anonymous-submission-acl2025 commited on
Commit
39a18a8
·
1 Parent(s): e706ec8
38/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58d468259a9bf5ded115c28f209ba7173a4d7c2ac03ff324284d623664fbb8d4
3
+ size 343008
38/replication_package/Codebooks - Indecent Disclosures.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea55e4222c62a6b9bee0251c1d5173c7b941fe69f871464b457900040c628293
3
+ size 102232
38/replication_package/ReadMe.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a9aef4f88cd64d2e10a862a643a4a6246fbcd9282f32bd2d24f3faa41455a2
3
+ size 1107
38/replication_package/Replication.R ADDED
@@ -0,0 +1,1075 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Replication
2
+
3
+ require("pacman")
4
+
5
+ pacman::p_load( stargazer, foreign, stringr, data.table, ggplot2,lfe, xtable, openxlsx, zoo, lme4, stringi)
6
+ rm(list=ls())
7
+ my_log <- file("my_log.txt")
8
+
9
+ specify_decimal <- function(x, k) format(as.numeric(round(x, k), nsmall=k))
10
+ ihs <- function(x) log(x + sqrt(x^2+1))
11
+
12
+ mod_stargazer <- function(est) {
13
+ capture.output(est)
14
+ }
15
+ multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
16
+ require(grid)
17
+
18
+ plots <- c(list(...), plotlist)
19
+
20
+ numPlots = length(plots)
21
+
22
+ if (is.null(layout)) {
23
+ layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
24
+ ncol = cols, nrow = ceiling(numPlots/cols))
25
+ }
26
+
27
+ if (numPlots==1) {
28
+ print(plots[[1]])
29
+
30
+ } else {
31
+ grid.newpage()
32
+ pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
33
+
34
+ for (i in 1:numPlots) {
35
+ matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
36
+
37
+ print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
38
+ layout.pos.col = matchidx$col))
39
+ }
40
+ }
41
+ }
42
+
43
+ load("cands.Rda")
44
+ load("els.Rda")
45
+
46
+
47
+ ##################################################################################################
48
+ ################# MAIN TEXT ##################
49
+ ##################################################################################################
50
+
51
+ ### TABLE 1
52
+
53
+ ### Models (in order)
54
+
55
+ est1<-felm(perc_elected_partial~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type)|0 | regionid + electionyear,data=els, psdef=FALSE)
56
+
57
+ est2<-felm(perc_elected_partial~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
58
+
59
+ est3<-felm(perc_elected_partial~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
60
+
61
+ est4<-felm(perc_elected_full~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
62
+
63
+ est5<-felm(perc_elected_full~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
64
+
65
+ est6<-felm(perc_elected_full~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
66
+
67
+ est7<-felm(cands_per_seat~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
68
+
69
+ est8<-felm(cands_per_seat~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
70
+
71
+ est9<-felm(cands_per_seat~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
72
+
73
+ ### Layout
74
+
75
+ Region <- list(c("Unit Type, Region Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}"))
76
+
77
+ UnitType <- list(c("Unit Type Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}"))
78
+
79
+ MuniType <- list(c("Municipality Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}"))
80
+
81
+ LinearTrend <- list(c("Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
82
+
83
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
84
+ newlayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
85
+
86
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9, omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Full-Time Incumbents (\\%)","Candidates per Seat"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
87
+ t_ro[11]<-"\\hline \\bigstrut "
88
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
89
+
90
+ t_ro <-gsub("\\multicolumn{10}{r}{} \\\\ ","", t_ro, fixed =TRUE)
91
+
92
+ t_ro[6]<-paste(" \\resizebox{.99\\textwidth}{!}{",t_ro[6],sep="")
93
+ t_ro[42]<-paste(t_ro[42],"}",sep="")
94
+
95
+ sink(file="Main_AvgCandsNoHeader.tex")
96
+ cat(t_ro)
97
+ sink()
98
+
99
+
100
+ ### TABLE 2
101
+
102
+ est1<-felm(cands_perc_bus~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
103
+
104
+ est2<-felm(cands_perc_bus~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
105
+
106
+ est3<-felm(cands_perc_bus~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
107
+
108
+ est4<-felm(cands_perc_directors~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
109
+
110
+ est5<-felm(cands_perc_directors~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
111
+
112
+ est6<-felm(cands_perc_directors~after + interactedtreatment + electionyear| factor(oktmo)|0 | regionid + electionyear,data=els, psdef=FALSE)
113
+
114
+ est7<-felm(cands_perc_entre~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
115
+
116
+ est8<-felm(cands_perc_entre~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
117
+
118
+ est9<-felm(cands_perc_entre~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
119
+
120
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9, omit="electionyear", keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("All Businesspeople (\\%)","Firm Directors (\\%)","Individual Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
121
+
122
+ t_ro[11]<-"\\hline \\bigstrut "
123
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
124
+ t_ro <-gsub("\\multicolumn{10}{r}{} \\\\ ","", t_ro, fixed =TRUE)
125
+
126
+ t_ro[6]<-paste(" \\resizebox{.99\\textwidth}{!}{",t_ro[6],sep="")
127
+ t_ro[42]<-paste(t_ro[42],"}",sep="")
128
+
129
+
130
+ sink(file="Main_Business.tex")
131
+ cat(t_ro)
132
+ sink()
133
+
134
+
135
+
136
+ ### TABLE 3
137
+ ### A warning message appears from the felm command because the fixed effects absorb several of the non-time-varying variables within. This is to be expected and can be ignored.
138
+
139
+ est1<-felm(perc_elected_partial~treatment*after*reg_pressfreedom+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
140
+
141
+ est2<-felm(perc_elected_partial~treatment*after*reg_dem_media+electionyear++ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
142
+
143
+ est3<-felm(perc_elected_partial~treatment*after*fn_budget_log+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
144
+
145
+ est4<-felm(perc_elected_partial~treatment*after*log_justice+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
146
+
147
+ est5<-felm(cands_perc_entre~treatment*after*reg_pressfreedom+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
148
+
149
+ est6<-felm(cands_perc_entre~treatment*after*reg_dem_media+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
150
+
151
+ est7<-felm(cands_perc_entre~treatment*after*fn_budget_log+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
152
+
153
+ est8<-felm(cands_perc_entre~treatment*after*log_justice+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm| factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
154
+
155
+ Muni <- list(c("Regional Covariates","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
156
+
157
+ Region <- list(c("Municipality FE; Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
158
+
159
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8, keep.stat=c("n","rsq"),dep.var.caption="",keep=c("after","treatment:after","treatment:after:reg_pressfreedom","treatment:after:reg_dem_media" ,"treatment:after:audits_allpeople","treatment:after:ENFORCE"),
160
+ covariate.labels=c("Second Election","Treatment Group * Second Election",
161
+ "Second Election * GDF Press Freedom",
162
+ "\\textbf{Treatment Group * Second Election * GDF Press Freedom}",
163
+ "Second Election * TP Press Freedom",
164
+ "\\textbf{Treatment Group * Second Election * TP Press Freedom}",
165
+ "Second Election * Regional Tax Agency Budget",
166
+ "\\textbf{Treatment Group * Second Election * Regional Tax Agency Budget}",
167
+ "Second Election * Law Enforcement Personnel",
168
+ "\\textbf{Treatment Group * Second Election * Law Enforcement Personnel}"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-20pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Independent Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Muni,Region),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
169
+
170
+ t_ro <-gsub("\\multicolumn{9}{r}{} \\\\ ","", t_ro, fixed =TRUE)
171
+
172
+
173
+ t_ro[6]<-paste(" \\resizebox{.99\\textwidth}{!}{",t_ro[6],sep="")
174
+ t_ro[50]<-paste(t_ro[50],"}",sep="")
175
+
176
+
177
+ sink(file="Heterogeneity_MainInteractions.tex")
178
+ cat(t_ro)
179
+ sink()
180
+
181
+
182
+
183
+
184
+
185
+ ### FIGURE 1
186
+
187
+ vrns_chart<-els[,list(vrns=uniqueN(vrn)),by=c("electionyear","treatment")]
188
+ vrns_chart$treatment<-as.character(vrns_chart$treatment)
189
+ vrns_chart$electionyear<-as.character(vrns_chart$electionyear)
190
+
191
+ ggplot(vrns_chart, aes(x = electionyear, y = vrns, fill = treatment)) +
192
+ geom_bar(stat = "identity")+scale_fill_grey(start = 0.6, end = 0.3,name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+ylim(0,7000)+xlab("\nElection Year")+ylab("Number of Elections\n")+theme_bw()+
193
+ theme(legend.key = element_rect(size = 5),
194
+ legend.key.size = unit(1.5, 'lines'),
195
+ plot.title=element_text(size=14,hjust = 0.65),
196
+ axis.text=element_text(size=14),axis.title=element_text(size=16),
197
+ legend.text=element_text(size=16)) +geom_vline(aes(xintercept=7.5),colour="darkgrey", linetype="dashed")+ annotate("text", label = "Amendment\n In Effect", x = 8.5, y = 5000, size = 4, colour = "black", angle=0)+geom_vline(aes(xintercept=5.5),colour="black")+ ggtitle("First Period Election Second Period Election")+
198
+ annotate("rect", xmin = 7.5, xmax = 9.5, ymin = 0, ymax = Inf,
199
+ alpha = .15)
200
+ ggsave(filename = "ElectionsByYear.pdf", height=6, width=10)
201
+
202
+
203
+
204
+
205
+ ##################################################################################################
206
+ ################# APPENDIX ##################
207
+ ##################################################################################################
208
+
209
+
210
+
211
+ ### FIGURE A1
212
+
213
+ cands$coded_profession<-0
214
+ cands$coded_profession[cands$entrepreneur==1]<-1
215
+ cands$coded_profession[cands$director==1]<-2
216
+ cands$coded_profession[cands$teacher==1]<-3
217
+ cands$coded_profession[cands$accountant==1]<-4
218
+ cands$coded_profession[cands$doctor==1]<-5
219
+ cands$coded_profession[cands$lowerclass==1]<-6
220
+ cands$coded_profession[cands$nowork==1]<-7
221
+ cands$coded_profession[cands$force==1]<-8
222
+ cands$coded_profession[cands$official==1]<-9
223
+ cands$coded_profession[cands$ngo==1]<-10
224
+
225
+ prop<-as.data.frame(prop.table(table(cands$coded_profession)))
226
+
227
+ prop$Freq<-prop$Freq*100
228
+ prop$label <-paste0(specify_decimal(prop$Freq,1),"%",sep="")
229
+ prop$Var1<-as.factor(prop$Var1)
230
+ prop_breaks<-unique(as.factor(prop$Var1))
231
+
232
+ prop <- transform(prop, Var1=reorder(Var1, Freq) )
233
+
234
+ ggplot(prop, aes(x=Var1,y=Freq))+geom_bar(stat = "identity")+xlab("")+ylab("\nPercentage of Candidates (%)")+ geom_text(aes(label=label), position=position_dodge(width=0.9), hjust=-0.2,size=5)+ylim(0,25)+ coord_flip() + theme_bw()+ scale_x_discrete(breaks=prop_breaks,labels=c("Other","Entrepreneur","Firm Director","Education","Private Sector Professional","Health Care","Blue Collar","Unemployed / Pensioner","Law Enforcement","Government / SOE","Civil Society"))+theme(axis.text=element_text(size=18),axis.title=element_text(size=18)) + guides(fill=guide_legend(title=" "))
235
+
236
+ ggsave(filename = "Professions.pdf", height=3.5, width=10)
237
+
238
+
239
+ ### TABLE A2
240
+
241
+ els_first<-subset(els, sequence==1)
242
+ els_second<-subset(els, sequence==2)
243
+
244
+ SummaryTables <- data.frame(title=numeric(0),treatment= numeric(0),control= numeric(0),difference= numeric(0),pvalue=numeric(0))
245
+
246
+ SummaryTables[1 ,] <- c("(1) Population (log)",
247
+ mean(els_first$population_log[els_first$treatment==1],na.rm=TRUE),
248
+ mean(els_first$population_log[els_first$treatment==0],na.rm=TRUE),
249
+ summary(lm(population_log~treatment, data=els_first))[[4]][2],
250
+ summary(lm(population_log~treatment, data=els_first))[[4]][8])
251
+
252
+ SummaryTables[2 ,] <- c("(2) Territory (log)",
253
+ mean(els_first$territory_log[els_first$treatment==1],na.rm=TRUE),
254
+ mean(els_first$territory_log[els_first$treatment==0],na.rm=TRUE),
255
+ summary(lm(territory_log~treatment, data=els_first))[[4]][2],
256
+ summary(lm(territory_log~treatment, data=els_first))[[4]][8]
257
+ )
258
+ SummaryTables[3 ,] <- c("(3) Revenue (log)",
259
+ mean(els_first$income_log[els_first$treatment==1],na.rm=TRUE),
260
+ mean(els_first$income_log[els_first$treatment==0],na.rm=TRUE),
261
+ summary(lm(income_log~treatment, data=els_first))[[4]][2],
262
+ summary(lm(income_log~treatment, data=els_first))[[4]][8])
263
+ SummaryTables[4 ,] <- c("(4) City Settlement",
264
+ mean(els_first$gorpos[els_first$treatment==1],na.rm=TRUE),
265
+ mean(els_first$gorpos[els_first$treatment==0],na.rm=TRUE),
266
+ summary(lm(gorpos~treatment, data=els_first))[[4]][2],
267
+ summary(lm(gorpos~treatment, data=els_first))[[4]][8] )
268
+
269
+ SummaryTables[5 ,] <- c("(5) Rural Settlement",
270
+ mean(els_first$selpos[els_first$treatment==1],na.rm=TRUE),
271
+ mean(els_first$selpos[els_first$treatment==0],na.rm=TRUE),
272
+ summary(lm(selpos~treatment, data=els_first))[[4]][2],
273
+ summary(lm(selpos~treatment, data=els_first))[[4]][8])
274
+
275
+ SummaryTables[6 ,] <- c("(6) City District",
276
+ mean(els_first$gorokrug[els_first$treatment==1],na.rm=TRUE),
277
+ mean(els_first$gorokrug[els_first$treatment==0],na.rm=TRUE),
278
+ summary(lm(gorokrug~treatment, data=els_first))[[4]][2],
279
+ summary(lm(gorokrug~treatment, data=els_first))[[4]][8])
280
+
281
+ SummaryTables[7 ,] <- c("(7) Municipal Rayon",
282
+ mean(els_first$munrayon[els_first$treatment==1],na.rm=TRUE),
283
+ mean(els_first$munrayon[els_first$treatment==0],na.rm=TRUE),
284
+ summary(lm(munrayon~treatment, data=els_first))[[4]][2],
285
+ summary(lm(munrayon~treatment, data=els_first))[[4]][8])
286
+
287
+ SummaryTables[8 ,] <- c("(8) Number Seats",
288
+ mean(els_first$numberelected[els_first$treatment==1],na.rm=TRUE),
289
+ mean(els_first$numberelected[els_first$treatment==0],na.rm=TRUE),
290
+ summary(lm(numberelected~treatment, data=els_first))[[4]][2],
291
+ summary(lm(numberelected~treatment, data=els_first))[[4]][8])
292
+
293
+ SummaryTables[9 ,] <- c("(9) Number Candidates per Seat",
294
+ mean(els_first$cands_per_seat[els_first$treatment==1],na.rm=TRUE),
295
+ mean(els_first$cands_per_seat[els_first$treatment==0],na.rm=TRUE),
296
+ summary(lm(cands_per_seat~treatment, data=els_first))[[4]][2],
297
+ summary(lm(cands_per_seat~treatment, data=els_first))[[4]][8])
298
+
299
+ SummaryTables[10 ,] <- c("(10) Part-time Deputy Candidates (%)",
300
+ mean(els_first$perc_elected_partial[els_first$treatment==1],na.rm=TRUE),
301
+ mean(els_first$perc_elected_partial[els_first$treatment==0],na.rm=TRUE),
302
+ summary(lm(perc_elected_partial~treatment, data=els_first))[[4]][2],
303
+ summary(lm(perc_elected_partial~treatment, data=els_first))[[4]][8])
304
+
305
+ SummaryTables[11 ,] <- c("(11) Full-time Deputy Candidates (%)",
306
+ mean(els_first$perc_elected_full[els_first$treatment==1],na.rm=TRUE),
307
+ mean(els_first$perc_elected_full[els_first$treatment==0],na.rm=TRUE),
308
+ summary(lm(perc_elected_full~treatment, data=els_first))[[4]][2],
309
+ summary(lm(perc_elected_full~treatment, data=els_first))[[4]][8])
310
+
311
+ SummaryTables[12 ,] <- c("(12) Businessperson Candidates (%)",
312
+ mean(els_first$cands_perc_bus[els_first$treatment==1],na.rm=TRUE),
313
+ mean(els_first$cands_perc_bus[els_first$treatment==0],na.rm=TRUE),
314
+ summary(lm(cands_perc_bus~treatment, data=els_first))[[4]][2],
315
+ summary(lm(cands_perc_bus~treatment, data=els_first))[[4]][8])
316
+
317
+ SummaryTables[13 ,] <- c("(13) Candidate Age",
318
+ mean(els_first$age[els_first$treatment==1],na.rm=TRUE),
319
+ mean(els_first$age[els_first$treatment==0],na.rm=TRUE),
320
+ summary(lm(age~treatment, data=els_first))[[4]][2],
321
+ summary(lm(age~treatment, data=els_first))[[4]][8])
322
+
323
+ SummaryTables[14 ,] <- c("(14) Female Candidates (%)",
324
+ mean(els_first$female[els_first$treatment==1],na.rm=TRUE),
325
+ mean(els_first$female[els_first$treatment==0],na.rm=TRUE),
326
+ summary(lm(female~treatment, data=els_first))[[4]][2],
327
+ summary(lm(female~treatment, data=els_first))[[4]][8])
328
+
329
+ SummaryTables$treatment<-prettyNum(specify_decimal(as.numeric(SummaryTables$treatment),3),big.mark=",")
330
+ SummaryTables$control<-prettyNum(specify_decimal(as.numeric(SummaryTables$control),3),big.mark=",")
331
+ SummaryTables$difference<-prettyNum(specify_decimal(as.numeric(SummaryTables$difference),3),big.mark=",")
332
+ SummaryTables$pvalue<-as.numeric(SummaryTables$pvalue)
333
+
334
+ SummaryTables[15 ,] <- c("(15) Number of Elections",
335
+ prettyNum(length(unique(els_first$vrn[els_first$treatment==1])),,big.mark=","),
336
+ prettyNum(length(unique(els_first$vrn[els_first$treatment==0])),,big.mark=","),
337
+ "",
338
+ "")
339
+ SummaryTables$pvalue=NULL
340
+
341
+ colnames(SummaryTables) <- c(" ","Treated Elections","Control Elections","Difference")
342
+ S1<- capture.output(print.xtable(xtable(SummaryTables, digits=3, align="llccc",caption.placement='top',floating=TRUE,tocharFun=prettyNum),include.rownames =FALSE,hline.after=c(0,3,7,14,15)))
343
+
344
+ sink(file="PreTreatmentTable.tex")
345
+ cat(S1)
346
+ sink()
347
+
348
+
349
+ #### TABLE A3
350
+
351
+ elections_summary<-els[,list(numbercands, numberelected, cands_per_seat, perc_elected_partial, perc_elected_full, cands_perc_directors, cands_perc_entre, female, age, income_log, population_log,territory_log,lngdp,log_pop,resource_grppct,reg_urbanshare,log_mincome,reg_sharepensm,reg_pressfreedom,reg_dem_media,fn_budget_log,log_justice,audits_allpeople,ENFORCE)]
352
+
353
+ electionstable<-mod_stargazer(stargazer(elections_summary,covariate.labels=c(
354
+ "No. Candidates",
355
+ "No. Seats",
356
+ "Candidates per Seat",
357
+ "Part-Time Incumbents (\\%)",
358
+ "Full-Time Incumbents (\\%)",
359
+ "Firm Directors (\\%)",
360
+ "Entrepreneurs (\\%)",
361
+ "Female (\\%)",
362
+ "Mean Age",
363
+ "Revenue (log)","Population (log)","Territory (log)","Regional GDP (log)","Regional Population (log)","GDP from Natural Resources (\\%)","Urbanization (\\%)","Average Income (log)","Share of Pensioners (\\%)","GDF Press Freedom","TP Press Freedom","Regional Tax Agency Budget (log)","Law Enforcement Personnel (log)","Audit Risk","Enforcement Expenditures"),summary.stat=c("n","min","max","mean","median"),header=FALSE,digits=3,star.cutoffs = NA))
364
+ electionstable[19]<-paste("\\hline ",electionstable[19],sep="")
365
+ electionstable[22]<-paste("\\hline ",electionstable[22],sep="")
366
+
367
+ electionstable <-gsub("0.00000", "0", electionstable, fixed =TRUE)
368
+
369
+ sink(file="ElectionsStats.tex")
370
+ cat(electionstable)
371
+ sink()
372
+
373
+
374
+ ### FIGURE C1
375
+
376
+ els_first$treatment<-as.character(els_first$treatment)
377
+ els_first_r<-subset(els_first, is.na(territory_log)==FALSE & is.na(income_log)==FALSE & is.na(population_log)==FALSE)
378
+
379
+ est_r<-felm(cands_per_seat~numberelected_log+territory_log+income_log+population_log+electionyear|factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
380
+
381
+ els_first_r$residuals_per_seat<-est_r$residuals
382
+
383
+ diff<-felm(residuals_per_seat~treatment, data=els_first_r)
384
+ coef<-specify_decimal(diff$coefficients[2],3)
385
+ p<-specify_decimal(diff$pval[2],2)
386
+
387
+ plot_per_seat<-ggplot(els_first_r,aes(x = residuals_per_seat,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
388
+ theme(
389
+ plot.title=element_text(size=14,hjust = 0.65),
390
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
391
+ legend.text=element_text(size=12))+ggtitle("(a) Candidates Per Seat")
392
+
393
+ est_r<-felm(perc_elected_partial~numberelected_log+territory_log+income_log+population_log+electionyear+cands_per_seat+electionyear| factor(electionyear)+factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
394
+
395
+ els_first_r$residuals_partial<-est_r$residuals
396
+ diff<-felm(residuals_partial~treatment, data=els_first_r)
397
+ coef<-specify_decimal(diff$coefficients[2],3)
398
+ p<-specify_decimal(diff$pval[2],2)
399
+
400
+ plot_partial<-ggplot(els_first_r,aes(x = residuals_partial,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
401
+ theme(
402
+ plot.title=element_text(size=14,hjust = 0.65),
403
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
404
+ legend.text=element_text(size=12))+ggtitle("(b) Part-Time Incumbents (%)")
405
+
406
+ est_r<-felm(perc_elected_full~numberelected_log+territory_log+income_log+population_log+electionyear| factor(electionyear)+factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
407
+
408
+ els_first_r$residuals_full<-est_r$residuals
409
+ diff<-felm(residuals_full~treatment, data=els_first_r)
410
+ coef<-specify_decimal(diff$coefficients[2],3)
411
+ p<-specify_decimal(diff$pval[2],2)
412
+
413
+ plot_full<-ggplot(els_first_r,aes(x = residuals_full,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
414
+ theme(
415
+ plot.title=element_text(size=14,hjust = 0.65),
416
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
417
+ legend.text=element_text(size=12))+ggtitle("(c) Full-Time Incumbents (%)")+xlim(-.025,.025)
418
+
419
+ est_r<-felm(cands_perc_bus~numberelected_log+territory_log+income_log+population_log+electionyear| factor(electionyear)+factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
420
+
421
+ els_first_r$residuals_bus<-est_r$residuals
422
+ diff<-felm(residuals_bus~treatment, data=els_first_r)
423
+ coef<-specify_decimal(diff$coefficients[2],3)
424
+ p<-specify_decimal(diff$pval[2],2)
425
+
426
+ plot_bus<-ggplot(els_first_r,aes(x = residuals_bus,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
427
+ theme( plot.title=element_text(size=14,hjust = 0.65),
428
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
429
+ legend.text=element_text(size=12))+ggtitle("(d) Businesspeople (%)")
430
+
431
+ est_r<-felm(cands_perc_directors~numberelected_log+territory_log+income_log+population_log+electionyear| factor(electionyear)+factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
432
+
433
+ els_first_r$residuals_directors<-est_r$residuals
434
+ diff<-felm(residuals_directors~treatment, data=els_first_r)
435
+ coef<-specify_decimal(diff$coefficients[2],3)
436
+ p<-specify_decimal(diff$pval[2],2)
437
+
438
+ plot_directors<-ggplot(els_first_r,aes(x = residuals_directors,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
439
+ theme( plot.title=element_text(size=14,hjust = 0.65),
440
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
441
+ legend.text=element_text(size=12))+ggtitle("(e) Firm Directors (%)")
442
+
443
+ est_r<-felm(cands_perc_entre~numberelected_log+territory_log+income_log+population_log+electionyear| factor(electionyear)+factor(regionid)+factor(unit_type) |0 | regionid,data=els_first_r)
444
+
445
+ els_first_r$residuals_entre<-est_r$residuals
446
+ diff<-felm(residuals_entre~treatment, data=els_first_r)
447
+ coef<-specify_decimal(diff$coefficients[2],3)
448
+ coef<-ifelse(coef=="0",'0.001',coef)
449
+ p<-specify_decimal(diff$pval[2],2)
450
+
451
+ plot_entre<-ggplot(els_first_r,aes(x = residuals_entre,fill=treatment)) + geom_density(alpha=0.25)+scale_fill_brewer(palette = "Set1",name="",breaks=c("0", "1"),labels=c("Control ", "Treatment "))+xlab(paste0("\nResiduals\n\nDiff: ",coef,' p: ',p,"\n",sep=""))+ylab("Density\n")+
452
+ theme( plot.title=element_text(size=14,hjust = 0.65),
453
+ axis.text=element_text(size=12),axis.title=element_text(size=12),
454
+ legend.text=element_text(size=12))+ggtitle("(f) Entrepreneurs (%)")
455
+
456
+ pdf(file = "ResidualsHistograms.pdf", height = 12, width = 12)
457
+ multiplot(plot_per_seat,plot_full,plot_directors,plot_partial,plot_bus,plot_entre,cols=2)
458
+ dev.off()
459
+
460
+
461
+
462
+ ### TABLE D1
463
+
464
+ cands_e<-subset(cands, elected_izbirkom==1)
465
+
466
+ ### Only take candidates that are in the first sequence and get their treatment status
467
+ els_first_t<-els_first[,list(vrn,treatment,unit_type,population_log,territory_log,income_log)]
468
+
469
+ cands_e<-merge(cands_e, els_first_t,by=c("vrn"))
470
+
471
+ ### Create indicator for whether candidate ran again
472
+ g_ran_again<-cands[cands$vrn %in% els_second$vrn]
473
+
474
+ g_ran_again<-g_ran_again[,list(fullname, birthyear,oktmo,elected_izbirkom,nextparty=party)]
475
+ g_ran_again$reran<-1
476
+ setnames(g_ran_again,"elected_izbirkom","elected_izbirkom_again")
477
+
478
+ cands_e<-merge(cands_e, g_ran_again,by=c("fullname","oktmo","birthyear"),all.x=TRUE,all.y=FALSE)
479
+ cands_e$reran[is.na(cands_e$reran)==TRUE]=0
480
+
481
+ ### Demographics
482
+
483
+ cands_e$log_age<-log(cands_e$age)
484
+ cands_e$numberelected_log<-log(cands_e$numberelected)
485
+ cands_e$numbercands_log<-log(cands_e$numbercands)
486
+
487
+ cands_e$systemic_opposition<-ifelse(cands_e$party=="kprf" | cands_e$party=="ldpr" | cands_e$party=="sr" | cands_e$party=="rod",1,0)
488
+ cands_e$other_opposition<-ifelse(cands_e$party=="patriots" | cands_e$party=="oth" | cands_e$party=="yab" ,1,0)
489
+ cands_e$ur<-ifelse(cands_e$party=="ur" ,1,0)
490
+ cands_e$nextparty_ur<-ifelse(cands_e$nextparty=="ur" ,1,0)
491
+
492
+ #### MODELS
493
+
494
+ est1<-felm(reran~treatment | factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=cands_e)
495
+
496
+ est2<-felm(reran~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy +ur + systemic_opposition + other_opposition| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=cands_e)
497
+
498
+ est3<-felm(reran~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy +ur + systemic_opposition + other_opposition+numberelected_log + numbercands_log + population_log + territory_log + income_log| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=cands_e)
499
+
500
+ est4<-felm(elected_izbirkom_again~treatment | factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e,reran==1))
501
+
502
+ est5<-felm(elected_izbirkom_again~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy +ur + systemic_opposition + other_opposition| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e,reran==1))
503
+
504
+ est6<-felm(elected_izbirkom_again~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy +ur + systemic_opposition + other_opposition+numberelected_log + numbercands_log + population_log + territory_log + income_log| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e,reran==1))
505
+
506
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6, omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group","Female","Age (log)","Businessperson","Full-time Incumbent (previous term)","Part-time Incumbent (previous term)","Ruling Party","Systemic Opposition","Other Opposition","Council Size","No. Cands (first election)","Population (log)","Territory (log)","Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-10pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Incumbent Re-ran in Second Election","Incumbent Won in Second Election"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
507
+
508
+ ### Layout
509
+
510
+ Region <- list(c("Region, Year Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
511
+
512
+ UnitType <- list(c("Unit Type Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
513
+
514
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
515
+ newlayout=" D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
516
+
517
+ t_ro[9]<-paste(t_ro[9],"\\cmidrule(l{15pt}r{15pt}){2-4}\\cmidrule(l{15pt}r{15pt}){5-7}\\\\",sep="")
518
+
519
+ t_ro[11]<-"\\hline \\bigstrut "
520
+ t_ro <-gsub("\\multicolumn{7}{r}{} \\\\ ","", t_ro, fixed =TRUE)
521
+
522
+ sink(file="Appendix_Reran_andWon.tex")
523
+ cat(t_ro)
524
+ sink()
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+ ##### TABLE D2
533
+
534
+ est1<-felm(reran~treatment | factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1))
535
+
536
+ est2<-felm(reran~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1))
537
+
538
+ est3<-felm(reran~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy+numberelected_log + numbercands_log + population_log + territory_log + income_log| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1))
539
+
540
+ est4<-felm(elected_izbirkom_again~treatment | factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1 & reran==1))
541
+
542
+ est5<-felm(elected_izbirkom_again~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1 & reran==1))
543
+
544
+ est6<-felm(elected_izbirkom_again~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy+numberelected_log + numbercands_log + population_log + territory_log + income_log| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1 & reran==1))
545
+
546
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6, omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group","Female","Age (log)","Businessperson","Full-time Incumbent (previous term)","Part-time Incumbent (previous term)","Council Size","No. Cands (first election)","Population (log)","Territory (log)","Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-10pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Incumbent Re-ran in Second Election","Incumbent Won in Second Election"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
547
+
548
+ ### Layout
549
+ Region <- list(c("Region, Year Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
550
+
551
+ UnitType <- list(c("Unit Type Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
552
+
553
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
554
+ newlayout=" D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
555
+
556
+ t_ro[9]<-paste(t_ro[9],"\\cmidrule(l{15pt}r{15pt}){2-4}\\cmidrule(l{15pt}r{15pt}){5-7}\\\\",sep="")
557
+
558
+ t_ro[11]<-"\\hline \\bigstrut "
559
+ t_ro <-gsub("\\multicolumn{7}{r}{} \\\\ ","", t_ro, fixed =TRUE)
560
+
561
+ sink(file="Appendix_Reran_onlyUR.tex")
562
+ cat(t_ro)
563
+ sink()
564
+
565
+
566
+
567
+
568
+ ##### TABLE D3
569
+
570
+ est1<-felm(nextparty_ur~treatment | factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1 & reran==1))
571
+
572
+ est2<-felm(nextparty_ur~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1& reran==1))
573
+
574
+ est3<-felm(nextparty_ur~treatment + female + log_age + businessperson + onlyincumbent + partial_deputy+numberelected_log + numbercands_log + population_log + territory_log + income_log| factor(regionid)+ factor(unit_type) + factor(electionyear)|0 | regionid,data=subset(cands_e, ur==1& reran==1))
575
+
576
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group","Female","Age (log)","Businessperson","Full-time Incumbent (previous term)","Part-time Incumbent (previous term)","Council Size","No. Cands (first election)","Population (log)","Territory (log)","Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-10pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("UR Incumbent Re-Ran with UR"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
577
+
578
+
579
+ t_ro <-gsub("\\multicolumn{4}{r}{} \\\\ ","", t_ro, fixed =TRUE)
580
+
581
+ sink(file="Appendix_Reran_PartySwitching.tex")
582
+ cat(t_ro)
583
+ sink()
584
+
585
+
586
+ ###### TABLE D4
587
+
588
+ est1<-felm(perc_elected_partial~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type)|0 | oktmo+ electionyear,data=els, psdef=FALSE)
589
+
590
+ est2<-felm(perc_elected_partial~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
591
+
592
+ est3<-felm(perc_elected_partial~after + interactedtreatment + electionyear| factor(oktmo) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
593
+
594
+ est4<-felm(perc_elected_full~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
595
+
596
+ est5<-felm(perc_elected_full~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
597
+
598
+ est6<-felm(perc_elected_full~after + interactedtreatment + electionyear| factor(oktmo) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
599
+
600
+ est7<-felm(cands_per_seat~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
601
+
602
+ est8<-felm(cands_per_seat~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
603
+
604
+ est9<-felm(cands_per_seat~after + interactedtreatment + electionyear| factor(oktmo) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
605
+
606
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9, omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Full-Time Incumbents (\\%)","Candidates per Seat"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
607
+
608
+ ### Layout
609
+
610
+ Region <- list(c("Unit Type, Region Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}"))
611
+
612
+ UnitType <- list(c("Unit Type Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}"))
613
+
614
+ MuniType <- list(c("Municipality Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}"))
615
+
616
+ LinearTrend <- list(c("Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
617
+
618
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
619
+ newlayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
620
+
621
+ t_ro[11]<-"\\hline \\bigstrut "
622
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
623
+
624
+ t_ro <-gsub("\\multicolumn{10}{r}{} \\\\ ","", t_ro, fixed =TRUE)
625
+
626
+ sink(file="Main_AvgCands_MuniCluster.tex")
627
+ cat(t_ro)
628
+ sink()
629
+
630
+
631
+ ##### TABLE D5
632
+
633
+ est1<-felm(cands_perc_bus~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
634
+
635
+ est2<-felm(cands_perc_bus~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
636
+
637
+ est3<-felm(cands_perc_bus~after + interactedtreatment + electionyear| factor(oktmo) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
638
+
639
+ est4<-felm(cands_perc_directors~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
640
+
641
+ est5<-felm(cands_perc_directors~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
642
+
643
+ est6<-felm(cands_perc_directors~after + interactedtreatment + electionyear| factor(oktmo)|0 | oktmo+ electionyear,data=els, psdef=FALSE)
644
+
645
+ est7<-felm(cands_perc_entre~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
646
+
647
+ est8<-felm(cands_perc_entre~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
648
+
649
+ est9<-felm(cands_perc_entre~after + interactedtreatment + electionyear| factor(oktmo) |0 | oktmo+ electionyear,data=els, psdef=FALSE)
650
+
651
+ t_ro<-mod_stargazer(stargazer(est7,est8,est9,est4,est5,est6,est1,est2,est3, omit="electionyear", keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("All Businesspeople (\\%)","Firm Directors (\\%)","All Businesspeople (\\%)","Individual Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
652
+
653
+ t_ro[11]<-"\\hline \\bigstrut "
654
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
655
+ t_ro <-gsub("\\multicolumn{10}{r}{} \\\\ ","", t_ro, fixed =TRUE)
656
+
657
+ sink(file="Main_Business_MuniCluster.tex")
658
+ cat(t_ro)
659
+ sink()
660
+
661
+
662
+
663
+ ##### TABLE D6
664
+
665
+ est1<-felm(perc_elected_partial~interactedtreatment + treatment + after+ electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 2))
666
+
667
+ est2<-felm(perc_elected_partial~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 3))
668
+
669
+ est3<-felm(perc_elected_partial~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 4))
670
+
671
+ est4<-felm(perc_elected_full~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 2))
672
+
673
+ est5<-felm(perc_elected_full~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 3))
674
+
675
+ est6<-felm(perc_elected_full~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 4))
676
+
677
+ est7<-felm(cands_perc_entre~interactedtreatment + treatment + after+population_log + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 2))
678
+
679
+ est8<-felm(cands_perc_entre~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 3))
680
+
681
+ est9<-felm(cands_perc_entre~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 4))
682
+
683
+ est10<-felm(cands_perc_directors~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 2))
684
+
685
+ est11<-felm(cands_perc_directors~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 3))
686
+
687
+ est12<-felm(cands_perc_directors~interactedtreatment + treatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, reg_pressfreedom == 4))
688
+
689
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9,est10,est11,est12, keep=c("interactedtreatment","after","population_log"),keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Second Period Election","Mun. Population (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-15pt", align=TRUE,dep.var.labels.include = FALSE, column.labels = c("Low","Medium","High","Low","Medium","High","Low","Medium","High","Low","Medium","High"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,UnitType),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
690
+
691
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
692
+ newlayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}|| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
693
+
694
+
695
+ Region <- list(c("Unit Type, Region Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
696
+
697
+ UnitType <- list(c("Linear Time Trends","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
698
+
699
+ t_ro[11]<-"\\hline \\bigstrut "
700
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
701
+ t_ro <-gsub("\\multicolumn{7}{r}{} \\\\ ","", t_ro, fixed =TRUE)
702
+
703
+ t_ro[7]<-" \\textbf{Outcome:}& \\multicolumn{3}{c}{Part-Time Incumbents (\\%)} & \\multicolumn{3}{c}{Full-Time Incumbents (\\%)} & \\multicolumn{3}{c}{Independent Entrepreneurs (\\%)} & \\multicolumn{3}{c}{Firm Directors (\\%)} \\\\ \\cmidrule(l{15pt}r{15pt}){2-4}\\cmidrule(l{15pt}r{15pt}){5-7}\\cmidrule(l{15pt}r{15pt}){8-10}\\cmidrule(l{15pt}r{15pt}){11-13}\\\\"
704
+ t_ro[9]<-paste("\\textbf{Level of Press Freedom:}",t_ro[9],sep="")
705
+ sink(file="Terciles_PressFreedom.tex")
706
+ cat(t_ro)
707
+ sink()
708
+
709
+
710
+
711
+
712
+ ###### TABLE D7
713
+
714
+ est1<-felm(perc_elected_partial~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log <= 13.64463))
715
+
716
+ est2<-felm(perc_elected_partial~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log > 13.64463 & fn_budget_log<13.95877))
717
+
718
+ est3<-felm(perc_elected_partial~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log>=13.95877))
719
+
720
+ est4<-felm(perc_elected_full~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log <= 13.64463))
721
+
722
+ est5<-felm(perc_elected_full~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log > 13.64463 & fn_budget_log<13.95877))
723
+
724
+ est6<-felm(perc_elected_full~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log>=13.95877))
725
+
726
+ est7<-felm(cands_perc_entre~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log <= 13.64463))
727
+
728
+ est8<-felm(cands_perc_entre~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log > 13.64463 & fn_budget_log<13.95877))
729
+
730
+ est9<-felm(cands_perc_entre~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log>=13.95877))
731
+
732
+ est10<-felm(cands_perc_directors~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log <= 13.64463))
733
+
734
+ est11<-felm(cands_perc_directors~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log > 13.64463 & fn_budget_log<13.95877))
735
+
736
+ est12<-felm(cands_perc_directors~interactedtreatment + after + electionyear| factor(oktmo) |0 | regionid + electionyear,data=subset(els, fn_budget_log>=13.95877))
737
+
738
+ Region <- list(c("Unit Type, Region Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
739
+
740
+ UnitType <- list(c("Linear Time Trends","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
741
+
742
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
743
+ newlayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}|| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
744
+
745
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9,est10,est11,est12, keep=c("interactedtreatment","after","population_log"),keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Second Period Election","Mun. Population (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-15pt", align=TRUE,dep.var.labels.include = FALSE, column.labels = c("Low","Medium","High","Low","Medium","High","Low","Medium","High","Low","Medium","High"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Region,UnitType),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
746
+
747
+ t_ro[11]<-"\\hline \\bigstrut "
748
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
749
+ t_ro <-gsub("\\multicolumn{7}{r}{} \\\\ ","", t_ro, fixed =TRUE)
750
+
751
+ t_ro[7]<-" \\textbf{Outcome:}& \\multicolumn{3}{c}{Part-Time Incumbents (\\%)} & \\multicolumn{3}{c}{Full-Time Incumbents (\\%)} & \\multicolumn{3}{c}{Independent Entrepreneurs (\\%)} & \\multicolumn{3}{c}{Firm Directors (\\%)} \\\\ \\cmidrule(l{15pt}r{15pt}){2-4}\\cmidrule(l{15pt}r{15pt}){5-7}\\cmidrule(l{15pt}r{15pt}){8-10}\\cmidrule(l{15pt}r{15pt}){11-13}\\\\"
752
+ t_ro[9]<-paste("\\textbf{Law Enforcement Capacity:}",t_ro[9],sep="")
753
+ sink(file="Terciles_AuditRisk.tex")
754
+ cat(t_ro)
755
+ sink()
756
+
757
+
758
+
759
+
760
+ ##### TABLE D8
761
+
762
+ est1<-felm(perc_elected_partial~treatment*after*kgiscore+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
763
+
764
+ est2<-lmer(perc_elected_partial~treatment*after*kgiscore+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
765
+
766
+ est3<-felm(perc_elected_partial~treatment*after*audits_allpeople+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
767
+
768
+ est4<-lmer(perc_elected_partial~treatment*after*audits_allpeople+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
769
+
770
+ est5<-felm(perc_elected_partial~treatment*after*ENFORCE+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
771
+
772
+ est6<-lmer(perc_elected_partial~treatment*after*ENFORCE+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
773
+
774
+ est7<-felm(cands_perc_entre~treatment*after*kgiscore+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
775
+
776
+ est8<-lmer(cands_perc_entre~treatment*after*kgiscore+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
777
+
778
+ est9<-felm(cands_perc_entre~treatment*after*audits_allpeople+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
779
+
780
+ est10<-lmer(cands_perc_entre~treatment*after*audits_allpeople+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
781
+
782
+ est11<-felm(cands_perc_entre~treatment*after*ENFORCE+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
783
+
784
+ est12<-lmer(cands_perc_entre~treatment*after*ENFORCE+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
785
+
786
+ Muni <- list(c("Regional Covariates","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
787
+
788
+ Region <- list(c("Municipality FE; Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}"))
789
+
790
+ MLM <- list(c("Unit Type FE; Region RE","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{Yes}}"))
791
+
792
+
793
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9,est10,est11,est12, keep.stat=c("n","rsq"),dep.var.caption="",keep=c("treatment","after","treatment:after:kgiscore","treatment:after:fn_budget_log" ,"treatment:after:log_justice_salary"),
794
+ covariate.labels=c("Treatment Group","Second Election","
795
+ Treatment Group * Second Election",
796
+ "Treatment Group * KGI Score",
797
+ "Second Election * KGI Score",
798
+ "\\textbf{Treatment Group * Second Election * KGI Score}",
799
+ "Treatment Group * Audit Risk",
800
+ "Second Election * Audit Risk",
801
+ "\\textbf{Treatment Group * Second Election * Audit Risk}",
802
+
803
+ "Treatment Group * Enforcement Exp.",
804
+ "Second Election *Enforcement Exp. (log)",
805
+ "\\textbf{Treatment Group * Second Election * Enforcement Exp.}" ),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-20pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Independent Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Muni,Region,MLM),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
806
+
807
+ t_ro[9]<-paste(t_ro[9],"\\cmidrule(l{15pt}r{15pt}){2-7}\\cmidrule(l{15pt}r{15pt}){8-13}\\\\",sep="")
808
+
809
+ t_ro <-gsub("\\multicolumn{13}{r}{} \\\\ ","", t_ro, fixed =TRUE)
810
+
811
+ t_ro <-gsub("(0.000)","", t_ro, fixed =TRUE)
812
+
813
+ sink(file="Heterogeneity_EnforcementRobustness.tex")
814
+ cat(t_ro)
815
+ sink()
816
+
817
+
818
+
819
+
820
+ ##### TABLE D9
821
+
822
+ est1<-lmer(perc_elected_partial~treatment*after*reg_pressfreedom+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
823
+
824
+ est2<-lmer(perc_elected_partial~treatment*after*reg_dem_media+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
825
+
826
+ est3<-lmer(perc_elected_partial~treatment*after*fn_budget_log+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
827
+
828
+ est4<-lmer(perc_elected_partial~treatment*after*log_justice+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
829
+
830
+ est5<-lmer(cands_perc_entre~treatment*after*reg_pressfreedom+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
831
+
832
+ est6<-lmer(cands_perc_entre~treatment*after*reg_dem_media+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
833
+
834
+ est7<-lmer(cands_perc_entre~treatment*after*fn_budget_log+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
835
+
836
+ est8<-lmer(cands_perc_entre~treatment*after*log_justice+electionyear+ lngdp + log_pop + resource_grppct + reg_urbanshare + log_mincome + reg_sharepensm+factor(unit_type) + (1|regionid),data=els)
837
+
838
+
839
+ Muni <- list(c("Regional Covariates, Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
840
+
841
+ Region <- list(c("Unit Type FE; Region RE","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
842
+
843
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8, keep.stat=c("n","rsq"),dep.var.caption="",keep=c("treatment","after","treatment:after:reg_pressfreedom","treatment:after:reg_dem_media" ,"treatment:after:fn_budget_log","treatment:after:log_justice"),
844
+ covariate.labels=c("Treatment Group","Second Election","Treatment Group * Second Election","Treatment Group * GDF Press Freedom",
845
+ "Second Election * GDF Press Freedom",
846
+ "\\textbf{Treatment Group * Second Election * GDF Press Freedom}",
847
+ "Treatment Group * TP Press Freedom",
848
+ "Second Election * TP Press Freedom",
849
+ "\\textbf{Treatment Group * Second Election * TP Press Freedom}",
850
+ "Treatment Group * Regional Tax Agency Budget",
851
+ "Second Election * Regional Tax Agency Budget",
852
+ "\\textbf{Treatment Group * Second Election * Regional Tax Agency Budget}",
853
+ "Treatment Group * Law Enforcement Personnel",
854
+ "Second Election * Law Enforcement Personnel",
855
+ "\\textbf{Treatment Group * Second Election * Law Enforcement Personnel}"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-20pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Independent Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(Muni,Region),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
856
+
857
+ t_ro[9]<-paste(t_ro[9],"\\cmidrule(l{15pt}r{15pt}){2-5}\\cmidrule(l{15pt}r{15pt}){6-9}\\\\",sep="")
858
+
859
+ t_ro <-gsub("\\multicolumn{9}{r}{} \\\\ ","", t_ro, fixed =TRUE)
860
+
861
+
862
+ sink(file="MultilevelModels.tex")
863
+ cat(t_ro)
864
+ sink()
865
+
866
+
867
+
868
+
869
+ ###### TABLE D10
870
+
871
+ els[,minlevelincumbency:=min(perc_elected_partial),by="oktmo"]
872
+
873
+ est1<-felm(perc_elected_partial~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els), psdef=FALSE)
874
+
875
+ est2<-felm(perc_elected_partial~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0), psdef=FALSE)
876
+
877
+ est3<-felm(perc_elected_partial~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0.1), psdef=FALSE)
878
+
879
+ est4<-felm(perc_elected_partial~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0.2), psdef=FALSE)
880
+
881
+ est5<-felm(perc_elected_full~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els), psdef=FALSE)
882
+
883
+ est6<-felm(perc_elected_full~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0), psdef=FALSE)
884
+
885
+ est7<-felm(perc_elected_full~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0.1), psdef=FALSE)
886
+
887
+ est8<-felm(perc_elected_full~interactedtreatment + after + electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els,minlevelincumbency>0.2), psdef=FALSE)
888
+
889
+ MuniType <- list(c("Municipality Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
890
+
891
+ LinearTrend <- list(c("Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
892
+
893
+ MinIncumbency <- list(c("Minimum Incumbent Constraint","\\multicolumn{1}{c}{\\text{None}}","\\multicolumn{1}{c}{\\text{0\\%}}","\\multicolumn{1}{c}{\\text{10\\%}}","\\multicolumn{1}{c}{\\text{20\\%}}","\\multicolumn{1}{c}{\\text{None}}","\\multicolumn{1}{c}{\\text{0\\%}}","\\multicolumn{1}{c}{\\text{10\\%}}","\\multicolumn{1}{c}{\\text{20\\%}}"))
894
+
895
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8, omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-5pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-Time Incumbents (\\%)","Full-Time Incumbents (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(MinIncumbency,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs = NA))
896
+
897
+ t_ro[11]<-"\\hline \\bigstrut "
898
+
899
+ originallayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
900
+ newlayout="D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}| D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3}"
901
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
902
+ t_ro <-gsub("\\multicolumn{9}{r}{} \\\\ ","", t_ro, fixed =TRUE)
903
+
904
+ sink(file="Appendix_IncumbencyMinimum.tex")
905
+ cat(t_ro)
906
+ sink()
907
+
908
+
909
+
910
+ ###### TABLE D11
911
+
912
+ #### Do this because Stargazer isn't great at removing certain variables
913
+ els[,treatment2:=treatment]
914
+
915
+ MuniType <- list(c("Municipality Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
916
+
917
+ LinearTrend <- list(c("Linear Time Trend","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
918
+
919
+ est1<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
920
+
921
+ est2<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, LowURSeats==0),psdef=FALSE)
922
+
923
+ est3<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, LowURSeats==1),psdef=FALSE)
924
+
925
+ est4<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, republic==1),psdef=FALSE)
926
+
927
+ est5<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, republic==0),psdef=FALSE)
928
+
929
+ est6<-felm(perc_elected_partial~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, FarCrimea == 1),psdef=FALSE)
930
+
931
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6, omit=c("electionyear","treatment2"), keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Second Period Election"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="5pt", align=TRUE, dep.var.labels.include=TRUE,column.labels = c("Full Sample","Low UR Seats","High UR Seats","Ethnic Republic","Not Ethnic Republic","No 2017"), column.separate = c(1,1,1,1,1), dep.var.labels=c("Part-Time Incumbents (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
932
+
933
+ t_ro <-gsub("\\multicolumn{6}{r}{} \\\\ ","", t_ro, fixed =TRUE)
934
+
935
+ sink(file="Party_Partial.tex")
936
+ cat(t_ro)
937
+ sink()
938
+
939
+
940
+ ####### TABLE D12
941
+
942
+
943
+ est1<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=els,psdef=FALSE)
944
+
945
+ est2<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, LowURSeats==0),psdef=FALSE)
946
+
947
+ est3<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, LowURSeats==1),psdef=FALSE)
948
+
949
+ est4<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, republic==1),psdef=FALSE)
950
+
951
+ est5<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, republic==0),psdef=FALSE)
952
+
953
+ est6<-felm(cands_perc_entre~interactedtreatment + after+electionyear | factor(oktmo) |0 | regionid + electionyear,data=subset(els, FarCrimea == 1),psdef=FALSE)
954
+
955
+
956
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6, omit=c("electionyear","treatment2"), keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Second Period Election"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="5pt", align=TRUE, dep.var.labels.include=TRUE,column.labels = c("Full Sample","Low UR Seats","High UR Seats","Ethnic Republic","Not Ethnic Republic","No 2017"), column.separate = c(1,1,1,1,1), dep.var.labels=c("Individual Entrepreneurs (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
957
+
958
+ t_ro <-gsub("\\multicolumn{6}{r}{} \\\\ ","", t_ro, fixed =TRUE)
959
+
960
+ sink(file="Party_Entrepreneur.tex")
961
+ cat(t_ro)
962
+ sink()
963
+
964
+
965
+
966
+
967
+
968
+ ####### TABLE E1
969
+
970
+ est1<-felm(partialname_per_seat~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
971
+
972
+ est2<-felm(partialname_per_seat~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
973
+
974
+ est3<-felm(partialname_per_seat~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
975
+
976
+ est4<-felm(business_per_seat~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
977
+
978
+ est5<-felm(business_per_seat~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
979
+
980
+ est6<-felm(business_per_seat~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
981
+
982
+ est7<-felm(urwins_per_seat~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
983
+
984
+ est8<-felm(urwins_per_seat~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
985
+
986
+ est9<-felm(urwins_per_seat~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
987
+
988
+ est10<-felm(incumbent_success_rate~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
989
+
990
+ est11<-felm(incumbent_success_rate~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
991
+
992
+ est12<-felm(incumbent_success_rate~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
993
+
994
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,est9,est10,est11,est12, omit="electionyear", keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Part-time Inc. Winners (\\%)","Bus. Winners (\\%)","UR Winners (\\%)","Inc. Success (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
995
+
996
+ t_ro[11]<-"\\hline \\bigstrut "
997
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
998
+ t_ro <-gsub("\\multicolumn{13}{r}{} \\\\ ","", t_ro, fixed =TRUE)
999
+
1000
+ sink(file="Main_Winners.tex")
1001
+ cat(t_ro)
1002
+ sink()
1003
+
1004
+
1005
+ ####### TABLE E2
1006
+
1007
+ est1<-felm(age~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
1008
+
1009
+ est2<-felm(age~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
1010
+
1011
+ est3<-felm(age~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
1012
+
1013
+ est4<-felm(female~interactedtreatment + treatment + after+numberelected_log + electionyear|factor(regionid)+ factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
1014
+
1015
+ est5<-felm(female~interactedtreatment + treatment + after+numberelected_log+population_log+territory_log+income_log + electionyear| factor(regionid)+factor(unit_type) |0 | regionid + electionyear,data=els, psdef=FALSE)
1016
+
1017
+ est6<-felm(female~after + interactedtreatment + electionyear| factor(oktmo) |0 | regionid + electionyear,data=els, psdef=FALSE)
1018
+
1019
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6, omit="electionyear", keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Treatment Group","Second Period Election","No. Seats (log)","Mun. Population (log)","Mun. Territory (log)","Mun. Revenue (log)"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-18pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c("Mean Age","Female (\\%)","Education Level"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs=NA))
1020
+
1021
+ t_ro[11]<-"\\hline \\bigstrut "
1022
+ t_ro <-gsub(originallayout, newlayout, t_ro, fixed =TRUE)
1023
+ t_ro <-gsub("\\multicolumn{7}{r}{} \\\\ ","", t_ro, fixed =TRUE)
1024
+
1025
+ sink(file="Main_Demo.tex")
1026
+ cat(t_ro)
1027
+ sink()
1028
+
1029
+
1030
+
1031
+ ###### TABLE E3
1032
+
1033
+ est1<-felm(cands_perc_official~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1034
+
1035
+ est2<-felm(cands_perc_doctor~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1036
+
1037
+ est3<-felm(cands_perc_teacher~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1038
+
1039
+ est4<-felm(cands_perc_force~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1040
+
1041
+ est5<-felm(cands_perc_accountant~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1042
+
1043
+ est6<-felm(cands_perc_ngo~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1044
+
1045
+ est7<-felm(cands_perc_lowerclass~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1046
+
1047
+ est8<-felm(cands_perc_notwork~after + interactedtreatment+electionyear| factor(oktmo) |0 | regionid,data=els)
1048
+
1049
+ Region <- list(c("Region Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}"))
1050
+
1051
+ UnitType <- list(c("Unit Type Fixed Effects","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}","\\multicolumn{1}{c}{\\text{No}}"))
1052
+
1053
+ MuniType <- list(c("Municipality Fixed Effects","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}","\\multicolumn{1}{c}{\\text{Yes}}"))
1054
+
1055
+ t_ro<-mod_stargazer(stargazer(est1,est2,est3,est4,est5,est6,est7,est8,omit="electionyear",keep.stat=c("n","rsq"),dep.var.caption="",covariate.labels=c("Treatment Group * Second Period Election","Second Period Election"),order=c("interactedtreatment","after"),ci=FALSE, ci.level=0.95, digits=3, column.sep.width="-5pt", align=TRUE, dep.var.labels.include=TRUE, dep.var.labels=c(
1056
+ "Government (\\%)",
1057
+ "Health Care (\\%)",
1058
+ "Education (\\%)",
1059
+ "Law Enforcement (\\%)",
1060
+ "Professional (\\%)",
1061
+ "Civil Society (\\%)",
1062
+ "Blue Collar (\\%)",
1063
+ "Unemployed (\\%)"),font.size="small",model.names=FALSE,header=FALSE,add.lines=c(UnitType,Region,MuniType,LinearTrend),out.header=FALSE,notes.append=FALSE, notes.label="",notes=c(""),star.cutoffs = NA))
1064
+
1065
+ t_ro <-gsub("\\multicolumn{9}{r}{} \\\\ ","", t_ro, fixed =TRUE)
1066
+
1067
+ sink(file="ProfessionsDiD.tex")
1068
+ cat(t_ro)
1069
+ sink()
1070
+ my_log <- file("my_log.txt")
1071
+ sink(my_log, append = TRUE, type = "output")
1072
+ sink(my_log, append=TRUE, type="message")
1073
+
1074
+ con <- file("test.log")
1075
+ sink(con, append=TRUE)
38/replication_package/cands.Rda ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4b934d9b6acb79b192ab9aab0cc4da8e546ebb9bc855b30791e6907d59b16e
3
+ size 23356019
38/replication_package/els.Rda ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7b5972081d468fe0e5cec1e64e0bb18eabc313715f7c56c5d488b4ee22855f0
3
+ size 1466102
38/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdd6a0d3fa3c58213acec4b2949638f45635114bb4a10cecec2ecb3b63853c84
3
+ size 15