Commit
·
060baa9
1
Parent(s):
f4102f9
add 102
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 102/paper.pdf +3 -0
- 102/replication_package/step1/Step1_DemographicInformation.xlsx +3 -0
- 102/replication_package/step1/Step1_ParticipantsAnswers.xlsx +3 -0
- 102/replication_package/step1/Step1_PreTest_Materials.docx +3 -0
- 102/replication_package/step1/Step1_PreTest_Materials.pdf +3 -0
- 102/replication_package/step1/Step1_Procedure.pdf +3 -0
- 102/replication_package/step1/Step1_RawDATA.zip +3 -0
- 102/replication_package/step1/Step1_Results.docx +3 -0
- 102/replication_package/step1/Step1_ResultsFINAL.csv +3 -0
- 102/replication_package/step2/Step2_Analyses +342 -0
- 102/replication_package/step2/Step2_Materials.docx +3 -0
- 102/replication_package/step2/Step2_Procedure.pdf +3 -0
- 102/replication_package/step2/Step2_Results.docx +3 -0
- 102/replication_package/step2/Step2_Results_CLEAN_EnglishVersion.csv +3 -0
- 102/replication_package/step2/Step2_Results_CLEAN_FrenchVersion.csv +3 -0
- 102/replication_package/step2/Step2_Scales.docx +3 -0
- 102/replication_package/step2/Step2_Stimuli.docx +3 -0
- 102/replication_package/step3/Step3_NewScenarios.docx +3 -0
- 102/replication_package/step3/step3.1/Step3.1_DemographicInformation.xlsx +3 -0
- 102/replication_package/step3/step3.1/Step3.1_Procedure.docx +3 -0
- 102/replication_package/step3/step3.1/Step3.1_Questionnaire.docx +3 -0
- 102/replication_package/step3/step3.1/Step3.1_RawDATA.zip +3 -0
- 102/replication_package/step3/step3.1/Step3.1_Results.docx +3 -0
- 102/replication_package/step3/step3.1/Step3.1_ResultsSheet.xlsx +3 -0
- 102/replication_package/step3/step3.2/Step3.2_Procedure.docx +3 -0
- 102/replication_package/step3/step3.2/Step3.2_Questionnaire.docx +3 -0
- 102/replication_package/step3/step3.2/Step3.2_Results.csv +3 -0
- 102/replication_package/step3/step3.2/Step3.2_Results.docx +3 -0
- 102/replication_package/step4/Step4_ControlScenarios.docx +3 -0
- 102/replication_package/step4/Step4_MainScenarios.docx +3 -0
- 102/replication_package/step4/Step4_Procedure.docx +3 -0
- 102/replication_package/step4/Step4_QualtricsQuestionnaire.docx +3 -0
- 102/replication_package/step4/Step4_Scales.docx +3 -0
- 102/replication_package/step5/Step 5 ATA analysis.R +145 -0
- 102/replication_package/step5/Step5_CleanData.csv +3 -0
- 102/replication_package/step5/Step5_LimeSurvey.pdf +3 -0
- 102/replication_package/step6/Step6_MiniMeta_Analyses.txt +3 -0
- 102/replication_package/step6/Step6_MiniMeta_Cohen.txt +3 -0
- 102/replication_package/step6/Step6_MiniMeta_Pearson.txt +3 -0
- 102/replication_package/step6/step6.1/Step6.1._Method&Results.docx +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Analyses.txt +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Boxplot.jpg +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Boxplot.tiff +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Data.csv +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Materials.zip +3 -0
- 102/replication_package/step6/step6.1/Step6.1_Procedure.pdf +3 -0
- 102/replication_package/step6/step6.2/Step6.2._Method&Results.docx +3 -0
- 102/replication_package/step6/step6.2/Step6.2_Analyses.Rhistory +206 -0
- 102/replication_package/step6/step6.2/Step6.2_Boxplot.jpg +3 -0
- 102/replication_package/step6/step6.2/Step6.2_Boxplot.tiff +3 -0
102/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e32d1ff4f07dff49a62b596fed37a1c37b9c9bcbcd883655d1c381d67648296c
|
3 |
+
size 4011285
|
102/replication_package/step1/Step1_DemographicInformation.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6151b50c6491108eddfd461a66df20892e0bedc169ec9f909f1cbcb010f18866
|
3 |
+
size 9233
|
102/replication_package/step1/Step1_ParticipantsAnswers.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e45a398076980696291032d53e4b91304ad6429e67f66c3cc24eefbc5abf9ca1
|
3 |
+
size 13694
|
102/replication_package/step1/Step1_PreTest_Materials.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3ab5e20ad686a182fa0125d5aff30ef6c44812ffeacceb483bea211a652d9ce
|
3 |
+
size 108106
|
102/replication_package/step1/Step1_PreTest_Materials.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23143c0f702fa67397f390f834e5cb20b6cd2bf62cb344558008e8e128f18aef
|
3 |
+
size 687896
|
102/replication_package/step1/Step1_Procedure.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4576183e27393729c2e34362b70c98d7d96ab335358d48383408f96f4ac90843
|
3 |
+
size 78021
|
102/replication_package/step1/Step1_RawDATA.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3266d0ea74eae8c287dfdacdac64de52ae19cc6112fd226f256f263872d9133d
|
3 |
+
size 1075898
|
102/replication_package/step1/Step1_Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f71428b2c48549c57626549865c56240a6bd31698bf104caceb1fc61d38170f
|
3 |
+
size 19517
|
102/replication_package/step1/Step1_ResultsFINAL.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ad551f1c7d26de97d5b839fb148d83fe2b46350321ce75ea4178a8f5f812f1b
|
3 |
+
size 1475
|
102/replication_package/step2/Step2_Analyses
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
library(psych)
|
2 |
+
|
3 |
+
#Opening data
|
4 |
+
|
5 |
+
dat <- read.csv(""Step_Results_CLEAN_EnglishVersion.csv",header=TRUE)
|
6 |
+
attach(dat)
|
7 |
+
|
8 |
+
#Constructing utilitarian scores for each category
|
9 |
+
|
10 |
+
UD <- (U.D.01+U.D.02+U.D.03+U.D.04+U.D.05+U.D.06+U.D.07+U.D.08+U.D.09+U.D.10)/10
|
11 |
+
PD <- (P.D.01+P.D.02+P.D.03+P.D.04+P.D.05+P.D.06+P.D.07+P.D.08+P.D.09+P.D.10)/10
|
12 |
+
HC <- (H.C.01+H.C.02+H.C.03+H.C.04+H.C.05+H.C.06+H.C.07+H.C.08+H.C.09+H.C.10)/10
|
13 |
+
AO <- (A.O.01+A.O.02+A.O.03+A.O.04+A.O.05+A.O.06+A.O.07+A.O.08+A.O.09+A.O.10)/10
|
14 |
+
DE <- (D.E.01+D.E.02+D.E.03+D.E.04+D.E.05+D.E.06+D.E.07+D.E.08+D.E.09+D.E.10)/10
|
15 |
+
P <- (P.01+P.02+P.03+P.04+P.05+P.06+P.07+P.08+P.09+P.10)/10
|
16 |
+
|
17 |
+
#Reverse-coding utilitarian scores when necessary
|
18 |
+
|
19 |
+
UD_ut <- 8-UD
|
20 |
+
PD_ut <- 8-PD
|
21 |
+
HC_ut <- 8-HC
|
22 |
+
AO_ut <- 8-AO
|
23 |
+
DE_ut <- DE
|
24 |
+
P_ut <- 8-P
|
25 |
+
|
26 |
+
#Calculating Cronbach's Alpha for utilitarian scores in each category
|
27 |
+
|
28 |
+
UDframe <- data.frame(U.D.01,U.D.02,U.D.03,U.D.04,U.D.05,U.D.06,U.D.07,U.D.08,U.D.09,U.D.10)
|
29 |
+
alpha(UDframe)
|
30 |
+
|
31 |
+
PDframe <- data.frame(P.D.01,P.D.02,P.D.03,P.D.04,P.D.05,P.D.06,P.D.07,P.D.08,P.D.09,P.D.10)
|
32 |
+
alpha(PDframe)
|
33 |
+
|
34 |
+
HCframe <- data.frame(H.C.01,H.C.02,H.C.03,H.C.04,H.C.05,H.C.06,H.C.07,H.C.08,H.C.09,H.C.10)
|
35 |
+
alpha(HCframe)
|
36 |
+
|
37 |
+
AOframe <- data.frame(A.O.01,A.O.02,A.O.03,A.O.04,A.O.05,A.O.06,A.O.07,A.O.08,A.O.09,A.O.10)
|
38 |
+
alpha(AOframe)
|
39 |
+
|
40 |
+
DEframe <- data.frame(D.E.01,D.E.02,D.E.03,D.E.04,D.E.05,D.E.06,D.E.07,D.E.08,D.E.09,D.E.10)
|
41 |
+
alpha(DEframe)
|
42 |
+
|
43 |
+
Pframe <- data.frame(P.01,P.02,P.03,P.04,P.05,P.06,P.07,P.08,P.09,P.10)
|
44 |
+
alpha(Pframe)
|
45 |
+
|
46 |
+
#Constructing individual traits measures
|
47 |
+
|
48 |
+
CRT <- CRT1_RIGHT+CRT2_RIGHT+CRT3_RIGHT
|
49 |
+
|
50 |
+
NFCsum <- (6-NFC.01)+(6-NFC.02)+NFC.03+(6-NFC.04)+(6-NFC.05)+(6-NFC.06)+(6-NFC.07)+NFC.08+(6-NFC.09)+(6-NFC.10)+(6-NFC.11)+NFC.12+(6-NFC.13)+NFC.14+(6-NFC.15)+(6-NFC.16)+NFC.17+(6-NFC.18)+(6-NFC.19)
|
51 |
+
NFC <- NFCsum/19
|
52 |
+
|
53 |
+
mean(NFC)
|
54 |
+
sd(NFC)
|
55 |
+
|
56 |
+
FIsum <- FI.01+FI.02+FI.03+FI.04+FI.05+FI.06+FI.07+FI.08+FI.09+FI.10+FI.11+FI.12
|
57 |
+
FI <- FIsum/12
|
58 |
+
|
59 |
+
IRIsum <- IRI_01+(6-IRI_02)+IRI_03+(6-IRI_04)+(6-IRI_05)+IRI_06+IRI_07
|
60 |
+
IRI <- IRIsum/7
|
61 |
+
|
62 |
+
SRPsum <- SRP_01+SRP_02+SRP_03+SRP_04+SRP_05+SRP_06+SRP_07+SRP_08+SRP_09+SRP_10+SRP_11+SRP_12+SRP_13+SRP_14+SRP_15+SRP_16+SRP_17+SRP_18+SRP_19+SRP_20+SRP_21+SRP_22+(8-SRP_23)+(8-SRP_24)+(8-SRP_25)+(8-SRP_26)+SRP_27+(8-SRP_28)+SRP_29+SRP_30
|
63 |
+
SRP <- SRPsum/30
|
64 |
+
|
65 |
+
TASsum <- TAS_01+TAS_02+TAS_03+TAS_04+TAS_05+TAS_06+TAS_07+TAS_08+(6-TAS_09)+TAS_10+TAS_11+TAS_12+(6-TAS_13)+TAS_14+(6-TAS_15)+TAS_16+TAS_17+(6-TAS_18)+(6-TAS_19)+TAS_20
|
66 |
+
TAS <- TASsum/20
|
67 |
+
|
68 |
+
#Calculating average utilitarian scores for each category
|
69 |
+
|
70 |
+
mean(UD_ut)
|
71 |
+
sd(UD_ut)
|
72 |
+
|
73 |
+
mean(PD_ut)
|
74 |
+
sd(PD_ut)
|
75 |
+
|
76 |
+
mean(HC_ut)
|
77 |
+
sd(HC_ut)
|
78 |
+
|
79 |
+
mean(AO_ut)
|
80 |
+
sd(AO_ut)
|
81 |
+
|
82 |
+
mean(DE_ut)
|
83 |
+
sd(DE_ut)
|
84 |
+
|
85 |
+
mean(P_ut)
|
86 |
+
sd(P_ut)
|
87 |
+
|
88 |
+
#Calculating correlations utilitarian scores between each category
|
89 |
+
|
90 |
+
cor.test(UD_ut,PD_ut)
|
91 |
+
cor.test(UD_ut,HC_ut)
|
92 |
+
cor.test(UD_ut,AO_ut)
|
93 |
+
cor.test(UD_ut,DE_ut)
|
94 |
+
cor.test(UD_ut,P_ut)
|
95 |
+
cor.test(PD_ut,HC_ut)
|
96 |
+
cor.test(PD_ut,AO_ut)
|
97 |
+
cor.test(PD_ut,DE_ut)
|
98 |
+
cor.test(PD_ut,P_ut)
|
99 |
+
cor.test(HC_ut,AO_ut)
|
100 |
+
cor.test(HC_ut,DE_ut)
|
101 |
+
cor.test(HC_ut,P_ut)
|
102 |
+
cor.test(AO_ut,DE_ut)
|
103 |
+
cor.test(AO_ut,P_ut)
|
104 |
+
cor.test(DE_ut,P_ut)
|
105 |
+
|
106 |
+
#Calculating coherence between utilitarian scores using Cronbach's Alpha
|
107 |
+
|
108 |
+
alpha(data.frame(UD_ut,PD_ut,HC_ut,AO_ut,DE_ut,P_ut))
|
109 |
+
|
110 |
+
#Calculating Cronbach's Alpha for individual traits measures
|
111 |
+
|
112 |
+
NFCframe <- data.frame((6-NFC.01),(6-NFC.02),NFC.03,(6-NFC.04),(6-NFC.05),(6-NFC.06),(6-NFC.07),NFC.08,(6-NFC.09),(6-NFC.10),(6-NFC.11),NFC.12,(6-NFC.13),NFC.14,(6-NFC.15),(6-NFC.16),NFC.17,(6-NFC.18),(6-NFC.19))
|
113 |
+
alpha(NFCframe)
|
114 |
+
|
115 |
+
FIframe <- data.frame(FI.01,FI.02,FI.03,FI.04,FI.05,FI.06,FI.07,FI.08,FI.09,FI.10,FI.11,FI.12)
|
116 |
+
alpha(FIframe)
|
117 |
+
|
118 |
+
IRIframe <- data.frame(IRI_01,(6-IRI_02),IRI_03,(6-IRI_04),(6-IRI_05),IRI_06,IRI_07)
|
119 |
+
alpha(IRIframe)
|
120 |
+
|
121 |
+
SRPframe <- data.frame(SRP_01,SRP_02,SRP_03,SRP_04,SRP_05,SRP_06,SRP_07,SRP_08,SRP_09,SRP_10,SRP_11,SRP_12,SRP_13,SRP_14,SRP_15,SRP_16,SRP_17,SRP_18,SRP_19,SRP_20,SRP_21,SRP_22,(8-SRP_23),(8-SRP_24),(8-SRP_25),(8-SRP_26),SRP_27,(8-SRP_28),SRP_29,SRP_30)
|
122 |
+
alpha(SRPframe)
|
123 |
+
|
124 |
+
TASframe <- data.frame(TAS_01,TAS_02,TAS_03,TAS_04,TAS_05,TAS_06,TAS_07,TAS_08,(6-TAS_09),TAS_10,TAS_11,TAS_12,(6-TAS_13),TAS_14,(6-TAS_15),TAS_16,TAS_17,(6-TAS_18),(6-TAS_19),TAS_20)
|
125 |
+
alpha(TASframe)
|
126 |
+
|
127 |
+
#Correlation between different individual traits measures
|
128 |
+
|
129 |
+
cor.test(CRT,NFC)
|
130 |
+
cor.test(CRT,FI)
|
131 |
+
cor.test(CRT,IRI)
|
132 |
+
cor.test(CRT,SRP)
|
133 |
+
cor.test(CRT,TAS)
|
134 |
+
cor.test(NFC,FI)
|
135 |
+
cor.test(NFC,IRI)
|
136 |
+
cor.test(NFC,SRP)
|
137 |
+
cor.test(NFC,TAS)
|
138 |
+
cor.test(FI,IRI)
|
139 |
+
cor.test(FI,SRP)
|
140 |
+
cor.test(FI,TAS)
|
141 |
+
cor.test(IRI,SRP)
|
142 |
+
cor.test(IRI,TAS)
|
143 |
+
cor.test(SRP,TAS)
|
144 |
+
|
145 |
+
#Correlations between individual traits and utilitarian scores
|
146 |
+
|
147 |
+
cor.test(CRT,UD_ut)
|
148 |
+
cor.test(CRT,PD_ut)
|
149 |
+
cor.test(CRT,HC_ut)
|
150 |
+
cor.test(CRT,AO_ut)
|
151 |
+
cor.test(CRT,DE_ut)
|
152 |
+
cor.test(CRT,P_ut)
|
153 |
+
cor.test(NFC,UD_ut)
|
154 |
+
cor.test(NFC,PD_ut)
|
155 |
+
cor.test(NFC,HC_ut)
|
156 |
+
cor.test(NFC,AO_ut)
|
157 |
+
cor.test(NFC,DE_ut)
|
158 |
+
cor.test(NFC,P_ut)
|
159 |
+
cor.test(FI,UD_ut)
|
160 |
+
cor.test(FI,PD_ut)
|
161 |
+
cor.test(FI,HC_ut)
|
162 |
+
cor.test(FI,AO_ut)
|
163 |
+
cor.test(FI,DE_ut)
|
164 |
+
cor.test(FI,P_ut)
|
165 |
+
cor.test(IRI,UD_ut)
|
166 |
+
cor.test(IRI,PD_ut)
|
167 |
+
cor.test(IRI,HC_ut)
|
168 |
+
cor.test(IRI,AO_ut)
|
169 |
+
cor.test(IRI,DE_ut)
|
170 |
+
cor.test(IRI,P_ut)
|
171 |
+
cor.test(SRP,PD_ut)
|
172 |
+
cor.test(SRP,HC_ut)
|
173 |
+
cor.test(SRP,AO_ut)
|
174 |
+
cor.test(SRP,DE_ut)
|
175 |
+
cor.test(SRP,P_ut)
|
176 |
+
cor.test(TAS,UD_ut)
|
177 |
+
cor.test(TAS,PD_ut)
|
178 |
+
cor.test(TAS,HC_ut)
|
179 |
+
cor.test(TAS,AO_ut)
|
180 |
+
cor.test(TAS,DE_ut)
|
181 |
+
cor.test(TAS,P_ut)
|
182 |
+
|
183 |
+
#Calculating a global utilitarian score
|
184 |
+
|
185 |
+
util <- (UD_ut+PD_ut+HC_ut+DE_ut+AO_ut+P_ut)/6
|
186 |
+
mean(util)
|
187 |
+
sd(util)
|
188 |
+
|
189 |
+
#Correlations between global utilitarian score and individual traits measures
|
190 |
+
|
191 |
+
cor.test(util,CRT)
|
192 |
+
cor.test(util,NFC)
|
193 |
+
cor.test(util,FI)
|
194 |
+
cor.test(util,IRI)
|
195 |
+
cor.test(util,SRP)
|
196 |
+
cor.test(util,TAS)
|
197 |
+
cor.test(util,TAS)
|
198 |
+
cor.test(util,CRT)
|
199 |
+
cor.test(util,NFC)
|
200 |
+
|
201 |
+
#Calculating average utilitarian score (and standard deviation) for each individual scenario
|
202 |
+
|
203 |
+
8-mean(U.D.01)
|
204 |
+
sd(U.D.01)
|
205 |
+
8-mean(U.D.02)
|
206 |
+
sd(U.D.02)
|
207 |
+
8-mean(U.D.03)
|
208 |
+
sd(U.D.03)
|
209 |
+
8-mean(U.D.04)
|
210 |
+
sd(U.D.04)
|
211 |
+
8-mean(U.D.05)
|
212 |
+
sd(U.D.05)
|
213 |
+
8-mean(U.D.06)
|
214 |
+
sd(U.D.06)
|
215 |
+
8-mean(U.D.07)
|
216 |
+
sd(U.D.07)
|
217 |
+
8-mean(U.D.08)
|
218 |
+
sd(U.D.08)
|
219 |
+
8-mean(U.D.09)
|
220 |
+
sd(U.D.09)
|
221 |
+
8-mean(U.D.10)
|
222 |
+
sd(U.D.10)
|
223 |
+
8-mean(P.D.01)
|
224 |
+
sd(P.D.01)
|
225 |
+
8-mean(P.D.02)
|
226 |
+
sd(P.D.02)
|
227 |
+
8-mean(P.D.03)
|
228 |
+
sd(P.D.03)
|
229 |
+
8-mean(P.D.04)
|
230 |
+
sd(P.D.04)
|
231 |
+
8-mean(P.D.05)
|
232 |
+
sd(P.D.05)
|
233 |
+
8-mean(P.D.06)
|
234 |
+
sd(P.D.06)
|
235 |
+
8-mean(P.D.07)
|
236 |
+
sd(P.D.07)
|
237 |
+
8-mean(P.D.08)
|
238 |
+
sd(P.D.08)
|
239 |
+
8-mean(P.D.09)
|
240 |
+
sd(P.D.09)
|
241 |
+
8-mean(P.D.10)
|
242 |
+
sd(P.D.10)
|
243 |
+
8-mean(H.C.01)
|
244 |
+
sd(H.C.01)
|
245 |
+
8-mean(H.C.02)
|
246 |
+
sd(H.C.02)
|
247 |
+
8-mean(H.C.03)
|
248 |
+
sd(H.C.03)
|
249 |
+
8-mean(H.C.04)
|
250 |
+
sd(H.C.04)
|
251 |
+
8-mean(H.C.05)
|
252 |
+
sd(H.C.05)
|
253 |
+
8-mean(H.C.06)
|
254 |
+
sd(H.C.06)
|
255 |
+
8-mean(H.C.07)
|
256 |
+
sd(H.C.07)
|
257 |
+
8-mean(H.C.08)
|
258 |
+
sd(H.C.08)
|
259 |
+
8-mean(H.C.09)
|
260 |
+
sd(H.C.09)
|
261 |
+
8-mean(H.C.10)
|
262 |
+
sd(H.C.10)
|
263 |
+
8-mean(A.O.01)
|
264 |
+
sd(A.O.01)
|
265 |
+
8-mean(A.O.02)
|
266 |
+
sd(A.O.02)
|
267 |
+
8-mean(A.O.03)
|
268 |
+
sd(A.O.03)
|
269 |
+
8-mean(A.O.04)
|
270 |
+
sd(A.O.04)
|
271 |
+
8-mean(A.O.05)
|
272 |
+
sd(A.O.05)
|
273 |
+
8-mean(A.O.06)
|
274 |
+
sd(A.O.06)
|
275 |
+
8-mean(A.O.07)
|
276 |
+
sd(A.O.07)
|
277 |
+
8-mean(A.O.08)
|
278 |
+
sd(A.O.08)
|
279 |
+
8-mean(A.O.09)
|
280 |
+
sd(A.O.09)
|
281 |
+
8-mean(A.O.10)
|
282 |
+
sd(A.O.10)
|
283 |
+
8-mean(P.01)
|
284 |
+
sd(P.01)
|
285 |
+
8-mean(P.02)
|
286 |
+
sd(P.02)
|
287 |
+
8-mean(P.03)
|
288 |
+
sd(P.03)
|
289 |
+
8-mean(P.04)
|
290 |
+
sd(P.04)
|
291 |
+
8-mean(P.05)
|
292 |
+
sd(P.05)
|
293 |
+
8-mean(P.06)
|
294 |
+
sd(P.06)
|
295 |
+
8-mean(P.07)
|
296 |
+
sd(P.07)
|
297 |
+
8-mean(P.08)
|
298 |
+
sd(P.08)
|
299 |
+
8-mean(P.09)
|
300 |
+
sd(P.09)
|
301 |
+
8-mean(P.10)
|
302 |
+
sd(P.10)
|
303 |
+
mean(D.E.01)
|
304 |
+
sd(D.E.01)
|
305 |
+
mean(D.E.02)
|
306 |
+
sd(D.E.02)
|
307 |
+
mean(D.E.03)
|
308 |
+
sd(D.E.03)
|
309 |
+
mean(D.E.04)
|
310 |
+
sd(D.E.04)
|
311 |
+
mean(D.E.05)
|
312 |
+
sd(D.E.05)
|
313 |
+
mean(D.E.06)
|
314 |
+
sd(D.E.06)
|
315 |
+
mean(D.E.07)
|
316 |
+
sd(D.E.07)
|
317 |
+
mean(D.E.08)
|
318 |
+
sd(D.E.08)
|
319 |
+
mean(D.E.09)
|
320 |
+
sd(D.E.09)
|
321 |
+
mean(D.E.10)
|
322 |
+
sd(D.E.10)
|
323 |
+
|
324 |
+
#Cluster analysis
|
325 |
+
|
326 |
+
library(pvclust)
|
327 |
+
|
328 |
+
mydata <- data.frame(UD_ut,PD_ut,HC_ut,AO_ut,DE_ut,P_ut)
|
329 |
+
fit <- pvclust(mydata, method.hclust="ward", method.dist="euclidean")
|
330 |
+
plot(fit)
|
331 |
+
|
332 |
+
pvrect(fit, alpha=.95)
|
333 |
+
|
334 |
+
#Correlation plot
|
335 |
+
|
336 |
+
> pairs.panels(mydata,
|
337 |
+
+ method = "pearson", # correlation method
|
338 |
+
+ hist.col = "#00AFBB",
|
339 |
+
+ density = FALSE, # show density plots
|
340 |
+
+ ellipses = FALSE, # show correlation ellipses
|
341 |
+
+ lm = TRUE,
|
342 |
+
+ stars = TRUE)
|
102/replication_package/step2/Step2_Materials.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47b171007ed468cb77ae1cfa788be1ba8e61902aa9a741ba9bef3f2fc3c18aa1
|
3 |
+
size 35248
|
102/replication_package/step2/Step2_Procedure.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fb31c915219f71bfbff451bb811aefcf2d5061bcb55474ddb332cad3b801b76
|
3 |
+
size 107879
|
102/replication_package/step2/Step2_Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fe3c4cbcb41289c9619d1db2006f43721e124e8516c7a8c09a1e90dd7726c73
|
3 |
+
size 3251730
|
102/replication_package/step2/Step2_Results_CLEAN_EnglishVersion.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:374ffcdba02495afec0f553856779200bd449683bf3af0645ce18142e02437dd
|
3 |
+
size 53248
|
102/replication_package/step2/Step2_Results_CLEAN_FrenchVersion.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:309ddda6f73fecef3a0d77010555ebb07317787841cba75f312eeedc59fdd026
|
3 |
+
size 53216
|
102/replication_package/step2/Step2_Scales.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd61ddd8f27e82c857330983f6b1261213020a186ee0c92095c7678c0b1c9a9d
|
3 |
+
size 21423
|
102/replication_package/step2/Step2_Stimuli.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b8d58af1f496dcf32e2bfbfb831843ef59a4ec865d7713e9b6f805a086fc667
|
3 |
+
size 34702
|
102/replication_package/step3/Step3_NewScenarios.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:245d99f59d7e0baf942619c89c25ed55f98a9d98fd3777c2ee679b6329ddb45e
|
3 |
+
size 17612
|
102/replication_package/step3/step3.1/Step3.1_DemographicInformation.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:128e9cd422da49da5fcc383b6c06515bbd8180f0da52e1acea329ea678760909
|
3 |
+
size 8854
|
102/replication_package/step3/step3.1/Step3.1_Procedure.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b48c91e1d4f43b295bf70df8c30afff61804200cc953f42003b12230d592130f
|
3 |
+
size 15440
|
102/replication_package/step3/step3.1/Step3.1_Questionnaire.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903659b9485d0b9ceb8722d2ce8aeee69103b0dc9468b8735d88a5d21e41c70c
|
3 |
+
size 19789
|
102/replication_package/step3/step3.1/Step3.1_RawDATA.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92fc47898552c8065ed4b6c6f8f12ff83f4cdc6e15d2885583029ede8102c373
|
3 |
+
size 99555
|
102/replication_package/step3/step3.1/Step3.1_Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:019c9d2c6b8d577b00cc6c46bcfc20f7eb3d948d5e34e2f1a6e2c179f2bef61a
|
3 |
+
size 16824
|
102/replication_package/step3/step3.1/Step3.1_ResultsSheet.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:070bfb5072d5ade8638020e8df96259d216783ed6a0f4d4cccbe9d8191601c99
|
3 |
+
size 8593
|
102/replication_package/step3/step3.2/Step3.2_Procedure.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d78937834176735c4ff81f942392cffa0332bd1f9790055f8d97efe7db2f82fa
|
3 |
+
size 16314
|
102/replication_package/step3/step3.2/Step3.2_Questionnaire.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:696870e82789d8e84a33d8ab0a3d3969576906aed68c50671859035bf7eb4e02
|
3 |
+
size 26013
|
102/replication_package/step3/step3.2/Step3.2_Results.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15ae549d14b5df2cbc38b4f4a862245082f0bcc7d8f1159a2972de8c043bc18f
|
3 |
+
size 23580
|
102/replication_package/step3/step3.2/Step3.2_Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59c8b7a97f4e301d767b5ff39c3ac9dfcf2912e1e89f13ff6dab357bef38460d
|
3 |
+
size 17323
|
102/replication_package/step4/Step4_ControlScenarios.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc368ed08eb7a13b2c52a01629e5010d8dba69d8b7a434d08458fe93dab8b539
|
3 |
+
size 16267
|
102/replication_package/step4/Step4_MainScenarios.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bc3ad954c6d799cd5c650c84503a948afd46b2ee10034b10b3e9e0c6016367
|
3 |
+
size 35723
|
102/replication_package/step4/Step4_Procedure.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15fc8825d7da1bf4bf6589eba8c730bc5a68f7c5329bc1708276ca90c7e8e813
|
3 |
+
size 16713
|
102/replication_package/step4/Step4_QualtricsQuestionnaire.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d8d7b912c790294e35db13bd925f3a7aa3ad2d05b16b63afa57db79460e780
|
3 |
+
size 61158
|
102/replication_package/step4/Step4_Scales.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5a7df37f53b8089a99a06a95419ca27e54ab06622c03379fd23a4a8a649722
|
3 |
+
size 20708
|
102/replication_package/step5/Step 5 ATA analysis.R
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Step 5 Attitudes Towards Animals analysis
|
2 |
+
|
3 |
+
library(psych)
|
4 |
+
library(dplyr)
|
5 |
+
|
6 |
+
dat <- Step5_CleanData
|
7 |
+
|
8 |
+
##Excluding participants who failed attention checks
|
9 |
+
dat <- dat[dat$AOT.Attentioncheck1. == '5', ]
|
10 |
+
dat <- dat[dat$AOT.Attentioncheck2. == '1',]
|
11 |
+
attach(dat)
|
12 |
+
|
13 |
+
##Demographics
|
14 |
+
|
15 |
+
mean(InfoD01)
|
16 |
+
sd(InfoD01)
|
17 |
+
table(InfoD02)
|
18 |
+
|
19 |
+
##Attitudes towards animal scales
|
20 |
+
dat$ATA.AE2. <- 8-ATA.AE2R.
|
21 |
+
dat$ATA.AE6. <- 8-ATA.AE6R.
|
22 |
+
dat$ATA.AE7. <- 8-ATA.AE7R.
|
23 |
+
dat$ATA.AE7. <- 8-ATA.AE7R.
|
24 |
+
dat$ATA.AE8. <- 8-ATA.AE8R.
|
25 |
+
dat$ATA.AE10. <- 8-ATA.AE10R.
|
26 |
+
dat$ATA.AE11. <- 8-ATA.AE11R.
|
27 |
+
dat$ATA.AE16. <- 8-ATA.AE16R.
|
28 |
+
|
29 |
+
ATA1_frame <- data.frame(ATA.AE1., ATA.AE2.)
|
30 |
+
alpha(ATA1_frame)
|
31 |
+
ATA1 <- rowMeans(ATA1_frame)
|
32 |
+
|
33 |
+
ATA2_frame <- data.frame(ATA.AE3., ATA.AE4., ATA.AE5.,ATA.AE6., ATA.AE7., ATA.AE8., ATA.AE9., ATA.AE10., ATA.AE11.)
|
34 |
+
alpha(ATA2_frame)
|
35 |
+
ATA2 <- rowMeans(ATA2_frame)
|
36 |
+
|
37 |
+
ATA3_frame <- data.frame(ATA.AE12., ATA.AE13., ATA.AE14.,ATA.AE15., ATA.AE16., ATA.AE17.)
|
38 |
+
alpha(ATA3_frame)
|
39 |
+
ATA3 <- rowMeans(ATA3_frame)
|
40 |
+
|
41 |
+
|
42 |
+
cor.test(ATA1,ATA2)
|
43 |
+
cor.test(ATA1,ATA3)
|
44 |
+
cor.test(ATA2,ATA3)
|
45 |
+
|
46 |
+
|
47 |
+
##Measures of utilitarianism
|
48 |
+
#GUI = Geneva Utilitarianism Inventory
|
49 |
+
|
50 |
+
# Sacrificial Dilemmas
|
51 |
+
GUISD_frame <- data.frame (UD1, UD2, UD10, PD3, PD8)
|
52 |
+
alpha(GUISD_frame)
|
53 |
+
GUISD <- 8- rowMeans(GUISD_frame)
|
54 |
+
|
55 |
+
#Harmless Crimes
|
56 |
+
GUIHC_frame <- data.frame(HC1, HC2, HC3, HC4, HC9)
|
57 |
+
alpha(GUIHC_frame)
|
58 |
+
GUIHC <- 8 - rowMeans(GUIHC_frame)
|
59 |
+
|
60 |
+
#Action vs Omission
|
61 |
+
GUIAO_frame <- data.frame(AO1, AO5, AO6, AO8, AO10)
|
62 |
+
alpha(GUIAO_frame)
|
63 |
+
GUIAO <- 8 - rowMeans(GUIAO_frame)
|
64 |
+
|
65 |
+
#Demanding Ethics
|
66 |
+
GUIDE_frame <- data.frame(DE2, DE3, DE4, DE5, DE7)
|
67 |
+
alpha(GUIDE_frame)
|
68 |
+
GUIDE <- rowMeans(GUIDE_frame)
|
69 |
+
|
70 |
+
#Punishment
|
71 |
+
GUIP_frame <- data.frame(P3, P4, P6, P7, P10)
|
72 |
+
alpha(GUIP_frame)
|
73 |
+
GUIP <- 8-rowMeans(GUIP_frame)
|
74 |
+
|
75 |
+
|
76 |
+
##Measures of cognitive style
|
77 |
+
|
78 |
+
##CRT
|
79 |
+
dat$CRT1B <- ifelse(CRT1 == "2" , 1, 0)
|
80 |
+
dat$CRT2B <- ifelse(CRT2 == "225" , 1, 0)
|
81 |
+
dat$CRT3B <- ifelse(CRT3 == "5" , 1, 0)
|
82 |
+
dat$CRT <- rowSums(dat[,c("CRT1B", "CRT2B", "CRT3B")])
|
83 |
+
|
84 |
+
datONE <- dat # new dataset with only those who knew no more than 1 item of the modified CRT
|
85 |
+
datONE <- filter(datONE, datONE$CRTknowledge1 <= 1)
|
86 |
+
|
87 |
+
CRTa <- dat[,c("CRT1B", "CRT2B", "CRT3B")]
|
88 |
+
CRTaONE <- datONE[,c("CRT1B", "CRT2B", "CRT3B")]
|
89 |
+
|
90 |
+
alpha(CRTa, cumulative = FALSE, n.obs = 234)
|
91 |
+
alpha(CRTaONE,cumulative = FALSE, n.obs = 188)
|
92 |
+
|
93 |
+
|
94 |
+
# Faith in Intuition for Facts
|
95 |
+
FI_frame <- data.frame(FI.FI1.,FI.FI2., FI.FI3., FI.FI4.)
|
96 |
+
alpha(FI_frame)
|
97 |
+
FI <- rowMeans(FI_frame)
|
98 |
+
|
99 |
+
|
100 |
+
# Actively Open-minded Thinking
|
101 |
+
AOT.AOT4. <- 6-AOT.AOT4R.
|
102 |
+
AOT.AOT5. <- 6-AOT.AOT5R.
|
103 |
+
AOT.AOT6. <- 6-AOT.AOT6R.
|
104 |
+
AOT.AOT7. <- 6-AOT.AOT7R.
|
105 |
+
|
106 |
+
AOT_frame <- data.frame(AOT.AOT1.,AOT.AOT2.,AOT.AOT3.,AOT.AOT4.,AOT.AOT5.,AOT.AOT6.,AOT.AOT7.,AOT.AOT8.)
|
107 |
+
alpha(AOT_frame)
|
108 |
+
AOT <- rowMeans(AOT_frame)
|
109 |
+
|
110 |
+
#### Interpersonal Reactivity Index
|
111 |
+
IRI.IRI2. = 6- IRI.IRI2R.
|
112 |
+
IRI.IRI4. = 6- IRI.IRI4R.
|
113 |
+
IRI.IRI5. = 6- IRI.IRI5R.
|
114 |
+
|
115 |
+
IRI_frame <- data.frame(IRI.IRI1. , IRI.IRI2. , IRI.IRI3. , IRI.IRI4. , IRI.IRI5. , IRI.IRI6. , IRI.IRI7. )
|
116 |
+
alpha(IRI_frame)
|
117 |
+
IRI <- rowMeans(IRI_frame)
|
118 |
+
|
119 |
+
#Self Report Psychopathy Scale
|
120 |
+
SRP.SRP23. = 8- SRP.SRP23R.
|
121 |
+
SRP.SRP24. = 8- SRP.SRP24R.
|
122 |
+
SRP.SRP25. = 8- SRP.SRP25R.
|
123 |
+
SRP.SRP26. = 8- SRP.SRP26R.
|
124 |
+
SRP.SRP28. = 8- SRP.SRP28R.
|
125 |
+
|
126 |
+
SRP_frame <- data.frame(SRP.SRP01.,SRP.SRP02., SRP.SRP03., SRP.SRP04., SRP.SRP05., SRP.SRP06., SRP.SRP07., SRP.SRP08., SRP.SRP09., SRP.SRP10., SRP.SRP11., SRP.SRP12., SRP.SRP13., SRP.SRP14., SRP.SRP15., SRP.SRP16., SRP.SRP17., SRP.SRP18., SRP.SRP19., SRP.SRP20., SRP.SRP21., SRP.SRP22., SRP.SRP23., SRP.SRP24., SRP.SRP25., SRP.SRP26., SRP.SRP27., SRP.SRP28. , SRP.SRP29., SRP.SRP30. )
|
127 |
+
alpha(SRP_frame)
|
128 |
+
SRP <- rowMeans(SRP_frame)
|
129 |
+
|
130 |
+
##
|
131 |
+
cor.test (GUISD, ATA1)
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
## Supplementary materials
|
137 |
+
|
138 |
+
## Principal component analysis on the Attitudes towards Animals measures
|
139 |
+
|
140 |
+
C <- lowerCor(dat[, c("ATA.AE1.", "ATA.AE2.", "ATA.AE3.", "ATA.AE4.", "ATA.AE5.","ATA.AE6.", "ATA.AE7.", "ATA.AE8.", "ATA.AE9.", "ATA.AE10.", "ATA.AE11.","ATA.AE12.", "ATA.AE13.", "ATA.AE14.","ATA.AE15.", "ATA.AE16.", "ATA.AE17.")])
|
141 |
+
|
142 |
+
principal(C, nfactors =3, n.obs = 234, rotate = "none")
|
143 |
+
|
144 |
+
fa.parallel(C, n.obs= 234, fa = "pc", nfactors = 3)
|
145 |
+
|
102/replication_package/step5/Step5_CleanData.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dedf083e21c164fe24d9aaa233a37c688f10c3ba90fbbd0db5796ee3451d2e2b
|
3 |
+
size 189645
|
102/replication_package/step5/Step5_LimeSurvey.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:506ecfe29bcff56bd7ff4ecf6c7a09ab28f88cfbaa2e4c9fc894b630d0a67787
|
3 |
+
size 567922
|
102/replication_package/step6/Step6_MiniMeta_Analyses.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1347fea7d90f1a1294e25dc4cc79b9504fe331b4c55787eecf42699100b0e01a
|
3 |
+
size 1698
|
102/replication_package/step6/Step6_MiniMeta_Cohen.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aed48f8c595d33ca1b752565df6bd02c4b0189ff20c0494ebfa7fa11da99b47
|
3 |
+
size 991
|
102/replication_package/step6/Step6_MiniMeta_Pearson.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fd11bd59d0dd01c11dff123608b90aaa9580e14669db7c90c5a945b4fd72247
|
3 |
+
size 482
|
102/replication_package/step6/step6.1/Step6.1._Method&Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:734d694d1b7c7c7c3619a1e8778cb95b50f4594889ca9deb8d682ad48c11214c
|
3 |
+
size 188754
|
102/replication_package/step6/step6.1/Step6.1_Analyses.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebc4da50ea6b4811dc3d7450f4a70206aace6fffa3b9c8da5d48ae72f3aea445
|
3 |
+
size 13347
|
102/replication_package/step6/step6.1/Step6.1_Boxplot.jpg
ADDED
![]() |
Git LFS Details
|
102/replication_package/step6/step6.1/Step6.1_Boxplot.tiff
ADDED
|
Git LFS Details
|
102/replication_package/step6/step6.1/Step6.1_Data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5486378e61bf14dc521dc71e4730155d2b3b7c47badf6b76bfe3cdb4ca99fd1
|
3 |
+
size 463465
|
102/replication_package/step6/step6.1/Step6.1_Materials.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b766d229e182c48c5599e6387ef240ab8806d80dbb1b2008185c478b8384d846
|
3 |
+
size 139470
|
102/replication_package/step6/step6.1/Step6.1_Procedure.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f0f0e2a1f317d712f32d1c8d3cf2f63b59c0d9b943ad0a1917d17d3df749cef
|
3 |
+
size 105901
|
102/replication_package/step6/step6.2/Step6.2._Method&Results.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f72a990c5aa2ca28a5d1cd2fca8384b45e0e39563e14f335595e3d0662df6ee
|
3 |
+
size 121152
|
102/replication_package/step6/step6.2/Step6.2_Analyses.Rhistory
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dat <- read.table("Step6.2_Total.dat",header=TRUE)
|
2 |
+
|
3 |
+
##Participants
|
4 |
+
|
5 |
+
length(levels(as.factor(dat$SUBJECT)))
|
6 |
+
table(dat$GENDER)/48
|
7 |
+
mean(dat$AGE)
|
8 |
+
sd(dat$AGE)
|
9 |
+
|
10 |
+
##Exclusion of mistranslated scenario
|
11 |
+
|
12 |
+
dat <- dat[dat$SCENARIO!="P_08",]
|
13 |
+
|
14 |
+
##Exclusion
|
15 |
+
|
16 |
+
COND <- as.factor(dat$CONDITION1_PRESSURE)
|
17 |
+
levels(COND) <- c("SLOW","FAST")
|
18 |
+
|
19 |
+
tab <- table(dat$SUBJECT[COND=="FAST"],dat$BINARY[COND=="FAST"],dat$CATEGORY[COND=="FAST"])
|
20 |
+
(tab[,1,1]+tab[,2,1])<3
|
21 |
+
(tab[,1,2]+tab[,2,2])<3
|
22 |
+
(tab[,1,3]+tab[,2,3])<3
|
23 |
+
(tab[,1,4]+tab[,2,4])<3
|
24 |
+
(tab[,1,5]+tab[,2,5])<3
|
25 |
+
(tab[,1,6]+tab[,2,6])<3
|
26 |
+
|
27 |
+
dat <- dat[dat$SUBJECT!=64,]
|
28 |
+
|
29 |
+
##Average time constraint in the Fast condition
|
30 |
+
|
31 |
+
COND <- as.factor(dat$CONDITION1_PRESSURE)
|
32 |
+
levels(COND) <- c("SLOW","FAST")
|
33 |
+
|
34 |
+
mean(dat$BINARY_LIMIT[COND=="FAST"],na.rm=TRUE)
|
35 |
+
sd(dat$BINARY_LIMIT[COND=="FAST"],na.rm=TRUE)
|
36 |
+
|
37 |
+
##Computation of utilitarian scores
|
38 |
+
|
39 |
+
raw_score <- as.numeric(as.factor(dat$BINARY))-1
|
40 |
+
dat2 <- aggregate(raw_score,list(SUBJECT=dat$SUBJECT,CATEGORY=dat$CATEGORY,COND=COND),mean,na.rm=TRUE)
|
41 |
+
|
42 |
+
score <- dat2$x
|
43 |
+
score[dat2$CATEGORY=="UD"] <- 1-score[dat2$CATEGORY=="UD"]
|
44 |
+
score[dat2$CATEGORY=="PD"] <- 1-score[dat2$CATEGORY=="PD"]
|
45 |
+
score[dat2$CATEGORY=="HC"] <- 1-score[dat2$CATEGORY=="HC"]
|
46 |
+
score[dat2$CATEGORY=="AO"] <- 1-score[dat2$CATEGORY=="AO"]
|
47 |
+
score[dat2$CATEGORY=="P"] <- 1-score[dat2$CATEGORY=="P"]
|
48 |
+
|
49 |
+
##Mean and SD for Utilitarian Scores
|
50 |
+
|
51 |
+
mean(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],na.rm=TRUE)
|
52 |
+
sd(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],na.rm=TRUE)
|
53 |
+
mean(score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"],na.rm=TRUE)
|
54 |
+
sd(score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"],na.rm=TRUE)
|
55 |
+
|
56 |
+
mean(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],na.rm=TRUE)
|
57 |
+
sd(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],na.rm=TRUE)
|
58 |
+
mean(score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"],na.rm=TRUE)
|
59 |
+
sd(score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"],na.rm=TRUE)
|
60 |
+
|
61 |
+
mean(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
|
62 |
+
sd(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
|
63 |
+
mean(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
|
64 |
+
sd(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
|
65 |
+
|
66 |
+
mean(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
|
67 |
+
sd(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
|
68 |
+
mean(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
|
69 |
+
sd(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
|
70 |
+
|
71 |
+
mean(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
|
72 |
+
sd(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
|
73 |
+
mean(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
|
74 |
+
sd(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
|
75 |
+
|
76 |
+
mean(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
|
77 |
+
sd(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
|
78 |
+
mean(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
|
79 |
+
sd(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
|
80 |
+
|
81 |
+
##Correlations between scores
|
82 |
+
|
83 |
+
cor.test(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"])
|
84 |
+
cor.test(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"])
|
85 |
+
cor.test(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"])
|
86 |
+
cor.test(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"])
|
87 |
+
cor.test(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"])
|
88 |
+
cor.test(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"])
|
89 |
+
|
90 |
+
##Comparison between conditions
|
91 |
+
|
92 |
+
CATEGORY <- dat2$CATEGORY
|
93 |
+
CONDITION <- dat2$COND
|
94 |
+
dat3 <- data.frame(score,CATEGORY,CONDITION)
|
95 |
+
|
96 |
+
library(lsr)
|
97 |
+
|
98 |
+
t.test(score[dat3$CATEGORY=="UD" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="UD" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
99 |
+
datUD <- dat3[dat3$CATEGORY=="UD",]
|
100 |
+
cohensD(score ~ CONDITION, data = datUD, method = "paired")
|
101 |
+
|
102 |
+
t.test(score[dat3$CATEGORY=="PD" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="PD" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
103 |
+
datPD <- dat3[dat3$CATEGORY=="PD",]
|
104 |
+
cohensD(score ~ CONDITION, data = datPD, method = "paired")
|
105 |
+
|
106 |
+
t.test(score[dat3$CATEGORY=="HC" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="HC" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
107 |
+
datHC <- dat3[dat3$CATEGORY=="HC",]
|
108 |
+
cohensD(score ~ CONDITION, data = datHC, method = "paired")
|
109 |
+
|
110 |
+
t.test(score[dat3$CATEGORY=="AO" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="AO" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
111 |
+
datAO <- dat3[dat3$CATEGORY=="AO",]
|
112 |
+
cohensD(score ~ CONDITION, data = datAO, method = "paired")
|
113 |
+
|
114 |
+
t.test(score[dat3$CATEGORY=="DE" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="DE" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
115 |
+
datDE <- dat3[dat3$CATEGORY=="DE",]
|
116 |
+
cohensD(score ~ CONDITION, data = datDE, method = "paired")
|
117 |
+
|
118 |
+
t.test(score[dat3$CATEGORY=="P" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="P" & dat3$CONDITION=="SLOW"],paired=TRUE)
|
119 |
+
datP <- dat3[dat3$CATEGORY=="P",]
|
120 |
+
cohensD(score ~ CONDITION, data = datP, method = "paired")
|
121 |
+
|
122 |
+
##Figures
|
123 |
+
|
124 |
+
cond_class <- ordered(dat3$CONDITION, levels = c("FAST", "SLOW"))
|
125 |
+
type_class <- ordered(dat3$CATEGORY, levels = c("UD", "PD", "HC","AO","DE","P"))
|
126 |
+
dat4 <- data.frame(score,type_class,cond_class)
|
127 |
+
|
128 |
+
library(ggplot2)
|
129 |
+
ggplot(dat3, aes(type_class, score, fill=factor(cond_class))) +
|
130 |
+
geom_boxplot()+
|
131 |
+
scale_y_continuous(breaks = seq(0, 1, by = 0.1))+
|
132 |
+
ggtitle("Study 2 (Time constraint) - Utilitarian scores per type of scenarios and condition")+
|
133 |
+
xlab("Type of scenarios")+
|
134 |
+
ylab("Utilitarian scores")+
|
135 |
+
scale_fill_discrete(name = "Condition", labels = c("Fast", "Slow"))+
|
136 |
+
theme(axis.title=element_text(size=16,face="bold"), axis.text=element_text(size=14),legend.title=element_text(size=16,face="bold"),
|
137 |
+
legend.text=element_text(size=14), plot.title=element_text(size=20,face="bold",hjust=0.5))+
|
138 |
+
annotate(geom="text", x=1, y=1.1, label="d=-0.09, p=.33", color="black",size=5)+
|
139 |
+
annotate(geom="text", x=2, y=1.1, label="d=-0.16, p=.08", color="black",size=5)+
|
140 |
+
annotate(geom="text", x=3, y=1.1, label="d=0.60, p<.001***", color="black",size=5)+
|
141 |
+
annotate(geom="text", x=4, y=1.1, label="d=-0.15, p=.10", color="black",size=5)+
|
142 |
+
annotate(geom="text", x=5, y=1.1, label="d=0.26, p=.005**", color="black",size=5)+
|
143 |
+
annotate(geom="text", x=6, y=1.1, label="d=0.03, p=.75", color="black",size=5)
|
144 |
+
|
145 |
+
ggsave('Step6.2.tiff', width = 15, height = 10,dpi=600, compression = "lzw")
|
146 |
+
|
147 |
+
##Preparation of data for mini-meta
|
148 |
+
|
149 |
+
library(effsize)
|
150 |
+
|
151 |
+
#D
|
152 |
+
|
153 |
+
mean(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="FAST"],na.rm=TRUE)
|
154 |
+
sd(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="FAST"],na.rm=TRUE)
|
155 |
+
|
156 |
+
mean(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="SLOW"],na.rm=TRUE)
|
157 |
+
sd(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="SLOW"],na.rm=TRUE)
|
158 |
+
|
159 |
+
cohen.d((datUD$score+datPD$score) ~ datUD$CONDITION)
|
160 |
+
|
161 |
+
#HC
|
162 |
+
|
163 |
+
mean(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
|
164 |
+
sd(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
|
165 |
+
|
166 |
+
mean(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
|
167 |
+
sd(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
|
168 |
+
|
169 |
+
cohen.d(datHC$score ~ datHC$CONDITION)
|
170 |
+
|
171 |
+
#AO
|
172 |
+
|
173 |
+
mean(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
|
174 |
+
sd(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
|
175 |
+
|
176 |
+
mean(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
|
177 |
+
sd(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
|
178 |
+
|
179 |
+
cohen.d(datAO$score ~ datAO$CONDITION)
|
180 |
+
|
181 |
+
#DE
|
182 |
+
|
183 |
+
mean(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
|
184 |
+
sd(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
|
185 |
+
|
186 |
+
mean(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
|
187 |
+
sd(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
|
188 |
+
|
189 |
+
cohen.d(datDE$score ~ datDE$CONDITION)
|
190 |
+
|
191 |
+
#P
|
192 |
+
|
193 |
+
mean(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
|
194 |
+
sd(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
|
195 |
+
|
196 |
+
mean(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
|
197 |
+
sd(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
|
198 |
+
|
199 |
+
cohen.d(datP$score ~ datP$CONDITION)
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
102/replication_package/step6/step6.2/Step6.2_Boxplot.jpg
ADDED
![]() |
Git LFS Details
|
102/replication_package/step6/step6.2/Step6.2_Boxplot.tiff
ADDED
|
Git LFS Details
|