anonymous-submission-acl2025 commited on
Commit
09cbc2c
·
1 Parent(s): 37a5a8b
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 23/paper.pdf +3 -0
  2. 23/replication_package/Code/Manekin_Mitts_Effective_for_Whom_Replication.R +128 -0
  3. 23/replication_package/Code/replicate_fig_1.R +62 -0
  4. 23/replication_package/Code/replicate_fig_10.R +36 -0
  5. 23/replication_package/Code/replicate_fig_3.R +204 -0
  6. 23/replication_package/Code/replicate_fig_4.R +94 -0
  7. 23/replication_package/Code/replicate_fig_6.R +70 -0
  8. 23/replication_package/Code/replicate_fig_7.R +76 -0
  9. 23/replication_package/Code/replicate_fig_8.R +36 -0
  10. 23/replication_package/Code/replicate_fig_9.R +35 -0
  11. 23/replication_package/Code/replicate_fig_A1.R +25 -0
  12. 23/replication_package/Code/replicate_fig_A10.R +68 -0
  13. 23/replication_package/Code/replicate_fig_A11.R +68 -0
  14. 23/replication_package/Code/replicate_fig_A12.R +50 -0
  15. 23/replication_package/Code/replicate_fig_A2.R +36 -0
  16. 23/replication_package/Code/replicate_fig_A3.R +11 -0
  17. 23/replication_package/Code/replicate_fig_A6.R +110 -0
  18. 23/replication_package/Code/replicate_fig_A7.R +133 -0
  19. 23/replication_package/Code/replicate_fig_A8.R +150 -0
  20. 23/replication_package/Code/replicate_fig_A9.R +149 -0
  21. 23/replication_package/Code/replicate_table_1.R +24 -0
  22. 23/replication_package/Code/replicate_table_4.R +22 -0
  23. 23/replication_package/Code/replicate_table_A1.R +15 -0
  24. 23/replication_package/Code/replicate_table_A10.R +9 -0
  25. 23/replication_package/Code/replicate_table_A11.R +9 -0
  26. 23/replication_package/Code/replicate_table_A13.R +15 -0
  27. 23/replication_package/Code/replicate_table_A14.R +194 -0
  28. 23/replication_package/Code/replicate_table_A15.R +25 -0
  29. 23/replication_package/Code/replicate_table_A16.R +102 -0
  30. 23/replication_package/Code/replicate_table_A17.R +15 -0
  31. 23/replication_package/Code/replicate_table_A18.R +11 -0
  32. 23/replication_package/Code/replicate_table_A2.R +14 -0
  33. 23/replication_package/Code/replicate_table_A3.R +20 -0
  34. 23/replication_package/Code/replicate_table_A4.R +17 -0
  35. 23/replication_package/Code/replicate_table_A5.R +45 -0
  36. 23/replication_package/Code/replicate_table_A6.R +11 -0
  37. 23/replication_package/Code/replicate_table_A7.R +8 -0
  38. 23/replication_package/Code/replicate_table_A8.R +10 -0
  39. 23/replication_package/Code/replicate_table_A9.R +11 -0
  40. 23/replication_package/Data/EBCR_EPR_NAVCO2.rdata +3 -0
  41. 23/replication_package/Data/NAVCO2.rdata +3 -0
  42. 23/replication_package/Data/NAVCO2_EPR.rdata +3 -0
  43. 23/replication_package/Data/isr_survey_text_analysis_arab.rdata +3 -0
  44. 23/replication_package/Data/isr_survey_text_analysis_eth.rdata +3 -0
  45. 23/replication_package/Data/isr_survey_wave1.rdata +3 -0
  46. 23/replication_package/Data/isr_survey_wave2.rdata +3 -0
  47. 23/replication_package/Data/us_survey_text_analysis.rdata +3 -0
  48. 23/replication_package/Data/us_survey_wave1.rdata +3 -0
  49. 23/replication_package/Data/us_survey_wave2.rdata +3 -0
  50. 23/replication_package/Figures/fig_1.pdf +3 -0
23/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af1909814ddf0ce5ad9c91bd3cdfae0676eb304e8c92c438d56fd9e8d77a407f
3
+ size 2076097
23/replication_package/Code/Manekin_Mitts_Effective_for_Whom_Replication.R ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ----------------------------------------------------------------------
2
+ # Replication for "Effective for Whom? Ethnic Identity and Nonviolent Resistance"
3
+ # Devorah Manekin and Tamar Mitts
4
+ # American Political Science Review (2021)
5
+ # ----------------------------------------------------------------------
6
+ # This code replicates the tables figures in the article and the appendix.
7
+ # It requires the packages listed below. If not already installed,
8
+ # use the function install.packages() to install them.
9
+ # ----------------------------------------------------------------------
10
+
11
+ rm(list=ls())
12
+
13
+ library(lemon)
14
+ library(stargazer)
15
+ library(xtable)
16
+ library(fastDummies)
17
+ library(tidyr)
18
+ library(gridExtra)
19
+ library(stm)
20
+ library(quanteda)
21
+ library(ggplot2)
22
+ library(dotwhisker)
23
+ library(ggeffects)
24
+ library(estimatr)
25
+ library(corrplot)
26
+
27
+ # SET WORKING DIRECTORY
28
+ setwd("/Users/tamarmitts/Dropbox (Mitts)/Projects/Non-violence/Replication/")
29
+
30
+ # LOAD DATASETS
31
+ load("Data/EBCR_EPR_NAVCO2.rdata")
32
+ load("Data/NAVCO2_EPR.rdata")
33
+ load("Data/NAVCO2.rdata")
34
+ load("Data/us_survey_wave1.rdata")
35
+ load("Data/isr_survey_wave1.rdata")
36
+ load("Data/us_survey_wave2.rdata")
37
+ load("Data/isr_survey_wave2.rdata")
38
+ load("Data/us_survey_text_analysis.rdata")
39
+ load("Data/isr_survey_text_analysis_eth.rdata")
40
+ load("Data/isr_survey_text_analysis_arab.rdata")
41
+
42
+ ##--##--##--##
43
+ ## Manuscript
44
+ ##--##--##--##
45
+
46
+ # Figure 1
47
+ source("Code/replicate_fig_1.R")
48
+ # Figure 3
49
+ source("Code/replicate_fig_3.R")
50
+ # Figure 4
51
+ source("Code/replicate_fig_4.R")
52
+ # Figure 6
53
+ source("Code/replicate_fig_6.R")
54
+ # Figure 7
55
+ source("Code/replicate_fig_7.R")
56
+ # Figure 8
57
+ source("Code/replicate_fig_8.R")
58
+ # Figure 9
59
+ source("Code/replicate_fig_9.R")
60
+ # Figure 10
61
+ source("Code/replicate_fig_10.R")
62
+
63
+ # Table 1
64
+ source("Code/replicate_table_1.R")
65
+ # Table 4
66
+ source("Code/replicate_table_4.R")
67
+
68
+ ##--##--##--##
69
+ ## Appendix
70
+ ##--##--##--##
71
+
72
+ # Figure A1
73
+ source("Code/replicate_fig_A1.R")
74
+ # Figure A2
75
+ source("Code/replicate_fig_A2.R")
76
+ # Figure A3
77
+ source("Code/replicate_fig_A3.R")
78
+ # Figure A6
79
+ source("Code/replicate_fig_A6.R")
80
+ # Figure A7
81
+ source("Code/replicate_fig_A7.R")
82
+ # Figure A8
83
+ source("Code/replicate_fig_A8.R")
84
+ # Figure A9
85
+ source("Code/replicate_fig_A9.R")
86
+ # Figure A10
87
+ source("Code/replicate_fig_A10.R")
88
+ # Figure A11
89
+ source("Code/replicate_fig_A11.R")
90
+ # Figure A11
91
+ source("Code/replicate_fig_A12.R")
92
+
93
+ # Table A1
94
+ source("Code/replicate_table_A1.R")
95
+ # Table A2
96
+ source("Code/replicate_table_A2.R")
97
+ # Table A3
98
+ source("Code/replicate_table_A3.R")
99
+ # Table A4
100
+ source("Code/replicate_table_A4.R")
101
+ # Table A5
102
+ source("Code/replicate_table_A5.R")
103
+ # Table A6
104
+ source("Code/replicate_table_A6.R")
105
+ # Table A7
106
+ source("Code/replicate_table_A7.R")
107
+ # Table A8
108
+ source("Code/replicate_table_A8.R")
109
+ # Table A9
110
+ source("Code/replicate_table_A9.R")
111
+ # Table A10
112
+ source("Code/replicate_table_A10.R")
113
+ # Table A10
114
+ source("Code/replicate_table_A11.R")
115
+ # Table A13
116
+ source("Code/replicate_table_A13.R")
117
+ # Table A14
118
+ source("Code/replicate_table_A14.R")
119
+ # Table A15
120
+ source("Code/replicate_table_A15.R")
121
+ # Table A16
122
+ source("Code/replicate_table_A16.R")
123
+ # Table A17
124
+ source("Code/replicate_table_A17.R")
125
+ # Table A18
126
+ source("Code/replicate_table_A18.R")
127
+
128
+ ## END
23/replication_package/Code/replicate_fig_1.R ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 1
3
+ ##--##--##--##
4
+
5
+ # Status (excluded, not excluded)
6
+ nv_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
7
+ v_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
8
+
9
+ preds_nv = ggpredict(nv_status, terms = c("EPR_STATUS_EXCL"))
10
+ preds_nv$tactic = "Non-violent"
11
+ preds_v = ggpredict(v_status, terms = c("EPR_STATUS_EXCL"))
12
+ preds_v$tactic = "Violent"
13
+
14
+ preds = rbind(preds_nv, preds_v)
15
+ preds$tactic <- factor(preds$tactic, levels = c("Violent", "Non-violent"))
16
+ preds$Status = "Minority/disadvantaged"
17
+ preds$Status[preds$x==0] = "Majority/dominant"
18
+
19
+ xtable(preds[,-1], digits=2)
20
+ preds = as.data.frame(preds)
21
+ preds$Status = as.factor(preds$Status)
22
+
23
+ status = ggplot(preds, aes(x = tactic, y = predicted, group=Status)) +
24
+ geom_line(aes(color=Status))+ geom_errorbar(aes(color = Status), width = 0, ymin=preds$conf.low, ymax=preds$conf.high)+
25
+ geom_point(aes(color=Status, shape=Status), size=3) + ylim(-0.1,0.5) + theme_bw() +
26
+ scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
27
+ ylab("Pr(Campaign Success)") + xlab("Tactic") +ggtitle("(A) Group Status") +
28
+ theme(legend.position="none")
29
+
30
+ ## Size (above and below the mean of the distribution)
31
+ EBCR_EPR_NAVCO2$small_size = NA
32
+ EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE < mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 1
33
+ EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE >= mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 0
34
+
35
+ nv_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
36
+ v_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
37
+
38
+ preds_nv = ggpredict(nv_size, terms = c("small_size"))
39
+ preds_nv$tactic = "Non-violent"
40
+ preds_v = ggpredict(v_size, terms = c("small_size"))
41
+ preds_v$tactic = "Violent"
42
+
43
+ preds = rbind(preds_nv, preds_v)
44
+ preds$tactic <- factor(preds$tactic, levels = c("Violent", "Non-violent"))
45
+ preds$Status = "Minority/disadvantaged"
46
+ preds$Status[preds$x==0] = "Majority/dominant"
47
+
48
+ preds = as.data.frame(preds)
49
+ preds$Status = as.factor(preds$Status)
50
+
51
+ xtable(preds[,-1], digits=2)
52
+
53
+ size = ggplot(preds, aes(x = tactic, y = predicted, group=Status)) +
54
+ geom_line(aes(color=Status))+ geom_errorbar(aes(color = Status), width = 0, ymin=preds$conf.low, ymax=preds$conf.high)+
55
+ geom_point(aes(color=Status, shape=Status), size=3) + ylim(-0.1,0.5) + theme_bw() +
56
+ #scale_color_manual(values=c("#E69F00", "#56B4E9")) + geom_hline(yintercept=0, linetype="dashed")+
57
+ scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
58
+ ylab("Pr(Campaign Success)") + xlab("Tactic") +ggtitle("(B) Group Size") +
59
+ theme(legend.position="none")
60
+
61
+ fig1 = grid_arrange_shared_legend(status, size, ncol = 2, nrow = 1)
62
+ ggsave(file="Figures/fig_1.pdf", fig1, width=8, height=4)
23/replication_package/Code/replicate_fig_10.R ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 10
3
+ ##--##--##--##
4
+
5
+ isr_survey_eth_content_covars <- estimateEffect(1:10 ~ identity_protesters_eth, isr_survey_text_analysis_eth$stm_topics, meta = docvars(isr_survey_text_analysis_eth$nv_dfm_eth), uncertainty = "Global")
6
+ isr_survey_eth_sum_content_covars = summary(isr_survey_eth_content_covars)
7
+
8
+ term_translated = c("protest, right, democracy, ethiopians",
9
+ "discrimination, justice, understand, frustration",
10
+ "equal, rights, treatment, deserve",
11
+ "racism, violence, protest",
12
+ "judge, physical, right, treatment",
13
+ "economic, crisis, unemployment, justified",
14
+ "support, people, understand",
15
+ "voice, protest, express",
16
+ "ethiopian, community, racism",
17
+ "violence, express, furious")
18
+
19
+
20
+ estimate = rep(NA, 10)
21
+ std.error = rep(NA, 10)
22
+ for(i in 1:length(isr_survey_eth_sum_content_covars$tables)){
23
+ estimate[i] = isr_survey_eth_sum_content_covars$tables[[i]][2,1]
24
+ std.error[i] = isr_survey_eth_sum_content_covars$tables[[i]][2,2]
25
+ }
26
+
27
+ isr_survey_eth_stm_results = data.frame("term" = term_translated, "estimate" = estimate, "std.error"= std.error)
28
+
29
+ isr_survey_eth_stm_results = isr_survey_eth_stm_results[order(isr_survey_eth_stm_results$estimate, decreasing = T),]
30
+
31
+ dwplot(isr_survey_eth_stm_results,
32
+ vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
33
+ theme_bw() + xlab("\nIsraeli white protesters . . . . . . . . . . . . . Israeli Ethiopian protesters") +
34
+ theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
35
+ scale_colour_grey(start = 0, end = 0)
36
+ ggsave(file="Figures/fig_10.pdf", width=8, height=6)
23/replication_package/Code/replicate_fig_3.R ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 3
3
+ ##--##--##--##
4
+
5
+ us_survey_wave1$identity_protesters_fac = as.factor(us_survey_wave1$identity_protesters)
6
+ levels(us_survey_wave1$identity_protesters_fac) = c("White", "Black")
7
+ us_survey_wave1$tactic_fac = as.factor(us_survey_wave1$tactic)
8
+ levels(us_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy police cars")
9
+
10
+ isr_survey_wave1$identity_protesters_fac = as.factor(isr_survey_wave1$identity_protesters)
11
+ levels(isr_survey_wave1$identity_protesters_fac) = c("White", "Ethiopian", "Arab")
12
+ isr_survey_wave1$tactic_fac = as.factor(isr_survey_wave1$tactic)
13
+ levels(isr_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy garbage cans")
14
+
15
+
16
+ ## US sample
17
+ us_survey_wave1$degree_violence_std = scale(us_survey_wave1$degree_violence)
18
+ us_survey_wave1$police_action_required_std = scale(us_survey_wave1$police_action_required)
19
+ us_survey_wave1$recall_violence2_std = scale(us_survey_wave1$recall_violence2)
20
+
21
+ march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
22
+ shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
23
+ destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
24
+
25
+ march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
26
+ shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
27
+ destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
28
+
29
+ march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
30
+ shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
31
+ destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
32
+
33
+ # Plot differences
34
+
35
+ term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
36
+ se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
37
+ statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
38
+ pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
39
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
40
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
41
+ degree_violence = cbind(degree_violence, term)
42
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
43
+ rownames(degree_violence) = term
44
+ degree_violence$model = "Perceived degree of violence"
45
+
46
+ term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
47
+ se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
48
+ statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
49
+ pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
50
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
51
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
52
+ police_action_required = cbind(police_action_required, term)
53
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
54
+ rownames(police_action_required) = term
55
+ police_action_required$model = "Police action required"
56
+
57
+ term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
58
+ se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
59
+ statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
60
+ pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
61
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
62
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
63
+ recall_violence = cbind(recall_violence, term)
64
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
65
+ rownames(recall_violence) = term
66
+ recall_violence$model = "Recall violence"
67
+
68
+ differences_us = rbind(degree_violence, police_action_required, recall_violence)
69
+
70
+
71
+ ## Israel respondents
72
+ isr_survey_wave1$degree_violence_std = scale(isr_survey_wave1$degree_violence)
73
+ isr_survey_wave1$police_action_required_std = scale(isr_survey_wave1$police_action_required)
74
+ isr_survey_wave1$recall_violence2_std = scale(isr_survey_wave1$recall_violence2)
75
+
76
+ march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
77
+ shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
78
+ destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
79
+
80
+ march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
81
+ shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
82
+ destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
83
+
84
+ march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
85
+ shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
86
+ destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
87
+
88
+
89
+ # Ethiopian protesters
90
+ term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
91
+ se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
92
+ statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
93
+ pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
94
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
95
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
96
+ degree_violence = cbind(degree_violence, term)
97
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
98
+ rownames(degree_violence) = term
99
+ degree_violence$model = "Perceived degree of violence"
100
+
101
+ term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
102
+ se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
103
+ statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
104
+ pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
105
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
106
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
107
+ police_action_required = cbind(police_action_required, term)
108
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
109
+ rownames(police_action_required) = term
110
+ police_action_required$model = "Police action required"
111
+
112
+ term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
113
+ se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
114
+ statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
115
+ pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
116
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
117
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
118
+ recall_violence = cbind(recall_violence, term)
119
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
120
+ rownames(recall_violence) = term
121
+ recall_violence$model = "Recall violence"
122
+
123
+ differences_isr_black = rbind(degree_violence, police_action_required, recall_violence)
124
+
125
+ term_degree_violence = c(march1$coefficients[3], shut1$coefficients[3], destroy1$coefficients[3])
126
+ se_degree_violence = c(march1$std.error[3], shut1$std.error[3], destroy1$std.error[3])
127
+ statistic_degree_violence = c(march1$statistic[3], shut1$statistic[3], destroy1$statistic[3])
128
+ pval_degree_violence = c(march1$p.value[3], shut1$p.value[3], destroy1$p.value[3])
129
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
130
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
131
+ degree_violence = cbind(degree_violence, term)
132
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
133
+ rownames(degree_violence) = term
134
+ degree_violence$model = "Perceived degree of violence"
135
+
136
+ term_police_action_required = c(march2$coefficients[3], shut2$coefficients[3], destroy2$coefficients[3])
137
+ se_police_action_required = c(march2$std.error[3], shut2$std.error[3], destroy2$std.error[3])
138
+ statistic_police_action_required = c(march2$statistic[3], shut2$statistic[3], destroy2$statistic[3])
139
+ pval_police_action_required = c(march2$p.value[3], shut2$p.value[3], destroy2$p.value[3])
140
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
141
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
142
+ police_action_required = cbind(police_action_required, term)
143
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
144
+ rownames(police_action_required) = term
145
+ police_action_required$model = "Police action required"
146
+
147
+ term_recall_violence = c(march3$coefficients[3], shut3$coefficients[3], destroy3$coefficients[3])
148
+ se_recall_violence = c(march3$std.error[3], shut3$std.error[3], destroy3$std.error[3])
149
+ statistic_recall_violence = c(march3$statistic[3], shut3$statistic[3], destroy3$statistic[3])
150
+ pval_recall_violence = c(march3$p.value[3], shut3$p.value[3], destroy3$p.value[3])
151
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
152
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
153
+ recall_violence = cbind(recall_violence, term)
154
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
155
+ rownames(recall_violence) = term
156
+ recall_violence$model = "Recall violence"
157
+
158
+ differences_isr_arab = rbind(degree_violence, police_action_required, recall_violence)
159
+
160
+ ## Result tables for plot
161
+ differences_us2 = differences_us
162
+ differences_us2$submodel = differences_us2$term
163
+ differences_us2$term = "Perception of Blacks \n(United States)"
164
+
165
+ differences_isr_black2 = differences_isr_black
166
+ differences_isr_black2$submodel = differences_isr_black2$term
167
+ differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
168
+
169
+ differences_isr_arab2 = differences_isr_arab
170
+ differences_isr_arab2$submodel = differences_isr_arab2$term
171
+ differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
172
+
173
+ diffs_sm = rbind(differences_us2, differences_isr_arab2, differences_isr_black2)
174
+ rownames(diffs_sm) = 1:nrow(diffs_sm)
175
+
176
+ results_df <- data.frame(term = diffs_sm$term,
177
+ estimate = diffs_sm$estimate,
178
+ std.error = diffs_sm$std.error,
179
+ model = diffs_sm$model,
180
+ submodel = as.character(diffs_sm$submodel),
181
+ stringsAsFactors = FALSE)
182
+
183
+ results_df$submodel[results_df$submodel=="1) Minority: March in streets"] = "March in streets"
184
+ results_df$submodel[results_df$submodel=="2) Minority: Shut down traffic"] = "Shut down traffic"
185
+ results_df$submodel[results_df$submodel=="3) Minority: Destroy police cars / garbage cans"] = "Destroy property"
186
+
187
+ results_df$model[results_df$model=="Perceived degree of violence"] = "1. Perceived degree \nof violence"
188
+ results_df$model[results_df$model=="Police action required"] = "3. Police action \nrequired"
189
+ results_df$model[results_df$model=="Recall violence"] = "2. Recall \nviolence"
190
+
191
+ small_multiple(results_df, dot_args = list(aes(shape = submodel))) +
192
+ ylab("Coefficient Estimate (Std. Dev. Units)") + theme_bw()+
193
+ geom_hline(yintercept = 0, colour = "grey60", linetype = 2) +
194
+ #theme(plot.margin=unit(c(0.4,0.1,2.6,1),"cm"))+
195
+ theme(legend.position = "bottom",
196
+ legend.justification=c(0, 0),
197
+ # legend.background = element_rect(color="white"),
198
+ legend.spacing = unit(-4, "pt"),
199
+ legend.key.size = unit(10, "pt"))+
200
+ scale_shape_discrete(name = "Protester Tactic") +
201
+ scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"), name = "Protester Tactic")
202
+ ggsave(filename="Figures/fig_3.pdf", width=6, height=6)
203
+
204
+ table_a14 = results_df
23/replication_package/Code/replicate_fig_4.R ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 4
3
+ ##--##--##--##
4
+
5
+ march1 = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
6
+ march1_maj = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
7
+ march1_min = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
8
+
9
+ march2 = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
10
+ march2_maj = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
11
+ march2_min = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
12
+
13
+ march1_isr = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
14
+ march1_isr_maj = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity %in% c("Ashkenazi", "Mizrachi", "Mixed", "Soviet Union"),], weights=weight)
15
+ march1_isr_min = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity == "Arab",], weights=weight)
16
+
17
+ march2_isr = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
18
+ march2_isr_maj = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity %in% c("Ashkenazi", "Mizrachi", "Mixed", "Soviet Union"),], weights=weight)
19
+ march2_isr_min = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity == "Arab",], weights=weight)
20
+
21
+ # Predicted values
22
+ perceptions_of_majority_us = c(ggpredict(march1_maj)$identity_protesters[,2],
23
+ ggpredict(march2_maj)$identity_protesters[,2])
24
+
25
+ perceptions_of_minority_us = c(ggpredict(march1_min)$identity_protesters[,2],
26
+ ggpredict(march2_min)$identity_protesters[,2])
27
+
28
+ perceptions_of_majority_isr = c(ggpredict(march1_isr_maj)$identity_protesters[c(1,3),2],
29
+ ggpredict(march2_isr_maj)$identity_protesters[c(1,3),2])
30
+
31
+ perceptions_of_minority_isr = c(ggpredict(march1_isr_min)$identity_protesters[c(1,3),2],
32
+ ggpredict(march2_isr_min)$identity_protesters[c(1,3),2])
33
+
34
+ # Std. errors
35
+
36
+ se_of_majority_us = c(ggpredict(march1_maj)$identity_protesters[,3],
37
+ ggpredict(march2_maj)$identity_protesters[,3])
38
+
39
+ se_of_minority_us = c(ggpredict(march1_min)$identity_protesters[,3],
40
+ ggpredict(march2_min)$identity_protesters[,3])
41
+
42
+ se_of_majority_isr = c(ggpredict(march1_isr_maj)$identity_protesters[c(1,3),3],
43
+ ggpredict(march2_isr_maj)$identity_protesters[c(1,3),3])
44
+
45
+ se_of_minority_isr = c(ggpredict(march1_isr_min)$identity_protesters[c(1,3),3],
46
+ ggpredict(march2_isr_min)$identity_protesters[c(1,3),3])
47
+
48
+
49
+ majority_us = data.frame("value" = perceptions_of_majority_us,
50
+ "se" = se_of_majority_us,
51
+ "Protesters" = rep(c("Majority", "Minority"),2),
52
+ "outcome" = c(rep("Perceived degree of violence", 2),
53
+ rep("Police action required", 2)))
54
+ majority_us$respondents = "White \nrespondents"
55
+ majority_us$survey = "U.S.A"
56
+
57
+ minority_us = data.frame("value" = perceptions_of_minority_us,
58
+ "se" = se_of_minority_us,
59
+ "Protesters" = rep(c("Majority", "Minority"),2),
60
+ "outcome" = c(rep("Perceived degree of violence", 2),
61
+ rep("Police action required", 2)))
62
+ minority_us$respondents = "Black \nrespondents"
63
+ minority_us$survey = "U.S.A"
64
+
65
+ majority_isr = data.frame("value" = perceptions_of_majority_isr,
66
+ "se" = se_of_majority_isr,
67
+ "Protesters" = rep(c("Majority", "Minority"),2),
68
+ "outcome" = c(rep("Perceived degree of violence", 2),
69
+ rep("Police action required", 2)))
70
+ majority_isr$respondents = "White Jewish \nrespondents"
71
+ majority_isr$survey = "Israel"
72
+
73
+ minority_isr = data.frame("value" = perceptions_of_minority_isr,
74
+ "se" = se_of_minority_isr,
75
+ "Protesters" = rep(c("Majority", "Minority"),2),
76
+ "outcome" = c(rep("Perceived degree of violence", 2),
77
+ rep("Police action required", 2)))
78
+ minority_isr$respondents = "Arab \nrespondents"
79
+ minority_isr$survey = "Israel"
80
+
81
+
82
+ df_all = rbind(majority_us, minority_us, majority_isr, minority_isr)
83
+ df_all = df_all[df_all$outcome != "Recall violence",]
84
+ df_all$respondents = factor(df_all$respondents, levels=c("White \nrespondents", "White Jewish \nrespondents", "Black \nrespondents", "Arab \nrespondents"))
85
+
86
+ ggplot(df_all, aes(x = respondents, y = value, group=Protesters)) +
87
+ geom_point(aes(color=Protesters, shape=Protesters), position = position_dodge(0.3))+
88
+ geom_errorbar(aes(ymin=value-se, ymax=value+se, color=Protesters), width=0,
89
+ position=position_dodge(0.3))+
90
+ facet_wrap(~outcome + survey, nrow=2, scales = "free") + theme_bw() +
91
+ scale_shape_discrete(name = "Protesters") +
92
+ theme(legend.position = "bottom") + xlab("") + ylab("") +
93
+ scale_color_manual(values=c("#E69F00", "#56B4E9"))
94
+ ggsave("Figures/fig_4.pdf", width=6, height=6)
23/replication_package/Code/replicate_fig_6.R ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 6
3
+ ##--##--##--##
4
+
5
+ goal_white_usa_pdv = lm_robust(degree_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
6
+ goal_black_usa_pdv = lm_robust(degree_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
7
+ goal_white_usa_rv = lm_robust(recall_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
8
+ goal_black_usa_rv = lm_robust(recall_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
9
+ goal_white_usa_paq = lm_robust(police_action_required_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
10
+ goal_black_usa_paq = lm_robust(police_action_required_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
11
+
12
+ ## Plot interaction of goal and identity
13
+ term_degree_violence = c(goal_white_usa_pdv$coefficients[2], goal_black_usa_pdv$coefficients[2])
14
+ se_degree_violence = c(goal_white_usa_pdv$std.error[2], goal_black_usa_pdv$std.error[2])
15
+ statistic_degree_violence = c(goal_white_usa_pdv$statistic[2], goal_black_usa_pdv$statistic[2])
16
+ pval_degree_violence = c(goal_white_usa_pdv$p.value[2], goal_black_usa_pdv$p.value[2])
17
+ term = c("Majority group protesters", "Minority group protesters")
18
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
19
+ degree_violence = cbind(degree_violence, term)
20
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
21
+ rownames(degree_violence) = term
22
+ degree_violence$model = "Perceived degree \nof violence"
23
+
24
+ term_recall_violence = c(goal_white_usa_rv$coefficients[2], goal_black_usa_rv$coefficients[2])
25
+ se_recall_violence = c(goal_white_usa_rv$std.error[2], goal_black_usa_rv$std.error[2])
26
+ statistic_recall_violence = c(goal_white_usa_rv$statistic[2], goal_black_usa_rv$statistic[2])
27
+ pval_recall_violence = c(goal_white_usa_rv$p.value[2], goal_black_usa_rv$p.value[2])
28
+ term = c("Majority group protesters", "Minority group protesters")
29
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
30
+ recall_violence = cbind(recall_violence, term)
31
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
32
+ rownames(recall_violence) = term
33
+ recall_violence$model = "Recall \nviolence"
34
+
35
+ term_police_action_required = c(goal_white_usa_paq$coefficients[2], goal_black_usa_paq$coefficients[2])
36
+ se_police_action_required = c(goal_white_usa_paq$std.error[2], goal_black_usa_paq$std.error[2])
37
+ statistic_police_action_required = c(goal_white_usa_paq$statistic[2], goal_black_usa_paq$statistic[2])
38
+ pval_police_action_required = c(goal_white_usa_paq$p.value[2], goal_black_usa_paq$p.value[2])
39
+ term = c("Majority group protesters", "Minority group protesters")
40
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
41
+ police_action_required = cbind(police_action_required, term)
42
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
43
+ rownames(police_action_required) = term
44
+ police_action_required$model = "Police action \nrequired"
45
+
46
+ differences_us = rbind(degree_violence, recall_violence, police_action_required)
47
+
48
+ ## Result tables for plot
49
+
50
+ differences_us2 = differences_us
51
+ differences_us2$submodel = differences_us2$term
52
+ differences_us2$term = "Protesting against police brutality"
53
+ diffs_sm = differences_us2
54
+ results_df = data.frame(term = diffs_sm$term,
55
+ estimate = diffs_sm$estimate,
56
+ std.error = diffs_sm$std.error,
57
+ model = diffs_sm$model,
58
+ submodel = as.character(diffs_sm$submodel),
59
+ stringsAsFactors = FALSE)
60
+ results_df$term = factor(results_df$model, levels=c("Perceived degree \nof violence",
61
+ "Recall \nviolence",
62
+ "Police action \nrequired",
63
+ "Does not support \nprotest"))
64
+ results_df$model[results_df$submodel=="Majority group protesters"] = "White protesters"
65
+ results_df$model[results_df$submodel=="Minority group protesters"] = "Black protesters"
66
+
67
+ dwplot(results_df, vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
68
+ theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
69
+ scale_colour_grey(start = .1, end = .7)
70
+ ggsave(filename="Figures/fig_6.pdf", width=5, height=4)
23/replication_package/Code/replicate_fig_7.R ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 7
3
+ ##--##--##--##
4
+
5
+ commitment_white_usa_pdv = lm_robust(degree_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
6
+ commitment_black_usa_pdv = lm_robust(degree_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
7
+
8
+ commitment_white_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
9
+ commitment_ethiopian_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
10
+ commitment_arab_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
11
+
12
+ term_degree_violence = c(commitment_white_usa_pdv$coefficients[2], commitment_black_usa_pdv$coefficients[2])
13
+ se_degree_violence = c(commitment_white_usa_pdv$std.error[2], commitment_black_usa_pdv$std.error[2])
14
+ statistic_degree_violence = c(commitment_white_usa_pdv$statistic[2], commitment_black_usa_pdv$statistic[2])
15
+ pval_degree_violence = c(commitment_white_usa_pdv$p.value[2], commitment_black_usa_pdv$p.value[2])
16
+ term = c("Majority group", "Minority group")
17
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
18
+ degree_violence = cbind(degree_violence, term)
19
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
20
+ rownames(degree_violence) = term
21
+ degree_violence$model = "Perceived degree of violence"
22
+
23
+ differences_us = rbind(degree_violence)
24
+
25
+ term_degree_violence = c(commitment_white_israel_pdv$coefficients[2], commitment_arab_israel_pdv$coefficients[2])
26
+ se_degree_violence = c(commitment_white_israel_pdv$std.error[2], commitment_arab_israel_pdv$std.error[2])
27
+ statistic_degree_violence = c(commitment_white_israel_pdv$statistic[2], commitment_arab_israel_pdv$statistic[2])
28
+ pval_degree_violence = c(commitment_white_israel_pdv$p.value[2], commitment_arab_israel_pdv$p.value[2])
29
+ term = c("Majority group", "Minority group")
30
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
31
+ degree_violence = cbind(degree_violence, term)
32
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
33
+ rownames(degree_violence) = term
34
+ degree_violence$model = "Perceived degree of violence"
35
+
36
+ differences_isr_arab = degree_violence
37
+
38
+ term_degree_violence = c(commitment_white_israel_pdv$coefficients[2], commitment_ethiopian_israel_pdv$coefficients[2])
39
+ se_degree_violence = c(commitment_white_israel_pdv$std.error[2], commitment_ethiopian_israel_pdv$std.error[2])
40
+ statistic_degree_violence = c(commitment_white_israel_pdv$statistic[2], commitment_ethiopian_israel_pdv$statistic[2])
41
+ pval_degree_violence = c(commitment_white_israel_pdv$p.value[2], commitment_ethiopian_israel_pdv$p.value[2])
42
+ term = c("Majority group", "Minority group")
43
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
44
+ degree_violence = cbind(degree_violence, term)
45
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
46
+ rownames(degree_violence) = term
47
+ degree_violence$model = "Perceived degree of violence"
48
+
49
+ differences_isr_ethiopian = degree_violence
50
+
51
+ ## Result tables for plot
52
+ differences_us2 = differences_us
53
+ differences_us2$submodel = differences_us2$term
54
+ differences_us2$term = "Perception of Blacks \n(United States)"
55
+
56
+ differences_isr_black2 = differences_isr_ethiopian
57
+ differences_isr_black2$submodel = differences_isr_black2$term
58
+ differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
59
+
60
+ differences_isr_arab2 = differences_isr_arab
61
+ differences_isr_arab2$submodel = differences_isr_arab2$term
62
+ differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
63
+
64
+ diffs_sm = rbind(differences_us2, differences_isr_black2, differences_isr_arab2)
65
+ rownames(diffs_sm) = 1:nrow(diffs_sm)
66
+
67
+ results_df <- data.frame(term = diffs_sm$term,
68
+ estimate = diffs_sm$estimate,
69
+ std.error = diffs_sm$std.error,
70
+ model = as.character(diffs_sm$submodel),
71
+ stringsAsFactors = FALSE)
72
+
73
+ dwplot(results_df, vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
74
+ theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
75
+ scale_colour_grey(start = .1, end = .7) +xlim(-0.35,0.1)
76
+ ggsave(filename="Figures/fig_7.pdf", width=5.5, height=4)
23/replication_package/Code/replicate_fig_8.R ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 8
3
+ ##--##--##--##
4
+
5
+ us_survey_content_covars <- estimateEffect(1:10 ~ identity_protesters, us_survey_text_analysis$stm_topics, meta = docvars(us_survey_text_analysis$nv_dfm), uncertainty = "Global")
6
+ us_survey_sum_content_covars = summary(us_survey_content_covars)
7
+
8
+ topics = labelTopics(us_survey_text_analysis$stm_topics, n=20)
9
+
10
+ term = c(paste(topics$prob[1,1:5], collapse = ", "),
11
+ paste(topics$prob[2,c(1,2,7,8,15)], collapse = ", "),
12
+ paste(topics$prob[3,1:5], collapse = ", "),
13
+ paste(topics$prob[4,4:9], collapse = ", "),
14
+ paste(topics$prob[5,c(1,2,3,5,15)], collapse = ", "),
15
+ paste(topics$prob[6,1:5], collapse = ", "),
16
+ paste(topics$prob[7,1:5], collapse = ", "),
17
+ paste(topics$prob[8,1:5], collapse = ", "),
18
+ paste(topics$prob[9,c(3,4,9,15,17)], collapse = ", "),
19
+ paste(topics$prob[10,c(8,12,13,15,16)], collapse = ", "))
20
+
21
+ estimate = rep(NA, 10)
22
+ std.error = rep(NA, 10)
23
+ for(i in 1:length(us_survey_sum_content_covars$tables)){
24
+ estimate[i] = us_survey_sum_content_covars$tables[[i]][2,1]
25
+ std.error[i] = us_survey_sum_content_covars$tables[[i]][2,2]
26
+ }
27
+
28
+ us_survey_stm_results = data.frame("term" = term, "estimate" = estimate, "std.error"= std.error)
29
+ us_survey_stm_results = us_survey_stm_results[order(us_survey_stm_results$estimate, decreasing = T),]
30
+
31
+ dwplot(us_survey_stm_results,
32
+ vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
33
+ theme_bw() + xlab("\nWhite protesters . . . . . . . . . . . . . . . . . . Black protesters") +
34
+ theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
35
+ scale_colour_grey(start = 0, end = 0)
36
+ ggsave(file="Figures/fig_8.pdf", width=8, height=6)
23/replication_package/Code/replicate_fig_9.R ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Figure 9
3
+ ##--##--##--##
4
+
5
+ isr_survey_arab_content_covars <- estimateEffect(1:10 ~ identity_protesters_arab, isr_survey_text_analysis_arab$stm_topics, meta = docvars(isr_survey_text_analysis_arab$nv_dfm_arab), uncertainty = "Global")
6
+ isr_survey_arab_sum_content_covars = summary(isr_survey_arab_content_covars)
7
+
8
+ term_translated_arab = c("violent, protest, israel",
9
+ "justified, right, protest",
10
+ "violent, express, equal, demands",
11
+ "democracy, protest, rights",
12
+ "legitimate, support, sympathize, voice",
13
+ "difficult, situation, understand, pain",
14
+ "violent, protest, against",
15
+ "social, justice, protest",
16
+ "information, details, reason",
17
+ "violence, arab, community, minority")
18
+
19
+ estimate = rep(NA, 10)
20
+ std.error = rep(NA, 10)
21
+
22
+ for(i in 1:length(isr_survey_arab_sum_content_covars$tables)){
23
+ estimate[i] = isr_survey_arab_sum_content_covars$tables[[i]][2,1]
24
+ std.error[i] = isr_survey_arab_sum_content_covars$tables[[i]][2,2]
25
+ }
26
+
27
+ isr_survey_arab_stm_results = data.frame("term" = term_translated_arab, "estimate" = estimate, "std.error"= std.error)
28
+ isr_survey_arab_stm_results = isr_survey_arab_stm_results[order(isr_survey_arab_stm_results$estimate, decreasing = T),]
29
+
30
+ dwplot(isr_survey_arab_stm_results,
31
+ vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
32
+ theme_bw() + xlab("\nIsraeli white protesters . . . . . . . . . . . . . . . . . . Israeli Arab protesters") +
33
+ theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
34
+ scale_colour_grey(start = 0, end = 0)
35
+ ggsave(file="Figures/fig_9.pdf", width=8, height=6)
23/replication_package/Code/replicate_fig_A1.R ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A1
3
+ ##--##--##--##--##--##--##
4
+
5
+ EBCR_EPR_NAVCO2$camp_goals_text = NA
6
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==0] = "Regime change"
7
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==1] = "Significant institutional reform"
8
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==2] = "Policy change"
9
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==3] = "Territorial secession"
10
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==4] = "Greater autonomy"
11
+ EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==5] = "Anti occupation"
12
+
13
+ EBCR_EPR_NAVCO2$EPR_STATUS = factor(EBCR_EPR_NAVCO2$EPR_STATUS,
14
+ levels=c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION",
15
+ "JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT",
16
+ "MONOPOLY", "IRRELEVANT", "STATE COLLAPSE"))
17
+
18
+ goals_status = prop.table(table(EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$navco1designation==1], EBCR_EPR_NAVCO2$EPR_STATUS[EBCR_EPR_NAVCO2$navco1designation==1]))
19
+
20
+ col6 = c("#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B")
21
+
22
+ pdf(file="Figures/fig_A1.pdf", width=8, height=6)
23
+ corrplot(goals_status[,c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION",
24
+ "JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT", "MONOPOLY")], method = "circle", cl.lim = c(0,0.15), is.corr = F, col=col6, tl.col="black")
25
+ dev.off()
23/replication_package/Code/replicate_fig_A10.R ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A10
3
+ ##--##--##--##--##--##--##
4
+
5
+ commitment_white_usa_rv = lm_robust(recall_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
6
+ commitment_black_usa_rv = lm_robust(recall_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
7
+ commitment_white_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
8
+ commitment_ethiopian_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
9
+ commitment_arab_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
10
+
11
+ ## U.S.
12
+ term_recall_violence = c(commitment_white_usa_rv$coefficients[2], commitment_black_usa_rv$coefficients[2])
13
+ se_recall_violence = c(commitment_white_usa_rv$std.error[2], commitment_black_usa_rv$std.error[2])
14
+ statistic_recall_violence = c(commitment_white_usa_rv$statistic[2], commitment_black_usa_rv$statistic[2])
15
+ pval_recall_violence = c(commitment_white_usa_rv$p.value[2], commitment_black_usa_rv$p.value[2])
16
+ term = c("Majority group", "Minority group")
17
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
18
+ recall_violence = cbind(recall_violence, term)
19
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
20
+ rownames(recall_violence) = term
21
+ recall_violence$model = "Recall violence"
22
+ differences_us = recall_violence
23
+
24
+ ## Israel (Arabs)
25
+ term_recall_violence = c(commitment_white_israel_rv$coefficients[2], commitment_arab_israel_rv$coefficients[2])
26
+ se_recall_violence = c(commitment_white_israel_rv$std.error[2], commitment_arab_israel_rv$std.error[2])
27
+ statistic_recall_violence = c(commitment_white_israel_rv$statistic[2], commitment_arab_israel_rv$statistic[2])
28
+ pval_recall_violence = c(commitment_white_israel_rv$p.value[2], commitment_arab_israel_rv$p.value[2])
29
+ term = c("Majority group", "Minority group")
30
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
31
+ recall_violence = cbind(recall_violence, term)
32
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
33
+ rownames(recall_violence) = term
34
+ recall_violence$model = "Recall violence"
35
+ differences_isr_arab = recall_violence
36
+
37
+ ## Israel (Ethiopian)
38
+ term_recall_violence = c(commitment_white_israel_rv$coefficients[2], commitment_ethiopian_israel_rv$coefficients[2])
39
+ se_recall_violence = c(commitment_white_israel_rv$std.error[2], commitment_ethiopian_israel_rv$std.error[2])
40
+ statistic_recall_violence = c(commitment_white_israel_rv$statistic[2], commitment_ethiopian_israel_rv$statistic[2])
41
+ pval_recall_violence = c(commitment_white_israel_rv$p.value[2], commitment_ethiopian_israel_rv$p.value[2])
42
+ term = c("Majority group", "Minority group")
43
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
44
+ recall_violence = cbind(recall_violence, term)
45
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
46
+ rownames(recall_violence) = term
47
+ recall_violence$model = "Recall violence"
48
+ differences_isr_ethiopian = recall_violence
49
+
50
+ ## Result tables for plot
51
+ differences_us$term = "Perception of Blacks \n(United States)"
52
+ differences_isr_ethiopian$term = "Perception of Ethiopians \n(Israel)"
53
+ differences_isr_arab$term = "Perception of Arabs \n(Israel)"
54
+
55
+ diffs_sm = rbind(differences_us, differences_isr_ethiopian, differences_isr_arab)
56
+ diffs_sm$model = rep(c("Majority group", "Minority group"),3)
57
+ rownames(diffs_sm) = 1:nrow(diffs_sm)
58
+
59
+ results_df <- data.frame(term = diffs_sm$term,
60
+ estimate = diffs_sm$estimate,
61
+ std.error = diffs_sm$std.error,
62
+ model = diffs_sm$model,
63
+ stringsAsFactors = FALSE)
64
+
65
+ dwplot(results_df,vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 3)) +
66
+ theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
67
+ scale_colour_grey(start = .1, end = .7)
68
+ ggsave(filename="Figures/fig_A10.pdf", width=6, height=5)
23/replication_package/Code/replicate_fig_A11.R ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A11
3
+ ##--##--##--##--##--##--##
4
+
5
+ commitment_white_usa_paq = lm_robust(police_action_required_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
6
+ commitment_black_usa_paq = lm_robust(police_action_required_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
7
+ commitment_white_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
8
+ commitment_ethiopian_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
9
+ commitment_arab_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
10
+
11
+ ## U.S.
12
+ term_police_action_required = c(commitment_white_usa_paq$coefficients[2], commitment_black_usa_paq$coefficients[2])
13
+ se_police_action_required = c(commitment_white_usa_paq$std.error[2], commitment_black_usa_paq$std.error[2])
14
+ statistic_police_action_required = c(commitment_white_usa_paq$statistic[2], commitment_black_usa_paq$statistic[2])
15
+ pval_police_action_required = c(commitment_white_usa_paq$p.value[2], commitment_black_usa_paq$p.value[2])
16
+ term = c("Majority group", "Minority group")
17
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
18
+ police_action_required = cbind(police_action_required, term)
19
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
20
+ rownames(police_action_required) = term
21
+ police_action_required$model = "Police action required"
22
+ differences_us = police_action_required
23
+
24
+ ## Israel (Arabs)
25
+ term_police_action_required = c(commitment_white_israel_paq$coefficients[2], commitment_arab_israel_paq$coefficients[2])
26
+ se_police_action_required = c(commitment_white_israel_paq$std.error[2], commitment_arab_israel_paq$std.error[2])
27
+ statistic_police_action_required = c(commitment_white_israel_paq$statistic[2], commitment_arab_israel_paq$statistic[2])
28
+ pval_police_action_required = c(commitment_white_israel_paq$p.value[2], commitment_arab_israel_paq$p.value[2])
29
+ term = c("Majority group", "Minority group")
30
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
31
+ police_action_required = cbind(police_action_required, term)
32
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
33
+ rownames(police_action_required) = term
34
+ police_action_required$model = "Police action required"
35
+ differences_isr_arab = police_action_required
36
+
37
+ ## Israel (Ethiopian)
38
+ term_police_action_required = c(commitment_white_israel_paq$coefficients[2], commitment_ethiopian_israel_paq$coefficients[2])
39
+ se_police_action_required = c(commitment_white_israel_paq$std.error[2], commitment_ethiopian_israel_paq$std.error[2])
40
+ statistic_police_action_required = c(commitment_white_israel_paq$statistic[2], commitment_ethiopian_israel_paq$statistic[2])
41
+ pval_police_action_required = c(commitment_white_israel_paq$p.value[2], commitment_ethiopian_israel_paq$p.value[2])
42
+ term = c("Majority group", "Minority group")
43
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
44
+ police_action_required = cbind(police_action_required, term)
45
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
46
+ rownames(police_action_required) = term
47
+ police_action_required$model = "Police action required"
48
+ differences_isr_ethiopian = police_action_required
49
+
50
+ ## Result tables for plot
51
+ differences_us$term = "Perception of Blacks \n(United States)"
52
+ differences_isr_ethiopian$term = "Perception of Ethiopians \n(Israel)"
53
+ differences_isr_arab$term = "Perception of Arabs \n(Israel)"
54
+
55
+ diffs_sm = rbind(differences_us, differences_isr_ethiopian, differences_isr_arab)
56
+ diffs_sm$model = rep(c("Majority group", "Minority group"),3)
57
+ rownames(diffs_sm) = 1:nrow(diffs_sm)
58
+
59
+ results_df <- data.frame(term = diffs_sm$term,
60
+ estimate = diffs_sm$estimate,
61
+ std.error = diffs_sm$std.error,
62
+ model = diffs_sm$model,
63
+ stringsAsFactors = FALSE)
64
+
65
+ dwplot(results_df,vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 3)) +
66
+ theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
67
+ scale_colour_grey(start = .1, end = .7)
68
+ ggsave(filename="Figures/fig_A11.pdf", width=6, height=5)
23/replication_package/Code/replicate_fig_A12.R ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A12
3
+ ##--##--##--##--##--##--##
4
+
5
+ ## U.S.
6
+ us_survey_wave1_dv = lm(degree_violence ~ identity_protesters*interest_news +age +female + education + income + ideology + race, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
7
+ us_survey_wave1_dv_all = ggpredict(us_survey_wave1_dv, terms = c("interest_news"))
8
+ us_survey_wave1_dv_all$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
9
+ us_survey_wave1_dv_all$interest_news = factor(us_survey_wave1_dv_all$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
10
+ us_survey_wave1_dv_all = as.data.frame(us_survey_wave1_dv_all)
11
+
12
+ news_usa_study1 = ggplot(us_survey_wave1_dv_all, aes(x = interest_news, y = predicted, group="all")) +
13
+ geom_line()+ geom_errorbar(width = 0, ymin=us_survey_wave1_dv_all$conf.low, ymax=us_survey_wave1_dv_all$conf.high)+
14
+ geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
15
+ scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
16
+ ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perceptions of Black Protesters in the U.S.")
17
+
18
+ ## Israel
19
+ isr_survey_wave1$interest_news2 = isr_survey_wave1$interest_news-1
20
+
21
+ isr_survey_dv_eth = lm(degree_violence ~ identity_protesters*interest_news2 + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1[isr_survey_wave1$identity_protesters %in% c(0,1) & isr_survey_wave1$tactic==0,], weights=weight)
22
+ isr_survey_dv_all_eth = ggpredict(isr_survey_dv_eth, terms = c("interest_news2"))
23
+ isr_survey_dv_all_eth$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
24
+ isr_survey_dv_all_eth$interest_news = factor(isr_survey_dv_all_eth$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
25
+ isr_survey_dv_all_eth = as.data.frame(isr_survey_dv_all_eth)
26
+ isr_survey_dv_all_eth$Minority = "Ethiopians"
27
+
28
+ isr_survey_dv_arab = lm(degree_violence ~ identity_protesters*interest_news2 + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1[isr_survey_wave1$identity_protesters %in% c(0,2) & isr_survey_wave1$tactic==0,], weights=weight)
29
+ isr_survey_dv_all_arab = ggpredict(isr_survey_dv_arab, terms = c("interest_news2"))
30
+ isr_survey_dv_all_arab$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
31
+ isr_survey_dv_all_arab$interest_news = factor(isr_survey_dv_all_arab$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
32
+ isr_survey_dv_all_arab = as.data.frame(isr_survey_dv_all_arab)
33
+ isr_survey_dv_all_arab$Minority = "Arabs"
34
+
35
+ news_israel_study1_eth = ggplot(isr_survey_dv_all_eth, aes(x = interest_news, y = predicted, group="all")) +
36
+ geom_line()+ geom_errorbar(width = 0, ymin=isr_survey_dv_all_eth$conf.low, ymax=isr_survey_dv_all_eth$conf.high)+
37
+ geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
38
+ scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
39
+ ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perception of Ethiopian Protesters in Israel")
40
+
41
+ news_israel_study1_arab = ggplot(isr_survey_dv_all_arab, aes(x = interest_news, y = predicted, group="all")) +
42
+ geom_line()+ geom_errorbar(width = 0, ymin=isr_survey_dv_all_arab$conf.low, ymax=isr_survey_dv_all_arab$conf.high)+
43
+ geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
44
+ scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
45
+ ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perception of Arab Protesters in Israel")
46
+
47
+
48
+ grid_study1 = grid.arrange(news_usa_study1, news_israel_study1_eth, news_israel_study1_arab, nrow = 1)
49
+ ggsave(filename= "Figures/fig_A12.pdf", plot=grid_study1, width=13, height=4, units="in")
50
+
23/replication_package/Code/replicate_fig_A2.R ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A2
3
+ ##--##--##--##--##--##--##
4
+
5
+ mean_sucess_anti_occupation_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Anti occupation") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
6
+ mean_sucess_anti_occupation_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Anti occupation") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
7
+
8
+ mean_sucess_greater_autonomy_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Greater autonomy") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
9
+ mean_sucess_greater_autonomy_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Greater autonomy") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
10
+
11
+ mean_sucess_policy_change_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Policy change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
12
+ mean_sucess_policy_change_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Policy change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
13
+
14
+ mean_sucess_regime_change_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Regime change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
15
+ mean_sucess_regime_change_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Regime change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
16
+
17
+ mean_sucess_inst_reform_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Significant institutional reform") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
18
+ mean_sucess_inst_reform_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Significant institutional reform") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
19
+
20
+ mean_sucess_territorial_secession_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Territorial secession") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
21
+ mean_sucess_territorial_secession_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Territorial secession") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
22
+
23
+ success_props = data.frame("prop_success" = c(mean_sucess_anti_occupation_minority, mean_sucess_anti_occupation_majority,
24
+ mean_sucess_greater_autonomy_minority, mean_sucess_greater_autonomy_majority,
25
+ mean_sucess_policy_change_minority, mean_sucess_policy_change_majority,
26
+ mean_sucess_regime_change_minority, mean_sucess_regime_change_majority,
27
+ mean_sucess_inst_reform_minority, mean_sucess_inst_reform_majority,
28
+ mean_sucess_territorial_secession_minority, mean_sucess_territorial_secession_majority),
29
+ "Status" =rep(c("Excluded", "Included"), 6), "goal" = c(rep("Anti \noccupation", 2), rep("Greater \nautonomy", 2), rep("Policy \nchange", 2),
30
+ rep("Regime \nchange", 2), rep("Significant \ninstitutional \nreform", 2), rep("Territorial \nsecession", 2)))
31
+
32
+
33
+ ggplot(data=success_props, aes(x=goal, y=prop_success, fill=Status)) +
34
+ geom_bar(stat="identity", position=position_dodge()) + theme_bw() +
35
+ ylab("Proportion of successful campaigns") + xlab("Campaign goal") + scale_fill_brewer(palette="Paired")
36
+ ggsave(file="Figures/fig_A2.pdf", width=6.5, height=4)
23/replication_package/Code/replicate_fig_A3.R ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A3
3
+ ##--##--##--##--##--##--##
4
+
5
+ status_names = c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION", "JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT", "MONOPOLY")
6
+
7
+ ggplot(EBCR_EPR_NAVCO2, aes(x=EPR_GROUPSIZE, y=EPR_STATUS_ORD)) +
8
+ geom_point(alpha=0.2, color="gray50") + geom_smooth(color="black") +
9
+ theme_bw() + xlab("Group size") + ylab("Group status") +
10
+ scale_y_continuous(breaks = c(1,2,3,4,5,6,7), labels = status_names)
11
+ ggsave("Figures/fig_A3.pdf", width=6, height=5)
23/replication_package/Code/replicate_fig_A6.R ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A6
3
+ ##--##--##--##--##--##--##
4
+
5
+ us_survey_wave1$education_numeric = as.numeric(us_survey_wave1$education)
6
+ us_survey_wave1$income_numeric = as.numeric(us_survey_wave1$income)
7
+ us_survey_wave1$ideology_numeric = as.numeric(us_survey_wave1$ideology)
8
+
9
+ us_survey_wave1 = dummy_cols(us_survey_wave1, select_columns = c("partyID", "race"))
10
+ vars_us_survey_wave1 = c("age", "female", "education_numeric", "income_numeric", "partyID_D", "partyID_I", "partyID_R", "ideology_numeric", "race_White", "race_Black")
11
+
12
+ means_black_march = means_white_march = means_black_shut = means_white_shut = means_black_destroy = means_white_destroy = rep(NA, length(vars_us_survey_wave1))
13
+ se_black_march = se_white_march = se_black_shut = se_white_shut = se_black_destroy = se_white_destroy = rep(NA, length(vars_us_survey_wave1))
14
+
15
+ for(i in 1:length(vars_us_survey_wave1)){
16
+ means_black_march[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
17
+ means_white_march[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
18
+ means_black_shut[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
19
+ means_white_shut[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
20
+ means_black_destroy[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
21
+ means_white_destroy[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
22
+
23
+ se_black_march[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
24
+ se_white_march[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
25
+ se_black_shut[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
26
+ se_white_shut[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
27
+ se_black_destroy[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
28
+ se_white_destroy[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
29
+
30
+ }
31
+
32
+ us_survey_wave1_balance = cbind(means_black_march, se_black_march,
33
+ means_white_march, se_white_march,
34
+ means_black_shut, se_black_shut,
35
+ means_white_shut, se_white_shut,
36
+ means_black_destroy, se_black_destroy,
37
+ means_white_destroy, se_white_destroy)
38
+
39
+ us_survey_wave1_balance = as.data.frame(us_survey_wave1_balance)
40
+ colnames(us_survey_wave1_balance) = c("Blacks, march in streets (mean)", "Blacks, march in streets (sd)",
41
+ "Whites, march in streets (mean)", "Whites, march in streets (sd)",
42
+ "Blacks, shut down traffic (mean)", "Blacks, shut down traffic (sd)",
43
+ "Whites, shut down traffic (mean)", "Whites, shut down traffic (sd)",
44
+ "Blacks, destroy police cars (mean)", "Blacks, destroy police cars (sd)",
45
+ "Whites, destroy police cars (mean)", "Whites, destroy police cars (sd)")
46
+ rownames(us_survey_wave1_balance) = vars_us_survey_wave1
47
+
48
+
49
+ us_survey_wave1_balance_means = as.data.frame(cbind(means_black_march,
50
+ means_white_march,
51
+ means_black_shut,
52
+ means_white_shut,
53
+ means_black_destroy,
54
+ means_white_destroy))
55
+
56
+ rownames(us_survey_wave1_balance_means) = vars_us_survey_wave1
57
+ us_survey_wave1_balance_means$var = vars_us_survey_wave1
58
+
59
+ keycol <- "condition"
60
+ valuecol <- "mean"
61
+ gathercols <- c("means_black_march", "means_white_march", "means_black_shut", "means_white_shut",
62
+ "means_black_destroy", "means_white_destroy")
63
+
64
+ us_survey_wave1_balance_means_long = gather_(us_survey_wave1_balance_means, keycol, valuecol, gathercols)
65
+
66
+
67
+ us_survey_wave1_balance_se = as.data.frame(cbind(se_black_march,
68
+ se_white_march,
69
+ se_black_shut,
70
+ se_white_shut,
71
+ se_black_destroy,
72
+ se_white_destroy))
73
+
74
+ rownames(us_survey_wave1_balance_se) = vars_us_survey_wave1
75
+ us_survey_wave1_balance_se$var = vars_us_survey_wave1
76
+
77
+ keycol <- "condition"
78
+ valuecol <- "se"
79
+ gathercols <- c("se_black_march", "se_white_march", "se_black_shut", "se_white_shut",
80
+ "se_black_destroy", "se_white_destroy")
81
+
82
+ us_survey_wave1_balance_se_long = gather_(us_survey_wave1_balance_se, keycol, valuecol, gathercols)
83
+
84
+ us_survey_wave1_balance_long = cbind(us_survey_wave1_balance_means_long, us_survey_wave1_balance_se_long[,"se"])
85
+
86
+ colnames(us_survey_wave1_balance_long) = c("term", "model", "estimate", "std.error")
87
+
88
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_destroy"] = "Black, destroy property"
89
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_march"] = "Black, march in streets"
90
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_shut"] = "Black, shut down traffic"
91
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_destroy"] = "White, destroy property"
92
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_march"] = "White, march in streets"
93
+ us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_shut"] = "White, shut down traffic"
94
+
95
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "age"] = "Age"
96
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "female"] = "Female"
97
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "education_numeric"] = "Education (1-6 scale)"
98
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "income_numeric"] = "Income (1-17 scale)"
99
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_D"] = "Party ID: Democrat"
100
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_I"] = "Party ID: Independent"
101
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_R"] = "Party ID: Republican"
102
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "ideology_numeric"] = "Ideology (1-6 scale)"
103
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "race_White"] = "Race: White"
104
+ us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "race_Black"] = "Race: Black"
105
+
106
+ us_survey_wave1_balance_long = us_survey_wave1_balance_long[us_survey_wave1_balance_long$term != "Age",]
107
+
108
+ dwplot(us_survey_wave1_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
109
+ geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
110
+ ggsave("Figures/fig_A6.pdf", height=5, width=7)
23/replication_package/Code/replicate_fig_A7.R ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A7
3
+ ##--##--##--##--##--##--##
4
+
5
+ isr_survey_wave1$age_numeric = as.numeric(isr_survey_wave1$age)
6
+ age1 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
7
+ age2 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
8
+ age3 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
9
+ age4 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
10
+ age5 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
11
+ age6 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
12
+ age7 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
13
+ age8 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
14
+ age9 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
15
+
16
+ ages_isr_survey_wave1 = c(age1, age2, age3, age4, age5, age6, age7, age8, age9)
17
+
18
+
19
+
20
+ isr_survey_wave1 = dummy_cols(isr_survey_wave1, select_columns = c("partyID", "ethnicity"))
21
+
22
+ vars_isr_survey_wave1 = c("female", "education", "income", "partyID_C", "partyID_L", "partyID_R", "ideology",
23
+ "ethnicity_Ethiopia", "ethnicity_Arab", "ethnicity_Ashkenazi", "ethnicity_Mizrachi", "ethnicity_Soviet Union")
24
+
25
+ means_black_march = means_arab_march = means_white_march = rep(NA, length(vars_isr_survey_wave1))
26
+ means_black_shut = means_arab_shut = means_white_shut = rep(NA, length(vars_isr_survey_wave1))
27
+ means_black_destroy = means_arab_destroy = means_white_destroy = rep(NA, length(vars_isr_survey_wave1))
28
+
29
+ se_black_march = se_arab_march = se_white_march = rep(NA, length(vars_isr_survey_wave1))
30
+ se_black_shut = se_arab_shut = se_white_shut = rep(NA, length(vars_isr_survey_wave1))
31
+ se_black_destroy = se_arab_destroy = se_white_destroy = rep(NA, length(vars_isr_survey_wave1))
32
+
33
+ for(i in 1:length(vars_isr_survey_wave1)){
34
+
35
+ means_black_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
36
+ se_black_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
37
+ means_arab_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
38
+ se_arab_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
39
+ means_white_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
40
+ se_white_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
41
+
42
+ means_black_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
43
+ se_black_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
44
+ means_arab_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
45
+ se_arab_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
46
+ means_white_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
47
+ se_white_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
48
+
49
+ means_black_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
50
+ se_black_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
51
+ means_arab_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
52
+ se_arab_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
53
+ means_white_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
54
+ se_white_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
55
+
56
+ }
57
+
58
+ israel_balance_means = as.data.frame(cbind(means_black_march,
59
+ means_arab_march,
60
+ means_white_march,
61
+ means_black_shut,
62
+ means_arab_shut,
63
+ means_white_shut,
64
+ means_black_destroy,
65
+ means_arab_destroy,
66
+ means_white_destroy))
67
+
68
+ rownames(israel_balance_means) = vars_isr_survey_wave1
69
+ israel_balance_means$var = vars_isr_survey_wave1
70
+
71
+ keycol <- "condition"
72
+ valuecol <- "mean"
73
+ gathercols <- c("means_black_march", "means_arab_march", "means_white_march", "means_black_shut", "means_arab_shut", "means_white_shut",
74
+ "means_black_destroy", "means_white_destroy", "means_black_destroy", "means_arab_destroy",
75
+ "means_white_destroy")
76
+
77
+ israel_balance_means_long = gather_(israel_balance_means, keycol, valuecol, gathercols)
78
+
79
+
80
+ israel_balance_se = as.data.frame(cbind(se_black_march,
81
+ se_arab_march,
82
+ se_white_march,
83
+ se_black_shut,
84
+ se_arab_shut,
85
+ se_white_shut,
86
+ se_black_destroy,
87
+ se_arab_destroy,
88
+ se_white_destroy))
89
+
90
+ rownames(israel_balance_se) = vars_isr_survey_wave1
91
+ israel_balance_se$var = vars_isr_survey_wave1
92
+
93
+ keycol <- "condition"
94
+ valuecol <- "se"
95
+ gathercols <- c("se_black_march", "se_arab_march", "se_white_march", "se_black_shut", "se_arab_shut", "se_white_shut",
96
+ "se_black_destroy", "se_white_destroy", "se_black_destroy", "se_arab_destroy",
97
+ "se_white_destroy")
98
+
99
+ israel_balance_se_long = gather_(israel_balance_se, keycol, valuecol, gathercols)
100
+
101
+ israel_balance_long = cbind(israel_balance_means_long, israel_balance_se_long[,"se"])
102
+
103
+ colnames(israel_balance_long) = c("term", "model", "estimate", "std.error")
104
+
105
+ israel_balance_long$model[israel_balance_long$model == "means_black_destroy"] = "Black, destroy property"
106
+ israel_balance_long$model[israel_balance_long$model == "means_black_march"] = "Black, march in streets"
107
+ israel_balance_long$model[israel_balance_long$model == "means_black_shut"] = "Black, shut down traffic"
108
+ israel_balance_long$model[israel_balance_long$model == "means_white_destroy"] = "White, destroy property"
109
+ israel_balance_long$model[israel_balance_long$model == "means_white_march"] = "White, march in streets"
110
+ israel_balance_long$model[israel_balance_long$model == "means_white_shut"] = "White, shut down traffic"
111
+ israel_balance_long$model[israel_balance_long$model == "means_arab_destroy"] = "Arab, destroy property"
112
+ israel_balance_long$model[israel_balance_long$model == "means_arab_march"] = "Arab, march in streets"
113
+ israel_balance_long$model[israel_balance_long$model == "means_arab_shut"] = "Arab, shut down traffic"
114
+
115
+
116
+ israel_balance_long$term[israel_balance_long$term == "age_numeric"] = "Age (1-6 scale)"
117
+ israel_balance_long$term[israel_balance_long$term == "education"] = "Education (0-6 scale)"
118
+ israel_balance_long$term[israel_balance_long$term == "ethnicity2_Ethiopia"] = "Ethnicity: Jewish Ethiopian"
119
+ israel_balance_long$term[israel_balance_long$term == "female"] = "Female"
120
+ israel_balance_long$term[israel_balance_long$term == "ideology"] = "Ideology (1-7 scale)"
121
+ israel_balance_long$term[israel_balance_long$term == "income"] = "Income (0-8 scale)"
122
+ israel_balance_long$term[israel_balance_long$term == "partyID_C"] = "Party ID: Center"
123
+ israel_balance_long$term[israel_balance_long$term == "partyID_L"] = "Party ID: Left"
124
+ israel_balance_long$term[israel_balance_long$term == "partyID_R"] = "Party ID: Right"
125
+ israel_balance_long$term[israel_balance_long$term == "ethnicity2_Arab"] = "Ethnicity: Arab"
126
+ israel_balance_long$term[israel_balance_long$term == "ethnicity2_Ashkenazi"] = "Ethnicity: Jewish Ashkenazi"
127
+ israel_balance_long$term[israel_balance_long$term == "ethnicity2_Mizrachi"] = "Ethnicity: Jewish Mizrachi"
128
+ israel_balance_long$term[israel_balance_long$term == "ethnicity2_Soviet Union"] = "Ethnicity: Jewish from Soviet Union"
129
+
130
+
131
+ dwplot(israel_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
132
+ geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
133
+ ggsave("Figures/fig_A7.pdf", height=5, width=7)
23/replication_package/Code/replicate_fig_A8.R ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A8
3
+ ##--##--##--##--##--##--##
4
+
5
+ us_survey_wave2$age_numeric = as.numeric(us_survey_wave2$age)
6
+ age1 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
7
+ age2 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
8
+ age3 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
9
+ age4 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
10
+ age5 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
11
+ age6 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
12
+ age7 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
13
+ age8 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
14
+
15
+ ages_us_survey_wave2 = c(age1, age2, age3, age4, age5, age6, age7, age8)
16
+
17
+
18
+ us_survey_wave2$education_numeric = as.numeric(us_survey_wave2$education)
19
+ us_survey_wave2$income_numeric = as.numeric(us_survey_wave2$income)
20
+ us_survey_wave2$ideology_numeric = as.numeric(us_survey_wave2$pol_views) +1
21
+
22
+ us_survey_wave2 = dummy_cols(us_survey_wave2, select_columns = c("partyID", "race"))
23
+ vars_us_survey_wave2 = c("female", "education_numeric", "income_numeric", "partyID_D", "partyID_I", "partyID_R", "ideology_numeric", "race_White / Caucasian","race_Black / African American")
24
+
25
+ means_black_generic_nocomm = means_black_generic_comm = means_black_group_nocomm = means_black_group_comm =
26
+ means_white_generic_nocomm = means_white_generic_comm = means_white_group_nocomm = means_white_group_comm = rep(NA, length(vars_us_survey_wave2))
27
+
28
+ se_black_generic_nocomm = se_black_generic_comm = se_black_group_nocomm = se_black_group_comm =
29
+ se_white_generic_nocomm = se_white_generic_comm = se_white_group_nocomm = se_white_group_comm = rep(NA, length(vars_us_survey_wave2))
30
+
31
+
32
+ for(i in 1:length(vars_us_survey_wave2)){
33
+ means_black_generic_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
34
+ means_black_generic_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
35
+ means_black_group_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
36
+ means_black_group_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
37
+ means_white_generic_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
38
+ means_white_generic_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
39
+ means_white_group_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
40
+ means_white_group_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
41
+
42
+ se_black_generic_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
43
+ se_black_generic_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
44
+ se_black_group_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
45
+ se_black_group_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
46
+ se_white_generic_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
47
+ se_white_generic_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
48
+ se_white_group_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
49
+ se_white_group_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
50
+
51
+ }
52
+
53
+ us_survey_wave2_balance = cbind(means_black_generic_nocomm, se_black_generic_nocomm,
54
+ means_black_generic_comm, se_black_generic_comm,
55
+ means_black_group_nocomm, se_black_group_nocomm,
56
+ means_black_group_comm, se_black_group_comm,
57
+ means_white_generic_nocomm, se_white_generic_nocomm,
58
+ means_white_generic_comm, se_white_generic_comm,
59
+ means_white_group_nocomm, se_white_group_nocomm,
60
+ means_white_group_comm, se_white_group_comm)
61
+
62
+
63
+
64
+
65
+ us_survey_wave2_balance = as.data.frame(us_survey_wave2_balance)
66
+ rownames(us_survey_wave2_balance) = vars_us_survey_wave2
67
+
68
+
69
+ us_survey_wave2_balance_means = as.data.frame(cbind(means_black_generic_nocomm,
70
+ means_black_generic_comm,
71
+ means_black_group_nocomm,
72
+ means_black_group_comm,
73
+ means_white_generic_nocomm,
74
+ means_white_generic_comm,
75
+ means_white_group_nocomm,
76
+ means_white_group_comm))
77
+
78
+ rownames(us_survey_wave2_balance_means) = vars_us_survey_wave2
79
+ us_survey_wave2_balance_means$var = vars_us_survey_wave2
80
+
81
+ keycol <- "condition"
82
+ valuecol <- "mean"
83
+ gathercols <- c("means_black_generic_nocomm",
84
+ "means_black_generic_comm",
85
+ "means_black_group_nocomm",
86
+ "means_black_group_comm",
87
+ "means_white_generic_nocomm",
88
+ "means_white_generic_comm",
89
+ "means_white_group_nocomm",
90
+ "means_white_group_comm")
91
+
92
+ us_survey_wave2_balance_means_long = gather_(us_survey_wave2_balance_means, keycol, valuecol, gathercols)
93
+
94
+
95
+ us_survey_wave2_balance_se = as.data.frame(cbind(se_black_generic_nocomm,
96
+ se_black_generic_comm,
97
+ se_black_group_nocomm,
98
+ se_black_group_comm,
99
+ se_white_generic_nocomm,
100
+ se_white_generic_comm,
101
+ se_white_group_nocomm,
102
+ se_white_group_comm))
103
+
104
+ rownames(us_survey_wave2_balance_se) = vars_us_survey_wave2
105
+ us_survey_wave2_balance_se$var = vars_us_survey_wave2
106
+
107
+ keycol <- "condition"
108
+ valuecol <- "se"
109
+ gathercols <- c("se_black_generic_nocomm",
110
+ "se_black_generic_comm",
111
+ "se_black_group_nocomm",
112
+ "se_black_group_comm",
113
+ "se_white_generic_nocomm",
114
+ "se_white_generic_comm",
115
+ "se_white_group_nocomm",
116
+ "se_white_group_comm")
117
+
118
+ us_survey_wave2_balance_se_long = gather_(us_survey_wave2_balance_se, keycol, valuecol, gathercols)
119
+
120
+ us_survey_wave2_balance_long = cbind(us_survey_wave2_balance_means_long, us_survey_wave2_balance_se_long[,"se"])
121
+
122
+ colnames(us_survey_wave2_balance_long) = c("term", "model", "estimate", "std.error")
123
+
124
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_generic_nocomm"] = "Black, generic goal, no commitment"
125
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_generic_comm"] = "Black, generic goal, commitment"
126
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_group_nocomm"] = "Black, group goal, no commitment"
127
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_group_comm"] = "Black, group goal, no commitment"
128
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_generic_nocomm"] = "White, generic goal, no commitment"
129
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_generic_comm"] = "White, generic goal, commitment"
130
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_group_nocomm"] = "White, group goal, no commitment"
131
+ us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_group_comm"] = "White, group goal, no commitment"
132
+
133
+
134
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "age"] = "Age"
135
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "female"] = "Female"
136
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "education_numeric"] = "Education (1-7 scale)"
137
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "income_numeric"] = "Income (1-6 scale)"
138
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_D"] = "Party ID: Democrat"
139
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_I"] = "Party ID: Independent"
140
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_R"] = "Party ID: Republican"
141
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "ideology_numeric"] = "Ideology (1-7 scale)"
142
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "race_White / Caucasian"] = "Race: White"
143
+ us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "race_Black / African American"] = "Race: Black"
144
+
145
+
146
+ us_survey_wave2_balance_long = us_survey_wave2_balance_long[us_survey_wave2_balance_long$term != "Age",]
147
+
148
+ dwplot(us_survey_wave2_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
149
+ geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
150
+ ggsave("Figures/fig_A8.pdf", height=5, width=7)
23/replication_package/Code/replicate_fig_A9.R ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Figure A9
3
+ ##--##--##--##--##--##--##
4
+
5
+ isr_survey_wave2 = dummy_cols(isr_survey_wave2, select_columns = c("partyID", "ethnicity"))
6
+
7
+ vars_isr_survey_wave2 = c("female", "education", "income", "partyID_L", "partyID_R", "ideology",
8
+ "ethnicity_Ethiopia", "ethnicity_Ashkenazi", "ethnicity_Mizrachi", "ethnicity_Soviet Union")
9
+
10
+ isr_survey_wave2$age_numeric = as.numeric(isr_survey_wave2$age)
11
+ age1 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
12
+ age2 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
13
+ age3 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
14
+ age4 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
15
+ age5 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
16
+ age6 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
17
+ age7 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
18
+ age8 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
19
+ age9 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
20
+ age10 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
21
+
22
+ ages_isr_survey_wave2 = c(age1, age2, age3, age4, age5, age6, age7, age8, age9, age10)
23
+
24
+ means_eth_generic_nocomm = means_eth_generic_comm = means_eth_group_nocomm = means_eth_group_comm =
25
+ means_arab_generic_nocomm = means_arab_generic_comm = means_arab_group_nocomm = means_arab_group_comm =
26
+ means_white_generic_nocomm = means_white_generic_comm = rep(NA, length(vars_isr_survey_wave2))
27
+
28
+ se_eth_generic_nocomm = se_eth_generic_comm = se_eth_group_nocomm = se_eth_group_comm =
29
+ se_arab_generic_nocomm = se_arab_generic_comm = se_arab_group_nocomm = se_arab_group_comm =
30
+ se_white_generic_nocomm = se_white_generic_comm = rep(NA, length(vars_isr_survey_wave2))
31
+
32
+
33
+ for(i in 1:length(vars_isr_survey_wave2)){
34
+ means_eth_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
35
+ means_eth_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
36
+ means_eth_group_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
37
+ means_eth_group_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
38
+ means_arab_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
39
+ means_arab_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
40
+ means_arab_group_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
41
+ means_arab_group_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
42
+ means_white_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
43
+ means_white_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
44
+
45
+ se_eth_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
46
+ se_eth_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
47
+ se_eth_group_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
48
+ se_eth_group_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
49
+ se_arab_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
50
+ se_arab_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
51
+ se_arab_group_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
52
+ se_arab_group_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
53
+ se_white_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
54
+ se_white_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
55
+
56
+ }
57
+
58
+
59
+ isr_survey_wave2_balance_means = as.data.frame(cbind(means_eth_generic_nocomm,
60
+ means_eth_generic_comm,
61
+ means_eth_group_nocomm,
62
+ means_eth_group_comm,
63
+ means_arab_generic_nocomm,
64
+ means_arab_generic_comm,
65
+ means_arab_group_nocomm,
66
+ means_arab_group_comm,
67
+ means_white_generic_nocomm,
68
+ means_white_generic_comm))
69
+
70
+ rownames(isr_survey_wave2_balance_means) = vars_isr_survey_wave2
71
+ isr_survey_wave2_balance_means$var = vars_isr_survey_wave2
72
+
73
+ keycol <- "condition"
74
+ valuecol <- "mean"
75
+ gathercols <- c("means_eth_generic_nocomm",
76
+ "means_eth_generic_comm",
77
+ "means_eth_group_nocomm",
78
+ "means_eth_group_comm",
79
+ "means_arab_generic_nocomm",
80
+ "means_arab_generic_comm",
81
+ "means_arab_group_nocomm",
82
+ "means_arab_group_comm",
83
+ "means_white_generic_nocomm",
84
+ "means_white_generic_comm")
85
+
86
+ isr_survey_wave2_balance_means_long = gather_(isr_survey_wave2_balance_means, keycol, valuecol, gathercols)
87
+
88
+ isr_survey_wave2_balance_se = as.data.frame(cbind(se_eth_generic_nocomm,
89
+ se_eth_generic_comm,
90
+ se_eth_group_nocomm,
91
+ se_eth_group_comm,
92
+ se_arab_generic_nocomm,
93
+ se_arab_generic_comm,
94
+ se_arab_group_nocomm,
95
+ se_arab_group_comm,
96
+ se_white_generic_nocomm,
97
+ se_white_generic_comm))
98
+
99
+ rownames(isr_survey_wave2_balance_se) = vars_isr_survey_wave2
100
+ isr_survey_wave2_balance_se$var = vars_isr_survey_wave2
101
+
102
+ keycol <- "condition"
103
+ valuecol <- "se"
104
+ gathercols <- c("se_eth_generic_nocomm",
105
+ "se_eth_generic_comm",
106
+ "se_eth_group_nocomm",
107
+ "se_eth_group_comm",
108
+ "se_arab_generic_nocomm",
109
+ "se_arab_generic_comm",
110
+ "se_arab_group_nocomm",
111
+ "se_arab_group_comm",
112
+ "se_white_generic_nocomm",
113
+ "se_white_generic_comm")
114
+
115
+ isr_survey_wave2_balance_se_long = gather_(isr_survey_wave2_balance_se, keycol, valuecol, gathercols)
116
+
117
+ isr_survey_wave2_balance_long = cbind(isr_survey_wave2_balance_means_long, isr_survey_wave2_balance_se_long[,"se"])
118
+
119
+ colnames(isr_survey_wave2_balance_long) = c("term", "model", "estimate", "std.error")
120
+
121
+
122
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_generic_nocomm"] = "Ethiopian, generic goal, no commitment"
123
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_generic_comm"] = "Ethiopian, generic goal, commitment"
124
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_group_nocomm"] = "Ethiopian, group goal, no commitment"
125
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_group_comm"] = "Ethiopian, group goal, no commitment"
126
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_generic_nocomm"] = "Arab, generic goal, no commitment"
127
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_generic_comm"] = "Arab, generic goal, commitment"
128
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_group_nocomm"] = "Arab, group goal, no commitment"
129
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_group_comm"] = "Arab, group goal, no commitment"
130
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_white_generic_nocomm"] = "White, generic goal, no commitment"
131
+ isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_white_generic_comm"] = "White, generic goal, commitment"
132
+
133
+
134
+
135
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "education"] = "Education (0-6 scale)"
136
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Ethiopia"] = "Ethnicity: Ethiopian"
137
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Ashkenazi"] = "Ethnicity: Ashkenazi"
138
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Mizrachi"] = "Ethnicity: Mizrachi"
139
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Soviet Union"] = "Ethnicity: Soviet Union"
140
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "female"] = "Female"
141
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ideology"] = "Ideology (1-7 scale)"
142
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "income"] = "Income (0-8 scale)"
143
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "partyID_L"] = "Party ID: Left"
144
+ isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "partyID_R"] = "Party ID: Right"
145
+
146
+
147
+ dwplot(isr_survey_wave2_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
148
+ geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
149
+ ggsave("Figures/fig_A9.pdf", height=5, width=7)
23/replication_package/Code/replicate_table_1.R ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Table 1
3
+ ##--##--##--##
4
+
5
+ ## A. U.S
6
+ degv_yg = lm(degree_violence ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
7
+ police_yg = lm(police_action_required ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
8
+ recall_violence_yg = lm(recall_violence2 ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
9
+ approve_protest_yg = lm(approve_protest_scale ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
10
+ stargazer(degv_yg, recall_violence_yg, police_yg,
11
+ covariate.labels = c("Black protesters", "Shut down traffic",
12
+ "Destroy police cars", "Intercept: White protesters, March in streets"),
13
+ out = "Tables/table_1_panel_A.tex")
14
+
15
+ ## B. Israel
16
+ degv_isr = lm(degree_violence ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
17
+ police_isr = lm(police_action_required ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
18
+ recall_violence_isr = lm(recall_violence2 ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
19
+ approve_protest_isr = lm(approve_protest_scale ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
20
+ stargazer(degv_isr, recall_violence_isr, police_isr,
21
+ covariate.labels = c("Ethiopian protesters", "Arab protesters",
22
+ "Shut down traffic", "Destroy garbage cans",
23
+ "Intercept: White protesters, March in streets"),
24
+ out = "Tables/table_1_panel_B.tex")
23/replication_package/Code/replicate_table_4.R ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Table 4
3
+ ##--##--##--##
4
+
5
+ ## A. U.S. sample
6
+ mod1 = lm(degree_violence ~ black + group_goal + commitment , data=us_survey_wave2)
7
+ mod2 = lm(recall_violence2 ~ black + group_goal + commitment, data=us_survey_wave2)
8
+ mod3 = lm(police_action_required ~ black + group_goal + commitment, data=us_survey_wave2)
9
+ stargazer(mod1, mod2, mod3,
10
+ covariate.labels = c("Black protesters", "Minority group goal",
11
+ "Commitment to nonviolence", "Intercept: White protesters, generic goal, no commitment"),
12
+ out = "Tables/table_4_panel_A.tex")
13
+
14
+ ## B. Israel sample
15
+ mod1_israel = lm(degree_violence ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
16
+ mod2_israel = lm(recall_violence2 ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
17
+ mod3_israel = lm(police_action_required ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
18
+ stargazer(mod1_israel, mod2_israel, mod3_israel,
19
+ covariate.labels = c("Ethiopian protesters", "Arab protesters",
20
+ "Minority group goal", "Commitment to nonviolence",
21
+ "Intercept: White protesters, generic goal, no commitment"),
22
+ out = "Tables/table_4_panel_B.tex")
23/replication_package/Code/replicate_table_A1.R ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A1
3
+ ##--##--##--##--##--##--##
4
+
5
+ stargazer(EBCR_EPR_NAVCO2[,c("YEAR", "success", "INIT_NV_ONSET", "EPR_GROUPSIZE", "EPR_STATUS_ORD",
6
+ "EPR_STATUS_EXCL", "POP_LOG_LAG_EXT", "GDPPC_LOG_LAG_EXT",
7
+ "PASTNV", "PASTV", "VDEM_POLYARCHY_LAG", "VDEM_PHYSINT_LAG",
8
+ "EPR_TEK_EGIP", "EPR_DOWNGRADED5", "HORIZ_INEQ", "NVYEARS",
9
+ "VYEARS")],
10
+ covariate.labels = c("Year", "Campaign success", "NV campaign", "EPR group size", "EPR status",
11
+ "EPR Status: excluded", "Country population (logged)", "Country GDP per capita (logged)", "Prior participation in nonviolence", "Prior participation in violence",
12
+ "Level of democracy", "Physical integrity index", "Neighboring kin in power",
13
+ "Downgraded", "Horizontal inequality", "Nonviolent years", "Violent years"),
14
+ out="Tables/table_A1.tex")
15
+
23/replication_package/Code/replicate_table_A10.R ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A10
3
+ ##--##--##--##--##--##--##
4
+
5
+ us_wave2_sumstats = us_survey_wave2[,c("age", "female", "education", "income", "partyID", "pol_views", "interest_politics",
6
+ "degree_violence", "police_action_required", "recall_violence2", "race")]
7
+ us_wave2_sumstats = dummy_cols(us_wave2_sumstats, select_columns = c("age", "education", "income", "partyID", "pol_views", "race"))
8
+ table_a10 = stargazer(us_wave2_sumstats, omit.summary.stat=c("p25", "p75"))
9
+ cat(table_a10, sep = '\n', file = "Tables/table_A10.tex")
23/replication_package/Code/replicate_table_A11.R ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A11
3
+ ##--##--##--##--##--##--##
4
+
5
+ isr_wave2_sumstats = isr_survey_wave2[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology",
6
+ "degree_violence", "police_action_required", "recall_violence2")]
7
+ isr_wave2_sumstats = dummy_cols(isr_wave2_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
8
+ table_a11 = stargazer(isr_wave2_sumstats, omit.summary.stat=c("p25", "p75"))
9
+ cat(table_a11, sep = '\n', file = "Tables/table_A11.tex")
23/replication_package/Code/replicate_table_A13.R ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A13
3
+ ##--##--##--##--##--##--##
4
+
5
+ ## A. U.S. sample
6
+ degv_yg = lm(degree_violence ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
7
+ police_yg = lm(police_action_required ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
8
+ recall_violence_yg = lm(recall_violence2 ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
9
+ stargazer(degv_yg, recall_violence_yg, police_yg, out = "Tables/table_A13_panel_A.tex")
10
+
11
+ ## B. Israel sample
12
+ degv_ip = lm(degree_violence ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1, weights=weight)
13
+ police_ip = lm(police_action_required ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity , data=isr_survey_wave1, weights=weight)
14
+ recall_violence_ip = lm(recall_violence2 ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity , data=isr_survey_wave1, weights=weight)
15
+ stargazer(degv_ip, recall_violence_ip, police_ip, out = "Tables/table_A13_panel_B.tex")
23/replication_package/Code/replicate_table_A14.R ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##
2
+ ## Table A14
3
+ ##--##--##--##
4
+
5
+ us_survey_wave1$identity_protesters_fac = as.factor(us_survey_wave1$identity_protesters)
6
+ levels(us_survey_wave1$identity_protesters_fac) = c("White", "Black")
7
+ us_survey_wave1$tactic_fac = as.factor(us_survey_wave1$tactic)
8
+ levels(us_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy police cars")
9
+
10
+ isr_survey_wave1$identity_protesters_fac = as.factor(isr_survey_wave1$identity_protesters)
11
+ levels(isr_survey_wave1$identity_protesters_fac) = c("White", "Ethiopian", "Arab")
12
+ isr_survey_wave1$tactic_fac = as.factor(isr_survey_wave1$tactic)
13
+ levels(isr_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy garbage cans")
14
+
15
+
16
+ ## US sample
17
+ us_survey_wave1$degree_violence_std = scale(us_survey_wave1$degree_violence)
18
+ us_survey_wave1$police_action_required_std = scale(us_survey_wave1$police_action_required)
19
+ us_survey_wave1$recall_violence2_std = scale(us_survey_wave1$recall_violence2)
20
+
21
+ march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
22
+ shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
23
+ destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
24
+
25
+ march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
26
+ shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
27
+ destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
28
+
29
+ march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
30
+ shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
31
+ destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
32
+
33
+ # Plot differences
34
+
35
+ term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
36
+ se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
37
+ statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
38
+ pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
39
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
40
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
41
+ degree_violence = cbind(degree_violence, term)
42
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
43
+ rownames(degree_violence) = term
44
+ degree_violence$model = "Perceived degree of violence"
45
+
46
+ term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
47
+ se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
48
+ statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
49
+ pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
50
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
51
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
52
+ police_action_required = cbind(police_action_required, term)
53
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
54
+ rownames(police_action_required) = term
55
+ police_action_required$model = "Police action required"
56
+
57
+ term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
58
+ se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
59
+ statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
60
+ pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
61
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
62
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
63
+ recall_violence = cbind(recall_violence, term)
64
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
65
+ rownames(recall_violence) = term
66
+ recall_violence$model = "Recall violence"
67
+
68
+ differences_us = rbind(degree_violence, police_action_required, recall_violence)
69
+
70
+
71
+ ## Israel respondents
72
+ isr_survey_wave1$degree_violence_std = scale(isr_survey_wave1$degree_violence)
73
+ isr_survey_wave1$police_action_required_std = scale(isr_survey_wave1$police_action_required)
74
+ isr_survey_wave1$recall_violence2_std = scale(isr_survey_wave1$recall_violence2)
75
+
76
+ march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
77
+ shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
78
+ destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
79
+
80
+ march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
81
+ shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
82
+ destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
83
+
84
+ march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
85
+ shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
86
+ destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
87
+
88
+
89
+ # Ethiopian protesters
90
+ term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
91
+ se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
92
+ statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
93
+ pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
94
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
95
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
96
+ degree_violence = cbind(degree_violence, term)
97
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
98
+ rownames(degree_violence) = term
99
+ degree_violence$model = "Perceived degree of violence"
100
+
101
+ term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
102
+ se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
103
+ statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
104
+ pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
105
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
106
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
107
+ police_action_required = cbind(police_action_required, term)
108
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
109
+ rownames(police_action_required) = term
110
+ police_action_required$model = "Police action required"
111
+
112
+ term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
113
+ se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
114
+ statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
115
+ pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
116
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
117
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
118
+ recall_violence = cbind(recall_violence, term)
119
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
120
+ rownames(recall_violence) = term
121
+ recall_violence$model = "Recall violence"
122
+
123
+ differences_isr_black = rbind(degree_violence, police_action_required, recall_violence)
124
+
125
+ term_degree_violence = c(march1$coefficients[3], shut1$coefficients[3], destroy1$coefficients[3])
126
+ se_degree_violence = c(march1$std.error[3], shut1$std.error[3], destroy1$std.error[3])
127
+ statistic_degree_violence = c(march1$statistic[3], shut1$statistic[3], destroy1$statistic[3])
128
+ pval_degree_violence = c(march1$p.value[3], shut1$p.value[3], destroy1$p.value[3])
129
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
130
+ degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
131
+ degree_violence = cbind(degree_violence, term)
132
+ colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
133
+ rownames(degree_violence) = term
134
+ degree_violence$model = "Perceived degree of violence"
135
+
136
+ term_police_action_required = c(march2$coefficients[3], shut2$coefficients[3], destroy2$coefficients[3])
137
+ se_police_action_required = c(march2$std.error[3], shut2$std.error[3], destroy2$std.error[3])
138
+ statistic_police_action_required = c(march2$statistic[3], shut2$statistic[3], destroy2$statistic[3])
139
+ pval_police_action_required = c(march2$p.value[3], shut2$p.value[3], destroy2$p.value[3])
140
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
141
+ police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
142
+ police_action_required = cbind(police_action_required, term)
143
+ colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
144
+ rownames(police_action_required) = term
145
+ police_action_required$model = "Police action required"
146
+
147
+ term_recall_violence = c(march3$coefficients[3], shut3$coefficients[3], destroy3$coefficients[3])
148
+ se_recall_violence = c(march3$std.error[3], shut3$std.error[3], destroy3$std.error[3])
149
+ statistic_recall_violence = c(march3$statistic[3], shut3$statistic[3], destroy3$statistic[3])
150
+ pval_recall_violence = c(march3$p.value[3], shut3$p.value[3], destroy3$p.value[3])
151
+ term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
152
+ recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
153
+ recall_violence = cbind(recall_violence, term)
154
+ colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
155
+ rownames(recall_violence) = term
156
+ recall_violence$model = "Recall violence"
157
+
158
+ differences_isr_arab = rbind(degree_violence, police_action_required, recall_violence)
159
+
160
+ ## Result tables for plot
161
+ differences_us2 = differences_us
162
+ differences_us2$submodel = differences_us2$term
163
+ differences_us2$term = "Perception of Blacks \n(United States)"
164
+
165
+ differences_isr_black2 = differences_isr_black
166
+ differences_isr_black2$submodel = differences_isr_black2$term
167
+ differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
168
+
169
+ differences_isr_arab2 = differences_isr_arab
170
+ differences_isr_arab2$submodel = differences_isr_arab2$term
171
+ differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
172
+
173
+ diffs_sm = rbind(differences_us2, differences_isr_arab2, differences_isr_black2)
174
+ rownames(diffs_sm) = 1:nrow(diffs_sm)
175
+
176
+ results_df <- data.frame(term = diffs_sm$term,
177
+ estimate = diffs_sm$estimate,
178
+ std.error = diffs_sm$std.error,
179
+ model = diffs_sm$model,
180
+ submodel = as.character(diffs_sm$submodel),
181
+ stringsAsFactors = FALSE)
182
+
183
+ results_df$submodel[results_df$submodel=="1) Minority: March in streets"] = "March in streets"
184
+ results_df$submodel[results_df$submodel=="2) Minority: Shut down traffic"] = "Shut down traffic"
185
+ results_df$submodel[results_df$submodel=="3) Minority: Destroy police cars / garbage cans"] = "Destroy property"
186
+
187
+ results_df$model[results_df$model=="Perceived degree of violence"] = "1. Perceived degree \nof violence"
188
+ results_df$model[results_df$model=="Police action required"] = "3. Police action \nrequired"
189
+ results_df$model[results_df$model=="Recall violence"] = "2. Recall \nviolence"
190
+
191
+
192
+ table_a14 = xtable(results_df[,-1], digits=2)
193
+ print(table_a14, file="Tables/table_A14.tex")
194
+
23/replication_package/Code/replicate_table_A15.R ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A15
3
+ ##--##--##--##--##--##--##
4
+
5
+ ## A. U.S. sample
6
+ degv_yg = lm(degree_violence ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
7
+ police_yg = lm(police_action_required ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
8
+ recall_violence_yg = lm(recall_violence2 ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
9
+ stargazer(degv_yg, recall_violence_yg, police_yg,
10
+ covariate.labels = c("Black protesters", "Shut down traffic", "Destroy police cars",
11
+ "Black protesters x Shut down traffic",
12
+ "Black protesters x Destroy police cars", "Intercept"),
13
+ out = "Tables/table_A15_panel_A.tex")
14
+
15
+ ## B. Israel sample
16
+ degv_isr = lm(degree_violence ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
17
+ police_isr = lm(police_action_required ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
18
+ recall_violence_isr = lm(recall_violence2 ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
19
+ stargazer(degv_isr, recall_violence_isr, police_isr,
20
+ covariate.labels = c("Ethiopian protesters", "Arab protesters", "Shut down traffic",
21
+ "Destroy garbage cans", "Ethiopian protesters x Shut down traffic",
22
+ "Arab protesters x Shut down traffic", "Ethiopian protesters x Destroy garbage cans",
23
+ "Arab protesters x Destroy garbage cans", "Intercept"),
24
+ out = "Tables/table_A15_panel_B.tex")
25
+
23/replication_package/Code/replicate_table_A16.R ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A16
3
+ ##--##--##--##--##--##--##
4
+
5
+ ## A. U.S.
6
+ degv_yg_nv_maj = lm_robust(degree_violence ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race=="White",], weights=weight)
7
+ police_yg_nv_maj = lm_robust(police_action_required ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
8
+ degv_yg_nv_min = lm_robust(degree_violence ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race=="Black",], weights=weight)
9
+ police_yg_nv_min = lm_robust(police_action_required ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
10
+
11
+ # Majority perceptions
12
+ us_mean_degv_maj_white = degv_yg_nv_maj$coefficients[1]
13
+ us_mean_degv_maj_black = degv_yg_nv_maj$coefficients[1] + degv_yg_nv_maj$coefficients[2]
14
+ us_diff_degv_maj = degv_yg_nv_maj$coefficients[2]
15
+ us_pval_diff_degv_maj = degv_yg_nv_maj$p.value[2]
16
+ us_pct_change_degv_maj = (degv_yg_nv_maj$coefficients[2] /us_mean_degv_maj_white)*100
17
+ us_mean_police_maj_white = police_yg_nv_maj$coefficients[1]
18
+ us_mean_police_maj_black = police_yg_nv_maj$coefficients[1] + police_yg_nv_maj$coefficients[2]
19
+ us_diff_police_maj = police_yg_nv_maj$coefficients[2]
20
+ us_pval_diff_police_maj = police_yg_nv_maj$p.value[2]
21
+ us_pct_change_police_maj = (police_yg_nv_maj$coefficients[2] /us_mean_police_maj_white)*100
22
+
23
+ # Minority perceptions
24
+ us_mean_degv_min_white = degv_yg_nv_min$coefficients[1]
25
+ us_mean_degv_min_black = degv_yg_nv_min$coefficients[1] + degv_yg_nv_min$coefficients[2]
26
+ us_diff_degv_min = degv_yg_nv_min$coefficients[2]
27
+ us_pval_diff_degv_min = degv_yg_nv_min$p.value[2]
28
+ us_pct_change_degv_min = (degv_yg_nv_min$coefficients[2] /us_mean_degv_min_white)*100
29
+ us_mean_police_min_white = police_yg_nv_min$coefficients[1]
30
+ us_mean_police_min_black = police_yg_nv_min$coefficients[1] + police_yg_nv_min$coefficients[2]
31
+ us_diff_police_min = police_yg_nv_min$coefficients[2]
32
+ us_pval_diff_police_min = police_yg_nv_min$p.value[2]
33
+ us_pct_change_police_min = (police_yg_nv_min$coefficients[2] /us_mean_police_min_white)*100
34
+
35
+
36
+ ## B. ISRAEL
37
+ degv_isr_nv_maj = lm_robust(degree_violence ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr" & isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity!= "Ethiopia",])
38
+ police_isr_nv_maj = lm_robust(police_action_required ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr" & isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity!= "Ethiopia",])
39
+ degv_isr_nv_min = lm_robust(degree_violence ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr_ar" & isr_survey_wave1$tactic==0,])
40
+ police_isr_nv_min = lm_robust(police_action_required ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr_ar" & isr_survey_wave1$tactic==0,])
41
+
42
+ # Majority perceptions
43
+ israel_mean_degv_maj_whitejew = degv_isr_nv_maj$coefficients[1]
44
+ isr_mean_degv_maj_eth = degv_isr_nv_maj$coefficients[1] + degv_isr_nv_maj$coefficients[2]
45
+ isr_mean_degv_maj_arab = degv_isr_nv_maj$coefficients[1] + degv_isr_nv_maj$coefficients[3]
46
+ isr_diff_degv_maj_eth = degv_isr_nv_maj$coefficients[2]
47
+ isr_diff_degv_maj_arab = degv_isr_nv_maj$coefficients[3]
48
+ isr_pval_diff_degv_maj_eth = degv_isr_nv_maj$p.value[2]
49
+ isr_pval_diff_degv_maj_arab = degv_isr_nv_maj$p.value[3]
50
+ isr_pct_change_degv_maj_eth = (degv_isr_nv_maj$coefficients[2] /israel_mean_degv_maj_whitejew)*100
51
+ isr_pct_change_degv_maj_arab = (degv_isr_nv_maj$coefficients[3] /israel_mean_degv_maj_whitejew)*100
52
+ israel_mean_police_maj_whitejew = police_isr_nv_maj$coefficients[1]
53
+ isr_mean_police_maj_eth = police_isr_nv_maj$coefficients[1] + police_isr_nv_maj$coefficients[2]
54
+ isr_mean_police_maj_arab = police_isr_nv_maj$coefficients[1] + police_isr_nv_maj$coefficients[3]
55
+ isr_diff_police_maj_eth = police_isr_nv_maj$coefficients[2]
56
+ isr_diff_police_maj_arab = police_isr_nv_maj$coefficients[3]
57
+ isr_pval_diff_police_maj_eth = police_isr_nv_maj$p.value[2]
58
+ isr_pval_diff_police_maj_arab = police_isr_nv_maj$p.value[3]
59
+ isr_pct_change_police_maj_eth = (police_isr_nv_maj$coefficients[2] /israel_mean_police_maj_whitejew)*100
60
+ isr_pct_change_police_maj_arab = (police_isr_nv_maj$coefficients[3] /israel_mean_police_maj_whitejew)*100
61
+
62
+ ## Minority perceptions
63
+ israel_mean_degv_min_whitejew = degv_isr_nv_min$coefficients[1]
64
+ isr_mean_degv_min_eth = degv_isr_nv_min$coefficients[1] + degv_isr_nv_min$coefficients[2]
65
+ isr_mean_degv_min_arab = degv_isr_nv_min$coefficients[1] + degv_isr_nv_min$coefficients[3]
66
+ isr_diff_degv_min_eth = degv_isr_nv_min$coefficients[2]
67
+ isr_diff_degv_min_arab = degv_isr_nv_min$coefficients[3]
68
+ isr_pval_diff_degv_min_eth = degv_isr_nv_min$p.value[2]
69
+ isr_pval_diff_degv_min_arab = degv_isr_nv_min$p.value[3]
70
+ isr_pct_change_degv_min_eth = (degv_isr_nv_min$coefficients[2] /israel_mean_degv_min_whitejew)*100
71
+ isr_pct_change_degv_min_arab = (degv_isr_nv_min$coefficients[3] /israel_mean_degv_min_whitejew)*100
72
+ israel_mean_police_min_whitejew = police_isr_nv_min$coefficients[1]
73
+ isr_mean_police_min_eth = police_isr_nv_min$coefficients[1] + police_isr_nv_min$coefficients[2]
74
+ isr_mean_police_min_arab = police_isr_nv_min$coefficients[1] + police_isr_nv_min$coefficients[3]
75
+ isr_diff_police_min_eth = police_isr_nv_min$coefficients[2]
76
+ isr_diff_police_min_arab = police_isr_nv_min$coefficients[3]
77
+ isr_pval_diff_police_min_eth = police_isr_nv_min$p.value[2]
78
+ isr_pval_diff_police_min_arab = police_isr_nv_min$p.value[3]
79
+ isr_pct_change_police_min_eth = (police_isr_nv_min$coefficients[2] /israel_mean_police_min_whitejew)*100
80
+ isr_pct_change_police_min_arab = (police_isr_nv_min$coefficients[3] /israel_mean_police_min_whitejew)*100
81
+
82
+ us_degv_maj = c(us_mean_degv_maj_white, us_mean_degv_maj_black, us_diff_degv_maj, us_pval_diff_degv_maj, us_pct_change_degv_maj)
83
+ us_degv_min = c(us_mean_degv_min_white, us_mean_degv_min_black, us_diff_degv_min, us_pval_diff_degv_min, us_pct_change_degv_min)
84
+ us_police_maj = c(us_mean_police_maj_white, us_mean_police_maj_black, us_diff_police_maj, us_pval_diff_police_maj, us_pct_change_police_maj)
85
+ us_police_min = c(us_mean_police_min_white, us_mean_police_min_black, us_diff_police_min, us_pval_diff_police_min, us_pct_change_police_min)
86
+
87
+ isr_degv_maj_eth = c(israel_mean_degv_maj_whitejew, isr_mean_degv_maj_eth, isr_diff_degv_maj_eth, isr_pval_diff_degv_maj_eth, isr_pct_change_degv_maj_eth)
88
+ isr_degv_maj_arab = c(israel_mean_degv_maj_whitejew, isr_mean_degv_maj_arab, isr_diff_degv_maj_arab, isr_pval_diff_degv_maj_arab, isr_pct_change_degv_maj_arab)
89
+ isr_degv_min_eth = c(israel_mean_degv_min_whitejew, isr_mean_degv_min_eth, isr_diff_degv_min_eth, isr_pval_diff_degv_min_eth, isr_pct_change_degv_min_eth)
90
+ isr_degv_min_arab = c(israel_mean_degv_min_whitejew, isr_mean_degv_min_arab, isr_diff_degv_min_arab, isr_pval_diff_degv_min_arab, isr_pct_change_degv_min_arab)
91
+ isr_police_maj_eth = c(israel_mean_police_maj_whitejew, isr_mean_police_maj_eth, isr_diff_police_maj_eth, isr_pval_diff_police_maj_eth, isr_pct_change_police_maj_eth)
92
+ isr_police_maj_arab = c(israel_mean_police_maj_whitejew, isr_mean_police_maj_arab, isr_diff_police_maj_arab, isr_pval_diff_police_maj_arab, isr_pct_change_police_maj_arab)
93
+ isr_police_min_eth = c(israel_mean_police_min_whitejew, isr_mean_police_min_eth, isr_diff_police_min_eth, isr_pval_diff_police_min_eth, isr_pct_change_police_min_eth)
94
+ isr_police_min_arab = c(israel_mean_police_min_whitejew, isr_mean_police_min_arab, isr_diff_police_min_arab, isr_pval_diff_police_min_arab, isr_pct_change_police_min_arab)
95
+
96
+ pct_change_tab = rbind(us_degv_maj, us_degv_min, us_police_maj, us_police_min,
97
+ isr_degv_maj_arab, isr_degv_min_arab, isr_police_maj_arab, isr_police_min_arab,
98
+ isr_degv_maj_eth, isr_degv_min_eth, isr_police_maj_eth, isr_police_min_eth)
99
+ colnames(pct_change_tab) = c("Mean (majority)", "Mean (minority)", "Difference", "P-value", "Percent change")
100
+
101
+ table_a15 = xtable(pct_change_tab, digits=2)
102
+ print(table_a15, file="Tables/table_A16.tex")
23/replication_package/Code/replicate_table_A17.R ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A17
3
+ ##--##--##--##--##--##--##
4
+
5
+ ## A. U.S. sample
6
+ mod1 = lm(degree_violence ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
7
+ mod2 = lm(recall_violence2 ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
8
+ mod3 = lm(police_action_required ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
9
+ stargazer(mod1, mod2, mod3, out="Tables/table_A17_panel_A.tex")
10
+
11
+ ## B. Israel sample
12
+ mod1_israel = lm(degree_violence ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
13
+ mod2_israel = lm(recall_violence2 ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
14
+ mod3_israel = lm(police_action_required ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
15
+ stargazer(mod1_israel, mod2_israel, mod3_israel, out="Tables/table_A17_panel_B.tex")
23/replication_package/Code/replicate_table_A18.R ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A18
3
+ ##--##--##--##--##--##--##
4
+
5
+ generic_goal_dv = lm(degree_violence ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
6
+ generic_goal_rv = lm(recall_violence2 ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
7
+ generic_goal_paq = lm(police_action_required ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
8
+ stargazer(generic_goal_dv, generic_goal_rv, generic_goal_paq,
9
+ covariate.labels = c("Ethiopian protesters", "Arab protesters",
10
+ "Commitment to nonviolence", "Intercept: White protesters, generic goal, no commitment"),
11
+ out = "Tables/table_A18.tex")
23/replication_package/Code/replicate_table_A2.R ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A2
3
+ ##--##--##--##--##--##--##
4
+
5
+ nv_majority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==1 & NAVCO2_EPR$EPR_STATUS_EXCL==0]))
6
+ v_majority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==0 & NAVCO2_EPR$EPR_STATUS_EXCL==0]))
7
+ nv_minority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==1 & NAVCO2_EPR$EPR_STATUS_EXCL==1]))
8
+ v_minority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==0 & NAVCO2_EPR$EPR_STATUS_EXCL==1]))
9
+
10
+ navco_table = cbind(nv_majority, v_majority, nv_minority, v_minority)
11
+ rownames(navco_table) = c("Campaign failure", "Campaign success")
12
+
13
+ table_a2 = xtable(navco_table, digits=2)
14
+ print(table_a2, file="Tables/table_A2.tex")
23/replication_package/Code/replicate_table_A3.R ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A3
3
+ ##--##--##--##--##--##--##
4
+
5
+ tab1 = lm(success ~ EPR_STATUS_EXCL* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
6
+ tab2 = lm(success ~ EPR_STATUS_EXCL * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
7
+ tab3 = lm(success ~ EPR_STATUS_EXCL * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
8
+ tab4 = lm(success ~ EPR_STATUS_ORD* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
9
+ tab5 = lm(success ~ EPR_STATUS_ORD * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
10
+ tab6 = lm(success ~ EPR_STATUS_ORD * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
11
+
12
+ stargazer(tab4, tab5, tab6, tab1, tab2, tab3, table.placement="H", order = c(3,1,20, 2, 21),
13
+ covariate.labels = c("NV campaign", "EPR Status", "EPR Status × NV Campaign",
14
+ "EPR Status: Excluded", "EPR Status: Excluded × NV Campaign",
15
+ "EPR group size", "Country population", "Country GDP per capita",
16
+ "Prior participation in NV", "Prior participation in V",
17
+ "Level of democracy", "Physical integrity index", "Neighboring kin in power",
18
+ "Group status downgraded", "Horizontal inequality"),
19
+ omit = c("VYEARS", "NVYEARS"),
20
+ out="Tables/table_A3.tex")
23/replication_package/Code/replicate_table_A4.R ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A4
3
+ ##--##--##--##--##--##--##
4
+
5
+ tab7 = lm(success ~ EPR_GROUPSIZE* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
6
+ tab8 = lm(success ~ EPR_GROUPSIZE * INIT_NV_ONSET + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
7
+ tab9 = lm(success ~ EPR_GROUPSIZE * INIT_NV_ONSET + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
8
+
9
+ stargazer(tab7, tab8, tab9, table.placement="H", order = c(2,1,18),
10
+ covariate.labels = c("NV campaign", "EPR group size", "EPR group size × NV campaign",
11
+ "Country population", "Country GDP per capita",
12
+ "Prior participation in NV", "Prior participation in V",
13
+ "Level of democracy", "Physical integrity index",
14
+ "Neighboring kin in power", "Group status downgraded",
15
+ "Horizontal inequality"),
16
+ omit = c("VYEARS", "NVYEARS"),
17
+ out="Tables/table_A4.tex")
23/replication_package/Code/replicate_table_A5.R ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A5
3
+ ##--##--##--##--##--##--##
4
+
5
+ # Status (excluded, not excluded)
6
+
7
+ nv_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
8
+ v_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
9
+
10
+ preds_nv = ggpredict(nv_status, terms = c("EPR_STATUS_EXCL"))
11
+ preds_nv$tactic = "Non-violent"
12
+ preds_v = ggpredict(v_status, terms = c("EPR_STATUS_EXCL"))
13
+ preds_v$tactic = "Violent"
14
+
15
+ preds_status = rbind(preds_nv, preds_v)
16
+ preds_status$tactic <- factor(preds_status$tactic, levels = c("Violent", "Non-violent"))
17
+ preds_status$Status = "Excluded"
18
+ preds_status$Status[preds$x==0] = "Not excluded"
19
+ preds_status$type = "status"
20
+
21
+ ## Size (above and below the mean of the distribution)
22
+
23
+ EBCR_EPR_NAVCO2$small_size = NA
24
+ EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE < mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 1
25
+ EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE >= mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 0
26
+
27
+ nv_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
28
+ v_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
29
+
30
+ preds_nv = ggpredict(nv_size, terms = c("small_size"))
31
+ preds_nv$tactic = "Non-violent"
32
+ preds_v = ggpredict(v_size, terms = c("small_size"))
33
+ preds_v$tactic = "Violent"
34
+
35
+ preds_size = rbind(preds_nv, preds_v)
36
+ preds_size$tactic <- factor(preds_size$tactic, levels = c("Violent", "Non-violent"))
37
+ preds_size$Status = "Group size < mean"
38
+ preds_size$Status[preds_size$x==0] = "Group size >= mean"
39
+ preds_size$type = "size"
40
+
41
+ preds_all = as.data.frame(rbind(preds_status, preds_size))
42
+ preds_all = preds_all[,c("predicted", "std.error", "conf.low", "conf.high",
43
+ "tactic", "Status")]
44
+ table_a5 = xtable(preds_all, digits=2)
45
+ print(table_a5, file="Tables/table_A5.tex")
23/replication_package/Code/replicate_table_A6.R ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A6
3
+ ##--##--##--##--##--##--##
4
+
5
+ pol_irr1 = lm(success ~ navco1designation ,
6
+ data= NAVCO2[!(NAVCO2$id %in% NAVCO2_EPR$id),])
7
+ pol_irr2 = lm(success ~ navco1designation ,
8
+ data= NAVCO2[NAVCO2$id %in% NAVCO2_EPR$id[NAVCO2_EPR$EPR_STATUS == "IRRELEVANT"],])
9
+
10
+ stargazer(pol_irr1, pol_irr2, covariate.labels = c("Nonviolent campaign", "Constant"),
11
+ out="Tables/table_A6.tex")
23/replication_package/Code/replicate_table_A7.R ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A7
3
+ ##--##--##--##--##--##--##
4
+
5
+ us_wave1_sumstats = us_survey_wave1[,c("age", "female", "education", "income", "partyID", "ideology", "interest_politics",
6
+ "degree_violence", "police_action_required", "recall_violence2", "race")]
7
+ us_wave1_sumstats = dummy_cols(us_wave1_sumstats, select_columns = c("education", "income", "partyID", "ideology", "race"))
8
+ stargazer(us_wave1_sumstats, omit.summary.stat=c("p25", "p75"), out="Tables/table_A7.tex")
23/replication_package/Code/replicate_table_A8.R ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A8
3
+ ##--##--##--##--##--##--##
4
+
5
+ isr_wave1_jewish = isr_survey_wave1[isr_survey_wave1$survey=="isr",]
6
+ isr_wave1_jewish_sumstats = isr_wave1_jewish[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology", "interest_news",
7
+ "degree_violence", "police_action_required", "recall_violence2")]
8
+ isr_wave1_jewish_sumstats = dummy_cols(isr_wave1_jewish_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
9
+ table_a8 = stargazer(isr_wave1_jewish_sumstats, omit.summary.stat=c("p25", "p75"))
10
+ cat(table_a8, sep = '\n', file = "Tables/table_A8.tex")
23/replication_package/Code/replicate_table_A9.R ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##--##--##--##--##--##--##
2
+ ## Appendix: Table A9
3
+ ##--##--##--##--##--##--##
4
+
5
+ isr_wave1_arab = isr_survey_wave1[isr_survey_wave1$survey=="isr_ar",]
6
+ isr_wave1_arab_sumstats = isr_wave1_arab[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology", "interest_news",
7
+ "degree_violence", "police_action_required", "recall_violence2")]
8
+ isr_wave1_arab_sumstats = dummy_cols(isr_wave1_arab_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
9
+ table_a9 = stargazer(isr_wave1_arab_sumstats, omit.summary.stat=c("p25", "p75"))
10
+ cat(table_a9, sep = '\n', file = "Tables/table_A9.tex")
11
+
23/replication_package/Data/EBCR_EPR_NAVCO2.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75451734eeb300dd765549b181cb21c1d4c91c9b0702562c19e1094898fa9764
3
+ size 49172
23/replication_package/Data/NAVCO2.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6722c3f6703ec017e192f3b5bab9e7125b705c1bca159dffb55c7a944ca7260
3
+ size 28901
23/replication_package/Data/NAVCO2_EPR.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f10808bec84e5e5d50b30f973373892b0ef570903808560cfcda645babffb6ea
3
+ size 8510
23/replication_package/Data/isr_survey_text_analysis_arab.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11a984db34d2bd6549168ffae4f373eed2c0ebcf8c49d52118ced6ecf986392
3
+ size 791146
23/replication_package/Data/isr_survey_text_analysis_eth.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45c2f8f014182cef1752de744d235802ac03fda2410afe47e2571180bb7ffbbb
3
+ size 844628
23/replication_package/Data/isr_survey_wave1.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:800e60783ecf8e9fac913544d37489598f2b767cf17d4f09c29badc851889138
3
+ size 81215
23/replication_package/Data/isr_survey_wave2.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bee0683b7b5aa05998fad0bad2a6f9ca82b3c2729f640898f8af7e0f89184c1
3
+ size 92753
23/replication_package/Data/us_survey_text_analysis.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b03739389a1428c180e0e3929d037876bf34c4d893167054dac97ce5b2d01c9
3
+ size 686955
23/replication_package/Data/us_survey_wave1.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d02a0157e3113d52e5429679e908d35e2ece406fa07fedc57b7a8289df587a46
3
+ size 47487
23/replication_package/Data/us_survey_wave2.rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac163b849b38a58dac943fc0954f31127da273d8f2e247f5ca323c523a5930e4
3
+ size 94383
23/replication_package/Figures/fig_1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe315acebbd890225496f07ebc7b1b292fbf2b4d02bd1369e487b623132d66f
3
+ size 5597