Commit
·
09cbc2c
1
Parent(s):
37a5a8b
add 23
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 23/paper.pdf +3 -0
- 23/replication_package/Code/Manekin_Mitts_Effective_for_Whom_Replication.R +128 -0
- 23/replication_package/Code/replicate_fig_1.R +62 -0
- 23/replication_package/Code/replicate_fig_10.R +36 -0
- 23/replication_package/Code/replicate_fig_3.R +204 -0
- 23/replication_package/Code/replicate_fig_4.R +94 -0
- 23/replication_package/Code/replicate_fig_6.R +70 -0
- 23/replication_package/Code/replicate_fig_7.R +76 -0
- 23/replication_package/Code/replicate_fig_8.R +36 -0
- 23/replication_package/Code/replicate_fig_9.R +35 -0
- 23/replication_package/Code/replicate_fig_A1.R +25 -0
- 23/replication_package/Code/replicate_fig_A10.R +68 -0
- 23/replication_package/Code/replicate_fig_A11.R +68 -0
- 23/replication_package/Code/replicate_fig_A12.R +50 -0
- 23/replication_package/Code/replicate_fig_A2.R +36 -0
- 23/replication_package/Code/replicate_fig_A3.R +11 -0
- 23/replication_package/Code/replicate_fig_A6.R +110 -0
- 23/replication_package/Code/replicate_fig_A7.R +133 -0
- 23/replication_package/Code/replicate_fig_A8.R +150 -0
- 23/replication_package/Code/replicate_fig_A9.R +149 -0
- 23/replication_package/Code/replicate_table_1.R +24 -0
- 23/replication_package/Code/replicate_table_4.R +22 -0
- 23/replication_package/Code/replicate_table_A1.R +15 -0
- 23/replication_package/Code/replicate_table_A10.R +9 -0
- 23/replication_package/Code/replicate_table_A11.R +9 -0
- 23/replication_package/Code/replicate_table_A13.R +15 -0
- 23/replication_package/Code/replicate_table_A14.R +194 -0
- 23/replication_package/Code/replicate_table_A15.R +25 -0
- 23/replication_package/Code/replicate_table_A16.R +102 -0
- 23/replication_package/Code/replicate_table_A17.R +15 -0
- 23/replication_package/Code/replicate_table_A18.R +11 -0
- 23/replication_package/Code/replicate_table_A2.R +14 -0
- 23/replication_package/Code/replicate_table_A3.R +20 -0
- 23/replication_package/Code/replicate_table_A4.R +17 -0
- 23/replication_package/Code/replicate_table_A5.R +45 -0
- 23/replication_package/Code/replicate_table_A6.R +11 -0
- 23/replication_package/Code/replicate_table_A7.R +8 -0
- 23/replication_package/Code/replicate_table_A8.R +10 -0
- 23/replication_package/Code/replicate_table_A9.R +11 -0
- 23/replication_package/Data/EBCR_EPR_NAVCO2.rdata +3 -0
- 23/replication_package/Data/NAVCO2.rdata +3 -0
- 23/replication_package/Data/NAVCO2_EPR.rdata +3 -0
- 23/replication_package/Data/isr_survey_text_analysis_arab.rdata +3 -0
- 23/replication_package/Data/isr_survey_text_analysis_eth.rdata +3 -0
- 23/replication_package/Data/isr_survey_wave1.rdata +3 -0
- 23/replication_package/Data/isr_survey_wave2.rdata +3 -0
- 23/replication_package/Data/us_survey_text_analysis.rdata +3 -0
- 23/replication_package/Data/us_survey_wave1.rdata +3 -0
- 23/replication_package/Data/us_survey_wave2.rdata +3 -0
- 23/replication_package/Figures/fig_1.pdf +3 -0
23/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af1909814ddf0ce5ad9c91bd3cdfae0676eb304e8c92c438d56fd9e8d77a407f
|
3 |
+
size 2076097
|
23/replication_package/Code/Manekin_Mitts_Effective_for_Whom_Replication.R
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ----------------------------------------------------------------------
|
2 |
+
# Replication for "Effective for Whom? Ethnic Identity and Nonviolent Resistance"
|
3 |
+
# Devorah Manekin and Tamar Mitts
|
4 |
+
# American Political Science Review (2021)
|
5 |
+
# ----------------------------------------------------------------------
|
6 |
+
# This code replicates the tables figures in the article and the appendix.
|
7 |
+
# It requires the packages listed below. If not already installed,
|
8 |
+
# use the function install.packages() to install them.
|
9 |
+
# ----------------------------------------------------------------------
|
10 |
+
|
11 |
+
rm(list=ls())
|
12 |
+
|
13 |
+
library(lemon)
|
14 |
+
library(stargazer)
|
15 |
+
library(xtable)
|
16 |
+
library(fastDummies)
|
17 |
+
library(tidyr)
|
18 |
+
library(gridExtra)
|
19 |
+
library(stm)
|
20 |
+
library(quanteda)
|
21 |
+
library(ggplot2)
|
22 |
+
library(dotwhisker)
|
23 |
+
library(ggeffects)
|
24 |
+
library(estimatr)
|
25 |
+
library(corrplot)
|
26 |
+
|
27 |
+
# SET WORKING DIRECTORY
|
28 |
+
setwd("/Users/tamarmitts/Dropbox (Mitts)/Projects/Non-violence/Replication/")
|
29 |
+
|
30 |
+
# LOAD DATASETS
|
31 |
+
load("Data/EBCR_EPR_NAVCO2.rdata")
|
32 |
+
load("Data/NAVCO2_EPR.rdata")
|
33 |
+
load("Data/NAVCO2.rdata")
|
34 |
+
load("Data/us_survey_wave1.rdata")
|
35 |
+
load("Data/isr_survey_wave1.rdata")
|
36 |
+
load("Data/us_survey_wave2.rdata")
|
37 |
+
load("Data/isr_survey_wave2.rdata")
|
38 |
+
load("Data/us_survey_text_analysis.rdata")
|
39 |
+
load("Data/isr_survey_text_analysis_eth.rdata")
|
40 |
+
load("Data/isr_survey_text_analysis_arab.rdata")
|
41 |
+
|
42 |
+
##--##--##--##
|
43 |
+
## Manuscript
|
44 |
+
##--##--##--##
|
45 |
+
|
46 |
+
# Figure 1
|
47 |
+
source("Code/replicate_fig_1.R")
|
48 |
+
# Figure 3
|
49 |
+
source("Code/replicate_fig_3.R")
|
50 |
+
# Figure 4
|
51 |
+
source("Code/replicate_fig_4.R")
|
52 |
+
# Figure 6
|
53 |
+
source("Code/replicate_fig_6.R")
|
54 |
+
# Figure 7
|
55 |
+
source("Code/replicate_fig_7.R")
|
56 |
+
# Figure 8
|
57 |
+
source("Code/replicate_fig_8.R")
|
58 |
+
# Figure 9
|
59 |
+
source("Code/replicate_fig_9.R")
|
60 |
+
# Figure 10
|
61 |
+
source("Code/replicate_fig_10.R")
|
62 |
+
|
63 |
+
# Table 1
|
64 |
+
source("Code/replicate_table_1.R")
|
65 |
+
# Table 4
|
66 |
+
source("Code/replicate_table_4.R")
|
67 |
+
|
68 |
+
##--##--##--##
|
69 |
+
## Appendix
|
70 |
+
##--##--##--##
|
71 |
+
|
72 |
+
# Figure A1
|
73 |
+
source("Code/replicate_fig_A1.R")
|
74 |
+
# Figure A2
|
75 |
+
source("Code/replicate_fig_A2.R")
|
76 |
+
# Figure A3
|
77 |
+
source("Code/replicate_fig_A3.R")
|
78 |
+
# Figure A6
|
79 |
+
source("Code/replicate_fig_A6.R")
|
80 |
+
# Figure A7
|
81 |
+
source("Code/replicate_fig_A7.R")
|
82 |
+
# Figure A8
|
83 |
+
source("Code/replicate_fig_A8.R")
|
84 |
+
# Figure A9
|
85 |
+
source("Code/replicate_fig_A9.R")
|
86 |
+
# Figure A10
|
87 |
+
source("Code/replicate_fig_A10.R")
|
88 |
+
# Figure A11
|
89 |
+
source("Code/replicate_fig_A11.R")
|
90 |
+
# Figure A11
|
91 |
+
source("Code/replicate_fig_A12.R")
|
92 |
+
|
93 |
+
# Table A1
|
94 |
+
source("Code/replicate_table_A1.R")
|
95 |
+
# Table A2
|
96 |
+
source("Code/replicate_table_A2.R")
|
97 |
+
# Table A3
|
98 |
+
source("Code/replicate_table_A3.R")
|
99 |
+
# Table A4
|
100 |
+
source("Code/replicate_table_A4.R")
|
101 |
+
# Table A5
|
102 |
+
source("Code/replicate_table_A5.R")
|
103 |
+
# Table A6
|
104 |
+
source("Code/replicate_table_A6.R")
|
105 |
+
# Table A7
|
106 |
+
source("Code/replicate_table_A7.R")
|
107 |
+
# Table A8
|
108 |
+
source("Code/replicate_table_A8.R")
|
109 |
+
# Table A9
|
110 |
+
source("Code/replicate_table_A9.R")
|
111 |
+
# Table A10
|
112 |
+
source("Code/replicate_table_A10.R")
|
113 |
+
# Table A10
|
114 |
+
source("Code/replicate_table_A11.R")
|
115 |
+
# Table A13
|
116 |
+
source("Code/replicate_table_A13.R")
|
117 |
+
# Table A14
|
118 |
+
source("Code/replicate_table_A14.R")
|
119 |
+
# Table A15
|
120 |
+
source("Code/replicate_table_A15.R")
|
121 |
+
# Table A16
|
122 |
+
source("Code/replicate_table_A16.R")
|
123 |
+
# Table A17
|
124 |
+
source("Code/replicate_table_A17.R")
|
125 |
+
# Table A18
|
126 |
+
source("Code/replicate_table_A18.R")
|
127 |
+
|
128 |
+
## END
|
23/replication_package/Code/replicate_fig_1.R
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 1
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
# Status (excluded, not excluded)
|
6 |
+
nv_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
|
7 |
+
v_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
|
8 |
+
|
9 |
+
preds_nv = ggpredict(nv_status, terms = c("EPR_STATUS_EXCL"))
|
10 |
+
preds_nv$tactic = "Non-violent"
|
11 |
+
preds_v = ggpredict(v_status, terms = c("EPR_STATUS_EXCL"))
|
12 |
+
preds_v$tactic = "Violent"
|
13 |
+
|
14 |
+
preds = rbind(preds_nv, preds_v)
|
15 |
+
preds$tactic <- factor(preds$tactic, levels = c("Violent", "Non-violent"))
|
16 |
+
preds$Status = "Minority/disadvantaged"
|
17 |
+
preds$Status[preds$x==0] = "Majority/dominant"
|
18 |
+
|
19 |
+
xtable(preds[,-1], digits=2)
|
20 |
+
preds = as.data.frame(preds)
|
21 |
+
preds$Status = as.factor(preds$Status)
|
22 |
+
|
23 |
+
status = ggplot(preds, aes(x = tactic, y = predicted, group=Status)) +
|
24 |
+
geom_line(aes(color=Status))+ geom_errorbar(aes(color = Status), width = 0, ymin=preds$conf.low, ymax=preds$conf.high)+
|
25 |
+
geom_point(aes(color=Status, shape=Status), size=3) + ylim(-0.1,0.5) + theme_bw() +
|
26 |
+
scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
|
27 |
+
ylab("Pr(Campaign Success)") + xlab("Tactic") +ggtitle("(A) Group Status") +
|
28 |
+
theme(legend.position="none")
|
29 |
+
|
30 |
+
## Size (above and below the mean of the distribution)
|
31 |
+
EBCR_EPR_NAVCO2$small_size = NA
|
32 |
+
EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE < mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 1
|
33 |
+
EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE >= mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 0
|
34 |
+
|
35 |
+
nv_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
|
36 |
+
v_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
|
37 |
+
|
38 |
+
preds_nv = ggpredict(nv_size, terms = c("small_size"))
|
39 |
+
preds_nv$tactic = "Non-violent"
|
40 |
+
preds_v = ggpredict(v_size, terms = c("small_size"))
|
41 |
+
preds_v$tactic = "Violent"
|
42 |
+
|
43 |
+
preds = rbind(preds_nv, preds_v)
|
44 |
+
preds$tactic <- factor(preds$tactic, levels = c("Violent", "Non-violent"))
|
45 |
+
preds$Status = "Minority/disadvantaged"
|
46 |
+
preds$Status[preds$x==0] = "Majority/dominant"
|
47 |
+
|
48 |
+
preds = as.data.frame(preds)
|
49 |
+
preds$Status = as.factor(preds$Status)
|
50 |
+
|
51 |
+
xtable(preds[,-1], digits=2)
|
52 |
+
|
53 |
+
size = ggplot(preds, aes(x = tactic, y = predicted, group=Status)) +
|
54 |
+
geom_line(aes(color=Status))+ geom_errorbar(aes(color = Status), width = 0, ymin=preds$conf.low, ymax=preds$conf.high)+
|
55 |
+
geom_point(aes(color=Status, shape=Status), size=3) + ylim(-0.1,0.5) + theme_bw() +
|
56 |
+
#scale_color_manual(values=c("#E69F00", "#56B4E9")) + geom_hline(yintercept=0, linetype="dashed")+
|
57 |
+
scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
|
58 |
+
ylab("Pr(Campaign Success)") + xlab("Tactic") +ggtitle("(B) Group Size") +
|
59 |
+
theme(legend.position="none")
|
60 |
+
|
61 |
+
fig1 = grid_arrange_shared_legend(status, size, ncol = 2, nrow = 1)
|
62 |
+
ggsave(file="Figures/fig_1.pdf", fig1, width=8, height=4)
|
23/replication_package/Code/replicate_fig_10.R
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 10
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
isr_survey_eth_content_covars <- estimateEffect(1:10 ~ identity_protesters_eth, isr_survey_text_analysis_eth$stm_topics, meta = docvars(isr_survey_text_analysis_eth$nv_dfm_eth), uncertainty = "Global")
|
6 |
+
isr_survey_eth_sum_content_covars = summary(isr_survey_eth_content_covars)
|
7 |
+
|
8 |
+
term_translated = c("protest, right, democracy, ethiopians",
|
9 |
+
"discrimination, justice, understand, frustration",
|
10 |
+
"equal, rights, treatment, deserve",
|
11 |
+
"racism, violence, protest",
|
12 |
+
"judge, physical, right, treatment",
|
13 |
+
"economic, crisis, unemployment, justified",
|
14 |
+
"support, people, understand",
|
15 |
+
"voice, protest, express",
|
16 |
+
"ethiopian, community, racism",
|
17 |
+
"violence, express, furious")
|
18 |
+
|
19 |
+
|
20 |
+
estimate = rep(NA, 10)
|
21 |
+
std.error = rep(NA, 10)
|
22 |
+
for(i in 1:length(isr_survey_eth_sum_content_covars$tables)){
|
23 |
+
estimate[i] = isr_survey_eth_sum_content_covars$tables[[i]][2,1]
|
24 |
+
std.error[i] = isr_survey_eth_sum_content_covars$tables[[i]][2,2]
|
25 |
+
}
|
26 |
+
|
27 |
+
isr_survey_eth_stm_results = data.frame("term" = term_translated, "estimate" = estimate, "std.error"= std.error)
|
28 |
+
|
29 |
+
isr_survey_eth_stm_results = isr_survey_eth_stm_results[order(isr_survey_eth_stm_results$estimate, decreasing = T),]
|
30 |
+
|
31 |
+
dwplot(isr_survey_eth_stm_results,
|
32 |
+
vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
|
33 |
+
theme_bw() + xlab("\nIsraeli white protesters . . . . . . . . . . . . . Israeli Ethiopian protesters") +
|
34 |
+
theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
|
35 |
+
scale_colour_grey(start = 0, end = 0)
|
36 |
+
ggsave(file="Figures/fig_10.pdf", width=8, height=6)
|
23/replication_package/Code/replicate_fig_3.R
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 3
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
us_survey_wave1$identity_protesters_fac = as.factor(us_survey_wave1$identity_protesters)
|
6 |
+
levels(us_survey_wave1$identity_protesters_fac) = c("White", "Black")
|
7 |
+
us_survey_wave1$tactic_fac = as.factor(us_survey_wave1$tactic)
|
8 |
+
levels(us_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy police cars")
|
9 |
+
|
10 |
+
isr_survey_wave1$identity_protesters_fac = as.factor(isr_survey_wave1$identity_protesters)
|
11 |
+
levels(isr_survey_wave1$identity_protesters_fac) = c("White", "Ethiopian", "Arab")
|
12 |
+
isr_survey_wave1$tactic_fac = as.factor(isr_survey_wave1$tactic)
|
13 |
+
levels(isr_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy garbage cans")
|
14 |
+
|
15 |
+
|
16 |
+
## US sample
|
17 |
+
us_survey_wave1$degree_violence_std = scale(us_survey_wave1$degree_violence)
|
18 |
+
us_survey_wave1$police_action_required_std = scale(us_survey_wave1$police_action_required)
|
19 |
+
us_survey_wave1$recall_violence2_std = scale(us_survey_wave1$recall_violence2)
|
20 |
+
|
21 |
+
march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
22 |
+
shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
23 |
+
destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
24 |
+
|
25 |
+
march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
26 |
+
shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
27 |
+
destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
28 |
+
|
29 |
+
march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
30 |
+
shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
31 |
+
destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
32 |
+
|
33 |
+
# Plot differences
|
34 |
+
|
35 |
+
term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
|
36 |
+
se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
|
37 |
+
statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
|
38 |
+
pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
|
39 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
40 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
41 |
+
degree_violence = cbind(degree_violence, term)
|
42 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
43 |
+
rownames(degree_violence) = term
|
44 |
+
degree_violence$model = "Perceived degree of violence"
|
45 |
+
|
46 |
+
term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
|
47 |
+
se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
|
48 |
+
statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
|
49 |
+
pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
|
50 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
51 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
52 |
+
police_action_required = cbind(police_action_required, term)
|
53 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
54 |
+
rownames(police_action_required) = term
|
55 |
+
police_action_required$model = "Police action required"
|
56 |
+
|
57 |
+
term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
|
58 |
+
se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
|
59 |
+
statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
|
60 |
+
pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
|
61 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
62 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
63 |
+
recall_violence = cbind(recall_violence, term)
|
64 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
65 |
+
rownames(recall_violence) = term
|
66 |
+
recall_violence$model = "Recall violence"
|
67 |
+
|
68 |
+
differences_us = rbind(degree_violence, police_action_required, recall_violence)
|
69 |
+
|
70 |
+
|
71 |
+
## Israel respondents
|
72 |
+
isr_survey_wave1$degree_violence_std = scale(isr_survey_wave1$degree_violence)
|
73 |
+
isr_survey_wave1$police_action_required_std = scale(isr_survey_wave1$police_action_required)
|
74 |
+
isr_survey_wave1$recall_violence2_std = scale(isr_survey_wave1$recall_violence2)
|
75 |
+
|
76 |
+
march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
77 |
+
shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
78 |
+
destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
79 |
+
|
80 |
+
march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
81 |
+
shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
82 |
+
destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
83 |
+
|
84 |
+
march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
85 |
+
shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
86 |
+
destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
87 |
+
|
88 |
+
|
89 |
+
# Ethiopian protesters
|
90 |
+
term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
|
91 |
+
se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
|
92 |
+
statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
|
93 |
+
pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
|
94 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
95 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
96 |
+
degree_violence = cbind(degree_violence, term)
|
97 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
98 |
+
rownames(degree_violence) = term
|
99 |
+
degree_violence$model = "Perceived degree of violence"
|
100 |
+
|
101 |
+
term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
|
102 |
+
se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
|
103 |
+
statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
|
104 |
+
pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
|
105 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
106 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
107 |
+
police_action_required = cbind(police_action_required, term)
|
108 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
109 |
+
rownames(police_action_required) = term
|
110 |
+
police_action_required$model = "Police action required"
|
111 |
+
|
112 |
+
term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
|
113 |
+
se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
|
114 |
+
statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
|
115 |
+
pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
|
116 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
117 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
118 |
+
recall_violence = cbind(recall_violence, term)
|
119 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
120 |
+
rownames(recall_violence) = term
|
121 |
+
recall_violence$model = "Recall violence"
|
122 |
+
|
123 |
+
differences_isr_black = rbind(degree_violence, police_action_required, recall_violence)
|
124 |
+
|
125 |
+
term_degree_violence = c(march1$coefficients[3], shut1$coefficients[3], destroy1$coefficients[3])
|
126 |
+
se_degree_violence = c(march1$std.error[3], shut1$std.error[3], destroy1$std.error[3])
|
127 |
+
statistic_degree_violence = c(march1$statistic[3], shut1$statistic[3], destroy1$statistic[3])
|
128 |
+
pval_degree_violence = c(march1$p.value[3], shut1$p.value[3], destroy1$p.value[3])
|
129 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
130 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
131 |
+
degree_violence = cbind(degree_violence, term)
|
132 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
133 |
+
rownames(degree_violence) = term
|
134 |
+
degree_violence$model = "Perceived degree of violence"
|
135 |
+
|
136 |
+
term_police_action_required = c(march2$coefficients[3], shut2$coefficients[3], destroy2$coefficients[3])
|
137 |
+
se_police_action_required = c(march2$std.error[3], shut2$std.error[3], destroy2$std.error[3])
|
138 |
+
statistic_police_action_required = c(march2$statistic[3], shut2$statistic[3], destroy2$statistic[3])
|
139 |
+
pval_police_action_required = c(march2$p.value[3], shut2$p.value[3], destroy2$p.value[3])
|
140 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
141 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
142 |
+
police_action_required = cbind(police_action_required, term)
|
143 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
144 |
+
rownames(police_action_required) = term
|
145 |
+
police_action_required$model = "Police action required"
|
146 |
+
|
147 |
+
term_recall_violence = c(march3$coefficients[3], shut3$coefficients[3], destroy3$coefficients[3])
|
148 |
+
se_recall_violence = c(march3$std.error[3], shut3$std.error[3], destroy3$std.error[3])
|
149 |
+
statistic_recall_violence = c(march3$statistic[3], shut3$statistic[3], destroy3$statistic[3])
|
150 |
+
pval_recall_violence = c(march3$p.value[3], shut3$p.value[3], destroy3$p.value[3])
|
151 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
152 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
153 |
+
recall_violence = cbind(recall_violence, term)
|
154 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
155 |
+
rownames(recall_violence) = term
|
156 |
+
recall_violence$model = "Recall violence"
|
157 |
+
|
158 |
+
differences_isr_arab = rbind(degree_violence, police_action_required, recall_violence)
|
159 |
+
|
160 |
+
## Result tables for plot
|
161 |
+
differences_us2 = differences_us
|
162 |
+
differences_us2$submodel = differences_us2$term
|
163 |
+
differences_us2$term = "Perception of Blacks \n(United States)"
|
164 |
+
|
165 |
+
differences_isr_black2 = differences_isr_black
|
166 |
+
differences_isr_black2$submodel = differences_isr_black2$term
|
167 |
+
differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
|
168 |
+
|
169 |
+
differences_isr_arab2 = differences_isr_arab
|
170 |
+
differences_isr_arab2$submodel = differences_isr_arab2$term
|
171 |
+
differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
|
172 |
+
|
173 |
+
diffs_sm = rbind(differences_us2, differences_isr_arab2, differences_isr_black2)
|
174 |
+
rownames(diffs_sm) = 1:nrow(diffs_sm)
|
175 |
+
|
176 |
+
results_df <- data.frame(term = diffs_sm$term,
|
177 |
+
estimate = diffs_sm$estimate,
|
178 |
+
std.error = diffs_sm$std.error,
|
179 |
+
model = diffs_sm$model,
|
180 |
+
submodel = as.character(diffs_sm$submodel),
|
181 |
+
stringsAsFactors = FALSE)
|
182 |
+
|
183 |
+
results_df$submodel[results_df$submodel=="1) Minority: March in streets"] = "March in streets"
|
184 |
+
results_df$submodel[results_df$submodel=="2) Minority: Shut down traffic"] = "Shut down traffic"
|
185 |
+
results_df$submodel[results_df$submodel=="3) Minority: Destroy police cars / garbage cans"] = "Destroy property"
|
186 |
+
|
187 |
+
results_df$model[results_df$model=="Perceived degree of violence"] = "1. Perceived degree \nof violence"
|
188 |
+
results_df$model[results_df$model=="Police action required"] = "3. Police action \nrequired"
|
189 |
+
results_df$model[results_df$model=="Recall violence"] = "2. Recall \nviolence"
|
190 |
+
|
191 |
+
small_multiple(results_df, dot_args = list(aes(shape = submodel))) +
|
192 |
+
ylab("Coefficient Estimate (Std. Dev. Units)") + theme_bw()+
|
193 |
+
geom_hline(yintercept = 0, colour = "grey60", linetype = 2) +
|
194 |
+
#theme(plot.margin=unit(c(0.4,0.1,2.6,1),"cm"))+
|
195 |
+
theme(legend.position = "bottom",
|
196 |
+
legend.justification=c(0, 0),
|
197 |
+
# legend.background = element_rect(color="white"),
|
198 |
+
legend.spacing = unit(-4, "pt"),
|
199 |
+
legend.key.size = unit(10, "pt"))+
|
200 |
+
scale_shape_discrete(name = "Protester Tactic") +
|
201 |
+
scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"), name = "Protester Tactic")
|
202 |
+
ggsave(filename="Figures/fig_3.pdf", width=6, height=6)
|
203 |
+
|
204 |
+
table_a14 = results_df
|
23/replication_package/Code/replicate_fig_4.R
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 4
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
march1 = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
6 |
+
march1_maj = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
|
7 |
+
march1_min = lm(degree_violence ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
|
8 |
+
|
9 |
+
march2 = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
10 |
+
march2_maj = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
|
11 |
+
march2_min = lm(police_action_required ~ identity_protesters, data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
|
12 |
+
|
13 |
+
march1_isr = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
14 |
+
march1_isr_maj = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity %in% c("Ashkenazi", "Mizrachi", "Mixed", "Soviet Union"),], weights=weight)
|
15 |
+
march1_isr_min = lm(degree_violence ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity == "Arab",], weights=weight)
|
16 |
+
|
17 |
+
march2_isr = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
18 |
+
march2_isr_maj = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity %in% c("Ashkenazi", "Mizrachi", "Mixed", "Soviet Union"),], weights=weight)
|
19 |
+
march2_isr_min = lm(police_action_required ~ identity_protesters, data=isr_survey_wave1[isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity == "Arab",], weights=weight)
|
20 |
+
|
21 |
+
# Predicted values
|
22 |
+
perceptions_of_majority_us = c(ggpredict(march1_maj)$identity_protesters[,2],
|
23 |
+
ggpredict(march2_maj)$identity_protesters[,2])
|
24 |
+
|
25 |
+
perceptions_of_minority_us = c(ggpredict(march1_min)$identity_protesters[,2],
|
26 |
+
ggpredict(march2_min)$identity_protesters[,2])
|
27 |
+
|
28 |
+
perceptions_of_majority_isr = c(ggpredict(march1_isr_maj)$identity_protesters[c(1,3),2],
|
29 |
+
ggpredict(march2_isr_maj)$identity_protesters[c(1,3),2])
|
30 |
+
|
31 |
+
perceptions_of_minority_isr = c(ggpredict(march1_isr_min)$identity_protesters[c(1,3),2],
|
32 |
+
ggpredict(march2_isr_min)$identity_protesters[c(1,3),2])
|
33 |
+
|
34 |
+
# Std. errors
|
35 |
+
|
36 |
+
se_of_majority_us = c(ggpredict(march1_maj)$identity_protesters[,3],
|
37 |
+
ggpredict(march2_maj)$identity_protesters[,3])
|
38 |
+
|
39 |
+
se_of_minority_us = c(ggpredict(march1_min)$identity_protesters[,3],
|
40 |
+
ggpredict(march2_min)$identity_protesters[,3])
|
41 |
+
|
42 |
+
se_of_majority_isr = c(ggpredict(march1_isr_maj)$identity_protesters[c(1,3),3],
|
43 |
+
ggpredict(march2_isr_maj)$identity_protesters[c(1,3),3])
|
44 |
+
|
45 |
+
se_of_minority_isr = c(ggpredict(march1_isr_min)$identity_protesters[c(1,3),3],
|
46 |
+
ggpredict(march2_isr_min)$identity_protesters[c(1,3),3])
|
47 |
+
|
48 |
+
|
49 |
+
majority_us = data.frame("value" = perceptions_of_majority_us,
|
50 |
+
"se" = se_of_majority_us,
|
51 |
+
"Protesters" = rep(c("Majority", "Minority"),2),
|
52 |
+
"outcome" = c(rep("Perceived degree of violence", 2),
|
53 |
+
rep("Police action required", 2)))
|
54 |
+
majority_us$respondents = "White \nrespondents"
|
55 |
+
majority_us$survey = "U.S.A"
|
56 |
+
|
57 |
+
minority_us = data.frame("value" = perceptions_of_minority_us,
|
58 |
+
"se" = se_of_minority_us,
|
59 |
+
"Protesters" = rep(c("Majority", "Minority"),2),
|
60 |
+
"outcome" = c(rep("Perceived degree of violence", 2),
|
61 |
+
rep("Police action required", 2)))
|
62 |
+
minority_us$respondents = "Black \nrespondents"
|
63 |
+
minority_us$survey = "U.S.A"
|
64 |
+
|
65 |
+
majority_isr = data.frame("value" = perceptions_of_majority_isr,
|
66 |
+
"se" = se_of_majority_isr,
|
67 |
+
"Protesters" = rep(c("Majority", "Minority"),2),
|
68 |
+
"outcome" = c(rep("Perceived degree of violence", 2),
|
69 |
+
rep("Police action required", 2)))
|
70 |
+
majority_isr$respondents = "White Jewish \nrespondents"
|
71 |
+
majority_isr$survey = "Israel"
|
72 |
+
|
73 |
+
minority_isr = data.frame("value" = perceptions_of_minority_isr,
|
74 |
+
"se" = se_of_minority_isr,
|
75 |
+
"Protesters" = rep(c("Majority", "Minority"),2),
|
76 |
+
"outcome" = c(rep("Perceived degree of violence", 2),
|
77 |
+
rep("Police action required", 2)))
|
78 |
+
minority_isr$respondents = "Arab \nrespondents"
|
79 |
+
minority_isr$survey = "Israel"
|
80 |
+
|
81 |
+
|
82 |
+
df_all = rbind(majority_us, minority_us, majority_isr, minority_isr)
|
83 |
+
df_all = df_all[df_all$outcome != "Recall violence",]
|
84 |
+
df_all$respondents = factor(df_all$respondents, levels=c("White \nrespondents", "White Jewish \nrespondents", "Black \nrespondents", "Arab \nrespondents"))
|
85 |
+
|
86 |
+
ggplot(df_all, aes(x = respondents, y = value, group=Protesters)) +
|
87 |
+
geom_point(aes(color=Protesters, shape=Protesters), position = position_dodge(0.3))+
|
88 |
+
geom_errorbar(aes(ymin=value-se, ymax=value+se, color=Protesters), width=0,
|
89 |
+
position=position_dodge(0.3))+
|
90 |
+
facet_wrap(~outcome + survey, nrow=2, scales = "free") + theme_bw() +
|
91 |
+
scale_shape_discrete(name = "Protesters") +
|
92 |
+
theme(legend.position = "bottom") + xlab("") + ylab("") +
|
93 |
+
scale_color_manual(values=c("#E69F00", "#56B4E9"))
|
94 |
+
ggsave("Figures/fig_4.pdf", width=6, height=6)
|
23/replication_package/Code/replicate_fig_6.R
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 6
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
goal_white_usa_pdv = lm_robust(degree_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
6 |
+
goal_black_usa_pdv = lm_robust(degree_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
7 |
+
goal_white_usa_rv = lm_robust(recall_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
8 |
+
goal_black_usa_rv = lm_robust(recall_violence_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
9 |
+
goal_white_usa_paq = lm_robust(police_action_required_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
10 |
+
goal_black_usa_paq = lm_robust(police_action_required_std ~ group_goal, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
11 |
+
|
12 |
+
## Plot interaction of goal and identity
|
13 |
+
term_degree_violence = c(goal_white_usa_pdv$coefficients[2], goal_black_usa_pdv$coefficients[2])
|
14 |
+
se_degree_violence = c(goal_white_usa_pdv$std.error[2], goal_black_usa_pdv$std.error[2])
|
15 |
+
statistic_degree_violence = c(goal_white_usa_pdv$statistic[2], goal_black_usa_pdv$statistic[2])
|
16 |
+
pval_degree_violence = c(goal_white_usa_pdv$p.value[2], goal_black_usa_pdv$p.value[2])
|
17 |
+
term = c("Majority group protesters", "Minority group protesters")
|
18 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
19 |
+
degree_violence = cbind(degree_violence, term)
|
20 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
21 |
+
rownames(degree_violence) = term
|
22 |
+
degree_violence$model = "Perceived degree \nof violence"
|
23 |
+
|
24 |
+
term_recall_violence = c(goal_white_usa_rv$coefficients[2], goal_black_usa_rv$coefficients[2])
|
25 |
+
se_recall_violence = c(goal_white_usa_rv$std.error[2], goal_black_usa_rv$std.error[2])
|
26 |
+
statistic_recall_violence = c(goal_white_usa_rv$statistic[2], goal_black_usa_rv$statistic[2])
|
27 |
+
pval_recall_violence = c(goal_white_usa_rv$p.value[2], goal_black_usa_rv$p.value[2])
|
28 |
+
term = c("Majority group protesters", "Minority group protesters")
|
29 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
30 |
+
recall_violence = cbind(recall_violence, term)
|
31 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
32 |
+
rownames(recall_violence) = term
|
33 |
+
recall_violence$model = "Recall \nviolence"
|
34 |
+
|
35 |
+
term_police_action_required = c(goal_white_usa_paq$coefficients[2], goal_black_usa_paq$coefficients[2])
|
36 |
+
se_police_action_required = c(goal_white_usa_paq$std.error[2], goal_black_usa_paq$std.error[2])
|
37 |
+
statistic_police_action_required = c(goal_white_usa_paq$statistic[2], goal_black_usa_paq$statistic[2])
|
38 |
+
pval_police_action_required = c(goal_white_usa_paq$p.value[2], goal_black_usa_paq$p.value[2])
|
39 |
+
term = c("Majority group protesters", "Minority group protesters")
|
40 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
41 |
+
police_action_required = cbind(police_action_required, term)
|
42 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
43 |
+
rownames(police_action_required) = term
|
44 |
+
police_action_required$model = "Police action \nrequired"
|
45 |
+
|
46 |
+
differences_us = rbind(degree_violence, recall_violence, police_action_required)
|
47 |
+
|
48 |
+
## Result tables for plot
|
49 |
+
|
50 |
+
differences_us2 = differences_us
|
51 |
+
differences_us2$submodel = differences_us2$term
|
52 |
+
differences_us2$term = "Protesting against police brutality"
|
53 |
+
diffs_sm = differences_us2
|
54 |
+
results_df = data.frame(term = diffs_sm$term,
|
55 |
+
estimate = diffs_sm$estimate,
|
56 |
+
std.error = diffs_sm$std.error,
|
57 |
+
model = diffs_sm$model,
|
58 |
+
submodel = as.character(diffs_sm$submodel),
|
59 |
+
stringsAsFactors = FALSE)
|
60 |
+
results_df$term = factor(results_df$model, levels=c("Perceived degree \nof violence",
|
61 |
+
"Recall \nviolence",
|
62 |
+
"Police action \nrequired",
|
63 |
+
"Does not support \nprotest"))
|
64 |
+
results_df$model[results_df$submodel=="Majority group protesters"] = "White protesters"
|
65 |
+
results_df$model[results_df$submodel=="Minority group protesters"] = "Black protesters"
|
66 |
+
|
67 |
+
dwplot(results_df, vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
|
68 |
+
theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
|
69 |
+
scale_colour_grey(start = .1, end = .7)
|
70 |
+
ggsave(filename="Figures/fig_6.pdf", width=5, height=4)
|
23/replication_package/Code/replicate_fig_7.R
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 7
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
commitment_white_usa_pdv = lm_robust(degree_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
6 |
+
commitment_black_usa_pdv = lm_robust(degree_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
7 |
+
|
8 |
+
commitment_white_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
|
9 |
+
commitment_ethiopian_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
|
10 |
+
commitment_arab_israel_pdv = lm_robust(degree_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
|
11 |
+
|
12 |
+
term_degree_violence = c(commitment_white_usa_pdv$coefficients[2], commitment_black_usa_pdv$coefficients[2])
|
13 |
+
se_degree_violence = c(commitment_white_usa_pdv$std.error[2], commitment_black_usa_pdv$std.error[2])
|
14 |
+
statistic_degree_violence = c(commitment_white_usa_pdv$statistic[2], commitment_black_usa_pdv$statistic[2])
|
15 |
+
pval_degree_violence = c(commitment_white_usa_pdv$p.value[2], commitment_black_usa_pdv$p.value[2])
|
16 |
+
term = c("Majority group", "Minority group")
|
17 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
18 |
+
degree_violence = cbind(degree_violence, term)
|
19 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
20 |
+
rownames(degree_violence) = term
|
21 |
+
degree_violence$model = "Perceived degree of violence"
|
22 |
+
|
23 |
+
differences_us = rbind(degree_violence)
|
24 |
+
|
25 |
+
term_degree_violence = c(commitment_white_israel_pdv$coefficients[2], commitment_arab_israel_pdv$coefficients[2])
|
26 |
+
se_degree_violence = c(commitment_white_israel_pdv$std.error[2], commitment_arab_israel_pdv$std.error[2])
|
27 |
+
statistic_degree_violence = c(commitment_white_israel_pdv$statistic[2], commitment_arab_israel_pdv$statistic[2])
|
28 |
+
pval_degree_violence = c(commitment_white_israel_pdv$p.value[2], commitment_arab_israel_pdv$p.value[2])
|
29 |
+
term = c("Majority group", "Minority group")
|
30 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
31 |
+
degree_violence = cbind(degree_violence, term)
|
32 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
33 |
+
rownames(degree_violence) = term
|
34 |
+
degree_violence$model = "Perceived degree of violence"
|
35 |
+
|
36 |
+
differences_isr_arab = degree_violence
|
37 |
+
|
38 |
+
term_degree_violence = c(commitment_white_israel_pdv$coefficients[2], commitment_ethiopian_israel_pdv$coefficients[2])
|
39 |
+
se_degree_violence = c(commitment_white_israel_pdv$std.error[2], commitment_ethiopian_israel_pdv$std.error[2])
|
40 |
+
statistic_degree_violence = c(commitment_white_israel_pdv$statistic[2], commitment_ethiopian_israel_pdv$statistic[2])
|
41 |
+
pval_degree_violence = c(commitment_white_israel_pdv$p.value[2], commitment_ethiopian_israel_pdv$p.value[2])
|
42 |
+
term = c("Majority group", "Minority group")
|
43 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
44 |
+
degree_violence = cbind(degree_violence, term)
|
45 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
46 |
+
rownames(degree_violence) = term
|
47 |
+
degree_violence$model = "Perceived degree of violence"
|
48 |
+
|
49 |
+
differences_isr_ethiopian = degree_violence
|
50 |
+
|
51 |
+
## Result tables for plot
|
52 |
+
differences_us2 = differences_us
|
53 |
+
differences_us2$submodel = differences_us2$term
|
54 |
+
differences_us2$term = "Perception of Blacks \n(United States)"
|
55 |
+
|
56 |
+
differences_isr_black2 = differences_isr_ethiopian
|
57 |
+
differences_isr_black2$submodel = differences_isr_black2$term
|
58 |
+
differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
|
59 |
+
|
60 |
+
differences_isr_arab2 = differences_isr_arab
|
61 |
+
differences_isr_arab2$submodel = differences_isr_arab2$term
|
62 |
+
differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
|
63 |
+
|
64 |
+
diffs_sm = rbind(differences_us2, differences_isr_black2, differences_isr_arab2)
|
65 |
+
rownames(diffs_sm) = 1:nrow(diffs_sm)
|
66 |
+
|
67 |
+
results_df <- data.frame(term = diffs_sm$term,
|
68 |
+
estimate = diffs_sm$estimate,
|
69 |
+
std.error = diffs_sm$std.error,
|
70 |
+
model = as.character(diffs_sm$submodel),
|
71 |
+
stringsAsFactors = FALSE)
|
72 |
+
|
73 |
+
dwplot(results_df, vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
|
74 |
+
theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
|
75 |
+
scale_colour_grey(start = .1, end = .7) +xlim(-0.35,0.1)
|
76 |
+
ggsave(filename="Figures/fig_7.pdf", width=5.5, height=4)
|
23/replication_package/Code/replicate_fig_8.R
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 8
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
us_survey_content_covars <- estimateEffect(1:10 ~ identity_protesters, us_survey_text_analysis$stm_topics, meta = docvars(us_survey_text_analysis$nv_dfm), uncertainty = "Global")
|
6 |
+
us_survey_sum_content_covars = summary(us_survey_content_covars)
|
7 |
+
|
8 |
+
topics = labelTopics(us_survey_text_analysis$stm_topics, n=20)
|
9 |
+
|
10 |
+
term = c(paste(topics$prob[1,1:5], collapse = ", "),
|
11 |
+
paste(topics$prob[2,c(1,2,7,8,15)], collapse = ", "),
|
12 |
+
paste(topics$prob[3,1:5], collapse = ", "),
|
13 |
+
paste(topics$prob[4,4:9], collapse = ", "),
|
14 |
+
paste(topics$prob[5,c(1,2,3,5,15)], collapse = ", "),
|
15 |
+
paste(topics$prob[6,1:5], collapse = ", "),
|
16 |
+
paste(topics$prob[7,1:5], collapse = ", "),
|
17 |
+
paste(topics$prob[8,1:5], collapse = ", "),
|
18 |
+
paste(topics$prob[9,c(3,4,9,15,17)], collapse = ", "),
|
19 |
+
paste(topics$prob[10,c(8,12,13,15,16)], collapse = ", "))
|
20 |
+
|
21 |
+
estimate = rep(NA, 10)
|
22 |
+
std.error = rep(NA, 10)
|
23 |
+
for(i in 1:length(us_survey_sum_content_covars$tables)){
|
24 |
+
estimate[i] = us_survey_sum_content_covars$tables[[i]][2,1]
|
25 |
+
std.error[i] = us_survey_sum_content_covars$tables[[i]][2,2]
|
26 |
+
}
|
27 |
+
|
28 |
+
us_survey_stm_results = data.frame("term" = term, "estimate" = estimate, "std.error"= std.error)
|
29 |
+
us_survey_stm_results = us_survey_stm_results[order(us_survey_stm_results$estimate, decreasing = T),]
|
30 |
+
|
31 |
+
dwplot(us_survey_stm_results,
|
32 |
+
vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
|
33 |
+
theme_bw() + xlab("\nWhite protesters . . . . . . . . . . . . . . . . . . Black protesters") +
|
34 |
+
theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
|
35 |
+
scale_colour_grey(start = 0, end = 0)
|
36 |
+
ggsave(file="Figures/fig_8.pdf", width=8, height=6)
|
23/replication_package/Code/replicate_fig_9.R
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Figure 9
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
isr_survey_arab_content_covars <- estimateEffect(1:10 ~ identity_protesters_arab, isr_survey_text_analysis_arab$stm_topics, meta = docvars(isr_survey_text_analysis_arab$nv_dfm_arab), uncertainty = "Global")
|
6 |
+
isr_survey_arab_sum_content_covars = summary(isr_survey_arab_content_covars)
|
7 |
+
|
8 |
+
term_translated_arab = c("violent, protest, israel",
|
9 |
+
"justified, right, protest",
|
10 |
+
"violent, express, equal, demands",
|
11 |
+
"democracy, protest, rights",
|
12 |
+
"legitimate, support, sympathize, voice",
|
13 |
+
"difficult, situation, understand, pain",
|
14 |
+
"violent, protest, against",
|
15 |
+
"social, justice, protest",
|
16 |
+
"information, details, reason",
|
17 |
+
"violence, arab, community, minority")
|
18 |
+
|
19 |
+
estimate = rep(NA, 10)
|
20 |
+
std.error = rep(NA, 10)
|
21 |
+
|
22 |
+
for(i in 1:length(isr_survey_arab_sum_content_covars$tables)){
|
23 |
+
estimate[i] = isr_survey_arab_sum_content_covars$tables[[i]][2,1]
|
24 |
+
std.error[i] = isr_survey_arab_sum_content_covars$tables[[i]][2,2]
|
25 |
+
}
|
26 |
+
|
27 |
+
isr_survey_arab_stm_results = data.frame("term" = term_translated_arab, "estimate" = estimate, "std.error"= std.error)
|
28 |
+
isr_survey_arab_stm_results = isr_survey_arab_stm_results[order(isr_survey_arab_stm_results$estimate, decreasing = T),]
|
29 |
+
|
30 |
+
dwplot(isr_survey_arab_stm_results,
|
31 |
+
vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 2.5)) +
|
32 |
+
theme_bw() + xlab("\nIsraeli white protesters . . . . . . . . . . . . . . . . . . Israeli Arab protesters") +
|
33 |
+
theme(text = element_text(size=12), axis.text.x = element_text(angle = 0, hjust = 1), legend.position = "none") +
|
34 |
+
scale_colour_grey(start = 0, end = 0)
|
35 |
+
ggsave(file="Figures/fig_9.pdf", width=8, height=6)
|
23/replication_package/Code/replicate_fig_A1.R
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A1
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
EBCR_EPR_NAVCO2$camp_goals_text = NA
|
6 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==0] = "Regime change"
|
7 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==1] = "Significant institutional reform"
|
8 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==2] = "Policy change"
|
9 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==3] = "Territorial secession"
|
10 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==4] = "Greater autonomy"
|
11 |
+
EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$camp_goals==5] = "Anti occupation"
|
12 |
+
|
13 |
+
EBCR_EPR_NAVCO2$EPR_STATUS = factor(EBCR_EPR_NAVCO2$EPR_STATUS,
|
14 |
+
levels=c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION",
|
15 |
+
"JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT",
|
16 |
+
"MONOPOLY", "IRRELEVANT", "STATE COLLAPSE"))
|
17 |
+
|
18 |
+
goals_status = prop.table(table(EBCR_EPR_NAVCO2$camp_goals_text[EBCR_EPR_NAVCO2$navco1designation==1], EBCR_EPR_NAVCO2$EPR_STATUS[EBCR_EPR_NAVCO2$navco1designation==1]))
|
19 |
+
|
20 |
+
col6 = c("#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B")
|
21 |
+
|
22 |
+
pdf(file="Figures/fig_A1.pdf", width=8, height=6)
|
23 |
+
corrplot(goals_status[,c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION",
|
24 |
+
"JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT", "MONOPOLY")], method = "circle", cl.lim = c(0,0.15), is.corr = F, col=col6, tl.col="black")
|
25 |
+
dev.off()
|
23/replication_package/Code/replicate_fig_A10.R
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A10
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
commitment_white_usa_rv = lm_robust(recall_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
6 |
+
commitment_black_usa_rv = lm_robust(recall_violence_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
7 |
+
commitment_white_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
|
8 |
+
commitment_ethiopian_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
|
9 |
+
commitment_arab_israel_rv = lm_robust(recall_violence_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
|
10 |
+
|
11 |
+
## U.S.
|
12 |
+
term_recall_violence = c(commitment_white_usa_rv$coefficients[2], commitment_black_usa_rv$coefficients[2])
|
13 |
+
se_recall_violence = c(commitment_white_usa_rv$std.error[2], commitment_black_usa_rv$std.error[2])
|
14 |
+
statistic_recall_violence = c(commitment_white_usa_rv$statistic[2], commitment_black_usa_rv$statistic[2])
|
15 |
+
pval_recall_violence = c(commitment_white_usa_rv$p.value[2], commitment_black_usa_rv$p.value[2])
|
16 |
+
term = c("Majority group", "Minority group")
|
17 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
18 |
+
recall_violence = cbind(recall_violence, term)
|
19 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
20 |
+
rownames(recall_violence) = term
|
21 |
+
recall_violence$model = "Recall violence"
|
22 |
+
differences_us = recall_violence
|
23 |
+
|
24 |
+
## Israel (Arabs)
|
25 |
+
term_recall_violence = c(commitment_white_israel_rv$coefficients[2], commitment_arab_israel_rv$coefficients[2])
|
26 |
+
se_recall_violence = c(commitment_white_israel_rv$std.error[2], commitment_arab_israel_rv$std.error[2])
|
27 |
+
statistic_recall_violence = c(commitment_white_israel_rv$statistic[2], commitment_arab_israel_rv$statistic[2])
|
28 |
+
pval_recall_violence = c(commitment_white_israel_rv$p.value[2], commitment_arab_israel_rv$p.value[2])
|
29 |
+
term = c("Majority group", "Minority group")
|
30 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
31 |
+
recall_violence = cbind(recall_violence, term)
|
32 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
33 |
+
rownames(recall_violence) = term
|
34 |
+
recall_violence$model = "Recall violence"
|
35 |
+
differences_isr_arab = recall_violence
|
36 |
+
|
37 |
+
## Israel (Ethiopian)
|
38 |
+
term_recall_violence = c(commitment_white_israel_rv$coefficients[2], commitment_ethiopian_israel_rv$coefficients[2])
|
39 |
+
se_recall_violence = c(commitment_white_israel_rv$std.error[2], commitment_ethiopian_israel_rv$std.error[2])
|
40 |
+
statistic_recall_violence = c(commitment_white_israel_rv$statistic[2], commitment_ethiopian_israel_rv$statistic[2])
|
41 |
+
pval_recall_violence = c(commitment_white_israel_rv$p.value[2], commitment_ethiopian_israel_rv$p.value[2])
|
42 |
+
term = c("Majority group", "Minority group")
|
43 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
44 |
+
recall_violence = cbind(recall_violence, term)
|
45 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
46 |
+
rownames(recall_violence) = term
|
47 |
+
recall_violence$model = "Recall violence"
|
48 |
+
differences_isr_ethiopian = recall_violence
|
49 |
+
|
50 |
+
## Result tables for plot
|
51 |
+
differences_us$term = "Perception of Blacks \n(United States)"
|
52 |
+
differences_isr_ethiopian$term = "Perception of Ethiopians \n(Israel)"
|
53 |
+
differences_isr_arab$term = "Perception of Arabs \n(Israel)"
|
54 |
+
|
55 |
+
diffs_sm = rbind(differences_us, differences_isr_ethiopian, differences_isr_arab)
|
56 |
+
diffs_sm$model = rep(c("Majority group", "Minority group"),3)
|
57 |
+
rownames(diffs_sm) = 1:nrow(diffs_sm)
|
58 |
+
|
59 |
+
results_df <- data.frame(term = diffs_sm$term,
|
60 |
+
estimate = diffs_sm$estimate,
|
61 |
+
std.error = diffs_sm$std.error,
|
62 |
+
model = diffs_sm$model,
|
63 |
+
stringsAsFactors = FALSE)
|
64 |
+
|
65 |
+
dwplot(results_df,vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 3)) +
|
66 |
+
theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
|
67 |
+
scale_colour_grey(start = .1, end = .7)
|
68 |
+
ggsave(filename="Figures/fig_A10.pdf", width=6, height=5)
|
23/replication_package/Code/replicate_fig_A11.R
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A11
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
commitment_white_usa_paq = lm_robust(police_action_required_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="White",])
|
6 |
+
commitment_black_usa_paq = lm_robust(police_action_required_std ~ commitment, data=us_survey_wave2[us_survey_wave2$identity_protesters_fac=="Black",])
|
7 |
+
commitment_white_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==0,])
|
8 |
+
commitment_ethiopian_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==1,])
|
9 |
+
commitment_arab_israel_paq = lm_robust(police_action_required_std ~ commitment, data=isr_survey_wave2[isr_survey_wave2$identity_protesters==2,])
|
10 |
+
|
11 |
+
## U.S.
|
12 |
+
term_police_action_required = c(commitment_white_usa_paq$coefficients[2], commitment_black_usa_paq$coefficients[2])
|
13 |
+
se_police_action_required = c(commitment_white_usa_paq$std.error[2], commitment_black_usa_paq$std.error[2])
|
14 |
+
statistic_police_action_required = c(commitment_white_usa_paq$statistic[2], commitment_black_usa_paq$statistic[2])
|
15 |
+
pval_police_action_required = c(commitment_white_usa_paq$p.value[2], commitment_black_usa_paq$p.value[2])
|
16 |
+
term = c("Majority group", "Minority group")
|
17 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
18 |
+
police_action_required = cbind(police_action_required, term)
|
19 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
20 |
+
rownames(police_action_required) = term
|
21 |
+
police_action_required$model = "Police action required"
|
22 |
+
differences_us = police_action_required
|
23 |
+
|
24 |
+
## Israel (Arabs)
|
25 |
+
term_police_action_required = c(commitment_white_israel_paq$coefficients[2], commitment_arab_israel_paq$coefficients[2])
|
26 |
+
se_police_action_required = c(commitment_white_israel_paq$std.error[2], commitment_arab_israel_paq$std.error[2])
|
27 |
+
statistic_police_action_required = c(commitment_white_israel_paq$statistic[2], commitment_arab_israel_paq$statistic[2])
|
28 |
+
pval_police_action_required = c(commitment_white_israel_paq$p.value[2], commitment_arab_israel_paq$p.value[2])
|
29 |
+
term = c("Majority group", "Minority group")
|
30 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
31 |
+
police_action_required = cbind(police_action_required, term)
|
32 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
33 |
+
rownames(police_action_required) = term
|
34 |
+
police_action_required$model = "Police action required"
|
35 |
+
differences_isr_arab = police_action_required
|
36 |
+
|
37 |
+
## Israel (Ethiopian)
|
38 |
+
term_police_action_required = c(commitment_white_israel_paq$coefficients[2], commitment_ethiopian_israel_paq$coefficients[2])
|
39 |
+
se_police_action_required = c(commitment_white_israel_paq$std.error[2], commitment_ethiopian_israel_paq$std.error[2])
|
40 |
+
statistic_police_action_required = c(commitment_white_israel_paq$statistic[2], commitment_ethiopian_israel_paq$statistic[2])
|
41 |
+
pval_police_action_required = c(commitment_white_israel_paq$p.value[2], commitment_ethiopian_israel_paq$p.value[2])
|
42 |
+
term = c("Majority group", "Minority group")
|
43 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
44 |
+
police_action_required = cbind(police_action_required, term)
|
45 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
46 |
+
rownames(police_action_required) = term
|
47 |
+
police_action_required$model = "Police action required"
|
48 |
+
differences_isr_ethiopian = police_action_required
|
49 |
+
|
50 |
+
## Result tables for plot
|
51 |
+
differences_us$term = "Perception of Blacks \n(United States)"
|
52 |
+
differences_isr_ethiopian$term = "Perception of Ethiopians \n(Israel)"
|
53 |
+
differences_isr_arab$term = "Perception of Arabs \n(Israel)"
|
54 |
+
|
55 |
+
diffs_sm = rbind(differences_us, differences_isr_ethiopian, differences_isr_arab)
|
56 |
+
diffs_sm$model = rep(c("Majority group", "Minority group"),3)
|
57 |
+
rownames(diffs_sm) = 1:nrow(diffs_sm)
|
58 |
+
|
59 |
+
results_df <- data.frame(term = diffs_sm$term,
|
60 |
+
estimate = diffs_sm$estimate,
|
61 |
+
std.error = diffs_sm$std.error,
|
62 |
+
model = diffs_sm$model,
|
63 |
+
stringsAsFactors = FALSE)
|
64 |
+
|
65 |
+
dwplot(results_df,vline = geom_vline(xintercept = 0, colour = "grey60", linetype = 2), dot_args = list(size = 3)) +
|
66 |
+
theme_bw() + xlab("Coefficient Estimate (Std. Dev. Units)") + theme(legend.position = "bottom", axis.text=element_text(size=9), legend.title = element_blank()) +
|
67 |
+
scale_colour_grey(start = .1, end = .7)
|
68 |
+
ggsave(filename="Figures/fig_A11.pdf", width=6, height=5)
|
23/replication_package/Code/replicate_fig_A12.R
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A12
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
## U.S.
|
6 |
+
us_survey_wave1_dv = lm(degree_violence ~ identity_protesters*interest_news +age +female + education + income + ideology + race, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
7 |
+
us_survey_wave1_dv_all = ggpredict(us_survey_wave1_dv, terms = c("interest_news"))
|
8 |
+
us_survey_wave1_dv_all$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
|
9 |
+
us_survey_wave1_dv_all$interest_news = factor(us_survey_wave1_dv_all$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
|
10 |
+
us_survey_wave1_dv_all = as.data.frame(us_survey_wave1_dv_all)
|
11 |
+
|
12 |
+
news_usa_study1 = ggplot(us_survey_wave1_dv_all, aes(x = interest_news, y = predicted, group="all")) +
|
13 |
+
geom_line()+ geom_errorbar(width = 0, ymin=us_survey_wave1_dv_all$conf.low, ymax=us_survey_wave1_dv_all$conf.high)+
|
14 |
+
geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
|
15 |
+
scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
|
16 |
+
ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perceptions of Black Protesters in the U.S.")
|
17 |
+
|
18 |
+
## Israel
|
19 |
+
isr_survey_wave1$interest_news2 = isr_survey_wave1$interest_news-1
|
20 |
+
|
21 |
+
isr_survey_dv_eth = lm(degree_violence ~ identity_protesters*interest_news2 + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1[isr_survey_wave1$identity_protesters %in% c(0,1) & isr_survey_wave1$tactic==0,], weights=weight)
|
22 |
+
isr_survey_dv_all_eth = ggpredict(isr_survey_dv_eth, terms = c("interest_news2"))
|
23 |
+
isr_survey_dv_all_eth$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
|
24 |
+
isr_survey_dv_all_eth$interest_news = factor(isr_survey_dv_all_eth$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
|
25 |
+
isr_survey_dv_all_eth = as.data.frame(isr_survey_dv_all_eth)
|
26 |
+
isr_survey_dv_all_eth$Minority = "Ethiopians"
|
27 |
+
|
28 |
+
isr_survey_dv_arab = lm(degree_violence ~ identity_protesters*interest_news2 + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1[isr_survey_wave1$identity_protesters %in% c(0,2) & isr_survey_wave1$tactic==0,], weights=weight)
|
29 |
+
isr_survey_dv_all_arab = ggpredict(isr_survey_dv_arab, terms = c("interest_news2"))
|
30 |
+
isr_survey_dv_all_arab$interest_news = c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time")
|
31 |
+
isr_survey_dv_all_arab$interest_news = factor(isr_survey_dv_all_arab$interest_news, levels=c("Hardly at all", "Only now \nand then", "Some of \nthe time", "Most of \nthe time"))
|
32 |
+
isr_survey_dv_all_arab = as.data.frame(isr_survey_dv_all_arab)
|
33 |
+
isr_survey_dv_all_arab$Minority = "Arabs"
|
34 |
+
|
35 |
+
news_israel_study1_eth = ggplot(isr_survey_dv_all_eth, aes(x = interest_news, y = predicted, group="all")) +
|
36 |
+
geom_line()+ geom_errorbar(width = 0, ymin=isr_survey_dv_all_eth$conf.low, ymax=isr_survey_dv_all_eth$conf.high)+
|
37 |
+
geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
|
38 |
+
scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
|
39 |
+
ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perception of Ethiopian Protesters in Israel")
|
40 |
+
|
41 |
+
news_israel_study1_arab = ggplot(isr_survey_dv_all_arab, aes(x = interest_news, y = predicted, group="all")) +
|
42 |
+
geom_line()+ geom_errorbar(width = 0, ymin=isr_survey_dv_all_arab$conf.low, ymax=isr_survey_dv_all_arab$conf.high)+
|
43 |
+
geom_point(size=3) + ylim(-0.05,10) + theme_bw() +
|
44 |
+
scale_colour_grey(start = 0.1, end = 0.65) + geom_hline(yintercept=0, linetype="dashed")+
|
45 |
+
ylab("Perceived degree violence") + xlab("\nHow often do you follow the news?") + ggtitle("Perception of Arab Protesters in Israel")
|
46 |
+
|
47 |
+
|
48 |
+
grid_study1 = grid.arrange(news_usa_study1, news_israel_study1_eth, news_israel_study1_arab, nrow = 1)
|
49 |
+
ggsave(filename= "Figures/fig_A12.pdf", plot=grid_study1, width=13, height=4, units="in")
|
50 |
+
|
23/replication_package/Code/replicate_fig_A2.R
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A2
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
mean_sucess_anti_occupation_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Anti occupation") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
6 |
+
mean_sucess_anti_occupation_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Anti occupation") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
7 |
+
|
8 |
+
mean_sucess_greater_autonomy_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Greater autonomy") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
9 |
+
mean_sucess_greater_autonomy_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Greater autonomy") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
10 |
+
|
11 |
+
mean_sucess_policy_change_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Policy change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
12 |
+
mean_sucess_policy_change_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Policy change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
13 |
+
|
14 |
+
mean_sucess_regime_change_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Regime change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
15 |
+
mean_sucess_regime_change_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Regime change") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
16 |
+
|
17 |
+
mean_sucess_inst_reform_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Significant institutional reform") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
18 |
+
mean_sucess_inst_reform_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Significant institutional reform") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
19 |
+
|
20 |
+
mean_sucess_territorial_secession_minority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Territorial secession") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==1 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
21 |
+
mean_sucess_territorial_secession_majority = mean(EBCR_EPR_NAVCO2$success[EBCR_EPR_NAVCO2$camp_goals_text %in% c("Territorial secession") & EBCR_EPR_NAVCO2$EPR_STATUS_EXCL==0 & EBCR_EPR_NAVCO2$navco1designation==1], na.rm=T)
|
22 |
+
|
23 |
+
success_props = data.frame("prop_success" = c(mean_sucess_anti_occupation_minority, mean_sucess_anti_occupation_majority,
|
24 |
+
mean_sucess_greater_autonomy_minority, mean_sucess_greater_autonomy_majority,
|
25 |
+
mean_sucess_policy_change_minority, mean_sucess_policy_change_majority,
|
26 |
+
mean_sucess_regime_change_minority, mean_sucess_regime_change_majority,
|
27 |
+
mean_sucess_inst_reform_minority, mean_sucess_inst_reform_majority,
|
28 |
+
mean_sucess_territorial_secession_minority, mean_sucess_territorial_secession_majority),
|
29 |
+
"Status" =rep(c("Excluded", "Included"), 6), "goal" = c(rep("Anti \noccupation", 2), rep("Greater \nautonomy", 2), rep("Policy \nchange", 2),
|
30 |
+
rep("Regime \nchange", 2), rep("Significant \ninstitutional \nreform", 2), rep("Territorial \nsecession", 2)))
|
31 |
+
|
32 |
+
|
33 |
+
ggplot(data=success_props, aes(x=goal, y=prop_success, fill=Status)) +
|
34 |
+
geom_bar(stat="identity", position=position_dodge()) + theme_bw() +
|
35 |
+
ylab("Proportion of successful campaigns") + xlab("Campaign goal") + scale_fill_brewer(palette="Paired")
|
36 |
+
ggsave(file="Figures/fig_A2.pdf", width=6.5, height=4)
|
23/replication_package/Code/replicate_fig_A3.R
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A3
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
status_names = c("DISCRIMINATED", "POWERLESS", "SELF-EXCLUSION", "JUNIOR PARTNER", "SENIOR PARTNER", "DOMINANT", "MONOPOLY")
|
6 |
+
|
7 |
+
ggplot(EBCR_EPR_NAVCO2, aes(x=EPR_GROUPSIZE, y=EPR_STATUS_ORD)) +
|
8 |
+
geom_point(alpha=0.2, color="gray50") + geom_smooth(color="black") +
|
9 |
+
theme_bw() + xlab("Group size") + ylab("Group status") +
|
10 |
+
scale_y_continuous(breaks = c(1,2,3,4,5,6,7), labels = status_names)
|
11 |
+
ggsave("Figures/fig_A3.pdf", width=6, height=5)
|
23/replication_package/Code/replicate_fig_A6.R
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A6
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
us_survey_wave1$education_numeric = as.numeric(us_survey_wave1$education)
|
6 |
+
us_survey_wave1$income_numeric = as.numeric(us_survey_wave1$income)
|
7 |
+
us_survey_wave1$ideology_numeric = as.numeric(us_survey_wave1$ideology)
|
8 |
+
|
9 |
+
us_survey_wave1 = dummy_cols(us_survey_wave1, select_columns = c("partyID", "race"))
|
10 |
+
vars_us_survey_wave1 = c("age", "female", "education_numeric", "income_numeric", "partyID_D", "partyID_I", "partyID_R", "ideology_numeric", "race_White", "race_Black")
|
11 |
+
|
12 |
+
means_black_march = means_white_march = means_black_shut = means_white_shut = means_black_destroy = means_white_destroy = rep(NA, length(vars_us_survey_wave1))
|
13 |
+
se_black_march = se_white_march = se_black_shut = se_white_shut = se_black_destroy = se_white_destroy = rep(NA, length(vars_us_survey_wave1))
|
14 |
+
|
15 |
+
for(i in 1:length(vars_us_survey_wave1)){
|
16 |
+
means_black_march[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
|
17 |
+
means_white_march[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
|
18 |
+
means_black_shut[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
|
19 |
+
means_white_shut[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
|
20 |
+
means_black_destroy[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
|
21 |
+
means_white_destroy[i] = mean(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
|
22 |
+
|
23 |
+
se_black_march[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
|
24 |
+
se_white_march[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==0, vars_us_survey_wave1[i]], na.rm=T)
|
25 |
+
se_black_shut[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
|
26 |
+
se_white_shut[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==1, vars_us_survey_wave1[i]], na.rm=T)
|
27 |
+
se_black_destroy[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==1 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
|
28 |
+
se_white_destroy[i] = sd(us_survey_wave1[us_survey_wave1$identity_protesters==0 & us_survey_wave1$tactic==2, vars_us_survey_wave1[i]], na.rm=T)
|
29 |
+
|
30 |
+
}
|
31 |
+
|
32 |
+
us_survey_wave1_balance = cbind(means_black_march, se_black_march,
|
33 |
+
means_white_march, se_white_march,
|
34 |
+
means_black_shut, se_black_shut,
|
35 |
+
means_white_shut, se_white_shut,
|
36 |
+
means_black_destroy, se_black_destroy,
|
37 |
+
means_white_destroy, se_white_destroy)
|
38 |
+
|
39 |
+
us_survey_wave1_balance = as.data.frame(us_survey_wave1_balance)
|
40 |
+
colnames(us_survey_wave1_balance) = c("Blacks, march in streets (mean)", "Blacks, march in streets (sd)",
|
41 |
+
"Whites, march in streets (mean)", "Whites, march in streets (sd)",
|
42 |
+
"Blacks, shut down traffic (mean)", "Blacks, shut down traffic (sd)",
|
43 |
+
"Whites, shut down traffic (mean)", "Whites, shut down traffic (sd)",
|
44 |
+
"Blacks, destroy police cars (mean)", "Blacks, destroy police cars (sd)",
|
45 |
+
"Whites, destroy police cars (mean)", "Whites, destroy police cars (sd)")
|
46 |
+
rownames(us_survey_wave1_balance) = vars_us_survey_wave1
|
47 |
+
|
48 |
+
|
49 |
+
us_survey_wave1_balance_means = as.data.frame(cbind(means_black_march,
|
50 |
+
means_white_march,
|
51 |
+
means_black_shut,
|
52 |
+
means_white_shut,
|
53 |
+
means_black_destroy,
|
54 |
+
means_white_destroy))
|
55 |
+
|
56 |
+
rownames(us_survey_wave1_balance_means) = vars_us_survey_wave1
|
57 |
+
us_survey_wave1_balance_means$var = vars_us_survey_wave1
|
58 |
+
|
59 |
+
keycol <- "condition"
|
60 |
+
valuecol <- "mean"
|
61 |
+
gathercols <- c("means_black_march", "means_white_march", "means_black_shut", "means_white_shut",
|
62 |
+
"means_black_destroy", "means_white_destroy")
|
63 |
+
|
64 |
+
us_survey_wave1_balance_means_long = gather_(us_survey_wave1_balance_means, keycol, valuecol, gathercols)
|
65 |
+
|
66 |
+
|
67 |
+
us_survey_wave1_balance_se = as.data.frame(cbind(se_black_march,
|
68 |
+
se_white_march,
|
69 |
+
se_black_shut,
|
70 |
+
se_white_shut,
|
71 |
+
se_black_destroy,
|
72 |
+
se_white_destroy))
|
73 |
+
|
74 |
+
rownames(us_survey_wave1_balance_se) = vars_us_survey_wave1
|
75 |
+
us_survey_wave1_balance_se$var = vars_us_survey_wave1
|
76 |
+
|
77 |
+
keycol <- "condition"
|
78 |
+
valuecol <- "se"
|
79 |
+
gathercols <- c("se_black_march", "se_white_march", "se_black_shut", "se_white_shut",
|
80 |
+
"se_black_destroy", "se_white_destroy")
|
81 |
+
|
82 |
+
us_survey_wave1_balance_se_long = gather_(us_survey_wave1_balance_se, keycol, valuecol, gathercols)
|
83 |
+
|
84 |
+
us_survey_wave1_balance_long = cbind(us_survey_wave1_balance_means_long, us_survey_wave1_balance_se_long[,"se"])
|
85 |
+
|
86 |
+
colnames(us_survey_wave1_balance_long) = c("term", "model", "estimate", "std.error")
|
87 |
+
|
88 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_destroy"] = "Black, destroy property"
|
89 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_march"] = "Black, march in streets"
|
90 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_black_shut"] = "Black, shut down traffic"
|
91 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_destroy"] = "White, destroy property"
|
92 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_march"] = "White, march in streets"
|
93 |
+
us_survey_wave1_balance_long$model[us_survey_wave1_balance_long$model == "means_white_shut"] = "White, shut down traffic"
|
94 |
+
|
95 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "age"] = "Age"
|
96 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "female"] = "Female"
|
97 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "education_numeric"] = "Education (1-6 scale)"
|
98 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "income_numeric"] = "Income (1-17 scale)"
|
99 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_D"] = "Party ID: Democrat"
|
100 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_I"] = "Party ID: Independent"
|
101 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "partyID_R"] = "Party ID: Republican"
|
102 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "ideology_numeric"] = "Ideology (1-6 scale)"
|
103 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "race_White"] = "Race: White"
|
104 |
+
us_survey_wave1_balance_long$term[us_survey_wave1_balance_long$term == "race_Black"] = "Race: Black"
|
105 |
+
|
106 |
+
us_survey_wave1_balance_long = us_survey_wave1_balance_long[us_survey_wave1_balance_long$term != "Age",]
|
107 |
+
|
108 |
+
dwplot(us_survey_wave1_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
|
109 |
+
geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
|
110 |
+
ggsave("Figures/fig_A6.pdf", height=5, width=7)
|
23/replication_package/Code/replicate_fig_A7.R
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A7
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
isr_survey_wave1$age_numeric = as.numeric(isr_survey_wave1$age)
|
6 |
+
age1 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
|
7 |
+
age2 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
|
8 |
+
age3 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
|
9 |
+
age4 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
|
10 |
+
age5 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
|
11 |
+
age6 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
|
12 |
+
age7 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, "age_numeric"], na.rm=T)
|
13 |
+
age8 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, "age_numeric"], na.rm=T)
|
14 |
+
age9 = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, "age_numeric"], na.rm=T)
|
15 |
+
|
16 |
+
ages_isr_survey_wave1 = c(age1, age2, age3, age4, age5, age6, age7, age8, age9)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
isr_survey_wave1 = dummy_cols(isr_survey_wave1, select_columns = c("partyID", "ethnicity"))
|
21 |
+
|
22 |
+
vars_isr_survey_wave1 = c("female", "education", "income", "partyID_C", "partyID_L", "partyID_R", "ideology",
|
23 |
+
"ethnicity_Ethiopia", "ethnicity_Arab", "ethnicity_Ashkenazi", "ethnicity_Mizrachi", "ethnicity_Soviet Union")
|
24 |
+
|
25 |
+
means_black_march = means_arab_march = means_white_march = rep(NA, length(vars_isr_survey_wave1))
|
26 |
+
means_black_shut = means_arab_shut = means_white_shut = rep(NA, length(vars_isr_survey_wave1))
|
27 |
+
means_black_destroy = means_arab_destroy = means_white_destroy = rep(NA, length(vars_isr_survey_wave1))
|
28 |
+
|
29 |
+
se_black_march = se_arab_march = se_white_march = rep(NA, length(vars_isr_survey_wave1))
|
30 |
+
se_black_shut = se_arab_shut = se_white_shut = rep(NA, length(vars_isr_survey_wave1))
|
31 |
+
se_black_destroy = se_arab_destroy = se_white_destroy = rep(NA, length(vars_isr_survey_wave1))
|
32 |
+
|
33 |
+
for(i in 1:length(vars_isr_survey_wave1)){
|
34 |
+
|
35 |
+
means_black_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
36 |
+
se_black_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
37 |
+
means_arab_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
38 |
+
se_arab_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
39 |
+
means_white_march[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
40 |
+
se_white_march[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==0, vars_isr_survey_wave1[i]], na.rm=T)
|
41 |
+
|
42 |
+
means_black_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
43 |
+
se_black_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
44 |
+
means_arab_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
45 |
+
se_arab_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
46 |
+
means_white_shut[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
47 |
+
se_white_shut[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==1, vars_isr_survey_wave1[i]], na.rm=T)
|
48 |
+
|
49 |
+
means_black_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
50 |
+
se_black_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==1 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
51 |
+
means_arab_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
52 |
+
se_arab_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==2 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
53 |
+
means_white_destroy[i] = mean(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
54 |
+
se_white_destroy[i] = sd(isr_survey_wave1[isr_survey_wave1$identity_protesters==0 & isr_survey_wave1$tactic==2, vars_isr_survey_wave1[i]], na.rm=T)
|
55 |
+
|
56 |
+
}
|
57 |
+
|
58 |
+
israel_balance_means = as.data.frame(cbind(means_black_march,
|
59 |
+
means_arab_march,
|
60 |
+
means_white_march,
|
61 |
+
means_black_shut,
|
62 |
+
means_arab_shut,
|
63 |
+
means_white_shut,
|
64 |
+
means_black_destroy,
|
65 |
+
means_arab_destroy,
|
66 |
+
means_white_destroy))
|
67 |
+
|
68 |
+
rownames(israel_balance_means) = vars_isr_survey_wave1
|
69 |
+
israel_balance_means$var = vars_isr_survey_wave1
|
70 |
+
|
71 |
+
keycol <- "condition"
|
72 |
+
valuecol <- "mean"
|
73 |
+
gathercols <- c("means_black_march", "means_arab_march", "means_white_march", "means_black_shut", "means_arab_shut", "means_white_shut",
|
74 |
+
"means_black_destroy", "means_white_destroy", "means_black_destroy", "means_arab_destroy",
|
75 |
+
"means_white_destroy")
|
76 |
+
|
77 |
+
israel_balance_means_long = gather_(israel_balance_means, keycol, valuecol, gathercols)
|
78 |
+
|
79 |
+
|
80 |
+
israel_balance_se = as.data.frame(cbind(se_black_march,
|
81 |
+
se_arab_march,
|
82 |
+
se_white_march,
|
83 |
+
se_black_shut,
|
84 |
+
se_arab_shut,
|
85 |
+
se_white_shut,
|
86 |
+
se_black_destroy,
|
87 |
+
se_arab_destroy,
|
88 |
+
se_white_destroy))
|
89 |
+
|
90 |
+
rownames(israel_balance_se) = vars_isr_survey_wave1
|
91 |
+
israel_balance_se$var = vars_isr_survey_wave1
|
92 |
+
|
93 |
+
keycol <- "condition"
|
94 |
+
valuecol <- "se"
|
95 |
+
gathercols <- c("se_black_march", "se_arab_march", "se_white_march", "se_black_shut", "se_arab_shut", "se_white_shut",
|
96 |
+
"se_black_destroy", "se_white_destroy", "se_black_destroy", "se_arab_destroy",
|
97 |
+
"se_white_destroy")
|
98 |
+
|
99 |
+
israel_balance_se_long = gather_(israel_balance_se, keycol, valuecol, gathercols)
|
100 |
+
|
101 |
+
israel_balance_long = cbind(israel_balance_means_long, israel_balance_se_long[,"se"])
|
102 |
+
|
103 |
+
colnames(israel_balance_long) = c("term", "model", "estimate", "std.error")
|
104 |
+
|
105 |
+
israel_balance_long$model[israel_balance_long$model == "means_black_destroy"] = "Black, destroy property"
|
106 |
+
israel_balance_long$model[israel_balance_long$model == "means_black_march"] = "Black, march in streets"
|
107 |
+
israel_balance_long$model[israel_balance_long$model == "means_black_shut"] = "Black, shut down traffic"
|
108 |
+
israel_balance_long$model[israel_balance_long$model == "means_white_destroy"] = "White, destroy property"
|
109 |
+
israel_balance_long$model[israel_balance_long$model == "means_white_march"] = "White, march in streets"
|
110 |
+
israel_balance_long$model[israel_balance_long$model == "means_white_shut"] = "White, shut down traffic"
|
111 |
+
israel_balance_long$model[israel_balance_long$model == "means_arab_destroy"] = "Arab, destroy property"
|
112 |
+
israel_balance_long$model[israel_balance_long$model == "means_arab_march"] = "Arab, march in streets"
|
113 |
+
israel_balance_long$model[israel_balance_long$model == "means_arab_shut"] = "Arab, shut down traffic"
|
114 |
+
|
115 |
+
|
116 |
+
israel_balance_long$term[israel_balance_long$term == "age_numeric"] = "Age (1-6 scale)"
|
117 |
+
israel_balance_long$term[israel_balance_long$term == "education"] = "Education (0-6 scale)"
|
118 |
+
israel_balance_long$term[israel_balance_long$term == "ethnicity2_Ethiopia"] = "Ethnicity: Jewish Ethiopian"
|
119 |
+
israel_balance_long$term[israel_balance_long$term == "female"] = "Female"
|
120 |
+
israel_balance_long$term[israel_balance_long$term == "ideology"] = "Ideology (1-7 scale)"
|
121 |
+
israel_balance_long$term[israel_balance_long$term == "income"] = "Income (0-8 scale)"
|
122 |
+
israel_balance_long$term[israel_balance_long$term == "partyID_C"] = "Party ID: Center"
|
123 |
+
israel_balance_long$term[israel_balance_long$term == "partyID_L"] = "Party ID: Left"
|
124 |
+
israel_balance_long$term[israel_balance_long$term == "partyID_R"] = "Party ID: Right"
|
125 |
+
israel_balance_long$term[israel_balance_long$term == "ethnicity2_Arab"] = "Ethnicity: Arab"
|
126 |
+
israel_balance_long$term[israel_balance_long$term == "ethnicity2_Ashkenazi"] = "Ethnicity: Jewish Ashkenazi"
|
127 |
+
israel_balance_long$term[israel_balance_long$term == "ethnicity2_Mizrachi"] = "Ethnicity: Jewish Mizrachi"
|
128 |
+
israel_balance_long$term[israel_balance_long$term == "ethnicity2_Soviet Union"] = "Ethnicity: Jewish from Soviet Union"
|
129 |
+
|
130 |
+
|
131 |
+
dwplot(israel_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
|
132 |
+
geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
|
133 |
+
ggsave("Figures/fig_A7.pdf", height=5, width=7)
|
23/replication_package/Code/replicate_fig_A8.R
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A8
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
us_survey_wave2$age_numeric = as.numeric(us_survey_wave2$age)
|
6 |
+
age1 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
7 |
+
age2 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
8 |
+
age3 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
9 |
+
age4 = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
10 |
+
age5 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
11 |
+
age6 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
12 |
+
age7 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
13 |
+
age8 = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
14 |
+
|
15 |
+
ages_us_survey_wave2 = c(age1, age2, age3, age4, age5, age6, age7, age8)
|
16 |
+
|
17 |
+
|
18 |
+
us_survey_wave2$education_numeric = as.numeric(us_survey_wave2$education)
|
19 |
+
us_survey_wave2$income_numeric = as.numeric(us_survey_wave2$income)
|
20 |
+
us_survey_wave2$ideology_numeric = as.numeric(us_survey_wave2$pol_views) +1
|
21 |
+
|
22 |
+
us_survey_wave2 = dummy_cols(us_survey_wave2, select_columns = c("partyID", "race"))
|
23 |
+
vars_us_survey_wave2 = c("female", "education_numeric", "income_numeric", "partyID_D", "partyID_I", "partyID_R", "ideology_numeric", "race_White / Caucasian","race_Black / African American")
|
24 |
+
|
25 |
+
means_black_generic_nocomm = means_black_generic_comm = means_black_group_nocomm = means_black_group_comm =
|
26 |
+
means_white_generic_nocomm = means_white_generic_comm = means_white_group_nocomm = means_white_group_comm = rep(NA, length(vars_us_survey_wave2))
|
27 |
+
|
28 |
+
se_black_generic_nocomm = se_black_generic_comm = se_black_group_nocomm = se_black_group_comm =
|
29 |
+
se_white_generic_nocomm = se_white_generic_comm = se_white_group_nocomm = se_white_group_comm = rep(NA, length(vars_us_survey_wave2))
|
30 |
+
|
31 |
+
|
32 |
+
for(i in 1:length(vars_us_survey_wave2)){
|
33 |
+
means_black_generic_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
34 |
+
means_black_generic_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
35 |
+
means_black_group_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
36 |
+
means_black_group_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
37 |
+
means_white_generic_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
38 |
+
means_white_generic_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
39 |
+
means_white_group_nocomm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
40 |
+
means_white_group_comm[i] = mean(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
41 |
+
|
42 |
+
se_black_generic_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
43 |
+
se_black_generic_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
44 |
+
se_black_group_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
45 |
+
se_black_group_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==1 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
46 |
+
se_white_generic_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
47 |
+
se_white_generic_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==0 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
48 |
+
se_white_group_nocomm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==0, vars_us_survey_wave2[i]], na.rm=T)
|
49 |
+
se_white_group_comm[i] = sd(us_survey_wave2[us_survey_wave2$black==0 & us_survey_wave2$group_goal==1 & us_survey_wave2$commitment==1, vars_us_survey_wave2[i]], na.rm=T)
|
50 |
+
|
51 |
+
}
|
52 |
+
|
53 |
+
us_survey_wave2_balance = cbind(means_black_generic_nocomm, se_black_generic_nocomm,
|
54 |
+
means_black_generic_comm, se_black_generic_comm,
|
55 |
+
means_black_group_nocomm, se_black_group_nocomm,
|
56 |
+
means_black_group_comm, se_black_group_comm,
|
57 |
+
means_white_generic_nocomm, se_white_generic_nocomm,
|
58 |
+
means_white_generic_comm, se_white_generic_comm,
|
59 |
+
means_white_group_nocomm, se_white_group_nocomm,
|
60 |
+
means_white_group_comm, se_white_group_comm)
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
us_survey_wave2_balance = as.data.frame(us_survey_wave2_balance)
|
66 |
+
rownames(us_survey_wave2_balance) = vars_us_survey_wave2
|
67 |
+
|
68 |
+
|
69 |
+
us_survey_wave2_balance_means = as.data.frame(cbind(means_black_generic_nocomm,
|
70 |
+
means_black_generic_comm,
|
71 |
+
means_black_group_nocomm,
|
72 |
+
means_black_group_comm,
|
73 |
+
means_white_generic_nocomm,
|
74 |
+
means_white_generic_comm,
|
75 |
+
means_white_group_nocomm,
|
76 |
+
means_white_group_comm))
|
77 |
+
|
78 |
+
rownames(us_survey_wave2_balance_means) = vars_us_survey_wave2
|
79 |
+
us_survey_wave2_balance_means$var = vars_us_survey_wave2
|
80 |
+
|
81 |
+
keycol <- "condition"
|
82 |
+
valuecol <- "mean"
|
83 |
+
gathercols <- c("means_black_generic_nocomm",
|
84 |
+
"means_black_generic_comm",
|
85 |
+
"means_black_group_nocomm",
|
86 |
+
"means_black_group_comm",
|
87 |
+
"means_white_generic_nocomm",
|
88 |
+
"means_white_generic_comm",
|
89 |
+
"means_white_group_nocomm",
|
90 |
+
"means_white_group_comm")
|
91 |
+
|
92 |
+
us_survey_wave2_balance_means_long = gather_(us_survey_wave2_balance_means, keycol, valuecol, gathercols)
|
93 |
+
|
94 |
+
|
95 |
+
us_survey_wave2_balance_se = as.data.frame(cbind(se_black_generic_nocomm,
|
96 |
+
se_black_generic_comm,
|
97 |
+
se_black_group_nocomm,
|
98 |
+
se_black_group_comm,
|
99 |
+
se_white_generic_nocomm,
|
100 |
+
se_white_generic_comm,
|
101 |
+
se_white_group_nocomm,
|
102 |
+
se_white_group_comm))
|
103 |
+
|
104 |
+
rownames(us_survey_wave2_balance_se) = vars_us_survey_wave2
|
105 |
+
us_survey_wave2_balance_se$var = vars_us_survey_wave2
|
106 |
+
|
107 |
+
keycol <- "condition"
|
108 |
+
valuecol <- "se"
|
109 |
+
gathercols <- c("se_black_generic_nocomm",
|
110 |
+
"se_black_generic_comm",
|
111 |
+
"se_black_group_nocomm",
|
112 |
+
"se_black_group_comm",
|
113 |
+
"se_white_generic_nocomm",
|
114 |
+
"se_white_generic_comm",
|
115 |
+
"se_white_group_nocomm",
|
116 |
+
"se_white_group_comm")
|
117 |
+
|
118 |
+
us_survey_wave2_balance_se_long = gather_(us_survey_wave2_balance_se, keycol, valuecol, gathercols)
|
119 |
+
|
120 |
+
us_survey_wave2_balance_long = cbind(us_survey_wave2_balance_means_long, us_survey_wave2_balance_se_long[,"se"])
|
121 |
+
|
122 |
+
colnames(us_survey_wave2_balance_long) = c("term", "model", "estimate", "std.error")
|
123 |
+
|
124 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_generic_nocomm"] = "Black, generic goal, no commitment"
|
125 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_generic_comm"] = "Black, generic goal, commitment"
|
126 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_group_nocomm"] = "Black, group goal, no commitment"
|
127 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_black_group_comm"] = "Black, group goal, no commitment"
|
128 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_generic_nocomm"] = "White, generic goal, no commitment"
|
129 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_generic_comm"] = "White, generic goal, commitment"
|
130 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_group_nocomm"] = "White, group goal, no commitment"
|
131 |
+
us_survey_wave2_balance_long$model[us_survey_wave2_balance_long$model == "means_white_group_comm"] = "White, group goal, no commitment"
|
132 |
+
|
133 |
+
|
134 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "age"] = "Age"
|
135 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "female"] = "Female"
|
136 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "education_numeric"] = "Education (1-7 scale)"
|
137 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "income_numeric"] = "Income (1-6 scale)"
|
138 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_D"] = "Party ID: Democrat"
|
139 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_I"] = "Party ID: Independent"
|
140 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "partyID_R"] = "Party ID: Republican"
|
141 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "ideology_numeric"] = "Ideology (1-7 scale)"
|
142 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "race_White / Caucasian"] = "Race: White"
|
143 |
+
us_survey_wave2_balance_long$term[us_survey_wave2_balance_long$term == "race_Black / African American"] = "Race: Black"
|
144 |
+
|
145 |
+
|
146 |
+
us_survey_wave2_balance_long = us_survey_wave2_balance_long[us_survey_wave2_balance_long$term != "Age",]
|
147 |
+
|
148 |
+
dwplot(us_survey_wave2_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
|
149 |
+
geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
|
150 |
+
ggsave("Figures/fig_A8.pdf", height=5, width=7)
|
23/replication_package/Code/replicate_fig_A9.R
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Figure A9
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
isr_survey_wave2 = dummy_cols(isr_survey_wave2, select_columns = c("partyID", "ethnicity"))
|
6 |
+
|
7 |
+
vars_isr_survey_wave2 = c("female", "education", "income", "partyID_L", "partyID_R", "ideology",
|
8 |
+
"ethnicity_Ethiopia", "ethnicity_Ashkenazi", "ethnicity_Mizrachi", "ethnicity_Soviet Union")
|
9 |
+
|
10 |
+
isr_survey_wave2$age_numeric = as.numeric(isr_survey_wave2$age)
|
11 |
+
age1 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
12 |
+
age2 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
13 |
+
age3 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
14 |
+
age4 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
15 |
+
age5 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
16 |
+
age6 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
17 |
+
age7 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
18 |
+
age8 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
19 |
+
age9 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, "age_numeric"], na.rm=T)
|
20 |
+
age10 = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, "age_numeric"], na.rm=T)
|
21 |
+
|
22 |
+
ages_isr_survey_wave2 = c(age1, age2, age3, age4, age5, age6, age7, age8, age9, age10)
|
23 |
+
|
24 |
+
means_eth_generic_nocomm = means_eth_generic_comm = means_eth_group_nocomm = means_eth_group_comm =
|
25 |
+
means_arab_generic_nocomm = means_arab_generic_comm = means_arab_group_nocomm = means_arab_group_comm =
|
26 |
+
means_white_generic_nocomm = means_white_generic_comm = rep(NA, length(vars_isr_survey_wave2))
|
27 |
+
|
28 |
+
se_eth_generic_nocomm = se_eth_generic_comm = se_eth_group_nocomm = se_eth_group_comm =
|
29 |
+
se_arab_generic_nocomm = se_arab_generic_comm = se_arab_group_nocomm = se_arab_group_comm =
|
30 |
+
se_white_generic_nocomm = se_white_generic_comm = rep(NA, length(vars_isr_survey_wave2))
|
31 |
+
|
32 |
+
|
33 |
+
for(i in 1:length(vars_isr_survey_wave2)){
|
34 |
+
means_eth_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
35 |
+
means_eth_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
36 |
+
means_eth_group_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
37 |
+
means_eth_group_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
38 |
+
means_arab_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
39 |
+
means_arab_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
40 |
+
means_arab_group_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
41 |
+
means_arab_group_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
42 |
+
means_white_generic_nocomm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
43 |
+
means_white_generic_comm[i] = mean(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
44 |
+
|
45 |
+
se_eth_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
46 |
+
se_eth_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
47 |
+
se_eth_group_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
48 |
+
se_eth_group_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==1 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
49 |
+
se_arab_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
50 |
+
se_arab_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
51 |
+
se_arab_group_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
52 |
+
se_arab_group_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==2 & isr_survey_wave2$group_goal==1 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
53 |
+
se_white_generic_nocomm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==0, vars_isr_survey_wave2[i]], na.rm=T)
|
54 |
+
se_white_generic_comm[i] = sd(isr_survey_wave2[isr_survey_wave2$identity_protesters==0 & isr_survey_wave2$group_goal==0 & isr_survey_wave2$commitment==1, vars_isr_survey_wave2[i]], na.rm=T)
|
55 |
+
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
isr_survey_wave2_balance_means = as.data.frame(cbind(means_eth_generic_nocomm,
|
60 |
+
means_eth_generic_comm,
|
61 |
+
means_eth_group_nocomm,
|
62 |
+
means_eth_group_comm,
|
63 |
+
means_arab_generic_nocomm,
|
64 |
+
means_arab_generic_comm,
|
65 |
+
means_arab_group_nocomm,
|
66 |
+
means_arab_group_comm,
|
67 |
+
means_white_generic_nocomm,
|
68 |
+
means_white_generic_comm))
|
69 |
+
|
70 |
+
rownames(isr_survey_wave2_balance_means) = vars_isr_survey_wave2
|
71 |
+
isr_survey_wave2_balance_means$var = vars_isr_survey_wave2
|
72 |
+
|
73 |
+
keycol <- "condition"
|
74 |
+
valuecol <- "mean"
|
75 |
+
gathercols <- c("means_eth_generic_nocomm",
|
76 |
+
"means_eth_generic_comm",
|
77 |
+
"means_eth_group_nocomm",
|
78 |
+
"means_eth_group_comm",
|
79 |
+
"means_arab_generic_nocomm",
|
80 |
+
"means_arab_generic_comm",
|
81 |
+
"means_arab_group_nocomm",
|
82 |
+
"means_arab_group_comm",
|
83 |
+
"means_white_generic_nocomm",
|
84 |
+
"means_white_generic_comm")
|
85 |
+
|
86 |
+
isr_survey_wave2_balance_means_long = gather_(isr_survey_wave2_balance_means, keycol, valuecol, gathercols)
|
87 |
+
|
88 |
+
isr_survey_wave2_balance_se = as.data.frame(cbind(se_eth_generic_nocomm,
|
89 |
+
se_eth_generic_comm,
|
90 |
+
se_eth_group_nocomm,
|
91 |
+
se_eth_group_comm,
|
92 |
+
se_arab_generic_nocomm,
|
93 |
+
se_arab_generic_comm,
|
94 |
+
se_arab_group_nocomm,
|
95 |
+
se_arab_group_comm,
|
96 |
+
se_white_generic_nocomm,
|
97 |
+
se_white_generic_comm))
|
98 |
+
|
99 |
+
rownames(isr_survey_wave2_balance_se) = vars_isr_survey_wave2
|
100 |
+
isr_survey_wave2_balance_se$var = vars_isr_survey_wave2
|
101 |
+
|
102 |
+
keycol <- "condition"
|
103 |
+
valuecol <- "se"
|
104 |
+
gathercols <- c("se_eth_generic_nocomm",
|
105 |
+
"se_eth_generic_comm",
|
106 |
+
"se_eth_group_nocomm",
|
107 |
+
"se_eth_group_comm",
|
108 |
+
"se_arab_generic_nocomm",
|
109 |
+
"se_arab_generic_comm",
|
110 |
+
"se_arab_group_nocomm",
|
111 |
+
"se_arab_group_comm",
|
112 |
+
"se_white_generic_nocomm",
|
113 |
+
"se_white_generic_comm")
|
114 |
+
|
115 |
+
isr_survey_wave2_balance_se_long = gather_(isr_survey_wave2_balance_se, keycol, valuecol, gathercols)
|
116 |
+
|
117 |
+
isr_survey_wave2_balance_long = cbind(isr_survey_wave2_balance_means_long, isr_survey_wave2_balance_se_long[,"se"])
|
118 |
+
|
119 |
+
colnames(isr_survey_wave2_balance_long) = c("term", "model", "estimate", "std.error")
|
120 |
+
|
121 |
+
|
122 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_generic_nocomm"] = "Ethiopian, generic goal, no commitment"
|
123 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_generic_comm"] = "Ethiopian, generic goal, commitment"
|
124 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_group_nocomm"] = "Ethiopian, group goal, no commitment"
|
125 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_eth_group_comm"] = "Ethiopian, group goal, no commitment"
|
126 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_generic_nocomm"] = "Arab, generic goal, no commitment"
|
127 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_generic_comm"] = "Arab, generic goal, commitment"
|
128 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_group_nocomm"] = "Arab, group goal, no commitment"
|
129 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_arab_group_comm"] = "Arab, group goal, no commitment"
|
130 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_white_generic_nocomm"] = "White, generic goal, no commitment"
|
131 |
+
isr_survey_wave2_balance_long$model[isr_survey_wave2_balance_long$model == "means_white_generic_comm"] = "White, generic goal, commitment"
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "education"] = "Education (0-6 scale)"
|
136 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Ethiopia"] = "Ethnicity: Ethiopian"
|
137 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Ashkenazi"] = "Ethnicity: Ashkenazi"
|
138 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Mizrachi"] = "Ethnicity: Mizrachi"
|
139 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ethnicity_Soviet Union"] = "Ethnicity: Soviet Union"
|
140 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "female"] = "Female"
|
141 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "ideology"] = "Ideology (1-7 scale)"
|
142 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "income"] = "Income (0-8 scale)"
|
143 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "partyID_L"] = "Party ID: Left"
|
144 |
+
isr_survey_wave2_balance_long$term[isr_survey_wave2_balance_long$term == "partyID_R"] = "Party ID: Right"
|
145 |
+
|
146 |
+
|
147 |
+
dwplot(isr_survey_wave2_balance_long) + theme_minimal() + theme(legend.title=element_blank()) +
|
148 |
+
geom_vline(xintercept = 0, colour = "grey60", linetype = 2)
|
149 |
+
ggsave("Figures/fig_A9.pdf", height=5, width=7)
|
23/replication_package/Code/replicate_table_1.R
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Table 1
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S
|
6 |
+
degv_yg = lm(degree_violence ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
|
7 |
+
police_yg = lm(police_action_required ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
|
8 |
+
recall_violence_yg = lm(recall_violence2 ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
|
9 |
+
approve_protest_yg = lm(approve_protest_scale ~ identity_protesters + tactic , data=us_survey_wave1, weights=weight)
|
10 |
+
stargazer(degv_yg, recall_violence_yg, police_yg,
|
11 |
+
covariate.labels = c("Black protesters", "Shut down traffic",
|
12 |
+
"Destroy police cars", "Intercept: White protesters, March in streets"),
|
13 |
+
out = "Tables/table_1_panel_A.tex")
|
14 |
+
|
15 |
+
## B. Israel
|
16 |
+
degv_isr = lm(degree_violence ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
|
17 |
+
police_isr = lm(police_action_required ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
|
18 |
+
recall_violence_isr = lm(recall_violence2 ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
|
19 |
+
approve_protest_isr = lm(approve_protest_scale ~ identity_protesters + tactic , data=isr_survey_wave1, weights=weight)
|
20 |
+
stargazer(degv_isr, recall_violence_isr, police_isr,
|
21 |
+
covariate.labels = c("Ethiopian protesters", "Arab protesters",
|
22 |
+
"Shut down traffic", "Destroy garbage cans",
|
23 |
+
"Intercept: White protesters, March in streets"),
|
24 |
+
out = "Tables/table_1_panel_B.tex")
|
23/replication_package/Code/replicate_table_4.R
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Table 4
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S. sample
|
6 |
+
mod1 = lm(degree_violence ~ black + group_goal + commitment , data=us_survey_wave2)
|
7 |
+
mod2 = lm(recall_violence2 ~ black + group_goal + commitment, data=us_survey_wave2)
|
8 |
+
mod3 = lm(police_action_required ~ black + group_goal + commitment, data=us_survey_wave2)
|
9 |
+
stargazer(mod1, mod2, mod3,
|
10 |
+
covariate.labels = c("Black protesters", "Minority group goal",
|
11 |
+
"Commitment to nonviolence", "Intercept: White protesters, generic goal, no commitment"),
|
12 |
+
out = "Tables/table_4_panel_A.tex")
|
13 |
+
|
14 |
+
## B. Israel sample
|
15 |
+
mod1_israel = lm(degree_violence ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
|
16 |
+
mod2_israel = lm(recall_violence2 ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
|
17 |
+
mod3_israel = lm(police_action_required ~ identity_protesters + group_goal + commitment, data=isr_survey_wave2)
|
18 |
+
stargazer(mod1_israel, mod2_israel, mod3_israel,
|
19 |
+
covariate.labels = c("Ethiopian protesters", "Arab protesters",
|
20 |
+
"Minority group goal", "Commitment to nonviolence",
|
21 |
+
"Intercept: White protesters, generic goal, no commitment"),
|
22 |
+
out = "Tables/table_4_panel_B.tex")
|
23/replication_package/Code/replicate_table_A1.R
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A1
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
stargazer(EBCR_EPR_NAVCO2[,c("YEAR", "success", "INIT_NV_ONSET", "EPR_GROUPSIZE", "EPR_STATUS_ORD",
|
6 |
+
"EPR_STATUS_EXCL", "POP_LOG_LAG_EXT", "GDPPC_LOG_LAG_EXT",
|
7 |
+
"PASTNV", "PASTV", "VDEM_POLYARCHY_LAG", "VDEM_PHYSINT_LAG",
|
8 |
+
"EPR_TEK_EGIP", "EPR_DOWNGRADED5", "HORIZ_INEQ", "NVYEARS",
|
9 |
+
"VYEARS")],
|
10 |
+
covariate.labels = c("Year", "Campaign success", "NV campaign", "EPR group size", "EPR status",
|
11 |
+
"EPR Status: excluded", "Country population (logged)", "Country GDP per capita (logged)", "Prior participation in nonviolence", "Prior participation in violence",
|
12 |
+
"Level of democracy", "Physical integrity index", "Neighboring kin in power",
|
13 |
+
"Downgraded", "Horizontal inequality", "Nonviolent years", "Violent years"),
|
14 |
+
out="Tables/table_A1.tex")
|
15 |
+
|
23/replication_package/Code/replicate_table_A10.R
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A10
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
us_wave2_sumstats = us_survey_wave2[,c("age", "female", "education", "income", "partyID", "pol_views", "interest_politics",
|
6 |
+
"degree_violence", "police_action_required", "recall_violence2", "race")]
|
7 |
+
us_wave2_sumstats = dummy_cols(us_wave2_sumstats, select_columns = c("age", "education", "income", "partyID", "pol_views", "race"))
|
8 |
+
table_a10 = stargazer(us_wave2_sumstats, omit.summary.stat=c("p25", "p75"))
|
9 |
+
cat(table_a10, sep = '\n', file = "Tables/table_A10.tex")
|
23/replication_package/Code/replicate_table_A11.R
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A11
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
isr_wave2_sumstats = isr_survey_wave2[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology",
|
6 |
+
"degree_violence", "police_action_required", "recall_violence2")]
|
7 |
+
isr_wave2_sumstats = dummy_cols(isr_wave2_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
|
8 |
+
table_a11 = stargazer(isr_wave2_sumstats, omit.summary.stat=c("p25", "p75"))
|
9 |
+
cat(table_a11, sep = '\n', file = "Tables/table_A11.tex")
|
23/replication_package/Code/replicate_table_A13.R
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A13
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S. sample
|
6 |
+
degv_yg = lm(degree_violence ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
|
7 |
+
police_yg = lm(police_action_required ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
|
8 |
+
recall_violence_yg = lm(recall_violence2 ~ identity_protesters + tactic + age +female + education + income + ideology + race, data=us_survey_wave1, weights=weight)
|
9 |
+
stargazer(degv_yg, recall_violence_yg, police_yg, out = "Tables/table_A13_panel_A.tex")
|
10 |
+
|
11 |
+
## B. Israel sample
|
12 |
+
degv_ip = lm(degree_violence ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity, data=isr_survey_wave1, weights=weight)
|
13 |
+
police_ip = lm(police_action_required ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity , data=isr_survey_wave1, weights=weight)
|
14 |
+
recall_violence_ip = lm(recall_violence2 ~ identity_protesters + tactic + age +female + education + income + ideology + ethnicity , data=isr_survey_wave1, weights=weight)
|
15 |
+
stargazer(degv_ip, recall_violence_ip, police_ip, out = "Tables/table_A13_panel_B.tex")
|
23/replication_package/Code/replicate_table_A14.R
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##
|
2 |
+
## Table A14
|
3 |
+
##--##--##--##
|
4 |
+
|
5 |
+
us_survey_wave1$identity_protesters_fac = as.factor(us_survey_wave1$identity_protesters)
|
6 |
+
levels(us_survey_wave1$identity_protesters_fac) = c("White", "Black")
|
7 |
+
us_survey_wave1$tactic_fac = as.factor(us_survey_wave1$tactic)
|
8 |
+
levels(us_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy police cars")
|
9 |
+
|
10 |
+
isr_survey_wave1$identity_protesters_fac = as.factor(isr_survey_wave1$identity_protesters)
|
11 |
+
levels(isr_survey_wave1$identity_protesters_fac) = c("White", "Ethiopian", "Arab")
|
12 |
+
isr_survey_wave1$tactic_fac = as.factor(isr_survey_wave1$tactic)
|
13 |
+
levels(isr_survey_wave1$tactic_fac) = c("March in streets", "Shut down traffic", "Destroy garbage cans")
|
14 |
+
|
15 |
+
|
16 |
+
## US sample
|
17 |
+
us_survey_wave1$degree_violence_std = scale(us_survey_wave1$degree_violence)
|
18 |
+
us_survey_wave1$police_action_required_std = scale(us_survey_wave1$police_action_required)
|
19 |
+
us_survey_wave1$recall_violence2_std = scale(us_survey_wave1$recall_violence2)
|
20 |
+
|
21 |
+
march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
22 |
+
shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
23 |
+
destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
24 |
+
|
25 |
+
march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
26 |
+
shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
27 |
+
destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
28 |
+
|
29 |
+
march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==0,], weights=weight)
|
30 |
+
shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=us_survey_wave1[us_survey_wave1$tactic==1,], weights=weight)
|
31 |
+
destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=us_survey_wave1[us_survey_wave1$tactic==2,], weights=weight)
|
32 |
+
|
33 |
+
# Plot differences
|
34 |
+
|
35 |
+
term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
|
36 |
+
se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
|
37 |
+
statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
|
38 |
+
pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
|
39 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
40 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
41 |
+
degree_violence = cbind(degree_violence, term)
|
42 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
43 |
+
rownames(degree_violence) = term
|
44 |
+
degree_violence$model = "Perceived degree of violence"
|
45 |
+
|
46 |
+
term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
|
47 |
+
se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
|
48 |
+
statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
|
49 |
+
pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
|
50 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
51 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
52 |
+
police_action_required = cbind(police_action_required, term)
|
53 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
54 |
+
rownames(police_action_required) = term
|
55 |
+
police_action_required$model = "Police action required"
|
56 |
+
|
57 |
+
term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
|
58 |
+
se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
|
59 |
+
statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
|
60 |
+
pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
|
61 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
62 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
63 |
+
recall_violence = cbind(recall_violence, term)
|
64 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
65 |
+
rownames(recall_violence) = term
|
66 |
+
recall_violence$model = "Recall violence"
|
67 |
+
|
68 |
+
differences_us = rbind(degree_violence, police_action_required, recall_violence)
|
69 |
+
|
70 |
+
|
71 |
+
## Israel respondents
|
72 |
+
isr_survey_wave1$degree_violence_std = scale(isr_survey_wave1$degree_violence)
|
73 |
+
isr_survey_wave1$police_action_required_std = scale(isr_survey_wave1$police_action_required)
|
74 |
+
isr_survey_wave1$recall_violence2_std = scale(isr_survey_wave1$recall_violence2)
|
75 |
+
|
76 |
+
march1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
77 |
+
shut1 = lm_robust(degree_violence_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
78 |
+
destroy1 = lm_robust(degree_violence_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
79 |
+
|
80 |
+
march2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
81 |
+
shut2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
82 |
+
destroy2 = lm_robust(police_action_required_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
83 |
+
|
84 |
+
march3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==0,], weights=weight)
|
85 |
+
shut3 = lm_robust(recall_violence2_std ~ identity_protesters_fac, data=isr_survey_wave1[isr_survey_wave1$tactic==1,], weights=weight)
|
86 |
+
destroy3 = lm_robust(recall_violence2_std ~ identity_protesters_fac , data=isr_survey_wave1[isr_survey_wave1$tactic==2,], weights=weight)
|
87 |
+
|
88 |
+
|
89 |
+
# Ethiopian protesters
|
90 |
+
term_degree_violence = c(march1$coefficients[2], shut1$coefficients[2], destroy1$coefficients[2])
|
91 |
+
se_degree_violence = c(march1$std.error[2], shut1$std.error[2], destroy1$std.error[2])
|
92 |
+
statistic_degree_violence = c(march1$statistic[2], shut1$statistic[2], destroy1$statistic[2])
|
93 |
+
pval_degree_violence = c(march1$p.value[2], shut1$p.value[2], destroy1$p.value[2])
|
94 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
95 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
96 |
+
degree_violence = cbind(degree_violence, term)
|
97 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
98 |
+
rownames(degree_violence) = term
|
99 |
+
degree_violence$model = "Perceived degree of violence"
|
100 |
+
|
101 |
+
term_police_action_required = c(march2$coefficients[2], shut2$coefficients[2], destroy2$coefficients[2])
|
102 |
+
se_police_action_required = c(march2$std.error[2], shut2$std.error[2], destroy2$std.error[2])
|
103 |
+
statistic_police_action_required = c(march2$statistic[2], shut2$statistic[2], destroy2$statistic[2])
|
104 |
+
pval_police_action_required = c(march2$p.value[2], shut2$p.value[2], destroy2$p.value[2])
|
105 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
106 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
107 |
+
police_action_required = cbind(police_action_required, term)
|
108 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
109 |
+
rownames(police_action_required) = term
|
110 |
+
police_action_required$model = "Police action required"
|
111 |
+
|
112 |
+
term_recall_violence = c(march3$coefficients[2], shut3$coefficients[2], destroy3$coefficients[2])
|
113 |
+
se_recall_violence = c(march3$std.error[2], shut3$std.error[2], destroy3$std.error[2])
|
114 |
+
statistic_recall_violence = c(march3$statistic[2], shut3$statistic[2], destroy3$statistic[2])
|
115 |
+
pval_recall_violence = c(march3$p.value[2], shut3$p.value[2], destroy3$p.value[2])
|
116 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
117 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
118 |
+
recall_violence = cbind(recall_violence, term)
|
119 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
120 |
+
rownames(recall_violence) = term
|
121 |
+
recall_violence$model = "Recall violence"
|
122 |
+
|
123 |
+
differences_isr_black = rbind(degree_violence, police_action_required, recall_violence)
|
124 |
+
|
125 |
+
term_degree_violence = c(march1$coefficients[3], shut1$coefficients[3], destroy1$coefficients[3])
|
126 |
+
se_degree_violence = c(march1$std.error[3], shut1$std.error[3], destroy1$std.error[3])
|
127 |
+
statistic_degree_violence = c(march1$statistic[3], shut1$statistic[3], destroy1$statistic[3])
|
128 |
+
pval_degree_violence = c(march1$p.value[3], shut1$p.value[3], destroy1$p.value[3])
|
129 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
130 |
+
degree_violence = as.data.frame(cbind(term_degree_violence, se_degree_violence, statistic_degree_violence, pval_degree_violence))
|
131 |
+
degree_violence = cbind(degree_violence, term)
|
132 |
+
colnames(degree_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
133 |
+
rownames(degree_violence) = term
|
134 |
+
degree_violence$model = "Perceived degree of violence"
|
135 |
+
|
136 |
+
term_police_action_required = c(march2$coefficients[3], shut2$coefficients[3], destroy2$coefficients[3])
|
137 |
+
se_police_action_required = c(march2$std.error[3], shut2$std.error[3], destroy2$std.error[3])
|
138 |
+
statistic_police_action_required = c(march2$statistic[3], shut2$statistic[3], destroy2$statistic[3])
|
139 |
+
pval_police_action_required = c(march2$p.value[3], shut2$p.value[3], destroy2$p.value[3])
|
140 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
141 |
+
police_action_required = as.data.frame(cbind(term_police_action_required, se_police_action_required, statistic_police_action_required, pval_police_action_required))
|
142 |
+
police_action_required = cbind(police_action_required, term)
|
143 |
+
colnames(police_action_required) = c("estimate", "std.error", "statistic", "p.value", "term")
|
144 |
+
rownames(police_action_required) = term
|
145 |
+
police_action_required$model = "Police action required"
|
146 |
+
|
147 |
+
term_recall_violence = c(march3$coefficients[3], shut3$coefficients[3], destroy3$coefficients[3])
|
148 |
+
se_recall_violence = c(march3$std.error[3], shut3$std.error[3], destroy3$std.error[3])
|
149 |
+
statistic_recall_violence = c(march3$statistic[3], shut3$statistic[3], destroy3$statistic[3])
|
150 |
+
pval_recall_violence = c(march3$p.value[3], shut3$p.value[3], destroy3$p.value[3])
|
151 |
+
term = c("1) Minority: March in streets", "2) Minority: Shut down traffic", "3) Minority: Destroy police cars / garbage cans")
|
152 |
+
recall_violence = as.data.frame(cbind(term_recall_violence, se_recall_violence, statistic_recall_violence, pval_recall_violence))
|
153 |
+
recall_violence = cbind(recall_violence, term)
|
154 |
+
colnames(recall_violence) = c("estimate", "std.error", "statistic", "p.value", "term")
|
155 |
+
rownames(recall_violence) = term
|
156 |
+
recall_violence$model = "Recall violence"
|
157 |
+
|
158 |
+
differences_isr_arab = rbind(degree_violence, police_action_required, recall_violence)
|
159 |
+
|
160 |
+
## Result tables for plot
|
161 |
+
differences_us2 = differences_us
|
162 |
+
differences_us2$submodel = differences_us2$term
|
163 |
+
differences_us2$term = "Perception of Blacks \n(United States)"
|
164 |
+
|
165 |
+
differences_isr_black2 = differences_isr_black
|
166 |
+
differences_isr_black2$submodel = differences_isr_black2$term
|
167 |
+
differences_isr_black2$term = "Perception of Ethiopians \n(Israel)"
|
168 |
+
|
169 |
+
differences_isr_arab2 = differences_isr_arab
|
170 |
+
differences_isr_arab2$submodel = differences_isr_arab2$term
|
171 |
+
differences_isr_arab2$term = "Perception of Arabs \n(Israel)"
|
172 |
+
|
173 |
+
diffs_sm = rbind(differences_us2, differences_isr_arab2, differences_isr_black2)
|
174 |
+
rownames(diffs_sm) = 1:nrow(diffs_sm)
|
175 |
+
|
176 |
+
results_df <- data.frame(term = diffs_sm$term,
|
177 |
+
estimate = diffs_sm$estimate,
|
178 |
+
std.error = diffs_sm$std.error,
|
179 |
+
model = diffs_sm$model,
|
180 |
+
submodel = as.character(diffs_sm$submodel),
|
181 |
+
stringsAsFactors = FALSE)
|
182 |
+
|
183 |
+
results_df$submodel[results_df$submodel=="1) Minority: March in streets"] = "March in streets"
|
184 |
+
results_df$submodel[results_df$submodel=="2) Minority: Shut down traffic"] = "Shut down traffic"
|
185 |
+
results_df$submodel[results_df$submodel=="3) Minority: Destroy police cars / garbage cans"] = "Destroy property"
|
186 |
+
|
187 |
+
results_df$model[results_df$model=="Perceived degree of violence"] = "1. Perceived degree \nof violence"
|
188 |
+
results_df$model[results_df$model=="Police action required"] = "3. Police action \nrequired"
|
189 |
+
results_df$model[results_df$model=="Recall violence"] = "2. Recall \nviolence"
|
190 |
+
|
191 |
+
|
192 |
+
table_a14 = xtable(results_df[,-1], digits=2)
|
193 |
+
print(table_a14, file="Tables/table_A14.tex")
|
194 |
+
|
23/replication_package/Code/replicate_table_A15.R
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A15
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S. sample
|
6 |
+
degv_yg = lm(degree_violence ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
|
7 |
+
police_yg = lm(police_action_required ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
|
8 |
+
recall_violence_yg = lm(recall_violence2 ~ identity_protesters * tactic , data=us_survey_wave1, weights=weight)
|
9 |
+
stargazer(degv_yg, recall_violence_yg, police_yg,
|
10 |
+
covariate.labels = c("Black protesters", "Shut down traffic", "Destroy police cars",
|
11 |
+
"Black protesters x Shut down traffic",
|
12 |
+
"Black protesters x Destroy police cars", "Intercept"),
|
13 |
+
out = "Tables/table_A15_panel_A.tex")
|
14 |
+
|
15 |
+
## B. Israel sample
|
16 |
+
degv_isr = lm(degree_violence ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
|
17 |
+
police_isr = lm(police_action_required ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
|
18 |
+
recall_violence_isr = lm(recall_violence2 ~ identity_protesters * tactic , data=isr_survey_wave1, weights=weight)
|
19 |
+
stargazer(degv_isr, recall_violence_isr, police_isr,
|
20 |
+
covariate.labels = c("Ethiopian protesters", "Arab protesters", "Shut down traffic",
|
21 |
+
"Destroy garbage cans", "Ethiopian protesters x Shut down traffic",
|
22 |
+
"Arab protesters x Shut down traffic", "Ethiopian protesters x Destroy garbage cans",
|
23 |
+
"Arab protesters x Destroy garbage cans", "Intercept"),
|
24 |
+
out = "Tables/table_A15_panel_B.tex")
|
25 |
+
|
23/replication_package/Code/replicate_table_A16.R
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A16
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S.
|
6 |
+
degv_yg_nv_maj = lm_robust(degree_violence ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race=="White",], weights=weight)
|
7 |
+
police_yg_nv_maj = lm_robust(police_action_required ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "White",], weights=weight)
|
8 |
+
degv_yg_nv_min = lm_robust(degree_violence ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race=="Black",], weights=weight)
|
9 |
+
police_yg_nv_min = lm_robust(police_action_required ~ identity_protesters , data=us_survey_wave1[us_survey_wave1$tactic==0 & us_survey_wave1$race == "Black",], weights=weight)
|
10 |
+
|
11 |
+
# Majority perceptions
|
12 |
+
us_mean_degv_maj_white = degv_yg_nv_maj$coefficients[1]
|
13 |
+
us_mean_degv_maj_black = degv_yg_nv_maj$coefficients[1] + degv_yg_nv_maj$coefficients[2]
|
14 |
+
us_diff_degv_maj = degv_yg_nv_maj$coefficients[2]
|
15 |
+
us_pval_diff_degv_maj = degv_yg_nv_maj$p.value[2]
|
16 |
+
us_pct_change_degv_maj = (degv_yg_nv_maj$coefficients[2] /us_mean_degv_maj_white)*100
|
17 |
+
us_mean_police_maj_white = police_yg_nv_maj$coefficients[1]
|
18 |
+
us_mean_police_maj_black = police_yg_nv_maj$coefficients[1] + police_yg_nv_maj$coefficients[2]
|
19 |
+
us_diff_police_maj = police_yg_nv_maj$coefficients[2]
|
20 |
+
us_pval_diff_police_maj = police_yg_nv_maj$p.value[2]
|
21 |
+
us_pct_change_police_maj = (police_yg_nv_maj$coefficients[2] /us_mean_police_maj_white)*100
|
22 |
+
|
23 |
+
# Minority perceptions
|
24 |
+
us_mean_degv_min_white = degv_yg_nv_min$coefficients[1]
|
25 |
+
us_mean_degv_min_black = degv_yg_nv_min$coefficients[1] + degv_yg_nv_min$coefficients[2]
|
26 |
+
us_diff_degv_min = degv_yg_nv_min$coefficients[2]
|
27 |
+
us_pval_diff_degv_min = degv_yg_nv_min$p.value[2]
|
28 |
+
us_pct_change_degv_min = (degv_yg_nv_min$coefficients[2] /us_mean_degv_min_white)*100
|
29 |
+
us_mean_police_min_white = police_yg_nv_min$coefficients[1]
|
30 |
+
us_mean_police_min_black = police_yg_nv_min$coefficients[1] + police_yg_nv_min$coefficients[2]
|
31 |
+
us_diff_police_min = police_yg_nv_min$coefficients[2]
|
32 |
+
us_pval_diff_police_min = police_yg_nv_min$p.value[2]
|
33 |
+
us_pct_change_police_min = (police_yg_nv_min$coefficients[2] /us_mean_police_min_white)*100
|
34 |
+
|
35 |
+
|
36 |
+
## B. ISRAEL
|
37 |
+
degv_isr_nv_maj = lm_robust(degree_violence ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr" & isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity!= "Ethiopia",])
|
38 |
+
police_isr_nv_maj = lm_robust(police_action_required ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr" & isr_survey_wave1$tactic==0 & isr_survey_wave1$ethnicity!= "Ethiopia",])
|
39 |
+
degv_isr_nv_min = lm_robust(degree_violence ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr_ar" & isr_survey_wave1$tactic==0,])
|
40 |
+
police_isr_nv_min = lm_robust(police_action_required ~ identity_protesters , data=isr_survey_wave1[isr_survey_wave1$survey=="isr_ar" & isr_survey_wave1$tactic==0,])
|
41 |
+
|
42 |
+
# Majority perceptions
|
43 |
+
israel_mean_degv_maj_whitejew = degv_isr_nv_maj$coefficients[1]
|
44 |
+
isr_mean_degv_maj_eth = degv_isr_nv_maj$coefficients[1] + degv_isr_nv_maj$coefficients[2]
|
45 |
+
isr_mean_degv_maj_arab = degv_isr_nv_maj$coefficients[1] + degv_isr_nv_maj$coefficients[3]
|
46 |
+
isr_diff_degv_maj_eth = degv_isr_nv_maj$coefficients[2]
|
47 |
+
isr_diff_degv_maj_arab = degv_isr_nv_maj$coefficients[3]
|
48 |
+
isr_pval_diff_degv_maj_eth = degv_isr_nv_maj$p.value[2]
|
49 |
+
isr_pval_diff_degv_maj_arab = degv_isr_nv_maj$p.value[3]
|
50 |
+
isr_pct_change_degv_maj_eth = (degv_isr_nv_maj$coefficients[2] /israel_mean_degv_maj_whitejew)*100
|
51 |
+
isr_pct_change_degv_maj_arab = (degv_isr_nv_maj$coefficients[3] /israel_mean_degv_maj_whitejew)*100
|
52 |
+
israel_mean_police_maj_whitejew = police_isr_nv_maj$coefficients[1]
|
53 |
+
isr_mean_police_maj_eth = police_isr_nv_maj$coefficients[1] + police_isr_nv_maj$coefficients[2]
|
54 |
+
isr_mean_police_maj_arab = police_isr_nv_maj$coefficients[1] + police_isr_nv_maj$coefficients[3]
|
55 |
+
isr_diff_police_maj_eth = police_isr_nv_maj$coefficients[2]
|
56 |
+
isr_diff_police_maj_arab = police_isr_nv_maj$coefficients[3]
|
57 |
+
isr_pval_diff_police_maj_eth = police_isr_nv_maj$p.value[2]
|
58 |
+
isr_pval_diff_police_maj_arab = police_isr_nv_maj$p.value[3]
|
59 |
+
isr_pct_change_police_maj_eth = (police_isr_nv_maj$coefficients[2] /israel_mean_police_maj_whitejew)*100
|
60 |
+
isr_pct_change_police_maj_arab = (police_isr_nv_maj$coefficients[3] /israel_mean_police_maj_whitejew)*100
|
61 |
+
|
62 |
+
## Minority perceptions
|
63 |
+
israel_mean_degv_min_whitejew = degv_isr_nv_min$coefficients[1]
|
64 |
+
isr_mean_degv_min_eth = degv_isr_nv_min$coefficients[1] + degv_isr_nv_min$coefficients[2]
|
65 |
+
isr_mean_degv_min_arab = degv_isr_nv_min$coefficients[1] + degv_isr_nv_min$coefficients[3]
|
66 |
+
isr_diff_degv_min_eth = degv_isr_nv_min$coefficients[2]
|
67 |
+
isr_diff_degv_min_arab = degv_isr_nv_min$coefficients[3]
|
68 |
+
isr_pval_diff_degv_min_eth = degv_isr_nv_min$p.value[2]
|
69 |
+
isr_pval_diff_degv_min_arab = degv_isr_nv_min$p.value[3]
|
70 |
+
isr_pct_change_degv_min_eth = (degv_isr_nv_min$coefficients[2] /israel_mean_degv_min_whitejew)*100
|
71 |
+
isr_pct_change_degv_min_arab = (degv_isr_nv_min$coefficients[3] /israel_mean_degv_min_whitejew)*100
|
72 |
+
israel_mean_police_min_whitejew = police_isr_nv_min$coefficients[1]
|
73 |
+
isr_mean_police_min_eth = police_isr_nv_min$coefficients[1] + police_isr_nv_min$coefficients[2]
|
74 |
+
isr_mean_police_min_arab = police_isr_nv_min$coefficients[1] + police_isr_nv_min$coefficients[3]
|
75 |
+
isr_diff_police_min_eth = police_isr_nv_min$coefficients[2]
|
76 |
+
isr_diff_police_min_arab = police_isr_nv_min$coefficients[3]
|
77 |
+
isr_pval_diff_police_min_eth = police_isr_nv_min$p.value[2]
|
78 |
+
isr_pval_diff_police_min_arab = police_isr_nv_min$p.value[3]
|
79 |
+
isr_pct_change_police_min_eth = (police_isr_nv_min$coefficients[2] /israel_mean_police_min_whitejew)*100
|
80 |
+
isr_pct_change_police_min_arab = (police_isr_nv_min$coefficients[3] /israel_mean_police_min_whitejew)*100
|
81 |
+
|
82 |
+
us_degv_maj = c(us_mean_degv_maj_white, us_mean_degv_maj_black, us_diff_degv_maj, us_pval_diff_degv_maj, us_pct_change_degv_maj)
|
83 |
+
us_degv_min = c(us_mean_degv_min_white, us_mean_degv_min_black, us_diff_degv_min, us_pval_diff_degv_min, us_pct_change_degv_min)
|
84 |
+
us_police_maj = c(us_mean_police_maj_white, us_mean_police_maj_black, us_diff_police_maj, us_pval_diff_police_maj, us_pct_change_police_maj)
|
85 |
+
us_police_min = c(us_mean_police_min_white, us_mean_police_min_black, us_diff_police_min, us_pval_diff_police_min, us_pct_change_police_min)
|
86 |
+
|
87 |
+
isr_degv_maj_eth = c(israel_mean_degv_maj_whitejew, isr_mean_degv_maj_eth, isr_diff_degv_maj_eth, isr_pval_diff_degv_maj_eth, isr_pct_change_degv_maj_eth)
|
88 |
+
isr_degv_maj_arab = c(israel_mean_degv_maj_whitejew, isr_mean_degv_maj_arab, isr_diff_degv_maj_arab, isr_pval_diff_degv_maj_arab, isr_pct_change_degv_maj_arab)
|
89 |
+
isr_degv_min_eth = c(israel_mean_degv_min_whitejew, isr_mean_degv_min_eth, isr_diff_degv_min_eth, isr_pval_diff_degv_min_eth, isr_pct_change_degv_min_eth)
|
90 |
+
isr_degv_min_arab = c(israel_mean_degv_min_whitejew, isr_mean_degv_min_arab, isr_diff_degv_min_arab, isr_pval_diff_degv_min_arab, isr_pct_change_degv_min_arab)
|
91 |
+
isr_police_maj_eth = c(israel_mean_police_maj_whitejew, isr_mean_police_maj_eth, isr_diff_police_maj_eth, isr_pval_diff_police_maj_eth, isr_pct_change_police_maj_eth)
|
92 |
+
isr_police_maj_arab = c(israel_mean_police_maj_whitejew, isr_mean_police_maj_arab, isr_diff_police_maj_arab, isr_pval_diff_police_maj_arab, isr_pct_change_police_maj_arab)
|
93 |
+
isr_police_min_eth = c(israel_mean_police_min_whitejew, isr_mean_police_min_eth, isr_diff_police_min_eth, isr_pval_diff_police_min_eth, isr_pct_change_police_min_eth)
|
94 |
+
isr_police_min_arab = c(israel_mean_police_min_whitejew, isr_mean_police_min_arab, isr_diff_police_min_arab, isr_pval_diff_police_min_arab, isr_pct_change_police_min_arab)
|
95 |
+
|
96 |
+
pct_change_tab = rbind(us_degv_maj, us_degv_min, us_police_maj, us_police_min,
|
97 |
+
isr_degv_maj_arab, isr_degv_min_arab, isr_police_maj_arab, isr_police_min_arab,
|
98 |
+
isr_degv_maj_eth, isr_degv_min_eth, isr_police_maj_eth, isr_police_min_eth)
|
99 |
+
colnames(pct_change_tab) = c("Mean (majority)", "Mean (minority)", "Difference", "P-value", "Percent change")
|
100 |
+
|
101 |
+
table_a15 = xtable(pct_change_tab, digits=2)
|
102 |
+
print(table_a15, file="Tables/table_A16.tex")
|
23/replication_package/Code/replicate_table_A17.R
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A17
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
## A. U.S. sample
|
6 |
+
mod1 = lm(degree_violence ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
|
7 |
+
mod2 = lm(recall_violence2 ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
|
8 |
+
mod3 = lm(police_action_required ~ black + group_goal + commitment + age + female +education + income + pol_views + race, data=us_survey_wave2)
|
9 |
+
stargazer(mod1, mod2, mod3, out="Tables/table_A17_panel_A.tex")
|
10 |
+
|
11 |
+
## B. Israel sample
|
12 |
+
mod1_israel = lm(degree_violence ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
|
13 |
+
mod2_israel = lm(recall_violence2 ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
|
14 |
+
mod3_israel = lm(police_action_required ~ identity_protesters + group_goal + commitment + age + female +education + income + ideology + ethnicity, data=isr_survey_wave2)
|
15 |
+
stargazer(mod1_israel, mod2_israel, mod3_israel, out="Tables/table_A17_panel_B.tex")
|
23/replication_package/Code/replicate_table_A18.R
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A18
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
generic_goal_dv = lm(degree_violence ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
|
6 |
+
generic_goal_rv = lm(recall_violence2 ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
|
7 |
+
generic_goal_paq = lm(police_action_required ~ identity_protesters + commitment , data=isr_survey_wave2[isr_survey_wave2$group_goal==0,])
|
8 |
+
stargazer(generic_goal_dv, generic_goal_rv, generic_goal_paq,
|
9 |
+
covariate.labels = c("Ethiopian protesters", "Arab protesters",
|
10 |
+
"Commitment to nonviolence", "Intercept: White protesters, generic goal, no commitment"),
|
11 |
+
out = "Tables/table_A18.tex")
|
23/replication_package/Code/replicate_table_A2.R
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A2
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
nv_majority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==1 & NAVCO2_EPR$EPR_STATUS_EXCL==0]))
|
6 |
+
v_majority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==0 & NAVCO2_EPR$EPR_STATUS_EXCL==0]))
|
7 |
+
nv_minority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==1 & NAVCO2_EPR$EPR_STATUS_EXCL==1]))
|
8 |
+
v_minority = prop.table(table(NAVCO2_EPR$success[NAVCO2_EPR$navco1designation==0 & NAVCO2_EPR$EPR_STATUS_EXCL==1]))
|
9 |
+
|
10 |
+
navco_table = cbind(nv_majority, v_majority, nv_minority, v_minority)
|
11 |
+
rownames(navco_table) = c("Campaign failure", "Campaign success")
|
12 |
+
|
13 |
+
table_a2 = xtable(navco_table, digits=2)
|
14 |
+
print(table_a2, file="Tables/table_A2.tex")
|
23/replication_package/Code/replicate_table_A3.R
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A3
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
tab1 = lm(success ~ EPR_STATUS_EXCL* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
|
6 |
+
tab2 = lm(success ~ EPR_STATUS_EXCL * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
|
7 |
+
tab3 = lm(success ~ EPR_STATUS_EXCL * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
|
8 |
+
tab4 = lm(success ~ EPR_STATUS_ORD* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
|
9 |
+
tab5 = lm(success ~ EPR_STATUS_ORD * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
|
10 |
+
tab6 = lm(success ~ EPR_STATUS_ORD * INIT_NV_ONSET + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
|
11 |
+
|
12 |
+
stargazer(tab4, tab5, tab6, tab1, tab2, tab3, table.placement="H", order = c(3,1,20, 2, 21),
|
13 |
+
covariate.labels = c("NV campaign", "EPR Status", "EPR Status × NV Campaign",
|
14 |
+
"EPR Status: Excluded", "EPR Status: Excluded × NV Campaign",
|
15 |
+
"EPR group size", "Country population", "Country GDP per capita",
|
16 |
+
"Prior participation in NV", "Prior participation in V",
|
17 |
+
"Level of democracy", "Physical integrity index", "Neighboring kin in power",
|
18 |
+
"Group status downgraded", "Horizontal inequality"),
|
19 |
+
omit = c("VYEARS", "NVYEARS"),
|
20 |
+
out="Tables/table_A3.tex")
|
23/replication_package/Code/replicate_table_A4.R
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A4
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
tab7 = lm(success ~ EPR_GROUPSIZE* INIT_NV_ONSET , data= EBCR_EPR_NAVCO2)
|
6 |
+
tab8 = lm(success ~ EPR_GROUPSIZE * INIT_NV_ONSET + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + NVYEARS +I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3), data= EBCR_EPR_NAVCO2)
|
7 |
+
tab9 = lm(success ~ EPR_GROUPSIZE * INIT_NV_ONSET + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2)
|
8 |
+
|
9 |
+
stargazer(tab7, tab8, tab9, table.placement="H", order = c(2,1,18),
|
10 |
+
covariate.labels = c("NV campaign", "EPR group size", "EPR group size × NV campaign",
|
11 |
+
"Country population", "Country GDP per capita",
|
12 |
+
"Prior participation in NV", "Prior participation in V",
|
13 |
+
"Level of democracy", "Physical integrity index",
|
14 |
+
"Neighboring kin in power", "Group status downgraded",
|
15 |
+
"Horizontal inequality"),
|
16 |
+
omit = c("VYEARS", "NVYEARS"),
|
17 |
+
out="Tables/table_A4.tex")
|
23/replication_package/Code/replicate_table_A5.R
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A5
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
# Status (excluded, not excluded)
|
6 |
+
|
7 |
+
nv_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
|
8 |
+
v_status = lm(success ~ EPR_STATUS_EXCL + EPR_GROUPSIZE + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
|
9 |
+
|
10 |
+
preds_nv = ggpredict(nv_status, terms = c("EPR_STATUS_EXCL"))
|
11 |
+
preds_nv$tactic = "Non-violent"
|
12 |
+
preds_v = ggpredict(v_status, terms = c("EPR_STATUS_EXCL"))
|
13 |
+
preds_v$tactic = "Violent"
|
14 |
+
|
15 |
+
preds_status = rbind(preds_nv, preds_v)
|
16 |
+
preds_status$tactic <- factor(preds_status$tactic, levels = c("Violent", "Non-violent"))
|
17 |
+
preds_status$Status = "Excluded"
|
18 |
+
preds_status$Status[preds$x==0] = "Not excluded"
|
19 |
+
preds_status$type = "status"
|
20 |
+
|
21 |
+
## Size (above and below the mean of the distribution)
|
22 |
+
|
23 |
+
EBCR_EPR_NAVCO2$small_size = NA
|
24 |
+
EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE < mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 1
|
25 |
+
EBCR_EPR_NAVCO2$small_size[EBCR_EPR_NAVCO2$EPR_GROUPSIZE >= mean(EBCR_EPR_NAVCO2$EPR_GROUPSIZE, na.rm=T)] = 0
|
26 |
+
|
27 |
+
nv_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_NV_ONSET==1,])
|
28 |
+
v_size = lm(success ~ small_size + POP_LOG_LAG_EXT + GDPPC_LOG_LAG_EXT + PASTNV + PASTV + VDEM_POLYARCHY_LAG + VDEM_PHYSINT_LAG + EPR_TEK_EGIP + EPR_DOWNGRADED5 + HORIZ_INEQ + NVYEARS + I(NVYEARS^2) + I(NVYEARS^3) + VYEARS + I(VYEARS^2) + I(VYEARS^3) , data= EBCR_EPR_NAVCO2[EBCR_EPR_NAVCO2$INIT_V_ONSET==1,])
|
29 |
+
|
30 |
+
preds_nv = ggpredict(nv_size, terms = c("small_size"))
|
31 |
+
preds_nv$tactic = "Non-violent"
|
32 |
+
preds_v = ggpredict(v_size, terms = c("small_size"))
|
33 |
+
preds_v$tactic = "Violent"
|
34 |
+
|
35 |
+
preds_size = rbind(preds_nv, preds_v)
|
36 |
+
preds_size$tactic <- factor(preds_size$tactic, levels = c("Violent", "Non-violent"))
|
37 |
+
preds_size$Status = "Group size < mean"
|
38 |
+
preds_size$Status[preds_size$x==0] = "Group size >= mean"
|
39 |
+
preds_size$type = "size"
|
40 |
+
|
41 |
+
preds_all = as.data.frame(rbind(preds_status, preds_size))
|
42 |
+
preds_all = preds_all[,c("predicted", "std.error", "conf.low", "conf.high",
|
43 |
+
"tactic", "Status")]
|
44 |
+
table_a5 = xtable(preds_all, digits=2)
|
45 |
+
print(table_a5, file="Tables/table_A5.tex")
|
23/replication_package/Code/replicate_table_A6.R
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A6
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
pol_irr1 = lm(success ~ navco1designation ,
|
6 |
+
data= NAVCO2[!(NAVCO2$id %in% NAVCO2_EPR$id),])
|
7 |
+
pol_irr2 = lm(success ~ navco1designation ,
|
8 |
+
data= NAVCO2[NAVCO2$id %in% NAVCO2_EPR$id[NAVCO2_EPR$EPR_STATUS == "IRRELEVANT"],])
|
9 |
+
|
10 |
+
stargazer(pol_irr1, pol_irr2, covariate.labels = c("Nonviolent campaign", "Constant"),
|
11 |
+
out="Tables/table_A6.tex")
|
23/replication_package/Code/replicate_table_A7.R
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A7
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
us_wave1_sumstats = us_survey_wave1[,c("age", "female", "education", "income", "partyID", "ideology", "interest_politics",
|
6 |
+
"degree_violence", "police_action_required", "recall_violence2", "race")]
|
7 |
+
us_wave1_sumstats = dummy_cols(us_wave1_sumstats, select_columns = c("education", "income", "partyID", "ideology", "race"))
|
8 |
+
stargazer(us_wave1_sumstats, omit.summary.stat=c("p25", "p75"), out="Tables/table_A7.tex")
|
23/replication_package/Code/replicate_table_A8.R
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A8
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
isr_wave1_jewish = isr_survey_wave1[isr_survey_wave1$survey=="isr",]
|
6 |
+
isr_wave1_jewish_sumstats = isr_wave1_jewish[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology", "interest_news",
|
7 |
+
"degree_violence", "police_action_required", "recall_violence2")]
|
8 |
+
isr_wave1_jewish_sumstats = dummy_cols(isr_wave1_jewish_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
|
9 |
+
table_a8 = stargazer(isr_wave1_jewish_sumstats, omit.summary.stat=c("p25", "p75"))
|
10 |
+
cat(table_a8, sep = '\n', file = "Tables/table_A8.tex")
|
23/replication_package/Code/replicate_table_A9.R
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##--##--##--##--##--##--##
|
2 |
+
## Appendix: Table A9
|
3 |
+
##--##--##--##--##--##--##
|
4 |
+
|
5 |
+
isr_wave1_arab = isr_survey_wave1[isr_survey_wave1$survey=="isr_ar",]
|
6 |
+
isr_wave1_arab_sumstats = isr_wave1_arab[,c("age", "female", "religiosity", "ethnicity", "education", "income", "partyID", "ideology", "interest_news",
|
7 |
+
"degree_violence", "police_action_required", "recall_violence2")]
|
8 |
+
isr_wave1_arab_sumstats = dummy_cols(isr_wave1_arab_sumstats, select_columns = c("age", "religiosity", "ethnicity", "education", "income", "partyID"))
|
9 |
+
table_a9 = stargazer(isr_wave1_arab_sumstats, omit.summary.stat=c("p25", "p75"))
|
10 |
+
cat(table_a9, sep = '\n', file = "Tables/table_A9.tex")
|
11 |
+
|
23/replication_package/Data/EBCR_EPR_NAVCO2.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75451734eeb300dd765549b181cb21c1d4c91c9b0702562c19e1094898fa9764
|
3 |
+
size 49172
|
23/replication_package/Data/NAVCO2.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6722c3f6703ec017e192f3b5bab9e7125b705c1bca159dffb55c7a944ca7260
|
3 |
+
size 28901
|
23/replication_package/Data/NAVCO2_EPR.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f10808bec84e5e5d50b30f973373892b0ef570903808560cfcda645babffb6ea
|
3 |
+
size 8510
|
23/replication_package/Data/isr_survey_text_analysis_arab.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f11a984db34d2bd6549168ffae4f373eed2c0ebcf8c49d52118ced6ecf986392
|
3 |
+
size 791146
|
23/replication_package/Data/isr_survey_text_analysis_eth.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45c2f8f014182cef1752de744d235802ac03fda2410afe47e2571180bb7ffbbb
|
3 |
+
size 844628
|
23/replication_package/Data/isr_survey_wave1.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:800e60783ecf8e9fac913544d37489598f2b767cf17d4f09c29badc851889138
|
3 |
+
size 81215
|
23/replication_package/Data/isr_survey_wave2.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bee0683b7b5aa05998fad0bad2a6f9ca82b3c2729f640898f8af7e0f89184c1
|
3 |
+
size 92753
|
23/replication_package/Data/us_survey_text_analysis.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b03739389a1428c180e0e3929d037876bf34c4d893167054dac97ce5b2d01c9
|
3 |
+
size 686955
|
23/replication_package/Data/us_survey_wave1.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d02a0157e3113d52e5429679e908d35e2ece406fa07fedc57b7a8289df587a46
|
3 |
+
size 47487
|
23/replication_package/Data/us_survey_wave2.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac163b849b38a58dac943fc0954f31127da273d8f2e247f5ca323c523a5930e4
|
3 |
+
size 94383
|
23/replication_package/Figures/fig_1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fe315acebbd890225496f07ebc7b1b292fbf2b4d02bd1369e487b623132d66f
|
3 |
+
size 5597
|