9 {
1655
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1656
+ }
1657
+ }
1658
+ }
1659
+ *
1660
+ local jj = abs(`start')
1661
+ g TRUMP_PRE_M`jj' = 0
1662
+ forval ii = 1/9 {
1663
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1664
+ }
1665
+
1666
+ ***number of counties 1,478
1667
+ qui: {
1668
+ forval ii = 1/1478 {
1669
+ su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1670
+ if r(N) != 0 {
1671
+ total n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1672
+ global stops`ii' = _b[n_stops]
1673
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1674
+ }
1675
+ }
1676
+ }
1677
+ *** Drop the first for collinearity
1678
+ drop TREATED_COUNTY_9
1679
+
1680
+ reghdfe black_ps 1.TRUMP_POST_31_45 1.TRUMP_POST_31_45#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1681
+
1682
+ mat treat = 999* J(1478,2,1)
1683
+
1684
+ local numerator = 0
1685
+ local denominator = 0
1686
+ forval ii = 1/1478 {
1687
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1688
+ if r(N) != 0 {
1689
+ if `ii' == 9{
1690
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45])
1691
+ mat treat[`ii',2] = (${stops`ii'})
1692
+ }
1693
+ else {
1694
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45] + _b[1.TRUMP_POST_31_45#1.TREATED_COUNTY_`ii'])
1695
+ mat treat[`ii',2] = (${stops`ii'})
1696
+ }
1697
+ }
1698
+ }
1699
+
1700
+ g yy = treat[_n,1] in 1/1478
1701
+ g ww = treat[_n,2] in 1/1478
1702
+ replace yy = . if yy==999
1703
+ replace ww = . if ww==999
1704
+
1705
+ keep yy ww
1706
+
1707
+ g county_id = _n
1708
+ drop if county_id > 1478
1709
+
1710
+ save "Results\SA_TRUMP_POST_31_45_TE_NT.dta", replace
1711
+
1712
+ ************************************************************************************************************************************
1713
+ use "Data\stoplevel_data.dta", clear
1714
+
1715
+ g n_stops = 1
1716
+ foreach var of varlist black hispanic white api {
1717
+ replace `var' = `var'/100
1718
+ }
1719
+
1720
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1721
+
1722
+ g black_ps = black / n_stops
1723
+ keep if year==2015 | year==2016 | year==2017
1724
+
1725
+ local start = -105
1726
+ local end = 105
1727
+ local bin_l = 15
1728
+
1729
+ g TRUMP_0 = 0
1730
+ forval ii = 1/9 {
1731
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1732
+ }
1733
+
1734
+ forval ii = 1(`bin_l')`end'{
1735
+ local jj = `ii' + `bin_l' - 1
1736
+ g TRUMP_POST_`ii'_`jj' = 0
1737
+ forval ee = 1/9 {
1738
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1739
+ }
1740
+ }
1741
+ g TRUMP_POST_M`end' = 0
1742
+ forval ii = 1/9 {
1743
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1744
+ }
1745
+ *
1746
+
1747
+ forval ii = `start'(`bin_l')0 {
1748
+ if `ii' < -`bin_l' {
1749
+ local jj = abs(`ii')
1750
+ local zz = `jj' - `bin_l' + 1
1751
+ g TRUMP_PRE_`jj'_`zz' = 0
1752
+ forval ee = 1/9 {
1753
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1754
+ }
1755
+ }
1756
+ }
1757
+ *
1758
+ local jj = abs(`start')
1759
+ g TRUMP_PRE_M`jj' = 0
1760
+ forval ii = 1/9 {
1761
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1762
+ }
1763
+
1764
+ ***number of counties 1,478
1765
+ qui: {
1766
+ forval ii = 1/1478 {
1767
+ su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
1768
+ if r(N) != 0 {
1769
+ total n_stops if county_id==`ii' & TRUMP_POST_46_60==1
1770
+ global stops`ii' = _b[n_stops]
1771
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1772
+ }
1773
+ }
1774
+ }
1775
+ *** Drop the first for collinearity
1776
+ drop TREATED_COUNTY_9
1777
+
1778
+ reghdfe black_ps 1.TRUMP_POST_46_60 1.TRUMP_POST_46_60#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1779
+
1780
+ mat treat = 999* J(1478,2,1)
1781
+
1782
+ local numerator = 0
1783
+ local denominator = 0
1784
+ forval ii = 1/1478 {
1785
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
1786
+ if r(N) != 0 {
1787
+ if `ii' == 9{
1788
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60])
1789
+ mat treat[`ii',2] = (${stops`ii'})
1790
+ }
1791
+ else {
1792
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60] + _b[1.TRUMP_POST_46_60#1.TREATED_COUNTY_`ii'])
1793
+ mat treat[`ii',2] = (${stops`ii'})
1794
+ }
1795
+ }
1796
+ }
1797
+
1798
+ g yy = treat[_n,1] in 1/1478
1799
+ g ww = treat[_n,2] in 1/1478
1800
+ replace yy = . if yy==999
1801
+ replace ww = . if ww==999
1802
+
1803
+ keep yy ww
1804
+
1805
+ g county_id = _n
1806
+ drop if county_id > 1478
1807
+
1808
+ save "Results\SA_TRUMP_POST_46_60_TE_NT.dta", replace
1809
+
1810
+ ************************************************************************************************************************************
1811
+
1812
+ use "Data\stoplevel_data.dta", clear
1813
+
1814
+ g n_stops = 1
1815
+ foreach var of varlist black hispanic white api {
1816
+ replace `var' = `var'/100
1817
+ }
1818
+
1819
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1820
+
1821
+ g black_ps = black / n_stops
1822
+ keep if year==2015 | year==2016 | year==2017
1823
+
1824
+ local start = -105
1825
+ local end = 105
1826
+ local bin_l = 15
1827
+
1828
+ g TRUMP_0 = 0
1829
+ forval ii = 1/9 {
1830
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1831
+ }
1832
+
1833
+
1834
+ forval ii = 1(`bin_l')`end'{
1835
+ local jj = `ii' + `bin_l' - 1
1836
+ g TRUMP_POST_`ii'_`jj' = 0
1837
+ forval ee = 1/9 {
1838
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1839
+ }
1840
+ }
1841
+ g TRUMP_POST_M`end' = 0
1842
+ forval ii = 1/9 {
1843
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1844
+ }
1845
+ *
1846
+
1847
+
1848
+ forval ii = `start'(`bin_l')0 {
1849
+ if `ii' < -`bin_l' {
1850
+ local jj = abs(`ii')
1851
+ local zz = `jj' - `bin_l' + 1
1852
+ g TRUMP_PRE_`jj'_`zz' = 0
1853
+ forval ee = 1/9 {
1854
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1855
+ }
1856
+ }
1857
+ }
1858
+ *
1859
+ local jj = abs(`start')
1860
+ g TRUMP_PRE_M`jj' = 0
1861
+ forval ii = 1/9 {
1862
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1863
+ }
1864
+
1865
+ ***number of counties 1,478
1866
+ qui: {
1867
+ forval ii = 1/1478 {
1868
+ su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
1869
+ if r(N) != 0 {
1870
+ total n_stops if county_id==`ii' & TRUMP_POST_61_75==1
1871
+ global stops`ii' = _b[n_stops]
1872
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1873
+ }
1874
+ }
1875
+ }
1876
+ *** Drop the first for collinearity
1877
+ drop TREATED_COUNTY_9
1878
+
1879
+ reghdfe black_ps 1.TRUMP_POST_61_75 1.TRUMP_POST_61_75#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1880
+
1881
+
1882
+ mat treat = 999* J(1478,2,1)
1883
+
1884
+ local numerator = 0
1885
+ local denominator = 0
1886
+ forval ii = 1/1478 {
1887
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
1888
+ if r(N) != 0 {
1889
+ if `ii' == 9{
1890
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75])
1891
+ mat treat[`ii',2] = (${stops`ii'})
1892
+ }
1893
+ else {
1894
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75] + _b[1.TRUMP_POST_61_75#1.TREATED_COUNTY_`ii'])
1895
+ mat treat[`ii',2] = (${stops`ii'})
1896
+ }
1897
+ }
1898
+ }
1899
+
1900
+ g yy = treat[_n,1] in 1/1478
1901
+ g ww = treat[_n,2] in 1/1478
1902
+ replace yy = . if yy==999
1903
+ replace ww = . if ww==999
1904
+
1905
+ keep yy ww
1906
+
1907
+ g county_id = _n
1908
+ drop if county_id > 1478
1909
+
1910
+
1911
+ save "Results\SA_TRUMP_POST_61_75_TE_NT.dta", replace
1912
+
1913
+ ************************************************************************************************************************************
1914
+
1915
+ use "Data\stoplevel_data.dta", clear
1916
+
1917
+ g n_stops = 1
1918
+ foreach var of varlist black hispanic white api {
1919
+ replace `var' = `var'/100
1920
+ }
1921
+
1922
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
1923
+
1924
+ g black_ps = black / n_stops
1925
+ keep if year==2015 | year==2016 | year==2017
1926
+
1927
+ local start = -105
1928
+ local end = 105
1929
+ local bin_l = 15
1930
+
1931
+ g TRUMP_0 = 0
1932
+ forval ii = 1/9 {
1933
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1934
+ }
1935
+
1936
+
1937
+ forval ii = 1(`bin_l')`end'{
1938
+ local jj = `ii' + `bin_l' - 1
1939
+ g TRUMP_POST_`ii'_`jj' = 0
1940
+ forval ee = 1/9 {
1941
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1942
+ }
1943
+ }
1944
+ g TRUMP_POST_M`end' = 0
1945
+ forval ii = 1/9 {
1946
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1947
+ }
1948
+ *
1949
+
1950
+
1951
+ forval ii = `start'(`bin_l')0 {
1952
+ if `ii' < -`bin_l' {
1953
+ local jj = abs(`ii')
1954
+ local zz = `jj' - `bin_l' + 1
1955
+ g TRUMP_PRE_`jj'_`zz' = 0
1956
+ forval ee = 1/9 {
1957
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1958
+ }
1959
+ }
1960
+ }
1961
+ *
1962
+ local jj = abs(`start')
1963
+ g TRUMP_PRE_M`jj' = 0
1964
+ forval ii = 1/9 {
1965
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1966
+ }
1967
+
1968
+ ***number of counties 1,478
1969
+ qui: {
1970
+ forval ii = 1/1478 {
1971
+ su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
1972
+ if r(N) != 0 {
1973
+ total n_stops if county_id==`ii' & TRUMP_POST_76_90==1
1974
+ global stops`ii' = _b[n_stops]
1975
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1976
+ }
1977
+ }
1978
+ }
1979
+ *** Drop the first for collinearity
1980
+ drop TREATED_COUNTY_9
1981
+
1982
+ reghdfe black_ps 1.TRUMP_POST_76_90 1.TRUMP_POST_76_90#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1983
+
1984
+ mat treat = 999* J(1478,2,1)
1985
+
1986
+ local numerator = 0
1987
+ local denominator = 0
1988
+ forval ii = 1/1478 {
1989
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
1990
+ if r(N) != 0 {
1991
+ if `ii' == 9{
1992
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90])
1993
+ mat treat[`ii',2] = (${stops`ii'})
1994
+ }
1995
+ else {
1996
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90] + _b[1.TRUMP_POST_76_90#1.TREATED_COUNTY_`ii'])
1997
+ mat treat[`ii',2] = (${stops`ii'})
1998
+ }
1999
+ }
2000
+ }
2001
+
2002
+ g yy = treat[_n,1] in 1/1478
2003
+ g ww = treat[_n,2] in 1/1478
2004
+ replace yy = . if yy==999
2005
+ replace ww = . if ww==999
2006
+
2007
+ keep yy ww
2008
+
2009
+ g county_id = _n
2010
+ drop if county_id > 1478
2011
+
2012
+ save "Results\SA_TRUMP_POST_76_90_TE_NT.dta", replace
2013
+
2014
+
2015
+ ************************************************************************************************************************************
2016
+
2017
+ use "Data\stoplevel_data.dta", clear
2018
+
2019
+ g n_stops = 1
2020
+ foreach var of varlist black hispanic white api {
2021
+ replace `var' = `var'/100
2022
+ }
2023
+
2024
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2025
+
2026
+ g black_ps = black / n_stops
2027
+ keep if year==2015 | year==2016 | year==2017
2028
+
2029
+ local start = -105
2030
+ local end = 105
2031
+ local bin_l = 15
2032
+
2033
+ g TRUMP_0 = 0
2034
+ forval ii = 1/9 {
2035
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2036
+ }
2037
+
2038
+
2039
+ forval ii = 1(`bin_l')`end'{
2040
+ local jj = `ii' + `bin_l' - 1
2041
+ g TRUMP_POST_`ii'_`jj' = 0
2042
+ forval ee = 1/9 {
2043
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2044
+ }
2045
+ }
2046
+ g TRUMP_POST_M`end' = 0
2047
+ forval ii = 1/9 {
2048
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2049
+ }
2050
+ *
2051
+
2052
+
2053
+ forval ii = `start'(`bin_l')0 {
2054
+ if `ii' < -`bin_l' {
2055
+ local jj = abs(`ii')
2056
+ local zz = `jj' - `bin_l' + 1
2057
+ g TRUMP_PRE_`jj'_`zz' = 0
2058
+ forval ee = 1/9 {
2059
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2060
+ }
2061
+ }
2062
+ }
2063
+ *
2064
+ local jj = abs(`start')
2065
+ g TRUMP_PRE_M`jj' = 0
2066
+ forval ii = 1/9 {
2067
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2068
+ }
2069
+
2070
+ ***number of counties 1,478
2071
+ qui: {
2072
+ forval ii = 1/1478 {
2073
+ su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2074
+ if r(N) != 0 {
2075
+ total n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2076
+ global stops`ii' = _b[n_stops]
2077
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2078
+ }
2079
+ }
2080
+ }
2081
+ *** Drop the first for collinearity
2082
+ drop TREATED_COUNTY_9
2083
+
2084
+ reghdfe black_ps 1.TRUMP_POST_91_105 1.TRUMP_POST_91_105#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2085
+
2086
+
2087
+ mat treat = 999* J(1478,2,1)
2088
+
2089
+ local numerator = 0
2090
+ local denominator = 0
2091
+ forval ii = 1/1478 {
2092
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2093
+ if r(N) != 0 {
2094
+ if `ii' == 9{
2095
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105])
2096
+ mat treat[`ii',2] = (${stops`ii'})
2097
+ }
2098
+ else {
2099
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105] + _b[1.TRUMP_POST_91_105#1.TREATED_COUNTY_`ii'])
2100
+ mat treat[`ii',2] = (${stops`ii'})
2101
+ }
2102
+ }
2103
+ }
2104
+
2105
+ g yy = treat[_n,1] in 1/1478
2106
+ g ww = treat[_n,2] in 1/1478
2107
+ replace yy = . if yy==999
2108
+ replace ww = . if ww==999
2109
+
2110
+
2111
+
2112
+ keep yy ww
2113
+
2114
+ g county_id = _n
2115
+ drop if county_id > 1478
2116
+
2117
+
2118
+ save "Results\SA_TRUMP_POST_91_105_TE_NT.dta", replace
2119
+
2120
+
2121
+ ************************************************************************************************************************************
2122
+
2123
+ use "Data\stoplevel_data.dta", clear
2124
+
2125
+ g n_stops = 1
2126
+ foreach var of varlist black hispanic white api {
2127
+ replace `var' = `var'/100
2128
+ }
2129
+
2130
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2131
+
2132
+ g black_ps = black / n_stops
2133
+ keep if year==2015 | year==2016 | year==2017
2134
+
2135
+ local start = -105
2136
+ local end = 105
2137
+ local bin_l = 15
2138
+
2139
+ forval ii = 1/9 {
2140
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2141
+ }
2142
+ *
2143
+
2144
+
2145
+ g TRUMP_0 = 0
2146
+ forval ii = 1/9 {
2147
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2148
+ }
2149
+
2150
+
2151
+ forval ii = 1(`bin_l')`end'{
2152
+ local jj = `ii' + `bin_l' - 1
2153
+ g TRUMP_POST_`ii'_`jj' = 0
2154
+ forval ee = 1/9 {
2155
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2156
+ }
2157
+ }
2158
+ g TRUMP_POST_M`end' = 0
2159
+ forval ii = 1/9 {
2160
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2161
+ }
2162
+ *
2163
+
2164
+
2165
+ forval ii = `start'(`bin_l')0 {
2166
+ if `ii' < -`bin_l' {
2167
+ local jj = abs(`ii')
2168
+ local zz = `jj' - `bin_l' + 1
2169
+ g TRUMP_PRE_`jj'_`zz' = 0
2170
+ forval ee = 1/9 {
2171
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2172
+ }
2173
+ }
2174
+ }
2175
+ *
2176
+ local jj = abs(`start')
2177
+ g TRUMP_PRE_M`jj' = 0
2178
+ forval ii = 1/9 {
2179
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2180
+ }
2181
+
2182
+ ***number of counties 1,478
2183
+ qui: {
2184
+ forval ii = 1/1478 {
2185
+ su n_stops if county_id==`ii' & TRUMP_0==1
2186
+ if r(N) != 0 {
2187
+ total n_stops if county_id==`ii' & TRUMP_0==1
2188
+ global stops`ii' = _b[n_stops]
2189
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2190
+ }
2191
+ }
2192
+ }
2193
+ *** Drop the first for collinearity
2194
+ drop TREATED_COUNTY_9
2195
+
2196
+
2197
+ reghdfe black_ps 1.TRUMP_0 1.TRUMP_0#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2198
+
2199
+
2200
+ mat treat = 999* J(1478,2,1)
2201
+
2202
+ local numerator = 0
2203
+ local denominator = 0
2204
+ forval ii = 1/1478 {
2205
+ qui: su n_stops if county_id==`ii' & TRUMP_0==1
2206
+ if r(N) != 0 {
2207
+ if `ii' == 9{
2208
+ mat treat[`ii',1] = (_b[1.TRUMP_0])
2209
+ mat treat[`ii',2] = (${stops`ii'})
2210
+ }
2211
+ else {
2212
+ mat treat[`ii',1] = (_b[1.TRUMP_0] + _b[1.TRUMP_0#1.TREATED_COUNTY_`ii'])
2213
+ mat treat[`ii',2] = (${stops`ii'})
2214
+ }
2215
+ }
2216
+ }
2217
+
2218
+ g yy = treat[_n,1] in 1/1478
2219
+ g ww = treat[_n,2] in 1/1478
2220
+ replace yy = . if yy==999
2221
+ replace ww = . if ww==999
2222
+
2223
+
2224
+
2225
+ keep yy ww
2226
+
2227
+ g county_id = _n
2228
+ drop if county_id > 1478
2229
+
2230
+
2231
+ save "Results\SA_TRUMP_0_TE_NT.dta", replace
2232
+
2233
+ ************************************************************************************************************************************
2234
+
2235
+ use "Data\stoplevel_data.dta", clear
2236
+
2237
+ g n_stops = 1
2238
+ foreach var of varlist black hispanic white api {
2239
+ replace `var' = `var'/100
2240
+ }
2241
+
2242
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2243
+
2244
+ g black_ps = black / n_stops
2245
+ keep if year==2015 | year==2016 | year==2017
2246
+
2247
+ local start = -105
2248
+ local end = 105
2249
+ local bin_l = 15
2250
+
2251
+ g TRUMP_0 = 0
2252
+ forval ii = 1/9 {
2253
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2254
+ }
2255
+
2256
+
2257
+ forval ii = 1(`bin_l')`end'{
2258
+ local jj = `ii' + `bin_l' - 1
2259
+ g TRUMP_POST_`ii'_`jj' = 0
2260
+ forval ee = 1/9 {
2261
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2262
+ }
2263
+ }
2264
+ g TRUMP_POST_M`end' = 0
2265
+ forval ii = 1/9 {
2266
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2267
+ }
2268
+ *
2269
+
2270
+
2271
+ forval ii = `start'(`bin_l')0 {
2272
+ if `ii' < -`bin_l' {
2273
+ local jj = abs(`ii')
2274
+ local zz = `jj' - `bin_l' + 1
2275
+ g TRUMP_PRE_`jj'_`zz' = 0
2276
+ forval ee = 1/9 {
2277
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2278
+ }
2279
+ }
2280
+ }
2281
+ *
2282
+ local jj = abs(`start')
2283
+ g TRUMP_PRE_M`jj' = 0
2284
+ forval ii = 1/9 {
2285
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2286
+ }
2287
+
2288
+ ***number of counties 1,478
2289
+ qui: {
2290
+ forval ii = 1/1478 {
2291
+ su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2292
+ if r(N) != 0 {
2293
+ total n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2294
+ global stops`ii' = _b[n_stops]
2295
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2296
+ }
2297
+ }
2298
+ }
2299
+ *** Drop the first for collinearity
2300
+ drop TREATED_COUNTY_9
2301
+
2302
+
2303
+ reghdfe black_ps 1.TRUMP_PRE_30_16 1.TRUMP_PRE_30_16#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_M105) cluster(county_id day_id)
2304
+
2305
+
2306
+ mat treat = 999* J(1478,2,1)
2307
+
2308
+ local numerator = 0
2309
+ local denominator = 0
2310
+ forval ii = 1/1478 {
2311
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2312
+ if r(N) != 0 {
2313
+ if `ii' == 9{
2314
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16])
2315
+ mat treat[`ii',2] = (${stops`ii'})
2316
+ }
2317
+ else {
2318
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16] + _b[1.TRUMP_PRE_30_16#1.TREATED_COUNTY_`ii'])
2319
+ mat treat[`ii',2] = (${stops`ii'})
2320
+ }
2321
+ }
2322
+ }
2323
+
2324
+ g yy = treat[_n,1] in 1/1478
2325
+ g ww = treat[_n,2] in 1/1478
2326
+ replace yy = . if yy==999
2327
+ replace ww = . if ww==999
2328
+
2329
+ keep yy ww
2330
+
2331
+ g county_id = _n
2332
+ drop if county_id > 1478
2333
+
2334
+ save "Results\SA_TRUMP_PRE_30_16_TE_NT.dta", replace
2335
+
2336
+ ************************************************************************************************************************************
2337
+
2338
+ use "Data\stoplevel_data.dta", clear
2339
+
2340
+ g n_stops = 1
2341
+ foreach var of varlist black hispanic white api {
2342
+ replace `var' = `var'/100
2343
+ }
2344
+
2345
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2346
+
2347
+ g black_ps = black / n_stops
2348
+ keep if year==2015 | year==2016 | year==2017
2349
+
2350
+ local start = -105
2351
+ local end = 105
2352
+ local bin_l = 15
2353
+
2354
+ g TRUMP_0 = 0
2355
+ forval ii = 1/9 {
2356
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2357
+ }
2358
+
2359
+
2360
+ forval ii = 1(`bin_l')`end'{
2361
+ local jj = `ii' + `bin_l' - 1
2362
+ g TRUMP_POST_`ii'_`jj' = 0
2363
+ forval ee = 1/9 {
2364
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2365
+ }
2366
+ }
2367
+ g TRUMP_POST_M`end' = 0
2368
+ forval ii = 1/9 {
2369
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2370
+ }
2371
+ *
2372
+
2373
+ forval ii = `start'(`bin_l')0 {
2374
+ if `ii' < -`bin_l' {
2375
+ local jj = abs(`ii')
2376
+ local zz = `jj' - `bin_l' + 1
2377
+ g TRUMP_PRE_`jj'_`zz' = 0
2378
+ forval ee = 1/9 {
2379
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2380
+ }
2381
+ }
2382
+ }
2383
+ *
2384
+ local jj = abs(`start')
2385
+ g TRUMP_PRE_M`jj' = 0
2386
+ forval ii = 1/9 {
2387
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2388
+ }
2389
+
2390
+ ***number of counties 1,478
2391
+ qui: {
2392
+ forval ii = 1/1478 {
2393
+ su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2394
+ if r(N) != 0 {
2395
+ total n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2396
+ global stops`ii' = _b[n_stops]
2397
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2398
+ }
2399
+ }
2400
+ }
2401
+ *** Drop the first for collinearity
2402
+ drop TREATED_COUNTY_9
2403
+
2404
+ reghdfe black_ps 1.TRUMP_PRE_45_31 1.TRUMP_PRE_45_31#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2405
+
2406
+ mat treat = 999* J(1478,2,1)
2407
+
2408
+ local numerator = 0
2409
+ local denominator = 0
2410
+ forval ii = 1/1478 {
2411
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2412
+ if r(N) != 0 {
2413
+ if `ii' == 9{
2414
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31])
2415
+ mat treat[`ii',2] = (${stops`ii'})
2416
+ }
2417
+ else {
2418
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31] + _b[1.TRUMP_PRE_45_31#1.TREATED_COUNTY_`ii'])
2419
+ mat treat[`ii',2] = (${stops`ii'})
2420
+ }
2421
+ }
2422
+ }
2423
+
2424
+ g yy = treat[_n,1] in 1/1478
2425
+ g ww = treat[_n,2] in 1/1478
2426
+ replace yy = . if yy==999
2427
+ replace ww = . if ww==999
2428
+
2429
+ keep yy ww
2430
+
2431
+ g county_id = _n
2432
+ drop if county_id > 1478
2433
+
2434
+ save "Results\SA_TRUMP_PRE_45_31_TE_NT.dta", replace
2435
+
2436
+ ************************************************************************************************************************************
2437
+
2438
+ use "Data\stoplevel_data.dta", clear
2439
+
2440
+ g n_stops = 1
2441
+ foreach var of varlist black hispanic white api {
2442
+ replace `var' = `var'/100
2443
+ }
2444
+
2445
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2446
+
2447
+ g black_ps = black / n_stops
2448
+ keep if year==2015 | year==2016 | year==2017
2449
+
2450
+ local start = -105
2451
+ local end = 105
2452
+ local bin_l = 15
2453
+
2454
+ g TRUMP_0 = 0
2455
+ forval ii = 1/9 {
2456
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2457
+ }
2458
+
2459
+
2460
+ forval ii = 1(`bin_l')`end'{
2461
+ local jj = `ii' + `bin_l' - 1
2462
+ g TRUMP_POST_`ii'_`jj' = 0
2463
+ forval ee = 1/9 {
2464
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2465
+ }
2466
+ }
2467
+ g TRUMP_POST_M`end' = 0
2468
+ forval ii = 1/9 {
2469
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2470
+ }
2471
+ *
2472
+
2473
+
2474
+ forval ii = `start'(`bin_l')0 {
2475
+ if `ii' < -`bin_l' {
2476
+ local jj = abs(`ii')
2477
+ local zz = `jj' - `bin_l' + 1
2478
+ g TRUMP_PRE_`jj'_`zz' = 0
2479
+ forval ee = 1/9 {
2480
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2481
+ }
2482
+ }
2483
+ }
2484
+ *
2485
+ local jj = abs(`start')
2486
+ g TRUMP_PRE_M`jj' = 0
2487
+ forval ii = 1/9 {
2488
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2489
+ }
2490
+
2491
+ ***number of counties 1,478
2492
+ qui: {
2493
+ forval ii = 1/1478 {
2494
+ su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2495
+ if r(N) != 0 {
2496
+ total n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2497
+ global stops`ii' = _b[n_stops]
2498
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2499
+ }
2500
+ }
2501
+ }
2502
+ *** Drop the first for collinearity
2503
+ drop TREATED_COUNTY_9
2504
+
2505
+ reghdfe black_ps 1.TRUMP_PRE_60_46 1.TRUMP_PRE_60_46#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2506
+
2507
+
2508
+ mat treat = 999* J(1478,2,1)
2509
+
2510
+ local numerator = 0
2511
+ local denominator = 0
2512
+ forval ii = 1/1478 {
2513
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2514
+ if r(N) != 0 {
2515
+ if `ii' == 9{
2516
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46])
2517
+ mat treat[`ii',2] = (${stops`ii'})
2518
+ }
2519
+ else {
2520
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46] + _b[1.TRUMP_PRE_60_46#1.TREATED_COUNTY_`ii'])
2521
+ mat treat[`ii',2] = (${stops`ii'})
2522
+ }
2523
+ }
2524
+ }
2525
+
2526
+ g yy = treat[_n,1] in 1/1478
2527
+ g ww = treat[_n,2] in 1/1478
2528
+ replace yy = . if yy==999
2529
+ replace ww = . if ww==999
2530
+
2531
+ keep yy ww
2532
+
2533
+ g county_id = _n
2534
+ drop if county_id > 1478
2535
+
2536
+
2537
+ save "Results\SA_TRUMP_PRE_60_46_TE_NT.dta", replace
2538
+
2539
+ ************************************************************************************************************************************
2540
+
2541
+ use "Data\stoplevel_data.dta", clear
2542
+
2543
+ g n_stops = 1
2544
+ foreach var of varlist black hispanic white api {
2545
+ replace `var' = `var'/100
2546
+ }
2547
+
2548
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2549
+
2550
+ g black_ps = black / n_stops
2551
+ keep if year==2015 | year==2016 | year==2017
2552
+
2553
+ local start = -105
2554
+ local end = 105
2555
+ local bin_l = 15
2556
+
2557
+ g TRUMP_0 = 0
2558
+ forval ii = 1/9 {
2559
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2560
+ }
2561
+
2562
+
2563
+ forval ii = 1(`bin_l')`end'{
2564
+ local jj = `ii' + `bin_l' - 1
2565
+ g TRUMP_POST_`ii'_`jj' = 0
2566
+ forval ee = 1/9 {
2567
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2568
+ }
2569
+ }
2570
+ g TRUMP_POST_M`end' = 0
2571
+ forval ii = 1/9 {
2572
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2573
+ }
2574
+ *
2575
+
2576
+
2577
+ forval ii = `start'(`bin_l')0 {
2578
+ if `ii' < -`bin_l' {
2579
+ local jj = abs(`ii')
2580
+ local zz = `jj' - `bin_l' + 1
2581
+ g TRUMP_PRE_`jj'_`zz' = 0
2582
+ forval ee = 1/9 {
2583
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2584
+ }
2585
+ }
2586
+ }
2587
+ *
2588
+ local jj = abs(`start')
2589
+ g TRUMP_PRE_M`jj' = 0
2590
+ forval ii = 1/9 {
2591
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2592
+ }
2593
+
2594
+ ***number of counties 1,478
2595
+ qui: {
2596
+ forval ii = 1/1478 {
2597
+ su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2598
+ if r(N) != 0 {
2599
+ total n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2600
+ global stops`ii' = _b[n_stops]
2601
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2602
+ }
2603
+ }
2604
+ }
2605
+ *** Drop the first for collinearity
2606
+ drop TREATED_COUNTY_9
2607
+
2608
+ reghdfe black_ps 1.TRUMP_PRE_75_61 1.TRUMP_PRE_75_61#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2609
+
2610
+ mat treat = 999* J(1478,2,1)
2611
+
2612
+ local numerator = 0
2613
+ local denominator = 0
2614
+ forval ii = 1/1478 {
2615
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2616
+ if r(N) != 0 {
2617
+ if `ii' == 9{
2618
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61])
2619
+ mat treat[`ii',2] = (${stops`ii'})
2620
+ }
2621
+ else {
2622
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61] + _b[1.TRUMP_PRE_75_61#1.TREATED_COUNTY_`ii'])
2623
+ mat treat[`ii',2] = (${stops`ii'})
2624
+ }
2625
+ }
2626
+ }
2627
+
2628
+ g yy = treat[_n,1] in 1/1478
2629
+ g ww = treat[_n,2] in 1/1478
2630
+ replace yy = . if yy==999
2631
+ replace ww = . if ww==999
2632
+
2633
+ keep yy ww
2634
+
2635
+ g county_id = _n
2636
+ drop if county_id > 1478
2637
+
2638
+ save "Results\SA_TRUMP_PRE_75_61_TE_NT.dta", replace
2639
+
2640
+ ************************************************************************************************************************************
2641
+
2642
+ use "Data\stoplevel_data.dta", clear
2643
+
2644
+ g n_stops = 1
2645
+ foreach var of varlist black hispanic white api {
2646
+ replace `var' = `var'/100
2647
+ }
2648
+
2649
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2650
+
2651
+ g black_ps = black / n_stops
2652
+ keep if year==2015 | year==2016 | year==2017
2653
+
2654
+ local start = -105
2655
+ local end = 105
2656
+ local bin_l = 15
2657
+
2658
+ g TRUMP_0 = 0
2659
+ forval ii = 1/9 {
2660
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2661
+ }
2662
+
2663
+
2664
+ forval ii = 1(`bin_l')`end'{
2665
+ local jj = `ii' + `bin_l' - 1
2666
+ g TRUMP_POST_`ii'_`jj' = 0
2667
+ forval ee = 1/9 {
2668
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2669
+ }
2670
+ }
2671
+ g TRUMP_POST_M`end' = 0
2672
+ forval ii = 1/9 {
2673
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2674
+ }
2675
+ *
2676
+
2677
+
2678
+ forval ii = `start'(`bin_l')0 {
2679
+ if `ii' < -`bin_l' {
2680
+ local jj = abs(`ii')
2681
+ local zz = `jj' - `bin_l' + 1
2682
+ g TRUMP_PRE_`jj'_`zz' = 0
2683
+ forval ee = 1/9 {
2684
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2685
+ }
2686
+ }
2687
+ }
2688
+ *
2689
+ local jj = abs(`start')
2690
+ g TRUMP_PRE_M`jj' = 0
2691
+ forval ii = 1/9 {
2692
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2693
+ }
2694
+
2695
+ ***number of counties 1,478
2696
+ qui: {
2697
+ forval ii = 1/1478 {
2698
+ su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
2699
+ if r(N) != 0 {
2700
+ total n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
2701
+ global stops`ii' = _b[n_stops]
2702
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2703
+ }
2704
+ }
2705
+ }
2706
+ *** Drop the first for collinearity
2707
+ drop TREATED_COUNTY_9
2708
+
2709
+ reghdfe black_ps 1.TRUMP_PRE_90_76 1.TRUMP_PRE_90_76#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2710
+
2711
+
2712
+ mat treat = 999* J(1478,2,1)
2713
+
2714
+ local numerator = 0
2715
+ local denominator = 0
2716
+ forval ii = 1/1478 {
2717
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
2718
+ if r(N) != 0 {
2719
+ if `ii' == 9{
2720
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76])
2721
+ mat treat[`ii',2] = (${stops`ii'})
2722
+ }
2723
+ else {
2724
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76] + _b[1.TRUMP_PRE_90_76#1.TREATED_COUNTY_`ii'])
2725
+ mat treat[`ii',2] = (${stops`ii'})
2726
+ }
2727
+ }
2728
+ }
2729
+
2730
+ g yy = treat[_n,1] in 1/1478
2731
+ g ww = treat[_n,2] in 1/1478
2732
+ replace yy = . if yy==999
2733
+ replace ww = . if ww==999
2734
+
2735
+ keep yy ww
2736
+
2737
+ g county_id = _n
2738
+ drop if county_id > 1478
2739
+
2740
+
2741
+ save "Results\SA_TRUMP_PRE_90_76_TE_NT.dta", replace
2742
+
2743
+ ************************************************************************************************************************************
2744
+
2745
+ use "Data\stoplevel_data.dta", clear
2746
+
2747
+ g n_stops = 1
2748
+ foreach var of varlist black hispanic white api {
2749
+ replace `var' = `var'/100
2750
+ }
2751
+
2752
+ collapse (sum) n_stops black (first) dist_event* year , by(county_fips day_id)
2753
+
2754
+ g black_ps = black / n_stops
2755
+ keep if year==2015 | year==2016 | year==2017
2756
+
2757
+ local start = -105
2758
+ local end = 105
2759
+ local bin_l = 15
2760
+
2761
+ g TRUMP_0 = 0
2762
+ forval ii = 1/9 {
2763
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2764
+ }
2765
+
2766
+
2767
+ forval ii = 1(`bin_l')`end'{
2768
+ local jj = `ii' + `bin_l' - 1
2769
+ g TRUMP_POST_`ii'_`jj' = 0
2770
+ forval ee = 1/9 {
2771
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2772
+ }
2773
+ }
2774
+ g TRUMP_POST_M`end' = 0
2775
+ forval ii = 1/9 {
2776
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2777
+ }
2778
+ *
2779
+
2780
+
2781
+ forval ii = `start'(`bin_l')0 {
2782
+ if `ii' < -`bin_l' {
2783
+ local jj = abs(`ii')
2784
+ local zz = `jj' - `bin_l' + 1
2785
+ g TRUMP_PRE_`jj'_`zz' = 0
2786
+ forval ee = 1/9 {
2787
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2788
+ }
2789
+ }
2790
+ }
2791
+ *
2792
+ local jj = abs(`start')
2793
+ g TRUMP_PRE_M`jj' = 0
2794
+ forval ii = 1/9 {
2795
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2796
+ }
2797
+
2798
+ ***number of counties 1,478
2799
+ qui: {
2800
+ forval ii = 1/1478 {
2801
+ su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
2802
+ if r(N) != 0 {
2803
+ total n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
2804
+ global stops`ii' = _b[n_stops]
2805
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2806
+ }
2807
+ }
2808
+ }
2809
+ *** Drop the first for collinearity
2810
+ drop TREATED_COUNTY_9
2811
+
2812
+ reghdfe black_ps 1.TRUMP_PRE_105_91 1.TRUMP_PRE_105_91#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2813
+
2814
+ mat treat = 999* J(1478,2,1)
2815
+
2816
+ local numerator = 0
2817
+ local denominator = 0
2818
+ forval ii = 1/1478 {
2819
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
2820
+ if r(N) != 0 {
2821
+ if `ii' == 9{
2822
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91])
2823
+ mat treat[`ii',2] = (${stops`ii'})
2824
+ }
2825
+ else {
2826
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91] + _b[1.TRUMP_PRE_105_91#1.TREATED_COUNTY_`ii'])
2827
+ mat treat[`ii',2] = (${stops`ii'})
2828
+ }
2829
+ }
2830
+ }
2831
+
2832
+ g yy = treat[_n,1] in 1/1478
2833
+ g ww = treat[_n,2] in 1/1478
2834
+ replace yy = . if yy==999
2835
+ replace ww = . if ww==999
2836
+
2837
+ keep yy ww
2838
+
2839
+ g county_id = _n
2840
+ drop if county_id > 1478
2841
+
2842
+ save "Results\SA_TRUMP_PRE_105_91_TE_NT.dta", replace
2843
+
2844
+
2845
+
39/replication_package/Do/preparing_abrahamsun_es.do ADDED
@@ -0,0 +1,3168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ use "Data\county_day_data.dta", clear
3
+
4
+ keep if year==2015 | year==2016 | year==2017
5
+
6
+ local start = -105
7
+ local end = 105
8
+ local bin_l = 15
9
+
10
+ drop TRUMP*
11
+ forval ii = 1/9 {
12
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
13
+ }
14
+
15
+ g TRUMP_0 = 0
16
+ forval ii = 1/9 {
17
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
18
+ }
19
+
20
+ forval ii = 1(`bin_l')`end'{
21
+ local jj = `ii' + `bin_l' - 1
22
+ g TRUMP_POST_`ii'_`jj' = 0
23
+ forval ee = 1/9 {
24
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
25
+ }
26
+ }
27
+ g TRUMP_POST_M`end' = 0
28
+ forval ii = 1/9 {
29
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
30
+ }
31
+ *
32
+
33
+
34
+ forval ii = `start'(`bin_l')0 {
35
+ if `ii' < -`bin_l' {
36
+ local jj = abs(`ii')
37
+ local zz = `jj' - `bin_l' + 1
38
+ g TRUMP_PRE_`jj'_`zz' = 0
39
+ forval ee = 1/9 {
40
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
41
+ }
42
+ }
43
+ }
44
+ *
45
+ local jj = abs(`start')
46
+ g TRUMP_PRE_M`jj' = 0
47
+ forval ii = 1/9 {
48
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
49
+ }
50
+
51
+ ***number of counties 1,478
52
+ qui: {
53
+ forval ii = 1/1478 {
54
+ su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
55
+ if r(N) != 0 {
56
+ total n_stops if county_id==`ii' & TRUMP_POST_1_15==1
57
+ global stops`ii' = _b[n_stops]
58
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
59
+ }
60
+ }
61
+ }
62
+ **I drop the first for collinearity
63
+ drop TREATED_COUNTY_9
64
+
65
+
66
+ reghdfe black_ps 1.TRUMP_POST_1_15 1.TRUMP_POST_1_15#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
67
+
68
+
69
+ mat treat = 999* J(1478,2,1)
70
+
71
+ local numerator = 0
72
+ local denominator = 0
73
+ forval ii = 1/1478 {
74
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
75
+ if r(N) != 0 {
76
+ if `ii' == 9{
77
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15])
78
+ mat treat[`ii',2] = (${stops`ii'})
79
+ }
80
+ else {
81
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15] + _b[1.TRUMP_POST_1_15#1.TREATED_COUNTY_`ii'])
82
+ mat treat[`ii',2] = (${stops`ii'})
83
+ }
84
+ }
85
+ }
86
+
87
+ g yy = treat[_n,1] in 1/1478
88
+ g ww = treat[_n,2] in 1/1478
89
+ replace yy = . if yy==999
90
+ replace ww = . if ww==999
91
+
92
+
93
+
94
+ keep yy ww
95
+ drop if yy==.
96
+
97
+
98
+ expand ww
99
+ egen id = group(yy)
100
+ bootstrap r(mean), reps(1000) cluster(id): su yy
101
+ matrix b = e(b)
102
+ matrix ci = e(ci_normal)
103
+ g beta = b[1,1] in 1
104
+ g CI_lb = ci[1,1] in 1
105
+ g CI_ub = ci[2,1] in 1
106
+
107
+ keep if _n == 1
108
+ keep beta CI_*
109
+
110
+ save "Results\SA_TRUMP_POST_1_15.dta", replace
111
+
112
+ ************************************************************************************************************************************
113
+
114
+ use "Data\county_day_data.dta", clear
115
+
116
+
117
+ keep if year==2015 | year==2016 | year==2017
118
+
119
+ local start = -105
120
+ local end = 105
121
+ local bin_l = 15
122
+
123
+ drop TRUMP*
124
+ forval ii = 1/9 {
125
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
126
+ }
127
+
128
+ g TRUMP_0 = 0
129
+ forval ii = 1/9 {
130
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
131
+ }
132
+
133
+
134
+ forval ii = 1(`bin_l')`end'{
135
+ local jj = `ii' + `bin_l' - 1
136
+ g TRUMP_POST_`ii'_`jj' = 0
137
+ forval ee = 1/9 {
138
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
139
+ }
140
+ }
141
+ g TRUMP_POST_M`end' = 0
142
+ forval ii = 1/9 {
143
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
144
+ }
145
+ *
146
+
147
+
148
+ forval ii = `start'(`bin_l')0 {
149
+ if `ii' < -`bin_l' {
150
+ local jj = abs(`ii')
151
+ local zz = `jj' - `bin_l' + 1
152
+ g TRUMP_PRE_`jj'_`zz' = 0
153
+ forval ee = 1/9 {
154
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
155
+ }
156
+ }
157
+ }
158
+ *
159
+ local jj = abs(`start')
160
+ g TRUMP_PRE_M`jj' = 0
161
+ forval ii = 1/9 {
162
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
163
+ }
164
+
165
+ ***number of counties 1,478
166
+ qui: {
167
+ forval ii = 1/1478 {
168
+ su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
169
+ if r(N) != 0 {
170
+ total n_stops if county_id==`ii' & TRUMP_POST_16_30==1
171
+ global stops`ii' = _b[n_stops]
172
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
173
+ }
174
+ }
175
+ }
176
+ **I drop the first for collinearity
177
+ drop TREATED_COUNTY_9
178
+
179
+
180
+ reghdfe black_ps 1.TRUMP_POST_16_30 1.TRUMP_POST_16_30#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
181
+
182
+
183
+ mat treat = 999* J(1478,2,1)
184
+
185
+ local numerator = 0
186
+ local denominator = 0
187
+ forval ii = 1/1478 {
188
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
189
+ if r(N) != 0 {
190
+ if `ii' == 9{
191
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30])
192
+ mat treat[`ii',2] = (${stops`ii'})
193
+ }
194
+ else {
195
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30] + _b[1.TRUMP_POST_16_30#1.TREATED_COUNTY_`ii'])
196
+ mat treat[`ii',2] = (${stops`ii'})
197
+ }
198
+ }
199
+ }
200
+
201
+ g yy = treat[_n,1] in 1/1478
202
+ g ww = treat[_n,2] in 1/1478
203
+ replace yy = . if yy==999
204
+ replace ww = . if ww==999
205
+
206
+
207
+
208
+ keep yy ww
209
+ drop if yy==.
210
+
211
+
212
+ expand ww
213
+ egen id = group(yy)
214
+ bootstrap r(mean), reps(1000) cluster(id): su yy
215
+ matrix b = e(b)
216
+ matrix ci = e(ci_normal)
217
+ g beta = b[1,1] in 1
218
+ g CI_lb = ci[1,1] in 1
219
+ g CI_ub = ci[2,1] in 1
220
+
221
+ keep if _n == 1
222
+ keep beta CI_*
223
+
224
+ save "Results\SA_TRUMP_POST_16_30.dta", replace
225
+
226
+ ************************************************************************************************************************************
227
+
228
+ use "Data\county_day_data.dta", clear
229
+
230
+
231
+
232
+ keep if year==2015 | year==2016 | year==2017
233
+
234
+ local start = -105
235
+ local end = 105
236
+ local bin_l = 15
237
+ drop TRUMP*
238
+ forval ii = 1/9 {
239
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
240
+ }
241
+ g TRUMP_0 = 0
242
+ forval ii = 1/9 {
243
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
244
+ }
245
+
246
+
247
+ forval ii = 1(`bin_l')`end'{
248
+ local jj = `ii' + `bin_l' - 1
249
+ g TRUMP_POST_`ii'_`jj' = 0
250
+ forval ee = 1/9 {
251
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
252
+ }
253
+ }
254
+ g TRUMP_POST_M`end' = 0
255
+ forval ii = 1/9 {
256
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
257
+ }
258
+ *
259
+
260
+
261
+ forval ii = `start'(`bin_l')0 {
262
+ if `ii' < -`bin_l' {
263
+ local jj = abs(`ii')
264
+ local zz = `jj' - `bin_l' + 1
265
+ g TRUMP_PRE_`jj'_`zz' = 0
266
+ forval ee = 1/9 {
267
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
268
+ }
269
+ }
270
+ }
271
+ *
272
+ local jj = abs(`start')
273
+ g TRUMP_PRE_M`jj' = 0
274
+ forval ii = 1/9 {
275
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
276
+ }
277
+
278
+ ***number of counties 1,478
279
+ qui: {
280
+ forval ii = 1/1478 {
281
+ su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
282
+ if r(N) != 0 {
283
+ total n_stops if county_id==`ii' & TRUMP_POST_31_45==1
284
+ global stops`ii' = _b[n_stops]
285
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
286
+ }
287
+ }
288
+ }
289
+ **I drop the first for collinearity
290
+ drop TREATED_COUNTY_9
291
+
292
+
293
+ reghdfe black_ps 1.TRUMP_POST_31_45 1.TRUMP_POST_31_45#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
294
+
295
+
296
+ mat treat = 999* J(1478,2,1)
297
+
298
+ local numerator = 0
299
+ local denominator = 0
300
+ forval ii = 1/1478 {
301
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
302
+ if r(N) != 0 {
303
+ if `ii' == 9{
304
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45])
305
+ mat treat[`ii',2] = (${stops`ii'})
306
+ }
307
+ else {
308
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45] + _b[1.TRUMP_POST_31_45#1.TREATED_COUNTY_`ii'])
309
+ mat treat[`ii',2] = (${stops`ii'})
310
+ }
311
+ }
312
+ }
313
+
314
+ g yy = treat[_n,1] in 1/1478
315
+ g ww = treat[_n,2] in 1/1478
316
+ replace yy = . if yy==999
317
+ replace ww = . if ww==999
318
+
319
+
320
+
321
+ keep yy ww
322
+ drop if yy==.
323
+
324
+
325
+ expand ww
326
+ egen id = group(yy)
327
+ bootstrap r(mean), reps(1000) cluster(id): su yy
328
+ matrix b = e(b)
329
+ matrix ci = e(ci_normal)
330
+ g beta = b[1,1] in 1
331
+ g CI_lb = ci[1,1] in 1
332
+ g CI_ub = ci[2,1] in 1
333
+
334
+ keep if _n == 1
335
+ keep beta CI_*
336
+
337
+ save "Results\SA_TRUMP_POST_31_45.dta", replace
338
+
339
+ ************************************************************************************************************************************
340
+
341
+ use "Data\county_day_data.dta", clear
342
+
343
+
344
+
345
+
346
+ keep if year==2015 | year==2016 | year==2017
347
+
348
+ local start = -105
349
+ local end = 105
350
+ local bin_l = 15
351
+
352
+ drop TRUMP*
353
+ forval ii = 1/9 {
354
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
355
+ }
356
+
357
+ g TRUMP_0 = 0
358
+ forval ii = 1/9 {
359
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
360
+ }
361
+
362
+
363
+ forval ii = 1(`bin_l')`end'{
364
+ local jj = `ii' + `bin_l' - 1
365
+ g TRUMP_POST_`ii'_`jj' = 0
366
+ forval ee = 1/9 {
367
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
368
+ }
369
+ }
370
+ g TRUMP_POST_M`end' = 0
371
+ forval ii = 1/9 {
372
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
373
+ }
374
+ *
375
+
376
+
377
+ forval ii = `start'(`bin_l')0 {
378
+ if `ii' < -`bin_l' {
379
+ local jj = abs(`ii')
380
+ local zz = `jj' - `bin_l' + 1
381
+ g TRUMP_PRE_`jj'_`zz' = 0
382
+ forval ee = 1/9 {
383
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
384
+ }
385
+ }
386
+ }
387
+ *
388
+ local jj = abs(`start')
389
+ g TRUMP_PRE_M`jj' = 0
390
+ forval ii = 1/9 {
391
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
392
+ }
393
+
394
+ ***number of counties 1,478
395
+ qui: {
396
+ forval ii = 1/1478 {
397
+ su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
398
+ if r(N) != 0 {
399
+ total n_stops if county_id==`ii' & TRUMP_POST_46_60==1
400
+ global stops`ii' = _b[n_stops]
401
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
402
+ }
403
+ }
404
+ }
405
+ **I drop the first for collinearity
406
+ drop TREATED_COUNTY_9
407
+
408
+
409
+ reghdfe black_ps 1.TRUMP_POST_46_60 1.TRUMP_POST_46_60#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
410
+
411
+
412
+ mat treat = 999* J(1478,2,1)
413
+
414
+ local numerator = 0
415
+ local denominator = 0
416
+ forval ii = 1/1478 {
417
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
418
+ if r(N) != 0 {
419
+ if `ii' == 9{
420
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60])
421
+ mat treat[`ii',2] = (${stops`ii'})
422
+ }
423
+ else {
424
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60] + _b[1.TRUMP_POST_46_60#1.TREATED_COUNTY_`ii'])
425
+ mat treat[`ii',2] = (${stops`ii'})
426
+ }
427
+ }
428
+ }
429
+
430
+ g yy = treat[_n,1] in 1/1478
431
+ g ww = treat[_n,2] in 1/1478
432
+ replace yy = . if yy==999
433
+ replace ww = . if ww==999
434
+
435
+
436
+
437
+ keep yy ww
438
+ drop if yy==.
439
+
440
+
441
+ expand ww
442
+ egen id = group(yy)
443
+ bootstrap r(mean), reps(1000) cluster(id): su yy
444
+ matrix b = e(b)
445
+ matrix ci = e(ci_normal)
446
+ g beta = b[1,1] in 1
447
+ g CI_lb = ci[1,1] in 1
448
+ g CI_ub = ci[2,1] in 1
449
+
450
+ keep if _n == 1
451
+ keep beta CI_*
452
+
453
+ save "Results\SA_TRUMP_POST_46_60.dta", replace
454
+
455
+ ************************************************************************************************************************************
456
+
457
+ use "Data\county_day_data.dta", clear
458
+
459
+
460
+
461
+
462
+ keep if year==2015 | year==2016 | year==2017
463
+
464
+ local start = -105
465
+ local end = 105
466
+ local bin_l = 15
467
+
468
+ drop TRUMP*
469
+ forval ii = 1/9 {
470
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
471
+ }
472
+
473
+ g TRUMP_0 = 0
474
+ forval ii = 1/9 {
475
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
476
+ }
477
+
478
+
479
+ forval ii = 1(`bin_l')`end'{
480
+ local jj = `ii' + `bin_l' - 1
481
+ g TRUMP_POST_`ii'_`jj' = 0
482
+ forval ee = 1/9 {
483
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
484
+ }
485
+ }
486
+ g TRUMP_POST_M`end' = 0
487
+ forval ii = 1/9 {
488
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
489
+ }
490
+ *
491
+
492
+
493
+ forval ii = `start'(`bin_l')0 {
494
+ if `ii' < -`bin_l' {
495
+ local jj = abs(`ii')
496
+ local zz = `jj' - `bin_l' + 1
497
+ g TRUMP_PRE_`jj'_`zz' = 0
498
+ forval ee = 1/9 {
499
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
500
+ }
501
+ }
502
+ }
503
+ *
504
+ local jj = abs(`start')
505
+ g TRUMP_PRE_M`jj' = 0
506
+ forval ii = 1/9 {
507
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
508
+ }
509
+
510
+ ***number of counties 1,478
511
+ qui: {
512
+ forval ii = 1/1478 {
513
+ su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
514
+ if r(N) != 0 {
515
+ total n_stops if county_id==`ii' & TRUMP_POST_61_75==1
516
+ global stops`ii' = _b[n_stops]
517
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
518
+ }
519
+ }
520
+ }
521
+ **I drop the first for collinearity
522
+ drop TREATED_COUNTY_9
523
+
524
+
525
+ reghdfe black_ps 1.TRUMP_POST_61_75 1.TRUMP_POST_61_75#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
526
+
527
+
528
+ mat treat = 999* J(1478,2,1)
529
+
530
+ local numerator = 0
531
+ local denominator = 0
532
+ forval ii = 1/1478 {
533
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
534
+ if r(N) != 0 {
535
+ if `ii' == 9{
536
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75])
537
+ mat treat[`ii',2] = (${stops`ii'})
538
+ }
539
+ else {
540
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75] + _b[1.TRUMP_POST_61_75#1.TREATED_COUNTY_`ii'])
541
+ mat treat[`ii',2] = (${stops`ii'})
542
+ }
543
+ }
544
+ }
545
+
546
+ g yy = treat[_n,1] in 1/1478
547
+ g ww = treat[_n,2] in 1/1478
548
+ replace yy = . if yy==999
549
+ replace ww = . if ww==999
550
+
551
+
552
+
553
+ keep yy ww
554
+ drop if yy==.
555
+
556
+
557
+ expand ww
558
+ egen id = group(yy)
559
+ bootstrap r(mean), reps(1000) cluster(id): su yy
560
+ matrix b = e(b)
561
+ matrix ci = e(ci_normal)
562
+ g beta = b[1,1] in 1
563
+ g CI_lb = ci[1,1] in 1
564
+ g CI_ub = ci[2,1] in 1
565
+
566
+ keep if _n == 1
567
+ keep beta CI_*
568
+
569
+ save "Results\SA_TRUMP_POST_61_75.dta", replace
570
+
571
+ ************************************************************************************************************************************
572
+
573
+ use "Data\county_day_data.dta", clear
574
+
575
+
576
+
577
+ keep if year==2015 | year==2016 | year==2017
578
+
579
+ local start = -105
580
+ local end = 105
581
+ local bin_l = 15
582
+
583
+ drop TRUMP*
584
+ forval ii = 1/9 {
585
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
586
+ }
587
+
588
+ g TRUMP_0 = 0
589
+ forval ii = 1/9 {
590
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
591
+ }
592
+
593
+
594
+ forval ii = 1(`bin_l')`end'{
595
+ local jj = `ii' + `bin_l' - 1
596
+ g TRUMP_POST_`ii'_`jj' = 0
597
+ forval ee = 1/9 {
598
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
599
+ }
600
+ }
601
+ g TRUMP_POST_M`end' = 0
602
+ forval ii = 1/9 {
603
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
604
+ }
605
+ *
606
+
607
+
608
+ forval ii = `start'(`bin_l')0 {
609
+ if `ii' < -`bin_l' {
610
+ local jj = abs(`ii')
611
+ local zz = `jj' - `bin_l' + 1
612
+ g TRUMP_PRE_`jj'_`zz' = 0
613
+ forval ee = 1/9 {
614
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
615
+ }
616
+ }
617
+ }
618
+ *
619
+ local jj = abs(`start')
620
+ g TRUMP_PRE_M`jj' = 0
621
+ forval ii = 1/9 {
622
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
623
+ }
624
+
625
+ ***number of counties 1,478
626
+ qui: {
627
+ forval ii = 1/1478 {
628
+ su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
629
+ if r(N) != 0 {
630
+ total n_stops if county_id==`ii' & TRUMP_POST_76_90==1
631
+ global stops`ii' = _b[n_stops]
632
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
633
+ }
634
+ }
635
+ }
636
+ **I drop the first for collinearity
637
+ drop TREATED_COUNTY_9
638
+
639
+
640
+ reghdfe black_ps 1.TRUMP_POST_76_90 1.TRUMP_POST_76_90#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
641
+
642
+
643
+ mat treat = 999* J(1478,2,1)
644
+
645
+ local numerator = 0
646
+ local denominator = 0
647
+ forval ii = 1/1478 {
648
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
649
+ if r(N) != 0 {
650
+ if `ii' == 9{
651
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90])
652
+ mat treat[`ii',2] = (${stops`ii'})
653
+ }
654
+ else {
655
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90] + _b[1.TRUMP_POST_76_90#1.TREATED_COUNTY_`ii'])
656
+ mat treat[`ii',2] = (${stops`ii'})
657
+ }
658
+ }
659
+ }
660
+
661
+ g yy = treat[_n,1] in 1/1478
662
+ g ww = treat[_n,2] in 1/1478
663
+ replace yy = . if yy==999
664
+ replace ww = . if ww==999
665
+
666
+
667
+
668
+ keep yy ww
669
+ drop if yy==.
670
+
671
+
672
+ expand ww
673
+ egen id = group(yy)
674
+ bootstrap r(mean), reps(1000) cluster(id): su yy
675
+ matrix b = e(b)
676
+ matrix ci = e(ci_normal)
677
+ g beta = b[1,1] in 1
678
+ g CI_lb = ci[1,1] in 1
679
+ g CI_ub = ci[2,1] in 1
680
+
681
+ keep if _n == 1
682
+ keep beta CI_*
683
+
684
+ save "Results\SA_TRUMP_POST_76_90.dta", replace
685
+
686
+ ************************************************************************************************************************************
687
+
688
+ use "Data\county_day_data.dta", clear
689
+
690
+
691
+
692
+ keep if year==2015 | year==2016 | year==2017
693
+
694
+ local start = -105
695
+ local end = 105
696
+ local bin_l = 15
697
+
698
+ drop TRUMP*
699
+ forval ii = 1/9 {
700
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
701
+ }
702
+ g TRUMP_0 = 0
703
+ forval ii = 1/9 {
704
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
705
+ }
706
+
707
+
708
+ forval ii = 1(`bin_l')`end'{
709
+ local jj = `ii' + `bin_l' - 1
710
+ g TRUMP_POST_`ii'_`jj' = 0
711
+ forval ee = 1/9 {
712
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
713
+ }
714
+ }
715
+ g TRUMP_POST_M`end' = 0
716
+ forval ii = 1/9 {
717
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
718
+ }
719
+ *
720
+
721
+
722
+ forval ii = `start'(`bin_l')0 {
723
+ if `ii' < -`bin_l' {
724
+ local jj = abs(`ii')
725
+ local zz = `jj' - `bin_l' + 1
726
+ g TRUMP_PRE_`jj'_`zz' = 0
727
+ forval ee = 1/9 {
728
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
729
+ }
730
+ }
731
+ }
732
+ *
733
+ local jj = abs(`start')
734
+ g TRUMP_PRE_M`jj' = 0
735
+ forval ii = 1/9 {
736
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
737
+ }
738
+
739
+ ***number of counties 1,478
740
+ qui: {
741
+ forval ii = 1/1478 {
742
+ su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
743
+ if r(N) != 0 {
744
+ total n_stops if county_id==`ii' & TRUMP_POST_91_105==1
745
+ global stops`ii' = _b[n_stops]
746
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
747
+ }
748
+ }
749
+ }
750
+ **I drop the first for collinearity
751
+ drop TREATED_COUNTY_9
752
+
753
+
754
+ reghdfe black_ps 1.TRUMP_POST_91_105 1.TRUMP_POST_91_105#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
755
+
756
+
757
+ mat treat = 999* J(1478,2,1)
758
+
759
+ local numerator = 0
760
+ local denominator = 0
761
+ forval ii = 1/1478 {
762
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
763
+ if r(N) != 0 {
764
+ if `ii' == 9{
765
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105])
766
+ mat treat[`ii',2] = (${stops`ii'})
767
+ }
768
+ else {
769
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105] + _b[1.TRUMP_POST_91_105#1.TREATED_COUNTY_`ii'])
770
+ mat treat[`ii',2] = (${stops`ii'})
771
+ }
772
+ }
773
+ }
774
+
775
+ g yy = treat[_n,1] in 1/1478
776
+ g ww = treat[_n,2] in 1/1478
777
+ replace yy = . if yy==999
778
+ replace ww = . if ww==999
779
+
780
+
781
+
782
+ keep yy ww
783
+ drop if yy==.
784
+
785
+
786
+ expand ww
787
+ egen id = group(yy)
788
+ bootstrap r(mean), reps(1000) cluster(id): su yy
789
+ matrix b = e(b)
790
+ matrix ci = e(ci_normal)
791
+ g beta = b[1,1] in 1
792
+ g CI_lb = ci[1,1] in 1
793
+ g CI_ub = ci[2,1] in 1
794
+
795
+ keep if _n == 1
796
+ keep beta CI_*
797
+
798
+ save "Results\SA_TRUMP_POST_91_105.dta", replace
799
+
800
+ ************************************************************************************************************************************
801
+
802
+ use "Data\county_day_data.dta", clear
803
+
804
+
805
+
806
+ keep if year==2015 | year==2016 | year==2017
807
+
808
+ local start = -105
809
+ local end = 105
810
+ local bin_l = 15
811
+
812
+ drop TRUMP*
813
+ forval ii = 1/9 {
814
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
815
+ }
816
+
817
+ g TRUMP_0 = 0
818
+ forval ii = 1/9 {
819
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
820
+ }
821
+
822
+
823
+ forval ii = 1(`bin_l')`end'{
824
+ local jj = `ii' + `bin_l' - 1
825
+ g TRUMP_POST_`ii'_`jj' = 0
826
+ forval ee = 1/9 {
827
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
828
+ }
829
+ }
830
+ g TRUMP_POST_M`end' = 0
831
+ forval ii = 1/9 {
832
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
833
+ }
834
+ *
835
+
836
+
837
+ forval ii = `start'(`bin_l')0 {
838
+ if `ii' < -`bin_l' {
839
+ local jj = abs(`ii')
840
+ local zz = `jj' - `bin_l' + 1
841
+ g TRUMP_PRE_`jj'_`zz' = 0
842
+ forval ee = 1/9 {
843
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
844
+ }
845
+ }
846
+ }
847
+ *
848
+ local jj = abs(`start')
849
+ g TRUMP_PRE_M`jj' = 0
850
+ forval ii = 1/9 {
851
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
852
+ }
853
+
854
+ ***number of counties 1,478
855
+ qui: {
856
+ forval ii = 1/1478 {
857
+ su n_stops if county_id==`ii' & TRUMP_0==1
858
+ if r(N) != 0 {
859
+ total n_stops if county_id==`ii' & TRUMP_0==1
860
+ global stops`ii' = _b[n_stops]
861
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
862
+ }
863
+ }
864
+ }
865
+ **I drop the first for collinearity
866
+ drop TREATED_COUNTY_9
867
+
868
+
869
+ reghdfe black_ps 1.TRUMP_0 1.TRUMP_0#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
870
+
871
+
872
+ mat treat = 999* J(1478,2,1)
873
+
874
+ local numerator = 0
875
+ local denominator = 0
876
+ forval ii = 1/1478 {
877
+ qui: su n_stops if county_id==`ii' & TRUMP_0==1
878
+ if r(N) != 0 {
879
+ if `ii' == 9{
880
+ mat treat[`ii',1] = (_b[1.TRUMP_0])
881
+ mat treat[`ii',2] = (${stops`ii'})
882
+ }
883
+ else {
884
+ mat treat[`ii',1] = (_b[1.TRUMP_0] + _b[1.TRUMP_0#1.TREATED_COUNTY_`ii'])
885
+ mat treat[`ii',2] = (${stops`ii'})
886
+ }
887
+ }
888
+ }
889
+
890
+ g yy = treat[_n,1] in 1/1478
891
+ g ww = treat[_n,2] in 1/1478
892
+ replace yy = . if yy==999
893
+ replace ww = . if ww==999
894
+
895
+ keep yy ww
896
+ drop if yy==.
897
+
898
+ expand ww
899
+ egen id = group(yy)
900
+ bootstrap r(mean), reps(1000) cluster(id): su yy
901
+ matrix b = e(b)
902
+ matrix ci = e(ci_normal)
903
+ g beta = b[1,1] in 1
904
+ g CI_lb = ci[1,1] in 1
905
+ g CI_ub = ci[2,1] in 1
906
+
907
+ keep if _n == 1
908
+ keep beta CI_*
909
+
910
+ save "Results\SA_TRUMP_0.dta", replace
911
+
912
+ ************************************************************************************************************************************
913
+
914
+ use "Data\county_day_data.dta", clear
915
+
916
+
917
+ keep if year==2015 | year==2016 | year==2017
918
+
919
+ local start = -105
920
+ local end = 105
921
+ local bin_l = 15
922
+
923
+ drop TRUMP*
924
+ forval ii = 1/9 {
925
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
926
+ }
927
+
928
+ g TRUMP_0 = 0
929
+ forval ii = 1/9 {
930
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
931
+ }
932
+
933
+
934
+ forval ii = 1(`bin_l')`end'{
935
+ local jj = `ii' + `bin_l' - 1
936
+ g TRUMP_POST_`ii'_`jj' = 0
937
+ forval ee = 1/9 {
938
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
939
+ }
940
+ }
941
+ g TRUMP_POST_M`end' = 0
942
+ forval ii = 1/9 {
943
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
944
+ }
945
+ *
946
+
947
+ forval ii = `start'(`bin_l')0 {
948
+ if `ii' < -`bin_l' {
949
+ local jj = abs(`ii')
950
+ local zz = `jj' - `bin_l' + 1
951
+ g TRUMP_PRE_`jj'_`zz' = 0
952
+ forval ee = 1/9 {
953
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
954
+ }
955
+ }
956
+ }
957
+ *
958
+ local jj = abs(`start')
959
+ g TRUMP_PRE_M`jj' = 0
960
+ forval ii = 1/9 {
961
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
962
+ }
963
+
964
+ ***number of counties 1,478
965
+ qui: {
966
+ forval ii = 1/1478 {
967
+ su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
968
+ if r(N) != 0 {
969
+ total n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
970
+ global stops`ii' = _b[n_stops]
971
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
972
+ }
973
+ }
974
+ }
975
+ **I drop the first for collinearity
976
+ drop TREATED_COUNTY_9
977
+
978
+ reghdfe black_ps 1.TRUMP_PRE_30_16 1.TRUMP_PRE_30_16#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_M105) cluster(county_id day_id)
979
+
980
+
981
+ mat treat = 999* J(1478,2,1)
982
+
983
+ local numerator = 0
984
+ local denominator = 0
985
+ forval ii = 1/1478 {
986
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
987
+ if r(N) != 0 {
988
+ if `ii' == 9{
989
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16])
990
+ mat treat[`ii',2] = (${stops`ii'})
991
+ }
992
+ else {
993
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16] + _b[1.TRUMP_PRE_30_16#1.TREATED_COUNTY_`ii'])
994
+ mat treat[`ii',2] = (${stops`ii'})
995
+ }
996
+ }
997
+ }
998
+
999
+ g yy = treat[_n,1] in 1/1478
1000
+ g ww = treat[_n,2] in 1/1478
1001
+ replace yy = . if yy==999
1002
+ replace ww = . if ww==999
1003
+
1004
+
1005
+
1006
+ keep yy ww
1007
+ drop if yy==.
1008
+
1009
+
1010
+ expand ww
1011
+ egen id = group(yy)
1012
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1013
+ matrix b = e(b)
1014
+ matrix ci = e(ci_normal)
1015
+ g beta = b[1,1] in 1
1016
+ g CI_lb = ci[1,1] in 1
1017
+ g CI_ub = ci[2,1] in 1
1018
+
1019
+ keep if _n == 1
1020
+ keep beta CI_*
1021
+
1022
+ save "Results\SA_TRUMP_PRE_30_16.dta", replace
1023
+
1024
+ ************************************************************************************************************************************
1025
+
1026
+ use "Data\county_day_data.dta", clear
1027
+
1028
+
1029
+ keep if year==2015 | year==2016 | year==2017
1030
+
1031
+ local start = -105
1032
+ local end = 105
1033
+ local bin_l = 15
1034
+
1035
+ drop TRUMP*
1036
+ forval ii = 1/9 {
1037
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1038
+ }
1039
+
1040
+ g TRUMP_0 = 0
1041
+ forval ii = 1/9 {
1042
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1043
+ }
1044
+
1045
+
1046
+ forval ii = 1(`bin_l')`end'{
1047
+ local jj = `ii' + `bin_l' - 1
1048
+ g TRUMP_POST_`ii'_`jj' = 0
1049
+ forval ee = 1/9 {
1050
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1051
+ }
1052
+ }
1053
+ g TRUMP_POST_M`end' = 0
1054
+ forval ii = 1/9 {
1055
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1056
+ }
1057
+ *
1058
+
1059
+
1060
+ forval ii = `start'(`bin_l')0 {
1061
+ if `ii' < -`bin_l' {
1062
+ local jj = abs(`ii')
1063
+ local zz = `jj' - `bin_l' + 1
1064
+ g TRUMP_PRE_`jj'_`zz' = 0
1065
+ forval ee = 1/9 {
1066
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1067
+ }
1068
+ }
1069
+ }
1070
+ *
1071
+ local jj = abs(`start')
1072
+ g TRUMP_PRE_M`jj' = 0
1073
+ forval ii = 1/9 {
1074
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1075
+ }
1076
+
1077
+ ***number of counties 1,478
1078
+ qui: {
1079
+ forval ii = 1/1478 {
1080
+ su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
1081
+ if r(N) != 0 {
1082
+ total n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
1083
+ global stops`ii' = _b[n_stops]
1084
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1085
+ }
1086
+ }
1087
+ }
1088
+ **I drop the first for collinearity
1089
+ drop TREATED_COUNTY_9
1090
+
1091
+
1092
+ reghdfe black_ps 1.TRUMP_PRE_45_31 1.TRUMP_PRE_45_31#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1093
+
1094
+
1095
+ mat treat = 999* J(1478,2,1)
1096
+
1097
+ local numerator = 0
1098
+ local denominator = 0
1099
+ forval ii = 1/1478 {
1100
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
1101
+ if r(N) != 0 {
1102
+ if `ii' == 9{
1103
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31])
1104
+ mat treat[`ii',2] = (${stops`ii'})
1105
+ }
1106
+ else {
1107
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31] + _b[1.TRUMP_PRE_45_31#1.TREATED_COUNTY_`ii'])
1108
+ mat treat[`ii',2] = (${stops`ii'})
1109
+ }
1110
+ }
1111
+ }
1112
+
1113
+ g yy = treat[_n,1] in 1/1478
1114
+ g ww = treat[_n,2] in 1/1478
1115
+ replace yy = . if yy==999
1116
+ replace ww = . if ww==999
1117
+
1118
+
1119
+
1120
+ keep yy ww
1121
+ drop if yy==.
1122
+
1123
+
1124
+ expand ww
1125
+ egen id = group(yy)
1126
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1127
+ matrix b = e(b)
1128
+ matrix ci = e(ci_normal)
1129
+ g beta = b[1,1] in 1
1130
+ g CI_lb = ci[1,1] in 1
1131
+ g CI_ub = ci[2,1] in 1
1132
+
1133
+ keep if _n == 1
1134
+ keep beta CI_*
1135
+
1136
+ save "Results\SA_TRUMP_PRE_45_31.dta", replace
1137
+
1138
+ ************************************************************************************************************************************
1139
+
1140
+ use "Data\county_day_data.dta", clear
1141
+
1142
+
1143
+ keep if year==2015 | year==2016 | year==2017
1144
+
1145
+ local start = -105
1146
+ local end = 105
1147
+ local bin_l = 15
1148
+
1149
+ drop TRUMP*
1150
+ forval ii = 1/9 {
1151
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1152
+ }
1153
+
1154
+ g TRUMP_0 = 0
1155
+ forval ii = 1/9 {
1156
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1157
+ }
1158
+
1159
+
1160
+ forval ii = 1(`bin_l')`end'{
1161
+ local jj = `ii' + `bin_l' - 1
1162
+ g TRUMP_POST_`ii'_`jj' = 0
1163
+ forval ee = 1/9 {
1164
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1165
+ }
1166
+ }
1167
+ g TRUMP_POST_M`end' = 0
1168
+ forval ii = 1/9 {
1169
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1170
+ }
1171
+ *
1172
+
1173
+
1174
+ forval ii = `start'(`bin_l')0 {
1175
+ if `ii' < -`bin_l' {
1176
+ local jj = abs(`ii')
1177
+ local zz = `jj' - `bin_l' + 1
1178
+ g TRUMP_PRE_`jj'_`zz' = 0
1179
+ forval ee = 1/9 {
1180
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1181
+ }
1182
+ }
1183
+ }
1184
+ *
1185
+ local jj = abs(`start')
1186
+ g TRUMP_PRE_M`jj' = 0
1187
+ forval ii = 1/9 {
1188
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1189
+ }
1190
+
1191
+ ***number of counties 1,478
1192
+ qui: {
1193
+ forval ii = 1/1478 {
1194
+ su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1195
+ if r(N) != 0 {
1196
+ total n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1197
+ global stops`ii' = _b[n_stops]
1198
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1199
+ }
1200
+ }
1201
+ }
1202
+ **I drop the first for collinearity
1203
+ drop TREATED_COUNTY_9
1204
+
1205
+
1206
+ reghdfe black_ps 1.TRUMP_PRE_60_46 1.TRUMP_PRE_60_46#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1207
+
1208
+
1209
+ mat treat = 999* J(1478,2,1)
1210
+
1211
+ local numerator = 0
1212
+ local denominator = 0
1213
+ forval ii = 1/1478 {
1214
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
1215
+ if r(N) != 0 {
1216
+ if `ii' == 9{
1217
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46])
1218
+ mat treat[`ii',2] = (${stops`ii'})
1219
+ }
1220
+ else {
1221
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46] + _b[1.TRUMP_PRE_60_46#1.TREATED_COUNTY_`ii'])
1222
+ mat treat[`ii',2] = (${stops`ii'})
1223
+ }
1224
+ }
1225
+ }
1226
+
1227
+ g yy = treat[_n,1] in 1/1478
1228
+ g ww = treat[_n,2] in 1/1478
1229
+ replace yy = . if yy==999
1230
+ replace ww = . if ww==999
1231
+
1232
+ keep yy ww
1233
+ drop if yy==.
1234
+
1235
+
1236
+ expand ww
1237
+ egen id = group(yy)
1238
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1239
+ matrix b = e(b)
1240
+ matrix ci = e(ci_normal)
1241
+ g beta = b[1,1] in 1
1242
+ g CI_lb = ci[1,1] in 1
1243
+ g CI_ub = ci[2,1] in 1
1244
+
1245
+ keep if _n == 1
1246
+ keep beta CI_*
1247
+
1248
+ save "Results\SA_TRUMP_PRE_60_46.dta", replace
1249
+
1250
+ ************************************************************************************************************************************
1251
+
1252
+ use "Data\county_day_data.dta", clear
1253
+
1254
+ drop TRUMP*
1255
+ forval ii = 1/9 {
1256
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1257
+ }
1258
+
1259
+ keep if year==2015 | year==2016 | year==2017
1260
+
1261
+ local start = -105
1262
+ local end = 105
1263
+ local bin_l = 15
1264
+
1265
+ g TRUMP_0 = 0
1266
+ forval ii = 1/9 {
1267
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1268
+ }
1269
+
1270
+ forval ii = 1(`bin_l')`end'{
1271
+ local jj = `ii' + `bin_l' - 1
1272
+ g TRUMP_POST_`ii'_`jj' = 0
1273
+ forval ee = 1/9 {
1274
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1275
+ }
1276
+ }
1277
+ g TRUMP_POST_M`end' = 0
1278
+ forval ii = 1/9 {
1279
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1280
+ }
1281
+ *
1282
+
1283
+
1284
+ forval ii = `start'(`bin_l')0 {
1285
+ if `ii' < -`bin_l' {
1286
+ local jj = abs(`ii')
1287
+ local zz = `jj' - `bin_l' + 1
1288
+ g TRUMP_PRE_`jj'_`zz' = 0
1289
+ forval ee = 1/9 {
1290
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1291
+ }
1292
+ }
1293
+ }
1294
+ *
1295
+ local jj = abs(`start')
1296
+ g TRUMP_PRE_M`jj' = 0
1297
+ forval ii = 1/9 {
1298
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1299
+ }
1300
+
1301
+ ***number of counties 1,478
1302
+ qui: {
1303
+ forval ii = 1/1478 {
1304
+ su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1305
+ if r(N) != 0 {
1306
+ total n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1307
+ global stops`ii' = _b[n_stops]
1308
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1309
+ }
1310
+ }
1311
+ }
1312
+ **I drop the first for collinearity
1313
+ drop TREATED_COUNTY_9
1314
+
1315
+
1316
+ reghdfe black_ps 1.TRUMP_PRE_75_61 1.TRUMP_PRE_75_61#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1317
+
1318
+
1319
+ mat treat = 999* J(1478,2,1)
1320
+
1321
+ local numerator = 0
1322
+ local denominator = 0
1323
+ forval ii = 1/1478 {
1324
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
1325
+ if r(N) != 0 {
1326
+ if `ii' == 9{
1327
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61])
1328
+ mat treat[`ii',2] = (${stops`ii'})
1329
+ }
1330
+ else {
1331
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61] + _b[1.TRUMP_PRE_75_61#1.TREATED_COUNTY_`ii'])
1332
+ mat treat[`ii',2] = (${stops`ii'})
1333
+ }
1334
+ }
1335
+ }
1336
+
1337
+ g yy = treat[_n,1] in 1/1478
1338
+ g ww = treat[_n,2] in 1/1478
1339
+ replace yy = . if yy==999
1340
+ replace ww = . if ww==999
1341
+
1342
+ keep yy ww
1343
+ drop if yy==.
1344
+
1345
+
1346
+ expand ww
1347
+ egen id = group(yy)
1348
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1349
+ matrix b = e(b)
1350
+ matrix ci = e(ci_normal)
1351
+ g beta = b[1,1] in 1
1352
+ g CI_lb = ci[1,1] in 1
1353
+ g CI_ub = ci[2,1] in 1
1354
+
1355
+ keep if _n == 1
1356
+ keep beta CI_*
1357
+
1358
+ save "Results\SA_TRUMP_PRE_75_61.dta", replace
1359
+
1360
+ ************************************************************************************************************************************
1361
+
1362
+ use "Data\county_day_data.dta", clear
1363
+
1364
+ drop TRUMP*
1365
+ forval ii = 1/9 {
1366
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1367
+ }
1368
+
1369
+ keep if year==2015 | year==2016 | year==2017
1370
+
1371
+ local start = -105
1372
+ local end = 105
1373
+ local bin_l = 15
1374
+
1375
+ g TRUMP_0 = 0
1376
+ forval ii = 1/9 {
1377
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1378
+ }
1379
+
1380
+
1381
+ forval ii = 1(`bin_l')`end'{
1382
+ local jj = `ii' + `bin_l' - 1
1383
+ g TRUMP_POST_`ii'_`jj' = 0
1384
+ forval ee = 1/9 {
1385
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1386
+ }
1387
+ }
1388
+ g TRUMP_POST_M`end' = 0
1389
+ forval ii = 1/9 {
1390
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1391
+ }
1392
+ *
1393
+
1394
+ forval ii = `start'(`bin_l')0 {
1395
+ if `ii' < -`bin_l' {
1396
+ local jj = abs(`ii')
1397
+ local zz = `jj' - `bin_l' + 1
1398
+ g TRUMP_PRE_`jj'_`zz' = 0
1399
+ forval ee = 1/9 {
1400
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1401
+ }
1402
+ }
1403
+ }
1404
+ *
1405
+ local jj = abs(`start')
1406
+ g TRUMP_PRE_M`jj' = 0
1407
+ forval ii = 1/9 {
1408
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1409
+ }
1410
+
1411
+ ***number of counties 1,478
1412
+ qui: {
1413
+ forval ii = 1/1478 {
1414
+ su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1415
+ if r(N) != 0 {
1416
+ total n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1417
+ global stops`ii' = _b[n_stops]
1418
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1419
+ }
1420
+ }
1421
+ }
1422
+ **I drop the first for collinearity
1423
+ drop TREATED_COUNTY_9
1424
+
1425
+ reghdfe black_ps 1.TRUMP_PRE_90_76 1.TRUMP_PRE_90_76#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1426
+
1427
+
1428
+ mat treat = 999* J(1478,2,1)
1429
+
1430
+ local numerator = 0
1431
+ local denominator = 0
1432
+ forval ii = 1/1478 {
1433
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
1434
+ if r(N) != 0 {
1435
+ if `ii' == 9{
1436
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76])
1437
+ mat treat[`ii',2] = (${stops`ii'})
1438
+ }
1439
+ else {
1440
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76] + _b[1.TRUMP_PRE_90_76#1.TREATED_COUNTY_`ii'])
1441
+ mat treat[`ii',2] = (${stops`ii'})
1442
+ }
1443
+ }
1444
+ }
1445
+
1446
+ g yy = treat[_n,1] in 1/1478
1447
+ g ww = treat[_n,2] in 1/1478
1448
+ replace yy = . if yy==999
1449
+ replace ww = . if ww==999
1450
+
1451
+ keep yy ww
1452
+ drop if yy==.
1453
+
1454
+ expand ww
1455
+ egen id = group(yy)
1456
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1457
+ matrix b = e(b)
1458
+ matrix ci = e(ci_normal)
1459
+ g beta = b[1,1] in 1
1460
+ g CI_lb = ci[1,1] in 1
1461
+ g CI_ub = ci[2,1] in 1
1462
+
1463
+ keep if _n == 1
1464
+ keep beta CI_*
1465
+
1466
+ save "Results\SA_TRUMP_PRE_90_76.dta", replace
1467
+
1468
+ ************************************************************************************************************************************
1469
+
1470
+ use "Data\county_day_data.dta", clear
1471
+
1472
+
1473
+ drop TRUMP*
1474
+ forval ii = 1/9 {
1475
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1476
+ }
1477
+
1478
+
1479
+ keep if year==2015 | year==2016 | year==2017
1480
+
1481
+ local start = -105
1482
+ local end = 105
1483
+ local bin_l = 15
1484
+
1485
+
1486
+ g TRUMP_0 = 0
1487
+ forval ii = 1/9 {
1488
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1489
+ }
1490
+
1491
+
1492
+ forval ii = 1(`bin_l')`end'{
1493
+ local jj = `ii' + `bin_l' - 1
1494
+ g TRUMP_POST_`ii'_`jj' = 0
1495
+ forval ee = 1/9 {
1496
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1497
+ }
1498
+ }
1499
+ g TRUMP_POST_M`end' = 0
1500
+ forval ii = 1/9 {
1501
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1502
+ }
1503
+ *
1504
+
1505
+
1506
+ forval ii = `start'(`bin_l')0 {
1507
+ if `ii' < -`bin_l' {
1508
+ local jj = abs(`ii')
1509
+ local zz = `jj' - `bin_l' + 1
1510
+ g TRUMP_PRE_`jj'_`zz' = 0
1511
+ forval ee = 1/9 {
1512
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1513
+ }
1514
+ }
1515
+ }
1516
+ *
1517
+ local jj = abs(`start')
1518
+ g TRUMP_PRE_M`jj' = 0
1519
+ forval ii = 1/9 {
1520
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1521
+ }
1522
+
1523
+ ***number of counties 1,478
1524
+ qui: {
1525
+ forval ii = 1/1478 {
1526
+ su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1527
+ if r(N) != 0 {
1528
+ total n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1529
+ global stops`ii' = _b[n_stops]
1530
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1531
+ }
1532
+ }
1533
+ }
1534
+ **I drop the first for collinearity
1535
+ drop TREATED_COUNTY_9
1536
+
1537
+
1538
+ reghdfe black_ps 1.TRUMP_PRE_105_91 1.TRUMP_PRE_105_91#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id i.county_id#c.day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1539
+
1540
+
1541
+ mat treat = 999* J(1478,2,1)
1542
+
1543
+ local numerator = 0
1544
+ local denominator = 0
1545
+ forval ii = 1/1478 {
1546
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
1547
+ if r(N) != 0 {
1548
+ if `ii' == 9{
1549
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91])
1550
+ mat treat[`ii',2] = (${stops`ii'})
1551
+ }
1552
+ else {
1553
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91] + _b[1.TRUMP_PRE_105_91#1.TREATED_COUNTY_`ii'])
1554
+ mat treat[`ii',2] = (${stops`ii'})
1555
+ }
1556
+ }
1557
+ }
1558
+
1559
+ g yy = treat[_n,1] in 1/1478
1560
+ g ww = treat[_n,2] in 1/1478
1561
+ replace yy = . if yy==999
1562
+ replace ww = . if ww==999
1563
+
1564
+
1565
+
1566
+ keep yy ww
1567
+ drop if yy==.
1568
+
1569
+
1570
+ expand ww
1571
+ egen id = group(yy)
1572
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1573
+ matrix b = e(b)
1574
+ matrix ci = e(ci_normal)
1575
+ g beta = b[1,1] in 1
1576
+ g CI_lb = ci[1,1] in 1
1577
+ g CI_ub = ci[2,1] in 1
1578
+
1579
+ keep if _n == 1
1580
+ keep beta CI_*
1581
+
1582
+ save "Results\SA_TRUMP_PRE_105_91.dta", replace
1583
+
1584
+
1585
+
1586
+ use "Data\county_day_data.dta", clear
1587
+
1588
+
1589
+ drop TRUMP*
1590
+ forval ii = 1/9 {
1591
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1592
+ }
1593
+
1594
+
1595
+ keep if year==2015 | year==2016 | year==2017
1596
+
1597
+ local start = -105
1598
+ local end = 105
1599
+ local bin_l = 15
1600
+
1601
+ g TRUMP_0 = 0
1602
+ forval ii = 1/9 {
1603
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1604
+ }
1605
+
1606
+
1607
+ forval ii = 1(`bin_l')`end'{
1608
+ local jj = `ii' + `bin_l' - 1
1609
+ g TRUMP_POST_`ii'_`jj' = 0
1610
+ forval ee = 1/9 {
1611
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1612
+ }
1613
+ }
1614
+ g TRUMP_POST_M`end' = 0
1615
+ forval ii = 1/9 {
1616
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1617
+ }
1618
+ *
1619
+
1620
+
1621
+ forval ii = `start'(`bin_l')0 {
1622
+ if `ii' < -`bin_l' {
1623
+ local jj = abs(`ii')
1624
+ local zz = `jj' - `bin_l' + 1
1625
+ g TRUMP_PRE_`jj'_`zz' = 0
1626
+ forval ee = 1/9 {
1627
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1628
+ }
1629
+ }
1630
+ }
1631
+ *
1632
+ local jj = abs(`start')
1633
+ g TRUMP_PRE_M`jj' = 0
1634
+ forval ii = 1/9 {
1635
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1636
+ }
1637
+
1638
+ ***number of counties 1,478
1639
+ qui: {
1640
+ forval ii = 1/1478 {
1641
+ su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1642
+ if r(N) != 0 {
1643
+ total n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1644
+ global stops`ii' = _b[n_stops]
1645
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1646
+ }
1647
+ }
1648
+ }
1649
+ **I drop the first for collinearity
1650
+ drop TREATED_COUNTY_9
1651
+
1652
+
1653
+ reghdfe black_ps 1.TRUMP_POST_1_15 1.TRUMP_POST_1_15#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1654
+
1655
+
1656
+ mat treat = 999* J(1478,2,1)
1657
+
1658
+ local numerator = 0
1659
+ local denominator = 0
1660
+ forval ii = 1/1478 {
1661
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_1_15==1
1662
+ if r(N) != 0 {
1663
+ if `ii' == 9{
1664
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15])
1665
+ mat treat[`ii',2] = (${stops`ii'})
1666
+ }
1667
+ else {
1668
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_1_15] + _b[1.TRUMP_POST_1_15#1.TREATED_COUNTY_`ii'])
1669
+ mat treat[`ii',2] = (${stops`ii'})
1670
+ }
1671
+ }
1672
+ }
1673
+
1674
+ g yy = treat[_n,1] in 1/1478
1675
+ g ww = treat[_n,2] in 1/1478
1676
+ replace yy = . if yy==999
1677
+ replace ww = . if ww==999
1678
+
1679
+
1680
+
1681
+ keep yy ww
1682
+ drop if yy==.
1683
+
1684
+
1685
+ expand ww
1686
+ egen id = group(yy)
1687
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1688
+ matrix b = e(b)
1689
+ matrix ci = e(ci_normal)
1690
+ g beta = b[1,1] in 1
1691
+ g CI_lb = ci[1,1] in 1
1692
+ g CI_ub = ci[2,1] in 1
1693
+
1694
+ keep if _n == 1
1695
+ keep beta CI_*
1696
+
1697
+ save "Results\SA_TRUMP_POST_1_15_NT.dta", replace
1698
+
1699
+ ************************************************************************************************************************************
1700
+
1701
+ use "Data\county_day_data.dta", clear
1702
+
1703
+ drop TRUMP*
1704
+ forval ii = 1/9 {
1705
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1706
+ }
1707
+
1708
+
1709
+ keep if year==2015 | year==2016 | year==2017
1710
+
1711
+ local start = -105
1712
+ local end = 105
1713
+ local bin_l = 15
1714
+
1715
+
1716
+
1717
+ g TRUMP_0 = 0
1718
+ forval ii = 1/9 {
1719
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1720
+ }
1721
+
1722
+
1723
+ forval ii = 1(`bin_l')`end'{
1724
+ local jj = `ii' + `bin_l' - 1
1725
+ g TRUMP_POST_`ii'_`jj' = 0
1726
+ forval ee = 1/9 {
1727
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1728
+ }
1729
+ }
1730
+ g TRUMP_POST_M`end' = 0
1731
+ forval ii = 1/9 {
1732
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1733
+ }
1734
+ *
1735
+
1736
+
1737
+ forval ii = `start'(`bin_l')0 {
1738
+ if `ii' < -`bin_l' {
1739
+ local jj = abs(`ii')
1740
+ local zz = `jj' - `bin_l' + 1
1741
+ g TRUMP_PRE_`jj'_`zz' = 0
1742
+ forval ee = 1/9 {
1743
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1744
+ }
1745
+ }
1746
+ }
1747
+ *
1748
+ local jj = abs(`start')
1749
+ g TRUMP_PRE_M`jj' = 0
1750
+ forval ii = 1/9 {
1751
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1752
+ }
1753
+
1754
+ ***number of counties 1,478
1755
+ qui: {
1756
+ forval ii = 1/1478 {
1757
+ su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1758
+ if r(N) != 0 {
1759
+ total n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1760
+ global stops`ii' = _b[n_stops]
1761
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1762
+ }
1763
+ }
1764
+ }
1765
+ **I drop the first for collinearity
1766
+ drop TREATED_COUNTY_9
1767
+
1768
+
1769
+ reghdfe black_ps 1.TRUMP_POST_16_30 1.TRUMP_POST_16_30#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1770
+
1771
+
1772
+ mat treat = 999* J(1478,2,1)
1773
+
1774
+ local numerator = 0
1775
+ local denominator = 0
1776
+ forval ii = 1/1478 {
1777
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_16_30==1
1778
+ if r(N) != 0 {
1779
+ if `ii' == 9{
1780
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30])
1781
+ mat treat[`ii',2] = (${stops`ii'})
1782
+ }
1783
+ else {
1784
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_16_30] + _b[1.TRUMP_POST_16_30#1.TREATED_COUNTY_`ii'])
1785
+ mat treat[`ii',2] = (${stops`ii'})
1786
+ }
1787
+ }
1788
+ }
1789
+
1790
+ g yy = treat[_n,1] in 1/1478
1791
+ g ww = treat[_n,2] in 1/1478
1792
+ replace yy = . if yy==999
1793
+ replace ww = . if ww==999
1794
+
1795
+
1796
+
1797
+ keep yy ww
1798
+ drop if yy==.
1799
+
1800
+
1801
+ expand ww
1802
+ egen id = group(yy)
1803
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1804
+ matrix b = e(b)
1805
+ matrix ci = e(ci_normal)
1806
+ g beta = b[1,1] in 1
1807
+ g CI_lb = ci[1,1] in 1
1808
+ g CI_ub = ci[2,1] in 1
1809
+
1810
+ keep if _n == 1
1811
+ keep beta CI_*
1812
+
1813
+ save "Results\SA_TRUMP_POST_16_30_NT.dta", replace
1814
+
1815
+ ************************************************************************************************************************************
1816
+
1817
+ use "Data\county_day_data.dta", clear
1818
+
1819
+ drop TRUMP*
1820
+ forval ii = 1/9 {
1821
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1822
+ }
1823
+
1824
+
1825
+ keep if year==2015 | year==2016 | year==2017
1826
+
1827
+ local start = -105
1828
+ local end = 105
1829
+ local bin_l = 15
1830
+
1831
+ g TRUMP_0 = 0
1832
+ forval ii = 1/9 {
1833
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1834
+ }
1835
+
1836
+
1837
+ forval ii = 1(`bin_l')`end'{
1838
+ local jj = `ii' + `bin_l' - 1
1839
+ g TRUMP_POST_`ii'_`jj' = 0
1840
+ forval ee = 1/9 {
1841
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1842
+ }
1843
+ }
1844
+ g TRUMP_POST_M`end' = 0
1845
+ forval ii = 1/9 {
1846
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1847
+ }
1848
+ *
1849
+
1850
+
1851
+ forval ii = `start'(`bin_l')0 {
1852
+ if `ii' < -`bin_l' {
1853
+ local jj = abs(`ii')
1854
+ local zz = `jj' - `bin_l' + 1
1855
+ g TRUMP_PRE_`jj'_`zz' = 0
1856
+ forval ee = 1/9 {
1857
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1858
+ }
1859
+ }
1860
+ }
1861
+ *
1862
+ local jj = abs(`start')
1863
+ g TRUMP_PRE_M`jj' = 0
1864
+ forval ii = 1/9 {
1865
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1866
+ }
1867
+
1868
+ ***number of counties 1,478
1869
+ qui: {
1870
+ forval ii = 1/1478 {
1871
+ su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1872
+ if r(N) != 0 {
1873
+ total n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1874
+ global stops`ii' = _b[n_stops]
1875
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1876
+ }
1877
+ }
1878
+ }
1879
+ **I drop the first for collinearity
1880
+ drop TREATED_COUNTY_9
1881
+
1882
+
1883
+ reghdfe black_ps 1.TRUMP_POST_31_45 1.TRUMP_POST_31_45#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
1884
+
1885
+
1886
+ mat treat = 999* J(1478,2,1)
1887
+
1888
+ local numerator = 0
1889
+ local denominator = 0
1890
+ forval ii = 1/1478 {
1891
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_31_45==1
1892
+ if r(N) != 0 {
1893
+ if `ii' == 9{
1894
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45])
1895
+ mat treat[`ii',2] = (${stops`ii'})
1896
+ }
1897
+ else {
1898
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_31_45] + _b[1.TRUMP_POST_31_45#1.TREATED_COUNTY_`ii'])
1899
+ mat treat[`ii',2] = (${stops`ii'})
1900
+ }
1901
+ }
1902
+ }
1903
+
1904
+ g yy = treat[_n,1] in 1/1478
1905
+ g ww = treat[_n,2] in 1/1478
1906
+ replace yy = . if yy==999
1907
+ replace ww = . if ww==999
1908
+
1909
+
1910
+
1911
+ keep yy ww
1912
+ drop if yy==.
1913
+
1914
+
1915
+ expand ww
1916
+ egen id = group(yy)
1917
+ bootstrap r(mean), reps(1000) cluster(id): su yy
1918
+ matrix b = e(b)
1919
+ matrix ci = e(ci_normal)
1920
+ g beta = b[1,1] in 1
1921
+ g CI_lb = ci[1,1] in 1
1922
+ g CI_ub = ci[2,1] in 1
1923
+
1924
+ keep if _n == 1
1925
+ keep beta CI_*
1926
+
1927
+ save "Results\SA_TRUMP_POST_31_45_NT.dta", replace
1928
+
1929
+ ************************************************************************************************************************************
1930
+
1931
+ use "Data\county_day_data.dta", clear
1932
+
1933
+
1934
+ drop TRUMP*
1935
+ forval ii = 1/9 {
1936
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
1937
+ }
1938
+
1939
+ keep if year==2015 | year==2016 | year==2017
1940
+
1941
+ local start = -105
1942
+ local end = 105
1943
+ local bin_l = 15
1944
+
1945
+
1946
+
1947
+ g TRUMP_0 = 0
1948
+ forval ii = 1/9 {
1949
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
1950
+ }
1951
+
1952
+
1953
+ forval ii = 1(`bin_l')`end'{
1954
+ local jj = `ii' + `bin_l' - 1
1955
+ g TRUMP_POST_`ii'_`jj' = 0
1956
+ forval ee = 1/9 {
1957
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
1958
+ }
1959
+ }
1960
+ g TRUMP_POST_M`end' = 0
1961
+ forval ii = 1/9 {
1962
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
1963
+ }
1964
+ *
1965
+
1966
+
1967
+ forval ii = `start'(`bin_l')0 {
1968
+ if `ii' < -`bin_l' {
1969
+ local jj = abs(`ii')
1970
+ local zz = `jj' - `bin_l' + 1
1971
+ g TRUMP_PRE_`jj'_`zz' = 0
1972
+ forval ee = 1/9 {
1973
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
1974
+ }
1975
+ }
1976
+ }
1977
+ *
1978
+ local jj = abs(`start')
1979
+ g TRUMP_PRE_M`jj' = 0
1980
+ forval ii = 1/9 {
1981
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
1982
+ }
1983
+
1984
+ ***number of counties 1,478
1985
+ qui: {
1986
+ forval ii = 1/1478 {
1987
+ su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
1988
+ if r(N) != 0 {
1989
+ total n_stops if county_id==`ii' & TRUMP_POST_46_60==1
1990
+ global stops`ii' = _b[n_stops]
1991
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
1992
+ }
1993
+ }
1994
+ }
1995
+ **I drop the first for collinearity
1996
+ drop TREATED_COUNTY_9
1997
+
1998
+
1999
+ reghdfe black_ps 1.TRUMP_POST_46_60 1.TRUMP_POST_46_60#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2000
+
2001
+
2002
+ mat treat = 999* J(1478,2,1)
2003
+
2004
+ local numerator = 0
2005
+ local denominator = 0
2006
+ forval ii = 1/1478 {
2007
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_46_60==1
2008
+ if r(N) != 0 {
2009
+ if `ii' == 9{
2010
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60])
2011
+ mat treat[`ii',2] = (${stops`ii'})
2012
+ }
2013
+ else {
2014
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_46_60] + _b[1.TRUMP_POST_46_60#1.TREATED_COUNTY_`ii'])
2015
+ mat treat[`ii',2] = (${stops`ii'})
2016
+ }
2017
+ }
2018
+ }
2019
+
2020
+ g yy = treat[_n,1] in 1/1478
2021
+ g ww = treat[_n,2] in 1/1478
2022
+ replace yy = . if yy==999
2023
+ replace ww = . if ww==999
2024
+
2025
+
2026
+
2027
+ keep yy ww
2028
+ drop if yy==.
2029
+
2030
+
2031
+ expand ww
2032
+ egen id = group(yy)
2033
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2034
+ matrix b = e(b)
2035
+ matrix ci = e(ci_normal)
2036
+ g beta = b[1,1] in 1
2037
+ g CI_lb = ci[1,1] in 1
2038
+ g CI_ub = ci[2,1] in 1
2039
+
2040
+ keep if _n == 1
2041
+ keep beta CI_*
2042
+
2043
+ save "Results\SA_TRUMP_POST_46_60_NT.dta", replace
2044
+
2045
+ ************************************************************************************************************************************
2046
+
2047
+ use "Data\county_day_data.dta", clear
2048
+
2049
+
2050
+
2051
+ drop TRUMP*
2052
+ forval ii = 1/9 {
2053
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2054
+ }
2055
+
2056
+ keep if year==2015 | year==2016 | year==2017
2057
+
2058
+ local start = -105
2059
+ local end = 105
2060
+ local bin_l = 15
2061
+
2062
+ g TRUMP_0 = 0
2063
+ forval ii = 1/9 {
2064
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2065
+ }
2066
+
2067
+
2068
+ forval ii = 1(`bin_l')`end'{
2069
+ local jj = `ii' + `bin_l' - 1
2070
+ g TRUMP_POST_`ii'_`jj' = 0
2071
+ forval ee = 1/9 {
2072
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2073
+ }
2074
+ }
2075
+ g TRUMP_POST_M`end' = 0
2076
+ forval ii = 1/9 {
2077
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2078
+ }
2079
+ *
2080
+
2081
+
2082
+ forval ii = `start'(`bin_l')0 {
2083
+ if `ii' < -`bin_l' {
2084
+ local jj = abs(`ii')
2085
+ local zz = `jj' - `bin_l' + 1
2086
+ g TRUMP_PRE_`jj'_`zz' = 0
2087
+ forval ee = 1/9 {
2088
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2089
+ }
2090
+ }
2091
+ }
2092
+ *
2093
+ local jj = abs(`start')
2094
+ g TRUMP_PRE_M`jj' = 0
2095
+ forval ii = 1/9 {
2096
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2097
+ }
2098
+
2099
+ ***number of counties 1,478
2100
+ qui: {
2101
+ forval ii = 1/1478 {
2102
+ su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
2103
+ if r(N) != 0 {
2104
+ total n_stops if county_id==`ii' & TRUMP_POST_61_75==1
2105
+ global stops`ii' = _b[n_stops]
2106
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2107
+ }
2108
+ }
2109
+ }
2110
+ **I drop the first for collinearity
2111
+ drop TREATED_COUNTY_9
2112
+
2113
+
2114
+ reghdfe black_ps 1.TRUMP_POST_61_75 1.TRUMP_POST_61_75#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2115
+
2116
+
2117
+ mat treat = 999* J(1478,2,1)
2118
+
2119
+ local numerator = 0
2120
+ local denominator = 0
2121
+ forval ii = 1/1478 {
2122
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_61_75==1
2123
+ if r(N) != 0 {
2124
+ if `ii' == 9{
2125
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75])
2126
+ mat treat[`ii',2] = (${stops`ii'})
2127
+ }
2128
+ else {
2129
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_61_75] + _b[1.TRUMP_POST_61_75#1.TREATED_COUNTY_`ii'])
2130
+ mat treat[`ii',2] = (${stops`ii'})
2131
+ }
2132
+ }
2133
+ }
2134
+
2135
+ g yy = treat[_n,1] in 1/1478
2136
+ g ww = treat[_n,2] in 1/1478
2137
+ replace yy = . if yy==999
2138
+ replace ww = . if ww==999
2139
+
2140
+
2141
+
2142
+ keep yy ww
2143
+ drop if yy==.
2144
+
2145
+
2146
+ expand ww
2147
+ egen id = group(yy)
2148
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2149
+ matrix b = e(b)
2150
+ matrix ci = e(ci_normal)
2151
+ g beta = b[1,1] in 1
2152
+ g CI_lb = ci[1,1] in 1
2153
+ g CI_ub = ci[2,1] in 1
2154
+
2155
+ keep if _n == 1
2156
+ keep beta CI_*
2157
+
2158
+ save "Results\SA_TRUMP_POST_61_75_NT.dta", replace
2159
+
2160
+ ************************************************************************************************************************************
2161
+
2162
+ use "Data\county_day_data.dta", clear
2163
+
2164
+
2165
+ drop TRUMP*
2166
+ forval ii = 1/9 {
2167
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2168
+ }
2169
+
2170
+
2171
+ keep if year==2015 | year==2016 | year==2017
2172
+
2173
+ local start = -105
2174
+ local end = 105
2175
+ local bin_l = 15
2176
+
2177
+ g TRUMP_0 = 0
2178
+ forval ii = 1/9 {
2179
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2180
+ }
2181
+
2182
+
2183
+ forval ii = 1(`bin_l')`end'{
2184
+ local jj = `ii' + `bin_l' - 1
2185
+ g TRUMP_POST_`ii'_`jj' = 0
2186
+ forval ee = 1/9 {
2187
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2188
+ }
2189
+ }
2190
+ g TRUMP_POST_M`end' = 0
2191
+ forval ii = 1/9 {
2192
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2193
+ }
2194
+ *
2195
+
2196
+
2197
+ forval ii = `start'(`bin_l')0 {
2198
+ if `ii' < -`bin_l' {
2199
+ local jj = abs(`ii')
2200
+ local zz = `jj' - `bin_l' + 1
2201
+ g TRUMP_PRE_`jj'_`zz' = 0
2202
+ forval ee = 1/9 {
2203
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2204
+ }
2205
+ }
2206
+ }
2207
+ *
2208
+ local jj = abs(`start')
2209
+ g TRUMP_PRE_M`jj' = 0
2210
+ forval ii = 1/9 {
2211
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2212
+ }
2213
+
2214
+ ***number of counties 1,478
2215
+ qui: {
2216
+ forval ii = 1/1478 {
2217
+ su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
2218
+ if r(N) != 0 {
2219
+ total n_stops if county_id==`ii' & TRUMP_POST_76_90==1
2220
+ global stops`ii' = _b[n_stops]
2221
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2222
+ }
2223
+ }
2224
+ }
2225
+ **I drop the first for collinearity
2226
+ drop TREATED_COUNTY_9
2227
+
2228
+
2229
+ reghdfe black_ps 1.TRUMP_POST_76_90 1.TRUMP_POST_76_90#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2230
+
2231
+
2232
+ mat treat = 999* J(1478,2,1)
2233
+
2234
+ local numerator = 0
2235
+ local denominator = 0
2236
+ forval ii = 1/1478 {
2237
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_76_90==1
2238
+ if r(N) != 0 {
2239
+ if `ii' == 9{
2240
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90])
2241
+ mat treat[`ii',2] = (${stops`ii'})
2242
+ }
2243
+ else {
2244
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_76_90] + _b[1.TRUMP_POST_76_90#1.TREATED_COUNTY_`ii'])
2245
+ mat treat[`ii',2] = (${stops`ii'})
2246
+ }
2247
+ }
2248
+ }
2249
+
2250
+ g yy = treat[_n,1] in 1/1478
2251
+ g ww = treat[_n,2] in 1/1478
2252
+ replace yy = . if yy==999
2253
+ replace ww = . if ww==999
2254
+
2255
+
2256
+
2257
+ keep yy ww
2258
+ drop if yy==.
2259
+
2260
+
2261
+ expand ww
2262
+ egen id = group(yy)
2263
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2264
+ matrix b = e(b)
2265
+ matrix ci = e(ci_normal)
2266
+ g beta = b[1,1] in 1
2267
+ g CI_lb = ci[1,1] in 1
2268
+ g CI_ub = ci[2,1] in 1
2269
+
2270
+ keep if _n == 1
2271
+ keep beta CI_*
2272
+
2273
+ save "Results\SA_TRUMP_POST_76_90_NT.dta", replace
2274
+
2275
+ ************************************************************************************************************************************
2276
+
2277
+ use "Data\county_day_data.dta", clear
2278
+
2279
+
2280
+ drop TRUMP*
2281
+ forval ii = 1/9 {
2282
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2283
+ }
2284
+
2285
+
2286
+ keep if year==2015 | year==2016 | year==2017
2287
+
2288
+ local start = -105
2289
+ local end = 105
2290
+ local bin_l = 15
2291
+
2292
+
2293
+ g TRUMP_0 = 0
2294
+ forval ii = 1/9 {
2295
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2296
+ }
2297
+
2298
+
2299
+ forval ii = 1(`bin_l')`end'{
2300
+ local jj = `ii' + `bin_l' - 1
2301
+ g TRUMP_POST_`ii'_`jj' = 0
2302
+ forval ee = 1/9 {
2303
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2304
+ }
2305
+ }
2306
+ g TRUMP_POST_M`end' = 0
2307
+ forval ii = 1/9 {
2308
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2309
+ }
2310
+ *
2311
+
2312
+
2313
+ forval ii = `start'(`bin_l')0 {
2314
+ if `ii' < -`bin_l' {
2315
+ local jj = abs(`ii')
2316
+ local zz = `jj' - `bin_l' + 1
2317
+ g TRUMP_PRE_`jj'_`zz' = 0
2318
+ forval ee = 1/9 {
2319
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2320
+ }
2321
+ }
2322
+ }
2323
+ *
2324
+ local jj = abs(`start')
2325
+ g TRUMP_PRE_M`jj' = 0
2326
+ forval ii = 1/9 {
2327
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2328
+ }
2329
+
2330
+ ***number of counties 1,478
2331
+ qui: {
2332
+ forval ii = 1/1478 {
2333
+ su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2334
+ if r(N) != 0 {
2335
+ total n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2336
+ global stops`ii' = _b[n_stops]
2337
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2338
+ }
2339
+ }
2340
+ }
2341
+ **I drop the first for collinearity
2342
+ drop TREATED_COUNTY_9
2343
+
2344
+
2345
+ reghdfe black_ps 1.TRUMP_POST_91_105 1.TRUMP_POST_91_105#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2346
+
2347
+
2348
+ mat treat = 999* J(1478,2,1)
2349
+
2350
+ local numerator = 0
2351
+ local denominator = 0
2352
+ forval ii = 1/1478 {
2353
+ qui: su n_stops if county_id==`ii' & TRUMP_POST_91_105==1
2354
+ if r(N) != 0 {
2355
+ if `ii' == 9{
2356
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105])
2357
+ mat treat[`ii',2] = (${stops`ii'})
2358
+ }
2359
+ else {
2360
+ mat treat[`ii',1] = (_b[1.TRUMP_POST_91_105] + _b[1.TRUMP_POST_91_105#1.TREATED_COUNTY_`ii'])
2361
+ mat treat[`ii',2] = (${stops`ii'})
2362
+ }
2363
+ }
2364
+ }
2365
+
2366
+ g yy = treat[_n,1] in 1/1478
2367
+ g ww = treat[_n,2] in 1/1478
2368
+ replace yy = . if yy==999
2369
+ replace ww = . if ww==999
2370
+
2371
+
2372
+
2373
+ keep yy ww
2374
+ drop if yy==.
2375
+
2376
+
2377
+ expand ww
2378
+ egen id = group(yy)
2379
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2380
+ matrix b = e(b)
2381
+ matrix ci = e(ci_normal)
2382
+ g beta = b[1,1] in 1
2383
+ g CI_lb = ci[1,1] in 1
2384
+ g CI_ub = ci[2,1] in 1
2385
+
2386
+ keep if _n == 1
2387
+ keep beta CI_*
2388
+
2389
+ save "Results\SA_TRUMP_POST_91_105_NT.dta", replace
2390
+
2391
+ ************************************************************************************************************************************
2392
+
2393
+ use "Data\county_day_data.dta", clear
2394
+
2395
+ drop TRUMP*
2396
+ forval ii = 1/9 {
2397
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2398
+ }
2399
+
2400
+ keep if year==2015 | year==2016 | year==2017
2401
+
2402
+ local start = -105
2403
+ local end = 105
2404
+ local bin_l = 15
2405
+
2406
+ g TRUMP_0 = 0
2407
+ forval ii = 1/9 {
2408
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2409
+ }
2410
+
2411
+
2412
+ forval ii = 1(`bin_l')`end'{
2413
+ local jj = `ii' + `bin_l' - 1
2414
+ g TRUMP_POST_`ii'_`jj' = 0
2415
+ forval ee = 1/9 {
2416
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2417
+ }
2418
+ }
2419
+ g TRUMP_POST_M`end' = 0
2420
+ forval ii = 1/9 {
2421
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2422
+ }
2423
+ *
2424
+
2425
+
2426
+ forval ii = `start'(`bin_l')0 {
2427
+ if `ii' < -`bin_l' {
2428
+ local jj = abs(`ii')
2429
+ local zz = `jj' - `bin_l' + 1
2430
+ g TRUMP_PRE_`jj'_`zz' = 0
2431
+ forval ee = 1/9 {
2432
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2433
+ }
2434
+ }
2435
+ }
2436
+ *
2437
+ local jj = abs(`start')
2438
+ g TRUMP_PRE_M`jj' = 0
2439
+ forval ii = 1/9 {
2440
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2441
+ }
2442
+
2443
+ ***number of counties 1,478
2444
+ qui: {
2445
+ forval ii = 1/1478 {
2446
+ su n_stops if county_id==`ii' & TRUMP_0==1
2447
+ if r(N) != 0 {
2448
+ total n_stops if county_id==`ii' & TRUMP_0==1
2449
+ global stops`ii' = _b[n_stops]
2450
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2451
+ }
2452
+ }
2453
+ }
2454
+ **I drop the first for collinearity
2455
+ drop TREATED_COUNTY_9
2456
+
2457
+
2458
+ reghdfe black_ps 1.TRUMP_0 1.TRUMP_0#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2459
+
2460
+
2461
+ mat treat = 999* J(1478,2,1)
2462
+
2463
+ local numerator = 0
2464
+ local denominator = 0
2465
+ forval ii = 1/1478 {
2466
+ qui: su n_stops if county_id==`ii' & TRUMP_0==1
2467
+ if r(N) != 0 {
2468
+ if `ii' == 9{
2469
+ mat treat[`ii',1] = (_b[1.TRUMP_0])
2470
+ mat treat[`ii',2] = (${stops`ii'})
2471
+ }
2472
+ else {
2473
+ mat treat[`ii',1] = (_b[1.TRUMP_0] + _b[1.TRUMP_0#1.TREATED_COUNTY_`ii'])
2474
+ mat treat[`ii',2] = (${stops`ii'})
2475
+ }
2476
+ }
2477
+ }
2478
+
2479
+ g yy = treat[_n,1] in 1/1478
2480
+ g ww = treat[_n,2] in 1/1478
2481
+ replace yy = . if yy==999
2482
+ replace ww = . if ww==999
2483
+
2484
+ keep yy ww
2485
+ drop if yy==.
2486
+
2487
+ expand ww
2488
+ egen id = group(yy)
2489
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2490
+ matrix b = e(b)
2491
+ matrix ci = e(ci_normal)
2492
+ g beta = b[1,1] in 1
2493
+ g CI_lb = ci[1,1] in 1
2494
+ g CI_ub = ci[2,1] in 1
2495
+
2496
+ keep if _n == 1
2497
+ keep beta CI_*
2498
+
2499
+ save "Results\SA_TRUMP_0_NT.dta", replace
2500
+
2501
+ ************************************************************************************************************************************
2502
+
2503
+ use "Data\county_day_data.dta", clear
2504
+
2505
+ drop TRUMP*
2506
+ forval ii = 1/9 {
2507
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2508
+ }
2509
+
2510
+ keep if year==2015 | year==2016 | year==2017
2511
+
2512
+ local start = -105
2513
+ local end = 105
2514
+ local bin_l = 15
2515
+
2516
+ g TRUMP_0 = 0
2517
+ forval ii = 1/9 {
2518
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2519
+ }
2520
+
2521
+
2522
+ forval ii = 1(`bin_l')`end'{
2523
+ local jj = `ii' + `bin_l' - 1
2524
+ g TRUMP_POST_`ii'_`jj' = 0
2525
+ forval ee = 1/9 {
2526
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2527
+ }
2528
+ }
2529
+ g TRUMP_POST_M`end' = 0
2530
+ forval ii = 1/9 {
2531
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2532
+ }
2533
+ *
2534
+
2535
+ forval ii = `start'(`bin_l')0 {
2536
+ if `ii' < -`bin_l' {
2537
+ local jj = abs(`ii')
2538
+ local zz = `jj' - `bin_l' + 1
2539
+ g TRUMP_PRE_`jj'_`zz' = 0
2540
+ forval ee = 1/9 {
2541
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2542
+ }
2543
+ }
2544
+ }
2545
+ *
2546
+ local jj = abs(`start')
2547
+ g TRUMP_PRE_M`jj' = 0
2548
+ forval ii = 1/9 {
2549
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2550
+ }
2551
+
2552
+ ***number of counties 1,478
2553
+ qui: {
2554
+ forval ii = 1/1478 {
2555
+ su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2556
+ if r(N) != 0 {
2557
+ total n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2558
+ global stops`ii' = _b[n_stops]
2559
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2560
+ }
2561
+ }
2562
+ }
2563
+ **I drop the first for collinearity
2564
+ drop TREATED_COUNTY_9
2565
+
2566
+ reghdfe black_ps 1.TRUMP_PRE_30_16 1.TRUMP_PRE_30_16#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_M105) cluster(county_id day_id)
2567
+
2568
+
2569
+ mat treat = 999* J(1478,2,1)
2570
+
2571
+ local numerator = 0
2572
+ local denominator = 0
2573
+ forval ii = 1/1478 {
2574
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_30_16==1
2575
+ if r(N) != 0 {
2576
+ if `ii' == 9{
2577
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16])
2578
+ mat treat[`ii',2] = (${stops`ii'})
2579
+ }
2580
+ else {
2581
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_30_16] + _b[1.TRUMP_PRE_30_16#1.TREATED_COUNTY_`ii'])
2582
+ mat treat[`ii',2] = (${stops`ii'})
2583
+ }
2584
+ }
2585
+ }
2586
+
2587
+ g yy = treat[_n,1] in 1/1478
2588
+ g ww = treat[_n,2] in 1/1478
2589
+ replace yy = . if yy==999
2590
+ replace ww = . if ww==999
2591
+
2592
+
2593
+
2594
+ keep yy ww
2595
+ drop if yy==.
2596
+
2597
+
2598
+ expand ww
2599
+ egen id = group(yy)
2600
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2601
+ matrix b = e(b)
2602
+ matrix ci = e(ci_normal)
2603
+ g beta = b[1,1] in 1
2604
+ g CI_lb = ci[1,1] in 1
2605
+ g CI_ub = ci[2,1] in 1
2606
+
2607
+ keep if _n == 1
2608
+ keep beta CI_*
2609
+
2610
+ save "Results\SA_TRUMP_PRE_30_16_NT.dta", replace
2611
+
2612
+ ************************************************************************************************************************************
2613
+
2614
+ use "Data\county_day_data.dta", clear
2615
+ drop TRUMP*
2616
+ forval ii = 1/9 {
2617
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2618
+ }
2619
+
2620
+ keep if year==2015 | year==2016 | year==2017
2621
+
2622
+ local start = -105
2623
+ local end = 105
2624
+ local bin_l = 15
2625
+
2626
+ g TRUMP_0 = 0
2627
+ forval ii = 1/9 {
2628
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2629
+ }
2630
+
2631
+
2632
+ forval ii = 1(`bin_l')`end'{
2633
+ local jj = `ii' + `bin_l' - 1
2634
+ g TRUMP_POST_`ii'_`jj' = 0
2635
+ forval ee = 1/9 {
2636
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2637
+ }
2638
+ }
2639
+ g TRUMP_POST_M`end' = 0
2640
+ forval ii = 1/9 {
2641
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2642
+ }
2643
+ *
2644
+
2645
+
2646
+ forval ii = `start'(`bin_l')0 {
2647
+ if `ii' < -`bin_l' {
2648
+ local jj = abs(`ii')
2649
+ local zz = `jj' - `bin_l' + 1
2650
+ g TRUMP_PRE_`jj'_`zz' = 0
2651
+ forval ee = 1/9 {
2652
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2653
+ }
2654
+ }
2655
+ }
2656
+ *
2657
+ local jj = abs(`start')
2658
+ g TRUMP_PRE_M`jj' = 0
2659
+ forval ii = 1/9 {
2660
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2661
+ }
2662
+
2663
+ ***number of counties 1,478
2664
+ qui: {
2665
+ forval ii = 1/1478 {
2666
+ su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2667
+ if r(N) != 0 {
2668
+ total n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2669
+ global stops`ii' = _b[n_stops]
2670
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2671
+ }
2672
+ }
2673
+ }
2674
+ **I drop the first for collinearity
2675
+ drop TREATED_COUNTY_9
2676
+
2677
+
2678
+ reghdfe black_ps 1.TRUMP_PRE_45_31 1.TRUMP_PRE_45_31#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2679
+
2680
+
2681
+ mat treat = 999* J(1478,2,1)
2682
+
2683
+ local numerator = 0
2684
+ local denominator = 0
2685
+ forval ii = 1/1478 {
2686
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_45_31==1
2687
+ if r(N) != 0 {
2688
+ if `ii' == 9{
2689
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31])
2690
+ mat treat[`ii',2] = (${stops`ii'})
2691
+ }
2692
+ else {
2693
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_45_31] + _b[1.TRUMP_PRE_45_31#1.TREATED_COUNTY_`ii'])
2694
+ mat treat[`ii',2] = (${stops`ii'})
2695
+ }
2696
+ }
2697
+ }
2698
+
2699
+ g yy = treat[_n,1] in 1/1478
2700
+ g ww = treat[_n,2] in 1/1478
2701
+ replace yy = . if yy==999
2702
+ replace ww = . if ww==999
2703
+
2704
+
2705
+
2706
+ keep yy ww
2707
+ drop if yy==.
2708
+
2709
+
2710
+ expand ww
2711
+ egen id = group(yy)
2712
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2713
+ matrix b = e(b)
2714
+ matrix ci = e(ci_normal)
2715
+ g beta = b[1,1] in 1
2716
+ g CI_lb = ci[1,1] in 1
2717
+ g CI_ub = ci[2,1] in 1
2718
+
2719
+ keep if _n == 1
2720
+ keep beta CI_*
2721
+
2722
+ save "Results\SA_TRUMP_PRE_45_31_NT.dta", replace
2723
+
2724
+ ************************************************************************************************************************************
2725
+
2726
+ use "Data\county_day_data.dta", clear
2727
+
2728
+ drop TRUMP*
2729
+ forval ii = 1/9 {
2730
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2731
+ }
2732
+ keep if year==2015 | year==2016 | year==2017
2733
+
2734
+ local start = -105
2735
+ local end = 105
2736
+ local bin_l = 15
2737
+
2738
+ g TRUMP_0 = 0
2739
+ forval ii = 1/9 {
2740
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2741
+ }
2742
+
2743
+
2744
+ forval ii = 1(`bin_l')`end'{
2745
+ local jj = `ii' + `bin_l' - 1
2746
+ g TRUMP_POST_`ii'_`jj' = 0
2747
+ forval ee = 1/9 {
2748
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2749
+ }
2750
+ }
2751
+ g TRUMP_POST_M`end' = 0
2752
+ forval ii = 1/9 {
2753
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2754
+ }
2755
+ *
2756
+
2757
+
2758
+ forval ii = `start'(`bin_l')0 {
2759
+ if `ii' < -`bin_l' {
2760
+ local jj = abs(`ii')
2761
+ local zz = `jj' - `bin_l' + 1
2762
+ g TRUMP_PRE_`jj'_`zz' = 0
2763
+ forval ee = 1/9 {
2764
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2765
+ }
2766
+ }
2767
+ }
2768
+ *
2769
+ local jj = abs(`start')
2770
+ g TRUMP_PRE_M`jj' = 0
2771
+ forval ii = 1/9 {
2772
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2773
+ }
2774
+
2775
+ ***number of counties 1,478
2776
+ qui: {
2777
+ forval ii = 1/1478 {
2778
+ su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2779
+ if r(N) != 0 {
2780
+ total n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2781
+ global stops`ii' = _b[n_stops]
2782
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2783
+ }
2784
+ }
2785
+ }
2786
+ **I drop the first for collinearity
2787
+ drop TREATED_COUNTY_9
2788
+
2789
+
2790
+ reghdfe black_ps 1.TRUMP_PRE_60_46 1.TRUMP_PRE_60_46#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2791
+
2792
+
2793
+ mat treat = 999* J(1478,2,1)
2794
+
2795
+ local numerator = 0
2796
+ local denominator = 0
2797
+ forval ii = 1/1478 {
2798
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_60_46==1
2799
+ if r(N) != 0 {
2800
+ if `ii' == 9{
2801
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46])
2802
+ mat treat[`ii',2] = (${stops`ii'})
2803
+ }
2804
+ else {
2805
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_60_46] + _b[1.TRUMP_PRE_60_46#1.TREATED_COUNTY_`ii'])
2806
+ mat treat[`ii',2] = (${stops`ii'})
2807
+ }
2808
+ }
2809
+ }
2810
+
2811
+ g yy = treat[_n,1] in 1/1478
2812
+ g ww = treat[_n,2] in 1/1478
2813
+ replace yy = . if yy==999
2814
+ replace ww = . if ww==999
2815
+
2816
+ keep yy ww
2817
+ drop if yy==.
2818
+
2819
+
2820
+ expand ww
2821
+ egen id = group(yy)
2822
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2823
+ matrix b = e(b)
2824
+ matrix ci = e(ci_normal)
2825
+ g beta = b[1,1] in 1
2826
+ g CI_lb = ci[1,1] in 1
2827
+ g CI_ub = ci[2,1] in 1
2828
+
2829
+ keep if _n == 1
2830
+ keep beta CI_*
2831
+
2832
+ save "Results\SA_TRUMP_PRE_60_46_NT.dta", replace
2833
+
2834
+ ************************************************************************************************************************************
2835
+
2836
+ use "Data\county_day_data.dta", clear
2837
+
2838
+ drop TRUMP*
2839
+ forval ii = 1/9 {
2840
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2841
+ }
2842
+
2843
+ keep if year==2015 | year==2016 | year==2017
2844
+
2845
+ local start = -105
2846
+ local end = 105
2847
+ local bin_l = 15
2848
+
2849
+ g TRUMP_0 = 0
2850
+ forval ii = 1/9 {
2851
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2852
+ }
2853
+
2854
+ forval ii = 1(`bin_l')`end'{
2855
+ local jj = `ii' + `bin_l' - 1
2856
+ g TRUMP_POST_`ii'_`jj' = 0
2857
+ forval ee = 1/9 {
2858
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2859
+ }
2860
+ }
2861
+ g TRUMP_POST_M`end' = 0
2862
+ forval ii = 1/9 {
2863
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2864
+ }
2865
+ *
2866
+
2867
+
2868
+ forval ii = `start'(`bin_l')0 {
2869
+ if `ii' < -`bin_l' {
2870
+ local jj = abs(`ii')
2871
+ local zz = `jj' - `bin_l' + 1
2872
+ g TRUMP_PRE_`jj'_`zz' = 0
2873
+ forval ee = 1/9 {
2874
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2875
+ }
2876
+ }
2877
+ }
2878
+ *
2879
+ local jj = abs(`start')
2880
+ g TRUMP_PRE_M`jj' = 0
2881
+ forval ii = 1/9 {
2882
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2883
+ }
2884
+
2885
+ ***number of counties 1,478
2886
+ qui: {
2887
+ forval ii = 1/1478 {
2888
+ su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2889
+ if r(N) != 0 {
2890
+ total n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2891
+ global stops`ii' = _b[n_stops]
2892
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
2893
+ }
2894
+ }
2895
+ }
2896
+ **I drop the first for collinearity
2897
+ drop TREATED_COUNTY_9
2898
+
2899
+
2900
+ reghdfe black_ps 1.TRUMP_PRE_75_61 1.TRUMP_PRE_75_61#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_90_76 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
2901
+
2902
+
2903
+ mat treat = 999* J(1478,2,1)
2904
+
2905
+ local numerator = 0
2906
+ local denominator = 0
2907
+ forval ii = 1/1478 {
2908
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_75_61==1
2909
+ if r(N) != 0 {
2910
+ if `ii' == 9{
2911
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61])
2912
+ mat treat[`ii',2] = (${stops`ii'})
2913
+ }
2914
+ else {
2915
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_75_61] + _b[1.TRUMP_PRE_75_61#1.TREATED_COUNTY_`ii'])
2916
+ mat treat[`ii',2] = (${stops`ii'})
2917
+ }
2918
+ }
2919
+ }
2920
+
2921
+ g yy = treat[_n,1] in 1/1478
2922
+ g ww = treat[_n,2] in 1/1478
2923
+ replace yy = . if yy==999
2924
+ replace ww = . if ww==999
2925
+
2926
+ keep yy ww
2927
+ drop if yy==.
2928
+
2929
+
2930
+ expand ww
2931
+ egen id = group(yy)
2932
+ bootstrap r(mean), reps(1000) cluster(id): su yy
2933
+ matrix b = e(b)
2934
+ matrix ci = e(ci_normal)
2935
+ g beta = b[1,1] in 1
2936
+ g CI_lb = ci[1,1] in 1
2937
+ g CI_ub = ci[2,1] in 1
2938
+
2939
+ keep if _n == 1
2940
+ keep beta CI_*
2941
+
2942
+ save "Results\SA_TRUMP_PRE_75_61_NT.dta", replace
2943
+
2944
+ ************************************************************************************************************************************
2945
+
2946
+ use "Data\county_day_data.dta", clear
2947
+
2948
+
2949
+ drop TRUMP*
2950
+ forval ii = 1/9 {
2951
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
2952
+ }
2953
+
2954
+ keep if year==2015 | year==2016 | year==2017
2955
+
2956
+ local start = -105
2957
+ local end = 105
2958
+ local bin_l = 15
2959
+
2960
+ g TRUMP_0 = 0
2961
+ forval ii = 1/9 {
2962
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
2963
+ }
2964
+
2965
+
2966
+ forval ii = 1(`bin_l')`end'{
2967
+ local jj = `ii' + `bin_l' - 1
2968
+ g TRUMP_POST_`ii'_`jj' = 0
2969
+ forval ee = 1/9 {
2970
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
2971
+ }
2972
+ }
2973
+ g TRUMP_POST_M`end' = 0
2974
+ forval ii = 1/9 {
2975
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
2976
+ }
2977
+ *
2978
+
2979
+ forval ii = `start'(`bin_l')0 {
2980
+ if `ii' < -`bin_l' {
2981
+ local jj = abs(`ii')
2982
+ local zz = `jj' - `bin_l' + 1
2983
+ g TRUMP_PRE_`jj'_`zz' = 0
2984
+ forval ee = 1/9 {
2985
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
2986
+ }
2987
+ }
2988
+ }
2989
+ *
2990
+ local jj = abs(`start')
2991
+ g TRUMP_PRE_M`jj' = 0
2992
+ forval ii = 1/9 {
2993
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
2994
+ }
2995
+
2996
+ ***number of counties 1,478
2997
+ qui: {
2998
+ forval ii = 1/1478 {
2999
+ su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
3000
+ if r(N) != 0 {
3001
+ total n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
3002
+ global stops`ii' = _b[n_stops]
3003
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
3004
+ }
3005
+ }
3006
+ }
3007
+ **I drop the first for collinearity
3008
+ drop TREATED_COUNTY_9
3009
+
3010
+ reghdfe black_ps 1.TRUMP_PRE_90_76 1.TRUMP_PRE_90_76#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_105_91 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
3011
+
3012
+
3013
+ mat treat = 999* J(1478,2,1)
3014
+
3015
+ local numerator = 0
3016
+ local denominator = 0
3017
+ forval ii = 1/1478 {
3018
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_90_76==1
3019
+ if r(N) != 0 {
3020
+ if `ii' == 9{
3021
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76])
3022
+ mat treat[`ii',2] = (${stops`ii'})
3023
+ }
3024
+ else {
3025
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_90_76] + _b[1.TRUMP_PRE_90_76#1.TREATED_COUNTY_`ii'])
3026
+ mat treat[`ii',2] = (${stops`ii'})
3027
+ }
3028
+ }
3029
+ }
3030
+
3031
+ g yy = treat[_n,1] in 1/1478
3032
+ g ww = treat[_n,2] in 1/1478
3033
+ replace yy = . if yy==999
3034
+ replace ww = . if ww==999
3035
+
3036
+ keep yy ww
3037
+ drop if yy==.
3038
+
3039
+ expand ww
3040
+ egen id = group(yy)
3041
+ bootstrap r(mean), reps(1000) cluster(id): su yy
3042
+ matrix b = e(b)
3043
+ matrix ci = e(ci_normal)
3044
+ g beta = b[1,1] in 1
3045
+ g CI_lb = ci[1,1] in 1
3046
+ g CI_ub = ci[2,1] in 1
3047
+
3048
+ keep if _n == 1
3049
+ keep beta CI_*
3050
+
3051
+ save "Results\SA_TRUMP_PRE_90_76_NT.dta", replace
3052
+
3053
+ ************************************************************************************************************************************
3054
+
3055
+ use "Data\county_day_data.dta", clear
3056
+ keep if year==2015 | year==2016 | year==2017
3057
+ drop TRUMP*
3058
+ forval ii = 1/9 {
3059
+ g dist_event`ii' = day_id - event_day_Trump_`ii'
3060
+ }
3061
+ local start = -105
3062
+ local end = 105
3063
+ local bin_l = 15
3064
+
3065
+
3066
+ g TRUMP_0 = 0
3067
+ forval ii = 1/9 {
3068
+ replace TRUMP_0 = 1 if dist_event`ii' == 0
3069
+ }
3070
+
3071
+
3072
+ forval ii = 1(`bin_l')`end'{
3073
+ local jj = `ii' + `bin_l' - 1
3074
+ g TRUMP_POST_`ii'_`jj' = 0
3075
+ forval ee = 1/9 {
3076
+ replace TRUMP_POST_`ii'_`jj' = 1 if (dist_event`ee' >= `ii' & dist_event`ee'<=`jj' & dist_event`ee'!=.)
3077
+ }
3078
+ }
3079
+ g TRUMP_POST_M`end' = 0
3080
+ forval ii = 1/9 {
3081
+ replace TRUMP_POST_M`end' = 1 if (dist_event`ii' > `end' & dist_event`ii'!=.)
3082
+ }
3083
+ *
3084
+
3085
+
3086
+ forval ii = `start'(`bin_l')0 {
3087
+ if `ii' < -`bin_l' {
3088
+ local jj = abs(`ii')
3089
+ local zz = `jj' - `bin_l' + 1
3090
+ g TRUMP_PRE_`jj'_`zz' = 0
3091
+ forval ee = 1/9 {
3092
+ replace TRUMP_PRE_`jj'_`zz' = 1 if (dist_event`ee' <= -`zz' & dist_event`ee'>=-`jj' & dist_event`ee'!=.)
3093
+ }
3094
+ }
3095
+ }
3096
+ *
3097
+ local jj = abs(`start')
3098
+ g TRUMP_PRE_M`jj' = 0
3099
+ forval ii = 1/9 {
3100
+ replace TRUMP_PRE_M`jj' = 1 if (dist_event`ii' < `start' & dist_event`ii'!=.)
3101
+ }
3102
+
3103
+ ***number of counties 1,478
3104
+ qui: {
3105
+ forval ii = 1/1478 {
3106
+ su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
3107
+ if r(N) != 0 {
3108
+ total n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
3109
+ global stops`ii' = _b[n_stops]
3110
+ g TREATED_COUNTY_`ii' = (county_id==`ii')
3111
+ }
3112
+ }
3113
+ }
3114
+ **I drop the first for collinearity
3115
+ drop TREATED_COUNTY_9
3116
+
3117
+
3118
+ reghdfe black_ps 1.TRUMP_PRE_105_91 1.TRUMP_PRE_105_91#1.TREATED_COUNTY_* [w=n_stops], a(county_id day_id TRUMP_0 TRUMP_POST_1_15 TRUMP_POST_16_30 TRUMP_POST_31_45 TRUMP_POST_46_60 TRUMP_POST_61_75 TRUMP_POST_76_90 TRUMP_POST_91_105 TRUMP_POST_M105 TRUMP_PRE_90_76 TRUMP_PRE_75_61 TRUMP_PRE_60_46 TRUMP_PRE_45_31 TRUMP_PRE_30_16 TRUMP_PRE_M105) cluster(county_id day_id)
3119
+
3120
+
3121
+ mat treat = 999* J(1478,2,1)
3122
+
3123
+ local numerator = 0
3124
+ local denominator = 0
3125
+ forval ii = 1/1478 {
3126
+ qui: su n_stops if county_id==`ii' & TRUMP_PRE_105_91==1
3127
+ if r(N) != 0 {
3128
+ if `ii' == 9{
3129
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91])
3130
+ mat treat[`ii',2] = (${stops`ii'})
3131
+ }
3132
+ else {
3133
+ mat treat[`ii',1] = (_b[1.TRUMP_PRE_105_91] + _b[1.TRUMP_PRE_105_91#1.TREATED_COUNTY_`ii'])
3134
+ mat treat[`ii',2] = (${stops`ii'})
3135
+ }
3136
+ }
3137
+ }
3138
+
3139
+ g yy = treat[_n,1] in 1/1478
3140
+ g ww = treat[_n,2] in 1/1478
3141
+ replace yy = . if yy==999
3142
+ replace ww = . if ww==999
3143
+
3144
+
3145
+
3146
+ keep yy ww
3147
+ drop if yy==.
3148
+
3149
+
3150
+ expand ww
3151
+ egen id = group(yy)
3152
+ bootstrap r(mean), reps(1000) cluster(id): su yy
3153
+ matrix b = e(b)
3154
+ matrix ci = e(ci_normal)
3155
+ g beta = b[1,1] in 1
3156
+ g CI_lb = ci[1,1] in 1
3157
+ g CI_ub = ci[2,1] in 1
3158
+
3159
+ keep if _n == 1
3160
+ keep beta CI_*
3161
+
3162
+ save "Results\SA_TRUMP_PRE_105_91_NT.dta", replace
3163
+
3164
+
3165
+
3166
+
3167
+
3168
+
39/replication_package/Readme.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408733ed19bc06a6e71e929c732ddd0584cab0e5bdcf2bb04ef82eda2818856e
3
+ size 97940
39/replication_package/data/allcandidates_rallies.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19870c082619ff3bf1b4deda021f508b0b7d9dafffdc856603b35c2d85fd0a67
3
+ size 31393
39/replication_package/data/allcandidates_words.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b92e64cf1235a83f3226e1d7d243a9de70e9eb10d4f6a2f81be0cb91d1631f8
3
+ size 5090157
39/replication_package/data/blm.dta ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de48002d0da0ee8080528e5eed0834c96015a23e85563790f6d08f250167e96c
3
+ size 19611
39/replication_package/data/county shapefile/cb_2016_us_county_500k.cpg ADDED
@@ -0,0 +1 @@
 
 
1
+ UTF-8
39/replication_package/data/county shapefile/cb_2016_us_county_500k.dbf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ece339e91ce5de305ff0cd669ce3b638567f0ff545869ba0fdf13d9e176e8fa
3
+ size 1106264
39/replication_package/data/county shapefile/cb_2016_us_county_500k.prj ADDED
@@ -0,0 +1 @@
 
 
1
+ GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]
39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06463cf329d6f412d7f3323748225aca1ca495a8c04af58cfaf169fc3a8c8df4
3
+ size 16817256
39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp.ea.iso.xml ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <!--This file contains all the Entity and Attribute Information--><gfc:FC_FeatureCatalogue xmlns:gmx="http://www.isotc211.org/2005/gmx"
3
+ xmlns:gco="http://www.isotc211.org/2005/gco"
4
+ xmlns:gmd="http://www.isotc211.org/2005/gmd"
5
+ xmlns:xlink="http://www.w3.org/1999/xlink"
6
+ xmlns:gml="http://www.opengis.net/gml/3.2"
7
+ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
8
+ xmlns:gfc="http://www.isotc211.org/2005/gfc"
9
+ xsi:schemaLocation="https://www.ngdc.noaa.gov/metadata/published/xsd/schema/gfc/featureCataloging.xsd">
10
+ <gmx:name>
11
+ <gco:CharacterString>Feature Catalog for the 2016 Current County and Equivalent 1:500,000 Cartographic Boundary File</gco:CharacterString>
12
+ </gmx:name>
13
+ <gmx:scope>
14
+ <gco:CharacterString>The Current County and Equivalent at a scale of 1:500,000</gco:CharacterString>
15
+ </gmx:scope>
16
+ <gmx:versionNumber>
17
+ <gco:CharacterString>cb_2016_county_500k</gco:CharacterString>
18
+ </gmx:versionNumber>
19
+ <gmx:versionDate>
20
+ <gco:Date>2017-03</gco:Date>
21
+ </gmx:versionDate>
22
+ <gmx:language>
23
+ <gco:CharacterString>eng</gco:CharacterString>
24
+ </gmx:language>
25
+ <gmx:characterSet>
26
+ <gmd:MD_CharacterSetCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_CharacterSetCode"
27
+ codeListValue="utf8"
28
+ codeSpace="004">utf8
29
+ </gmd:MD_CharacterSetCode>
30
+ </gmx:characterSet>
31
+ <gfc:producer xlink:href="https://www.ngdc.noaa.gov/docucomp/1df27e57-4768-42de-909b-52f530601fba"
32
+ xlink:title="U.S Department of Commerce, U.S Census Bureau, Geographic Customer Services Branch"/>
33
+ <gfc:featureType>
34
+ <gfc:FC_FeatureType>
35
+ <gfc:typeName>
36
+ <gco:LocalName>cb_2016_us_county_500k.shp</gco:LocalName>
37
+ </gfc:typeName>
38
+ <gfc:definition>
39
+ <gco:CharacterString>Current County and Equivalent (national)</gco:CharacterString>
40
+ </gfc:definition>
41
+ <gfc:isAbstract>
42
+ <gco:Boolean>false</gco:Boolean>
43
+ </gfc:isAbstract>
44
+ <gfc:featureCatalogue uuidref="2016_county_500k.ea.iso.xml"/>
45
+ <gfc:carrierOfCharacteristics>
46
+ <gfc:FC_FeatureAttribute>
47
+ <gfc:memberName>
48
+ <gco:LocalName>STATEFP</gco:LocalName>
49
+ </gfc:memberName>
50
+ <gfc:definition>
51
+ <gco:CharacterString>Current state Federal Information Processing Series (FIPS) code</gco:CharacterString>
52
+ </gfc:definition>
53
+ <gfc:cardinality gco:nilReason="unknown"/>
54
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
55
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
56
+ <gfc:listedValue>
57
+ <gfc:FC_ListedValue>
58
+ <gfc:label>
59
+ <gco:CharacterString>National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States/State Equivalents</gco:CharacterString>
60
+ </gfc:label>
61
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
62
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
63
+ </gfc:FC_ListedValue>
64
+ </gfc:listedValue>
65
+ </gfc:FC_FeatureAttribute>
66
+ </gfc:carrierOfCharacteristics>
67
+ <gfc:carrierOfCharacteristics>
68
+ <gfc:FC_FeatureAttribute>
69
+ <gfc:memberName>
70
+ <gco:LocalName>COUNTYFP</gco:LocalName>
71
+ </gfc:memberName>
72
+ <gfc:definition>
73
+ <gco:CharacterString>Current county Federal Information Processing Series (FIPS) code</gco:CharacterString>
74
+ </gfc:definition>
75
+ <gfc:cardinality gco:nilReason="unknown"/>
76
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
77
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
78
+ <gfc:listedValue>
79
+ <gfc:FC_ListedValue>
80
+ <gfc:label>
81
+ <gco:CharacterString>National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents</gco:CharacterString>
82
+ </gfc:label>
83
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
84
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
85
+ </gfc:FC_ListedValue>
86
+ </gfc:listedValue>
87
+ </gfc:FC_FeatureAttribute>
88
+ </gfc:carrierOfCharacteristics>
89
+ <gfc:carrierOfCharacteristics>
90
+ <gfc:FC_FeatureAttribute>
91
+ <gfc:memberName>
92
+ <gco:LocalName>COUNTYNS</gco:LocalName>
93
+ </gfc:memberName>
94
+ <gfc:definition>
95
+ <gco:CharacterString>Current county Geographic Names Information System (GNIS) code</gco:CharacterString>
96
+ </gfc:definition>
97
+ <gfc:cardinality gco:nilReason="unknown"/>
98
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
99
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
100
+ <gfc:listedValue>
101
+ <gfc:FC_ListedValue>
102
+ <gfc:label>
103
+ <gco:CharacterString>INCITS 446:2008 (Geographic Names Information System (GNIS)), Identifying Attributes for Named Physical and Cultural Geographic Features (Except Roads and Highways) of the United States, Its Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same to the Limit of the Twelve-Mile Statutory Zone</gco:CharacterString>
104
+ </gfc:label>
105
+ <gfc:definitionReference>
106
+ <gfc:FC_DefinitionReference>
107
+ <gfc:definitionSource>
108
+ <gfc:FC_DefinitionSource>
109
+ <gfc:source>
110
+ <gmd:CI_Citation>
111
+ <gmd:title gco:nilReason="inapplicable"/>
112
+ <gmd:date gco:nilReason="unknown"/>
113
+ <gmd:citedResponsibleParty>
114
+ <gmd:CI_ResponsibleParty>
115
+ <gmd:organisationName>
116
+ <gco:CharacterString>U.S. Geological Survey (USGS)</gco:CharacterString>
117
+ </gmd:organisationName>
118
+ <gmd:role>
119
+ <gmd:CI_RoleCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode"
120
+ codeListValue="resourceProvider"
121
+ codeSpace="001">resourceProvider
122
+ </gmd:CI_RoleCode>
123
+ </gmd:role>
124
+ </gmd:CI_ResponsibleParty>
125
+ </gmd:citedResponsibleParty>
126
+ </gmd:CI_Citation>
127
+ </gfc:source>
128
+ </gfc:FC_DefinitionSource>
129
+ </gfc:definitionSource>
130
+ </gfc:FC_DefinitionReference>
131
+ </gfc:definitionReference>
132
+ </gfc:FC_ListedValue>
133
+ </gfc:listedValue>
134
+ </gfc:FC_FeatureAttribute>
135
+ </gfc:carrierOfCharacteristics>
136
+ <gfc:carrierOfCharacteristics>
137
+ <gfc:FC_FeatureAttribute>
138
+ <gfc:memberName>
139
+ <gco:LocalName>AFFGEOID</gco:LocalName>
140
+ </gfc:memberName>
141
+ <gfc:definition>
142
+ <gco:CharacterString>American FactFinder summary level code + geovariant code + '00US' + GEOID</gco:CharacterString>
143
+ </gfc:definition>
144
+ <gfc:cardinality gco:nilReason="unknown"/>
145
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
146
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
147
+ <gfc:listedValue>
148
+ <gfc:FC_ListedValue>
149
+ <gfc:label>
150
+ <gco:CharacterString>American FactFinder geographic identifier</gco:CharacterString>
151
+ </gfc:label>
152
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
153
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
154
+ </gfc:FC_ListedValue>
155
+ </gfc:listedValue>
156
+ </gfc:FC_FeatureAttribute>
157
+ </gfc:carrierOfCharacteristics>
158
+ <gfc:carrierOfCharacteristics>
159
+ <gfc:FC_FeatureAttribute>
160
+ <gfc:memberName>
161
+ <gco:LocalName>GEOID</gco:LocalName>
162
+ </gfc:memberName>
163
+ <gfc:definition>
164
+ <gco:CharacterString>County identifier; a concatenation of current state Federal Information Processing Series (FIPS) code and county FIPS code</gco:CharacterString>
165
+ </gfc:definition>
166
+ <gfc:cardinality gco:nilReason="unknown"/>
167
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
168
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
169
+ <gfc:listedValue>
170
+ <gfc:FC_ListedValue>
171
+ <gfc:label gco:nilReason="inapplicable"/>
172
+ <gfc:definition>
173
+ <gco:CharacterString>The GEOID attribute is a concatenation of the state FIPS code followed by the county FIPS code. No spaces are allowed between the two codes. The state FIPS code is taken from "National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States". The county FIPS code is taken from "National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents".</gco:CharacterString>
174
+ </gfc:definition>
175
+ </gfc:FC_ListedValue>
176
+ </gfc:listedValue>
177
+ </gfc:FC_FeatureAttribute>
178
+ </gfc:carrierOfCharacteristics>
179
+ <gfc:carrierOfCharacteristics>
180
+ <gfc:FC_FeatureAttribute>
181
+ <gfc:memberName>
182
+ <gco:LocalName>NAME</gco:LocalName>
183
+ </gfc:memberName>
184
+ <gfc:definition>
185
+ <gco:CharacterString>Current county name</gco:CharacterString>
186
+ </gfc:definition>
187
+ <gfc:cardinality gco:nilReason="unknown"/>
188
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
189
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
190
+ <gfc:listedValue>
191
+ <gfc:FC_ListedValue>
192
+ <gfc:label>
193
+ <gco:CharacterString>National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents</gco:CharacterString>
194
+ </gfc:label>
195
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
196
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
197
+ </gfc:FC_ListedValue>
198
+ </gfc:listedValue>
199
+ </gfc:FC_FeatureAttribute>
200
+ </gfc:carrierOfCharacteristics>
201
+ <gfc:carrierOfCharacteristics>
202
+ <gfc:FC_FeatureAttribute>
203
+ <gfc:memberName>
204
+ <gco:LocalName>LSAD</gco:LocalName>
205
+ </gfc:memberName>
206
+ <gfc:definition>
207
+ <gco:CharacterString>Current legal/statistical area description code for county</gco:CharacterString>
208
+ </gfc:definition>
209
+ <gfc:cardinality gco:nilReason="unknown"/>
210
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
211
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
212
+ <gfc:listedValue>
213
+ <gfc:FC_ListedValue>
214
+ <gfc:label>
215
+ <gco:CharacterString>00</gco:CharacterString>
216
+ </gfc:label>
217
+ <gfc:definition>
218
+ <gco:CharacterString>Blank</gco:CharacterString>
219
+ </gfc:definition>
220
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
221
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
222
+ </gfc:FC_ListedValue>
223
+ </gfc:listedValue>
224
+ <gfc:listedValue>
225
+ <gfc:FC_ListedValue>
226
+ <gfc:label>
227
+ <gco:CharacterString>03</gco:CharacterString>
228
+ </gfc:label>
229
+ <gfc:definition>
230
+ <gco:CharacterString>City and Borough (suffix)</gco:CharacterString>
231
+ </gfc:definition>
232
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
233
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
234
+ </gfc:FC_ListedValue>
235
+ </gfc:listedValue>
236
+ <gfc:listedValue>
237
+ <gfc:FC_ListedValue>
238
+ <gfc:label>
239
+ <gco:CharacterString>04</gco:CharacterString>
240
+ </gfc:label>
241
+ <gfc:definition>
242
+ <gco:CharacterString>Borough (suffix)</gco:CharacterString>
243
+ </gfc:definition>
244
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
245
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
246
+ </gfc:FC_ListedValue>
247
+ </gfc:listedValue>
248
+ <gfc:listedValue>
249
+ <gfc:FC_ListedValue>
250
+ <gfc:label>
251
+ <gco:CharacterString>05</gco:CharacterString>
252
+ </gfc:label>
253
+ <gfc:definition>
254
+ <gco:CharacterString>Census Area (suffix)</gco:CharacterString>
255
+ </gfc:definition>
256
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
257
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
258
+ </gfc:FC_ListedValue>
259
+ </gfc:listedValue>
260
+ <gfc:listedValue>
261
+ <gfc:FC_ListedValue>
262
+ <gfc:label>
263
+ <gco:CharacterString>06</gco:CharacterString>
264
+ </gfc:label>
265
+ <gfc:definition>
266
+ <gco:CharacterString>County (suffix)</gco:CharacterString>
267
+ </gfc:definition>
268
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
269
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
270
+ </gfc:FC_ListedValue>
271
+ </gfc:listedValue>
272
+ <gfc:listedValue>
273
+ <gfc:FC_ListedValue>
274
+ <gfc:label>
275
+ <gco:CharacterString>07</gco:CharacterString>
276
+ </gfc:label>
277
+ <gfc:definition>
278
+ <gco:CharacterString>District (suffix)</gco:CharacterString>
279
+ </gfc:definition>
280
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
281
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
282
+ </gfc:FC_ListedValue>
283
+ </gfc:listedValue>
284
+ <gfc:listedValue>
285
+ <gfc:FC_ListedValue>
286
+ <gfc:label>
287
+ <gco:CharacterString>10</gco:CharacterString>
288
+ </gfc:label>
289
+ <gfc:definition>
290
+ <gco:CharacterString>Island (suffix)</gco:CharacterString>
291
+ </gfc:definition>
292
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
293
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
294
+ </gfc:FC_ListedValue>
295
+ </gfc:listedValue>
296
+ <gfc:listedValue>
297
+ <gfc:FC_ListedValue>
298
+ <gfc:label>
299
+ <gco:CharacterString>12</gco:CharacterString>
300
+ </gfc:label>
301
+ <gfc:definition>
302
+ <gco:CharacterString>Municipality (suffix)</gco:CharacterString>
303
+ </gfc:definition>
304
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
305
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
306
+ </gfc:FC_ListedValue>
307
+ </gfc:listedValue>
308
+ <gfc:listedValue>
309
+ <gfc:FC_ListedValue>
310
+ <gfc:label>
311
+ <gco:CharacterString>13</gco:CharacterString>
312
+ </gfc:label>
313
+ <gfc:definition>
314
+ <gco:CharacterString>Municipio (suffix)</gco:CharacterString>
315
+ </gfc:definition>
316
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
317
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
318
+ </gfc:FC_ListedValue>
319
+ </gfc:listedValue>
320
+ <gfc:listedValue>
321
+ <gfc:FC_ListedValue>
322
+ <gfc:label>
323
+ <gco:CharacterString>15</gco:CharacterString>
324
+ </gfc:label>
325
+ <gfc:definition>
326
+ <gco:CharacterString>Parish (suffix)</gco:CharacterString>
327
+ </gfc:definition>
328
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
329
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
330
+ </gfc:FC_ListedValue>
331
+ </gfc:listedValue>
332
+ <gfc:listedValue>
333
+ <gfc:FC_ListedValue>
334
+ <gfc:label>
335
+ <gco:CharacterString>25</gco:CharacterString>
336
+ </gfc:label>
337
+ <gfc:definition>
338
+ <gco:CharacterString>city (suffix)</gco:CharacterString>
339
+ </gfc:definition>
340
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
341
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
342
+ </gfc:FC_ListedValue>
343
+ </gfc:listedValue>
344
+ </gfc:FC_FeatureAttribute>
345
+ </gfc:carrierOfCharacteristics>
346
+ <gfc:carrierOfCharacteristics>
347
+ <gfc:FC_FeatureAttribute>
348
+ <gfc:memberName>
349
+ <gco:LocalName>ALAND</gco:LocalName>
350
+ </gfc:memberName>
351
+ <gfc:definition>
352
+ <gco:CharacterString>Current land area (square meters)</gco:CharacterString>
353
+ </gfc:definition>
354
+ <gfc:cardinality gco:nilReason="unknown"/>
355
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
356
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
357
+ <gfc:valueMeasurementUnit>
358
+ <gml:DerivedUnit gml:id="areaInMetersSquaredforALAND">
359
+ <gml:identifier codeSpace="area"/>
360
+ <gml:derivationUnitTerm uom="m" exponent="2"/>
361
+ </gml:DerivedUnit>
362
+ </gfc:valueMeasurementUnit>
363
+ <gfc:listedValue>
364
+ <gfc:FC_ListedValue>
365
+ <gfc:label gco:nilReason="inapplicable"/>
366
+ <gfc:definition>
367
+ <gco:CharacterString> Range Domain Minimum: 0
368
+ Range Domain Maximum: 9,999,999,999,999</gco:CharacterString>
369
+ </gfc:definition>
370
+ </gfc:FC_ListedValue>
371
+ </gfc:listedValue>
372
+ </gfc:FC_FeatureAttribute>
373
+ </gfc:carrierOfCharacteristics>
374
+ <gfc:carrierOfCharacteristics>
375
+ <gfc:FC_FeatureAttribute>
376
+ <gfc:memberName>
377
+ <gco:LocalName>AWATER</gco:LocalName>
378
+ </gfc:memberName>
379
+ <gfc:definition>
380
+ <gco:CharacterString>Current water area (square meters)</gco:CharacterString>
381
+ </gfc:definition>
382
+ <gfc:cardinality gco:nilReason="unknown"/>
383
+ <gfc:definitionReference xlink:title="U.S. Census Bureau"
384
+ xlink:href="http://www.ngdc.noaa.gov/docucomp/eb139e38-ee29-4d59-b157-5e874d4420c4"/>
385
+ <gfc:valueMeasurementUnit>
386
+ <gml:DerivedUnit gml:id="areaInMetersSquaredforAWATER">
387
+ <gml:identifier codeSpace="area"/>
388
+ <gml:derivationUnitTerm uom="m" exponent="2"/>
389
+ </gml:DerivedUnit>
390
+ </gfc:valueMeasurementUnit>
391
+ <gfc:listedValue>
392
+ <gfc:FC_ListedValue>
393
+ <gfc:label gco:nilReason="inapplicable"/>
394
+ <gfc:definition>
395
+ <gco:CharacterString> Range Domain Minimum: 0
396
+ Range Domain Maximum: 9,999,999,999,999</gco:CharacterString>
397
+ </gfc:definition>
398
+ </gfc:FC_ListedValue>
399
+ </gfc:listedValue>
400
+ </gfc:FC_FeatureAttribute>
401
+ </gfc:carrierOfCharacteristics>
402
+ </gfc:FC_FeatureType>
403
+ </gfc:featureType>
404
+ </gfc:FC_FeatureCatalogue>
39/replication_package/data/county shapefile/cb_2016_us_county_500k.shp.iso.xml ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <gmi:MI_Metadata xmlns:xlink="http://www.w3.org/1999/xlink"
3
+ xmlns:gmd="http://www.isotc211.org/2005/gmd"
4
+ xmlns:gco="http://www.isotc211.org/2005/gco"
5
+ xmlns:gml="http://www.opengis.net/gml/3.2"
6
+ xmlns:gmi="http://www.isotc211.org/2005/gmi">
7
+ <gmd:fileIdentifier>
8
+ <gco:CharacterString>cb_2016_us_county_500k.shp.iso.xml</gco:CharacterString>
9
+ </gmd:fileIdentifier>
10
+ <gmd:language>
11
+ <gco:CharacterString>eng</gco:CharacterString>
12
+ </gmd:language>
13
+ <gmd:characterSet>
14
+ <gmd:MD_CharacterSetCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_CharacterSetCode"
15
+ codeListValue="UTF-8"
16
+ codeSpace="">UTF-8</gmd:MD_CharacterSetCode>
17
+ </gmd:characterSet>
18
+ <gmd:hierarchyLevel>
19
+ <gmd:MD_ScopeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ScopeCode"
20
+ codeListValue="dataset">
21
+ dataset
22
+ </gmd:MD_ScopeCode>
23
+ </gmd:hierarchyLevel>
24
+ <gmd:contact xlink:href="https://www.ngdc.noaa.gov/docucomp/1df27e57-4768-42de-909b-52f530601fba"
25
+ xlink:title="U.S Department of Commerce, U.S Census Bureau, Geographic Customer Services Branch (point of Contact)"/>
26
+ <gmd:dateStamp>
27
+ <gco:Date>2017-03</gco:Date>
28
+ </gmd:dateStamp>
29
+ <gmd:metadataStandardName>
30
+ <gco:CharacterString>ISO 19115 Geographic Information - Metadata </gco:CharacterString>
31
+ </gmd:metadataStandardName>
32
+ <gmd:metadataStandardVersion>
33
+ <gco:CharacterString>2009-02-15 </gco:CharacterString>
34
+ </gmd:metadataStandardVersion>
35
+ <gmd:dataSetURI>
36
+ <gco:CharacterString>https://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_500k.zip</gco:CharacterString>
37
+ </gmd:dataSetURI>
38
+ <!-- This is the ptvctinf/sdtsterm/sdtstype from section 3 of the FGDC Standard (Spatial Data Organization) -->
39
+ <gmd:spatialRepresentationInfo>
40
+ <gmd:MD_VectorSpatialRepresentation>
41
+ <gmd:geometricObjects>
42
+ <gmd:MD_GeometricObjects>
43
+ <gmd:geometricObjectType>
44
+ <gmd:MD_GeometricObjectTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_GeometricObjectTypeCode"
45
+ codeListValue="complex"
46
+ codeSpace="001">
47
+ complex </gmd:MD_GeometricObjectTypeCode>
48
+ </gmd:geometricObjectType>
49
+ <gmd:geometricObjectCount>
50
+ <gco:Integer>3233</gco:Integer>
51
+ </gmd:geometricObjectCount>
52
+ </gmd:MD_GeometricObjects>
53
+ </gmd:geometricObjects>
54
+ </gmd:MD_VectorSpatialRepresentation>
55
+ </gmd:spatialRepresentationInfo>
56
+ <!--This is the indirect spatial reference of section 3 of the FGDC Standard-->
57
+ <gmd:referenceSystemInfo>
58
+ <gmd:MD_ReferenceSystem>
59
+ <gmd:referenceSystemIdentifier>
60
+ <gmd:RS_Identifier>
61
+ <gmd:code gco:nilReason="unknown"/>
62
+ <gmd:codeSpace>
63
+ <gco:CharacterString>INCITS (formerly FIPS) codes</gco:CharacterString>
64
+ </gmd:codeSpace>
65
+ </gmd:RS_Identifier>
66
+ </gmd:referenceSystemIdentifier>
67
+ </gmd:MD_ReferenceSystem>
68
+ </gmd:referenceSystemInfo>
69
+ <!--This part represents Section 1 of the FGDC Metadata Standard -->
70
+ <gmd:identificationInfo>
71
+ <gmd:MD_DataIdentification>
72
+ <gmd:citation>
73
+ <gmd:CI_Citation>
74
+ <gmd:title>
75
+ <gco:CharacterString>2016 Cartographic Boundary File, Current County and Equivalent for United States, 1:500,000</gco:CharacterString>
76
+ </gmd:title>
77
+ <gmd:date>
78
+ <gmd:CI_Date>
79
+ <!-- This is the publication date -->
80
+ <gmd:date>
81
+ <gco:Date>2017-03</gco:Date>
82
+ </gmd:date>
83
+ <gmd:dateType>
84
+ <gmd:CI_DateTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_DateTypeCode"
85
+ codeListValue="publication"
86
+ codeSpace="002"> publication </gmd:CI_DateTypeCode>
87
+ </gmd:dateType>
88
+ </gmd:CI_Date>
89
+ </gmd:date>
90
+
91
+ <gmd:citedResponsibleParty xlink:href="https://www.ngdc.noaa.gov/docucomp/ddd21bfb-2229-465b-95b2-bee36200b0e5"
92
+ xlink:title="originator - U.S. Department of Commerce, U.S. Census Bureau, Geography Division/Cartographic Products and Services Branch"/>
93
+ <gmd:presentationForm>
94
+ <gmd:CI_PresentationFormCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_PresentationFormCode"
95
+ codeListValue="mapDigital"/>
96
+ </gmd:presentationForm>
97
+ </gmd:CI_Citation>
98
+ </gmd:citation>
99
+ <gmd:abstract>
100
+ <gco:CharacterString>The 2016 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
101
+
102
+ The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
103
+
104
+ The generalized boundaries for counties and equivalent entities are based on those as of January 1, 2016, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).</gco:CharacterString>
105
+ </gmd:abstract>
106
+ <gmd:purpose>
107
+ <gco:CharacterString>These files were specifically created to support small-scale thematic mapping. To improve the appearance of shapes at small scales, areas are represented with fewer vertices than detailed TIGER/Line Shapefiles. Cartographic boundary files take up less disk space than their ungeneralized counterparts. Cartographic boundary files take less time to render on screen than TIGER/Line Shapefiles. You can join this file with table data downloaded from American FactFinder by using the AFFGEOID field in the cartographic boundary file. If detailed boundaries are required, please use the TIGER/Line Shapefiles instead of the generalized cartographic boundary files.</gco:CharacterString>
108
+ </gmd:purpose>
109
+ <gmd:status>
110
+ <gmd:MD_ProgressCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ProgressCode"
111
+ codeListValue="completed">
112
+ completed
113
+ </gmd:MD_ProgressCode>
114
+ </gmd:status>
115
+ <gmd:pointOfContact xlink:href="https://www.ngdc.noaa.gov/docucomp/09b8253a-e2dc-4a6b-a905-11f1e0e87b3b"
116
+ xlink:title="U.S Department of Commerce, U.S Census Bureau, Geographic Customer Services Branch (point of Contact)"/>
117
+ <gmd:resourceMaintenance>
118
+ <gmd:MD_MaintenanceInformation>
119
+ <gmd:maintenanceAndUpdateFrequency>
120
+ <gmd:MD_MaintenanceFrequencyCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_MaintenanceFrequencyCode"
121
+ codeListValue="notPlanned"
122
+ codeSpace="011">
123
+ notPlanned
124
+ </gmd:MD_MaintenanceFrequencyCode>
125
+ </gmd:maintenanceAndUpdateFrequency>
126
+ </gmd:MD_MaintenanceInformation>
127
+ </gmd:resourceMaintenance>
128
+ <gmd:descriptiveKeywords>
129
+ <gmd:MD_Keywords>
130
+ <gmd:keyword>
131
+ <gco:CharacterString>Boundaries</gco:CharacterString>
132
+ </gmd:keyword>
133
+ <gmd:type>
134
+ <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode"
135
+ codeListValue="theme"
136
+ codeSpace="005"> theme </gmd:MD_KeywordTypeCode>
137
+ </gmd:type>
138
+ <gmd:thesaurusName>
139
+ <gmd:CI_Citation>
140
+ <gmd:title>
141
+ <gco:CharacterString>ISO 19115 Topic Categories</gco:CharacterString>
142
+ </gmd:title>
143
+ <gmd:date gco:nilReason="unknown"/>
144
+ </gmd:CI_Citation>
145
+ </gmd:thesaurusName>
146
+ </gmd:MD_Keywords>
147
+ </gmd:descriptiveKeywords>
148
+ <gmd:descriptiveKeywords>
149
+ <gmd:MD_Keywords>
150
+ <gmd:keyword>
151
+ <gco:CharacterString>2016</gco:CharacterString>
152
+ </gmd:keyword>
153
+ <gmd:keyword>
154
+ <gco:CharacterString>SHP</gco:CharacterString>
155
+ </gmd:keyword>
156
+ <gmd:keyword>
157
+ <gco:CharacterString>Borough</gco:CharacterString>
158
+ </gmd:keyword>
159
+ <gmd:keyword>
160
+ <gco:CharacterString>Cartographic Boundary</gco:CharacterString>
161
+ </gmd:keyword>
162
+ <gmd:keyword>
163
+ <gco:CharacterString>Census Area</gco:CharacterString>
164
+ </gmd:keyword>
165
+ <gmd:keyword>
166
+ <gco:CharacterString>City</gco:CharacterString>
167
+ </gmd:keyword>
168
+ <gmd:keyword>
169
+ <gco:CharacterString>City and Borough</gco:CharacterString>
170
+ </gmd:keyword>
171
+ <gmd:keyword>
172
+ <gco:CharacterString>County</gco:CharacterString>
173
+ </gmd:keyword>
174
+ <gmd:keyword>
175
+ <gco:CharacterString>County equivalent</gco:CharacterString>
176
+ </gmd:keyword>
177
+ <gmd:keyword>
178
+ <gco:CharacterString>District</gco:CharacterString>
179
+ </gmd:keyword>
180
+ <gmd:keyword>
181
+ <gco:CharacterString>Generalized</gco:CharacterString>
182
+ </gmd:keyword>
183
+ <gmd:keyword>
184
+ <gco:CharacterString>Independent City</gco:CharacterString>
185
+ </gmd:keyword>
186
+ <gmd:keyword>
187
+ <gco:CharacterString>Island</gco:CharacterString>
188
+ </gmd:keyword>
189
+ <gmd:keyword>
190
+ <gco:CharacterString>Municipality</gco:CharacterString>
191
+ </gmd:keyword>
192
+ <gmd:keyword>
193
+ <gco:CharacterString>Municipio</gco:CharacterString>
194
+ </gmd:keyword>
195
+ <gmd:keyword>
196
+ <gco:CharacterString>Parish</gco:CharacterString>
197
+ </gmd:keyword>
198
+ <gmd:keyword>
199
+ <gco:CharacterString>State</gco:CharacterString>
200
+ </gmd:keyword>
201
+ <gmd:type>
202
+ <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode"
203
+ codeListValue="theme"
204
+ codeSpace="005"> theme </gmd:MD_KeywordTypeCode>
205
+ </gmd:type>
206
+ <gmd:thesaurusName>
207
+ <gmd:CI_Citation>
208
+ <gmd:title>
209
+ <gco:CharacterString>None</gco:CharacterString>
210
+ </gmd:title>
211
+ <gmd:date gco:nilReason="unknown"/>
212
+ </gmd:CI_Citation>
213
+ </gmd:thesaurusName>
214
+ </gmd:MD_Keywords>
215
+ </gmd:descriptiveKeywords>
216
+ <gmd:descriptiveKeywords>
217
+ <gmd:MD_Keywords>
218
+ <gmd:keyword>
219
+ <gco:CharacterString>United States</gco:CharacterString>
220
+ </gmd:keyword>
221
+ <gmd:keyword>
222
+ <gco:CharacterString>US</gco:CharacterString>
223
+ </gmd:keyword>
224
+ <gmd:type>
225
+ <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode"
226
+ codeListValue="place"
227
+ codeSpace="002"> place </gmd:MD_KeywordTypeCode>
228
+ </gmd:type>
229
+ <gmd:thesaurusName>
230
+ <gmd:CI_Citation>
231
+ <gmd:title>
232
+ <gco:CharacterString>ISO 3166 Codes for the representation of names of countries and their subdivisions
233
+
234
+ </gco:CharacterString>
235
+ </gmd:title>
236
+ <gmd:date gco:nilReason="unknown"/>
237
+ </gmd:CI_Citation>
238
+ </gmd:thesaurusName>
239
+ </gmd:MD_Keywords>
240
+ </gmd:descriptiveKeywords>
241
+ <gmd:resourceConstraints>
242
+ <gmd:MD_LegalConstraints>
243
+ <gmd:accessConstraints>
244
+ <gmd:MD_RestrictionCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode"
245
+ codeListValue="otherRestrictions"
246
+ codeSpace="008 "> otherRestrictions </gmd:MD_RestrictionCode>
247
+ </gmd:accessConstraints>
248
+ <gmd:useConstraints>
249
+ <gmd:MD_RestrictionCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode"
250
+ codeListValue="otherRestrictions"
251
+ codeSpace="008 "/>
252
+ </gmd:useConstraints>
253
+ <gmd:otherConstraints>
254
+ <gco:CharacterString> Access Constraints: None</gco:CharacterString>
255
+ </gmd:otherConstraints>
256
+ <gmd:otherConstraints>
257
+ <gco:CharacterString> Use Constraints:The intended display scale for this file is 1:500,000. This file should not be displayed at scales larger than 1:500,000.
258
+
259
+ These products are free to use in a product or publication, however acknowledgement must be given to the U.S. Census Bureau as the source. The boundary information is for visual display at appropriate small scales only. Cartographic boundary files should not be used for geographic analysis including area or perimeter calculation. Files should not be used for geocoding addresses. Files should not be used for determining precise geographic area relationships.
260
+ </gco:CharacterString>
261
+ </gmd:otherConstraints>
262
+ </gmd:MD_LegalConstraints>
263
+ </gmd:resourceConstraints>
264
+ <!-- This is from the Direct Spatial Reference from Chapter 3 -->
265
+ <gmd:spatialRepresentationType>
266
+ <gmd:MD_SpatialRepresentationTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_SpatialRepresentationTypeCode"
267
+ codeListValue="vector">vector</gmd:MD_SpatialRepresentationTypeCode>
268
+ </gmd:spatialRepresentationType>
269
+ <gmd:spatialResolution>
270
+ <gmd:MD_Resolution>
271
+ <gmd:equivalentScale>
272
+ <gmd:MD_RepresentativeFraction>
273
+ <gmd:denominator>
274
+ <gco:Integer>500000</gco:Integer>
275
+ </gmd:denominator>
276
+ </gmd:MD_RepresentativeFraction>
277
+ </gmd:equivalentScale>
278
+ </gmd:MD_Resolution>
279
+ </gmd:spatialResolution>
280
+ <gmd:language>
281
+ <gco:CharacterString>eng</gco:CharacterString>
282
+ </gmd:language>
283
+ <gmd:characterSet>
284
+ <gmd:MD_CharacterSetCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_CharacterSetCode"
285
+ codeListValue="UTF-8"
286
+ codeSpace="">UTF-8</gmd:MD_CharacterSetCode>
287
+ </gmd:characterSet>
288
+ <gmd:topicCategory>
289
+ <gmd:MD_TopicCategoryCode>boundaries</gmd:MD_TopicCategoryCode>
290
+ </gmd:topicCategory>
291
+ <gmd:environmentDescription>
292
+ <gco:CharacterString>The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.</gco:CharacterString>
293
+ </gmd:environmentDescription>
294
+ <gmd:extent>
295
+ <gmd:EX_Extent id="boundingExtent">
296
+ <gmd:geographicElement>
297
+ <gmd:EX_GeographicBoundingBox id="boundingGeographicBoundingBox">
298
+ <gmd:westBoundLongitude>
299
+ <gco:Decimal>-179.148909</gco:Decimal>
300
+ </gmd:westBoundLongitude>
301
+ <gmd:eastBoundLongitude>
302
+ <gco:Decimal>179.77847</gco:Decimal>
303
+ </gmd:eastBoundLongitude>
304
+ <gmd:southBoundLatitude>
305
+ <gco:Decimal>-14.548699</gco:Decimal>
306
+ </gmd:southBoundLatitude>
307
+ <gmd:northBoundLatitude>
308
+ <gco:Decimal>71.365162</gco:Decimal>
309
+ </gmd:northBoundLatitude>
310
+ </gmd:EX_GeographicBoundingBox>
311
+ </gmd:geographicElement>
312
+ <gmd:temporalElement>
313
+ <gmd:EX_TemporalExtent id="boundingTemporalExtent">
314
+ <gmd:extent>
315
+ <gml:TimePeriod gml:id="boundingTemporalExtentA">
316
+ <gml:description>publication date</gml:description>
317
+ <gml:beginPosition>2017-03</gml:beginPosition>
318
+ <gml:endPosition>2017-03</gml:endPosition>
319
+ </gml:TimePeriod>
320
+ </gmd:extent>
321
+ </gmd:EX_TemporalExtent>
322
+ </gmd:temporalElement>
323
+ </gmd:EX_Extent>
324
+ </gmd:extent>
325
+ </gmd:MD_DataIdentification>
326
+ </gmd:identificationInfo>
327
+ <!--This section provides the link for the file containing the Entity and Attribute Information. -->
328
+ <gmd:contentInfo>
329
+ <gmd:MD_FeatureCatalogueDescription>
330
+ <gmd:includedWithDataset>
331
+ <gco:Boolean>true</gco:Boolean>
332
+ </gmd:includedWithDataset>
333
+ <gmd:featureCatalogueCitation>
334
+ <gmd:CI_Citation>
335
+ <gmd:title>
336
+ <gco:CharacterString>Feature Catalog for the 2016 Current County and Equivalent 1:500,000 Cartographic Boundary File</gco:CharacterString>
337
+ </gmd:title>
338
+ <gmd:date>
339
+ <gmd:CI_Date>
340
+ <gmd:date gco:nilReason="missing"/>
341
+ <gmd:dateType>
342
+ <gmd:CI_DateTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_DateTypeCode"
343
+ codeListValue="publication"
344
+ codeSpace="002"/>
345
+ </gmd:dateType>
346
+ </gmd:CI_Date>
347
+ </gmd:date>
348
+ <gmd:otherCitationDetails>
349
+ <gco:CharacterString>https://meta.geo.census.gov/data/existing/decennial/GEO/CPMB/boundary/2016cb/county_500k/2016_county_500k.ea.iso.xml</gco:CharacterString>
350
+ </gmd:otherCitationDetails>
351
+ </gmd:CI_Citation>
352
+ </gmd:featureCatalogueCitation>
353
+ </gmd:MD_FeatureCatalogueDescription>
354
+ </gmd:contentInfo>
355
+ <gmd:distributionInfo>
356
+ <gmd:MD_Distribution>
357
+ <gmd:distributionFormat>
358
+ <gmd:MD_Format>
359
+ <gmd:name>
360
+ <gco:CharacterString>SHP</gco:CharacterString>
361
+ </gmd:name>
362
+ <gmd:version gco:nilReason="unknown"/>
363
+ <gmd:fileDecompressionTechnique>
364
+ <gco:CharacterString>PK-ZIP, version 1.93A or higher</gco:CharacterString>
365
+ </gmd:fileDecompressionTechnique>
366
+ </gmd:MD_Format>
367
+ </gmd:distributionFormat>
368
+ <gmd:distributionFormat>
369
+ <gmd:MD_Format>
370
+ <gmd:name>
371
+ <gco:CharacterString>HTML</gco:CharacterString>
372
+ </gmd:name>
373
+ <gmd:version gco:nilReason="unknown"/>
374
+ </gmd:MD_Format>
375
+ </gmd:distributionFormat>
376
+ <gmd:distributor>
377
+ <gmd:MD_Distributor>
378
+ <gmd:distributorContact xlink:href="https://www.ngdc.noaa.gov/docucomp/f48e4893-a57f-4f2b-ad5d-0cca1b34ec62"
379
+ xlink:title="U.S Department of Commerce, U.S Census Bureau, Geography Division, Geographic Products Branch (distributor)"/>
380
+ <gmd:distributionOrderProcess>
381
+ <gmd:MD_StandardOrderProcess>
382
+ <gmd:fees>
383
+ <gco:CharacterString>The online cartographic boundary files may be downloaded without charge.</gco:CharacterString>
384
+ </gmd:fees>
385
+ <gmd:orderingInstructions>
386
+ <gco:CharacterString>To obtain more information about ordering Cartographic Boundary Files visit https://www.census.gov/geo/www/tiger.</gco:CharacterString>
387
+ </gmd:orderingInstructions>
388
+ </gmd:MD_StandardOrderProcess>
389
+ </gmd:distributionOrderProcess>
390
+ </gmd:MD_Distributor>
391
+ </gmd:distributor>
392
+ <gmd:transferOptions>
393
+ <gmd:MD_DigitalTransferOptions>
394
+ <gmd:onLine>
395
+ <gmd:CI_OnlineResource>
396
+ <gmd:linkage>
397
+ <gmd:URL>https://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_500k.zip</gmd:URL>
398
+ </gmd:linkage>
399
+ <gmd:name>
400
+ <gco:CharacterString>Shapefile Zip File</gco:CharacterString>
401
+ </gmd:name>
402
+ </gmd:CI_OnlineResource>
403
+ </gmd:onLine>
404
+ </gmd:MD_DigitalTransferOptions>
405
+ </gmd:transferOptions>
406
+ <gmd:transferOptions>
407
+ <gmd:MD_DigitalTransferOptions>
408
+ <gmd:onLine>
409
+ <gmd:CI_OnlineResource>
410
+ <gmd:linkage>
411
+ <gmd:URL>https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html</gmd:URL>
412
+ </gmd:linkage>
413
+ <gmd:name>
414
+ <gco:CharacterString>Cartographic Boundary Shapefiles</gco:CharacterString>
415
+ </gmd:name>
416
+ <gmd:description>
417
+ <gco:CharacterString>Simplified representations of selected geographic areas from the Census Bureau's MAF/TIGER geographic database</gco:CharacterString>
418
+ </gmd:description>
419
+ </gmd:CI_OnlineResource>
420
+ </gmd:onLine>
421
+ </gmd:MD_DigitalTransferOptions>
422
+ </gmd:transferOptions>
423
+ </gmd:MD_Distribution>
424
+ </gmd:distributionInfo>
425
+ <gmd:dataQualityInfo>
426
+ <gmd:DQ_DataQuality>
427
+ <gmd:scope>
428
+ <gmd:DQ_Scope>
429
+ <gmd:level>
430
+ <gmd:MD_ScopeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ScopeCode"
431
+ codeListValue="dataset"
432
+ codeSpace="005"> dataset </gmd:MD_ScopeCode>
433
+ </gmd:level>
434
+ </gmd:DQ_Scope>
435
+ </gmd:scope>
436
+ <gmd:report>
437
+ <gmd:DQ_CompletenessCommission>
438
+ <gmd:evaluationMethodDescription>
439
+ <gco:CharacterString>The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.</gco:CharacterString>
440
+ </gmd:evaluationMethodDescription>
441
+ <gmd:result gco:nilReason="unknown"/>
442
+ </gmd:DQ_CompletenessCommission>
443
+ </gmd:report>
444
+ <gmd:report>
445
+ <gmd:DQ_CompletenessOmission>
446
+ <gmd:evaluationMethodDescription>
447
+ <gco:CharacterString>The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.</gco:CharacterString>
448
+ </gmd:evaluationMethodDescription>
449
+ <gmd:result gco:nilReason="unknown"/>
450
+ </gmd:DQ_CompletenessOmission>
451
+ </gmd:report>
452
+ <gmd:report>
453
+ <gmd:DQ_ConceptualConsistency>
454
+ <gmd:measureDescription>
455
+ <gco:CharacterString>The Census Bureau performed automated tests to ensure logical consistency of the source database. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. All polygons were tested for closure. The Census Bureau uses its internally developed geographic update system to enhance and modify spatial and attribute data in the Census MAF/TIGER database. Standard geographic codes, such as INCITS (formerly FIPS) codes for states, counties, municipalities, county subdivisions, places, American Indian/Alaska Native/Native Hawaiian areas, and congressional districts are used when encoding spatial entities. The Census Bureau performed spatial data tests for logical consistency of the codes during the compilation of the original Census MAF/TIGER database files. Feature attribute information has been examined but has not been fully tested for consistency.
456
+
457
+ For the cartographic boundary files, the Point and Vector Object Count for the G-polygon SDTS Point and Vector Object Type reflects the number of records in the file's data table. For multi-polygon features, only one attribute record exists for each multi-polygon rather than one attribute record per individual G-polygon component of the multi-polygon feature. Cartographic Boundary File multi-polygons are an exception to the G-polygon object type classification. Therefore, when multi-polygons exist in a file, the object count will be less than the actual number of G-polygons.</gco:CharacterString>
458
+ </gmd:measureDescription>
459
+ <gmd:result gco:nilReason="unknown"/>
460
+ </gmd:DQ_ConceptualConsistency>
461
+ </gmd:report>
462
+ <gmd:lineage>
463
+ <gmd:LI_Lineage>
464
+ <gmd:processStep>
465
+ <gmd:LI_ProcessStep>
466
+ <gmd:description>
467
+ <gco:CharacterString>Spatial data were extracted from the MAF/TIGER database and processed through a U.S. Census Bureau batch generalization system.</gco:CharacterString>
468
+ </gmd:description>
469
+ <gmd:dateTime>
470
+ <gco:DateTime>2017-03-01T00:00:00</gco:DateTime>
471
+ </gmd:dateTime>
472
+ <gmd:source>
473
+ <gmd:LI_Source>
474
+ <gmd:description>
475
+ <gco:CharacterString>Geo-spatial Relational Database</gco:CharacterString>
476
+ </gmd:description>
477
+ <gmd:sourceCitation>
478
+ <gmd:CI_Citation>
479
+ <gmd:title>
480
+ <gco:CharacterString>Census MAF/TIGER database</gco:CharacterString>
481
+ </gmd:title>
482
+ <gmd:alternateTitle>
483
+ <gco:CharacterString>MAF/TIGER</gco:CharacterString>
484
+ </gmd:alternateTitle>
485
+ <gmd:date>
486
+ <gmd:CI_Date>
487
+ <gmd:date>
488
+ <gco:Date>2016-05</gco:Date>
489
+ </gmd:date>
490
+ <gmd:dateType>
491
+ <gmd:CI_DateTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_DateTypeCode"
492
+ codeListValue="creation">
493
+ creation
494
+ </gmd:CI_DateTypeCode>
495
+ </gmd:dateType>
496
+ </gmd:CI_Date>
497
+ </gmd:date>
498
+ <gmd:citedResponsibleParty>
499
+ <gmd:CI_ResponsibleParty>
500
+ <gmd:organisationName>
501
+ <gco:CharacterString>U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch</gco:CharacterString>
502
+ </gmd:organisationName>
503
+ <gmd:role>
504
+ <gmd:CI_RoleCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode"
505
+ codeListValue="originator">originator
506
+ </gmd:CI_RoleCode>
507
+ </gmd:role>
508
+ </gmd:CI_ResponsibleParty>
509
+ </gmd:citedResponsibleParty>
510
+ <gmd:otherCitationDetails>
511
+ <gco:CharacterString> Source Contribution: All spatial and feature data</gco:CharacterString>
512
+ </gmd:otherCitationDetails>
513
+ </gmd:CI_Citation>
514
+ </gmd:sourceCitation>
515
+ </gmd:LI_Source>
516
+ </gmd:source>
517
+ </gmd:LI_ProcessStep>
518
+ </gmd:processStep>
519
+ </gmd:LI_Lineage>
520
+ </gmd:lineage>
521
+ </gmd:DQ_DataQuality>
522
+ </gmd:dataQualityInfo>
523
+ <gmd:metadataMaintenance>
524
+ <gmd:MD_MaintenanceInformation>
525
+ <gmd:maintenanceAndUpdateFrequency>
526
+ <gmd:MD_MaintenanceFrequencyCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_MaintenanceFrequencyCode"
527
+ codeListValue="notPlanned"
528
+ codeSpace="011">
529
+ notPlanned
530
+ </gmd:MD_MaintenanceFrequencyCode>
531
+ </gmd:maintenanceAndUpdateFrequency>
532
+ <gmd:maintenanceNote>
533
+ <gco:CharacterString>This was transformed from the Census Metadata Import Format</gco:CharacterString>
534
+ </gmd:maintenanceNote>
535
+ <gmd:contact xlink:href="https://www.ngdc.noaa.gov/docucomp/1df27e57-4768-42de-909b-52f530601fba"
536
+ xlink:title="U.S Department of Commerce, U.S Census Bureau, Geographic Customer Services Branch (point of Contact)"/>
537
+ </gmd:MD_MaintenanceInformation>
538
+ </gmd:metadataMaintenance>
539
+ </gmi:MI_Metadata>