anonymous-submission-acl2025 commited on
Commit
060baa9
·
1 Parent(s): f4102f9
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 102/paper.pdf +3 -0
  2. 102/replication_package/step1/Step1_DemographicInformation.xlsx +3 -0
  3. 102/replication_package/step1/Step1_ParticipantsAnswers.xlsx +3 -0
  4. 102/replication_package/step1/Step1_PreTest_Materials.docx +3 -0
  5. 102/replication_package/step1/Step1_PreTest_Materials.pdf +3 -0
  6. 102/replication_package/step1/Step1_Procedure.pdf +3 -0
  7. 102/replication_package/step1/Step1_RawDATA.zip +3 -0
  8. 102/replication_package/step1/Step1_Results.docx +3 -0
  9. 102/replication_package/step1/Step1_ResultsFINAL.csv +3 -0
  10. 102/replication_package/step2/Step2_Analyses +342 -0
  11. 102/replication_package/step2/Step2_Materials.docx +3 -0
  12. 102/replication_package/step2/Step2_Procedure.pdf +3 -0
  13. 102/replication_package/step2/Step2_Results.docx +3 -0
  14. 102/replication_package/step2/Step2_Results_CLEAN_EnglishVersion.csv +3 -0
  15. 102/replication_package/step2/Step2_Results_CLEAN_FrenchVersion.csv +3 -0
  16. 102/replication_package/step2/Step2_Scales.docx +3 -0
  17. 102/replication_package/step2/Step2_Stimuli.docx +3 -0
  18. 102/replication_package/step3/Step3_NewScenarios.docx +3 -0
  19. 102/replication_package/step3/step3.1/Step3.1_DemographicInformation.xlsx +3 -0
  20. 102/replication_package/step3/step3.1/Step3.1_Procedure.docx +3 -0
  21. 102/replication_package/step3/step3.1/Step3.1_Questionnaire.docx +3 -0
  22. 102/replication_package/step3/step3.1/Step3.1_RawDATA.zip +3 -0
  23. 102/replication_package/step3/step3.1/Step3.1_Results.docx +3 -0
  24. 102/replication_package/step3/step3.1/Step3.1_ResultsSheet.xlsx +3 -0
  25. 102/replication_package/step3/step3.2/Step3.2_Procedure.docx +3 -0
  26. 102/replication_package/step3/step3.2/Step3.2_Questionnaire.docx +3 -0
  27. 102/replication_package/step3/step3.2/Step3.2_Results.csv +3 -0
  28. 102/replication_package/step3/step3.2/Step3.2_Results.docx +3 -0
  29. 102/replication_package/step4/Step4_ControlScenarios.docx +3 -0
  30. 102/replication_package/step4/Step4_MainScenarios.docx +3 -0
  31. 102/replication_package/step4/Step4_Procedure.docx +3 -0
  32. 102/replication_package/step4/Step4_QualtricsQuestionnaire.docx +3 -0
  33. 102/replication_package/step4/Step4_Scales.docx +3 -0
  34. 102/replication_package/step5/Step 5 ATA analysis.R +145 -0
  35. 102/replication_package/step5/Step5_CleanData.csv +3 -0
  36. 102/replication_package/step5/Step5_LimeSurvey.pdf +3 -0
  37. 102/replication_package/step6/Step6_MiniMeta_Analyses.txt +3 -0
  38. 102/replication_package/step6/Step6_MiniMeta_Cohen.txt +3 -0
  39. 102/replication_package/step6/Step6_MiniMeta_Pearson.txt +3 -0
  40. 102/replication_package/step6/step6.1/Step6.1._Method&Results.docx +3 -0
  41. 102/replication_package/step6/step6.1/Step6.1_Analyses.txt +3 -0
  42. 102/replication_package/step6/step6.1/Step6.1_Boxplot.jpg +3 -0
  43. 102/replication_package/step6/step6.1/Step6.1_Boxplot.tiff +3 -0
  44. 102/replication_package/step6/step6.1/Step6.1_Data.csv +3 -0
  45. 102/replication_package/step6/step6.1/Step6.1_Materials.zip +3 -0
  46. 102/replication_package/step6/step6.1/Step6.1_Procedure.pdf +3 -0
  47. 102/replication_package/step6/step6.2/Step6.2._Method&Results.docx +3 -0
  48. 102/replication_package/step6/step6.2/Step6.2_Analyses.Rhistory +206 -0
  49. 102/replication_package/step6/step6.2/Step6.2_Boxplot.jpg +3 -0
  50. 102/replication_package/step6/step6.2/Step6.2_Boxplot.tiff +3 -0
102/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e32d1ff4f07dff49a62b596fed37a1c37b9c9bcbcd883655d1c381d67648296c
3
+ size 4011285
102/replication_package/step1/Step1_DemographicInformation.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6151b50c6491108eddfd461a66df20892e0bedc169ec9f909f1cbcb010f18866
3
+ size 9233
102/replication_package/step1/Step1_ParticipantsAnswers.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e45a398076980696291032d53e4b91304ad6429e67f66c3cc24eefbc5abf9ca1
3
+ size 13694
102/replication_package/step1/Step1_PreTest_Materials.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3ab5e20ad686a182fa0125d5aff30ef6c44812ffeacceb483bea211a652d9ce
3
+ size 108106
102/replication_package/step1/Step1_PreTest_Materials.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23143c0f702fa67397f390f834e5cb20b6cd2bf62cb344558008e8e128f18aef
3
+ size 687896
102/replication_package/step1/Step1_Procedure.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4576183e27393729c2e34362b70c98d7d96ab335358d48383408f96f4ac90843
3
+ size 78021
102/replication_package/step1/Step1_RawDATA.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3266d0ea74eae8c287dfdacdac64de52ae19cc6112fd226f256f263872d9133d
3
+ size 1075898
102/replication_package/step1/Step1_Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f71428b2c48549c57626549865c56240a6bd31698bf104caceb1fc61d38170f
3
+ size 19517
102/replication_package/step1/Step1_ResultsFINAL.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ad551f1c7d26de97d5b839fb148d83fe2b46350321ce75ea4178a8f5f812f1b
3
+ size 1475
102/replication_package/step2/Step2_Analyses ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ library(psych)
2
+
3
+ #Opening data
4
+
5
+ dat <- read.csv(""Step_Results_CLEAN_EnglishVersion.csv",header=TRUE)
6
+ attach(dat)
7
+
8
+ #Constructing utilitarian scores for each category
9
+
10
+ UD <- (U.D.01+U.D.02+U.D.03+U.D.04+U.D.05+U.D.06+U.D.07+U.D.08+U.D.09+U.D.10)/10
11
+ PD <- (P.D.01+P.D.02+P.D.03+P.D.04+P.D.05+P.D.06+P.D.07+P.D.08+P.D.09+P.D.10)/10
12
+ HC <- (H.C.01+H.C.02+H.C.03+H.C.04+H.C.05+H.C.06+H.C.07+H.C.08+H.C.09+H.C.10)/10
13
+ AO <- (A.O.01+A.O.02+A.O.03+A.O.04+A.O.05+A.O.06+A.O.07+A.O.08+A.O.09+A.O.10)/10
14
+ DE <- (D.E.01+D.E.02+D.E.03+D.E.04+D.E.05+D.E.06+D.E.07+D.E.08+D.E.09+D.E.10)/10
15
+ P <- (P.01+P.02+P.03+P.04+P.05+P.06+P.07+P.08+P.09+P.10)/10
16
+
17
+ #Reverse-coding utilitarian scores when necessary
18
+
19
+ UD_ut <- 8-UD
20
+ PD_ut <- 8-PD
21
+ HC_ut <- 8-HC
22
+ AO_ut <- 8-AO
23
+ DE_ut <- DE
24
+ P_ut <- 8-P
25
+
26
+ #Calculating Cronbach's Alpha for utilitarian scores in each category
27
+
28
+ UDframe <- data.frame(U.D.01,U.D.02,U.D.03,U.D.04,U.D.05,U.D.06,U.D.07,U.D.08,U.D.09,U.D.10)
29
+ alpha(UDframe)
30
+
31
+ PDframe <- data.frame(P.D.01,P.D.02,P.D.03,P.D.04,P.D.05,P.D.06,P.D.07,P.D.08,P.D.09,P.D.10)
32
+ alpha(PDframe)
33
+
34
+ HCframe <- data.frame(H.C.01,H.C.02,H.C.03,H.C.04,H.C.05,H.C.06,H.C.07,H.C.08,H.C.09,H.C.10)
35
+ alpha(HCframe)
36
+
37
+ AOframe <- data.frame(A.O.01,A.O.02,A.O.03,A.O.04,A.O.05,A.O.06,A.O.07,A.O.08,A.O.09,A.O.10)
38
+ alpha(AOframe)
39
+
40
+ DEframe <- data.frame(D.E.01,D.E.02,D.E.03,D.E.04,D.E.05,D.E.06,D.E.07,D.E.08,D.E.09,D.E.10)
41
+ alpha(DEframe)
42
+
43
+ Pframe <- data.frame(P.01,P.02,P.03,P.04,P.05,P.06,P.07,P.08,P.09,P.10)
44
+ alpha(Pframe)
45
+
46
+ #Constructing individual traits measures
47
+
48
+ CRT <- CRT1_RIGHT+CRT2_RIGHT+CRT3_RIGHT
49
+
50
+ NFCsum <- (6-NFC.01)+(6-NFC.02)+NFC.03+(6-NFC.04)+(6-NFC.05)+(6-NFC.06)+(6-NFC.07)+NFC.08+(6-NFC.09)+(6-NFC.10)+(6-NFC.11)+NFC.12+(6-NFC.13)+NFC.14+(6-NFC.15)+(6-NFC.16)+NFC.17+(6-NFC.18)+(6-NFC.19)
51
+ NFC <- NFCsum/19
52
+
53
+ mean(NFC)
54
+ sd(NFC)
55
+
56
+ FIsum <- FI.01+FI.02+FI.03+FI.04+FI.05+FI.06+FI.07+FI.08+FI.09+FI.10+FI.11+FI.12
57
+ FI <- FIsum/12
58
+
59
+ IRIsum <- IRI_01+(6-IRI_02)+IRI_03+(6-IRI_04)+(6-IRI_05)+IRI_06+IRI_07
60
+ IRI <- IRIsum/7
61
+
62
+ SRPsum <- SRP_01+SRP_02+SRP_03+SRP_04+SRP_05+SRP_06+SRP_07+SRP_08+SRP_09+SRP_10+SRP_11+SRP_12+SRP_13+SRP_14+SRP_15+SRP_16+SRP_17+SRP_18+SRP_19+SRP_20+SRP_21+SRP_22+(8-SRP_23)+(8-SRP_24)+(8-SRP_25)+(8-SRP_26)+SRP_27+(8-SRP_28)+SRP_29+SRP_30
63
+ SRP <- SRPsum/30
64
+
65
+ TASsum <- TAS_01+TAS_02+TAS_03+TAS_04+TAS_05+TAS_06+TAS_07+TAS_08+(6-TAS_09)+TAS_10+TAS_11+TAS_12+(6-TAS_13)+TAS_14+(6-TAS_15)+TAS_16+TAS_17+(6-TAS_18)+(6-TAS_19)+TAS_20
66
+ TAS <- TASsum/20
67
+
68
+ #Calculating average utilitarian scores for each category
69
+
70
+ mean(UD_ut)
71
+ sd(UD_ut)
72
+
73
+ mean(PD_ut)
74
+ sd(PD_ut)
75
+
76
+ mean(HC_ut)
77
+ sd(HC_ut)
78
+
79
+ mean(AO_ut)
80
+ sd(AO_ut)
81
+
82
+ mean(DE_ut)
83
+ sd(DE_ut)
84
+
85
+ mean(P_ut)
86
+ sd(P_ut)
87
+
88
+ #Calculating correlations utilitarian scores between each category
89
+
90
+ cor.test(UD_ut,PD_ut)
91
+ cor.test(UD_ut,HC_ut)
92
+ cor.test(UD_ut,AO_ut)
93
+ cor.test(UD_ut,DE_ut)
94
+ cor.test(UD_ut,P_ut)
95
+ cor.test(PD_ut,HC_ut)
96
+ cor.test(PD_ut,AO_ut)
97
+ cor.test(PD_ut,DE_ut)
98
+ cor.test(PD_ut,P_ut)
99
+ cor.test(HC_ut,AO_ut)
100
+ cor.test(HC_ut,DE_ut)
101
+ cor.test(HC_ut,P_ut)
102
+ cor.test(AO_ut,DE_ut)
103
+ cor.test(AO_ut,P_ut)
104
+ cor.test(DE_ut,P_ut)
105
+
106
+ #Calculating coherence between utilitarian scores using Cronbach's Alpha
107
+
108
+ alpha(data.frame(UD_ut,PD_ut,HC_ut,AO_ut,DE_ut,P_ut))
109
+
110
+ #Calculating Cronbach's Alpha for individual traits measures
111
+
112
+ NFCframe <- data.frame((6-NFC.01),(6-NFC.02),NFC.03,(6-NFC.04),(6-NFC.05),(6-NFC.06),(6-NFC.07),NFC.08,(6-NFC.09),(6-NFC.10),(6-NFC.11),NFC.12,(6-NFC.13),NFC.14,(6-NFC.15),(6-NFC.16),NFC.17,(6-NFC.18),(6-NFC.19))
113
+ alpha(NFCframe)
114
+
115
+ FIframe <- data.frame(FI.01,FI.02,FI.03,FI.04,FI.05,FI.06,FI.07,FI.08,FI.09,FI.10,FI.11,FI.12)
116
+ alpha(FIframe)
117
+
118
+ IRIframe <- data.frame(IRI_01,(6-IRI_02),IRI_03,(6-IRI_04),(6-IRI_05),IRI_06,IRI_07)
119
+ alpha(IRIframe)
120
+
121
+ SRPframe <- data.frame(SRP_01,SRP_02,SRP_03,SRP_04,SRP_05,SRP_06,SRP_07,SRP_08,SRP_09,SRP_10,SRP_11,SRP_12,SRP_13,SRP_14,SRP_15,SRP_16,SRP_17,SRP_18,SRP_19,SRP_20,SRP_21,SRP_22,(8-SRP_23),(8-SRP_24),(8-SRP_25),(8-SRP_26),SRP_27,(8-SRP_28),SRP_29,SRP_30)
122
+ alpha(SRPframe)
123
+
124
+ TASframe <- data.frame(TAS_01,TAS_02,TAS_03,TAS_04,TAS_05,TAS_06,TAS_07,TAS_08,(6-TAS_09),TAS_10,TAS_11,TAS_12,(6-TAS_13),TAS_14,(6-TAS_15),TAS_16,TAS_17,(6-TAS_18),(6-TAS_19),TAS_20)
125
+ alpha(TASframe)
126
+
127
+ #Correlation between different individual traits measures
128
+
129
+ cor.test(CRT,NFC)
130
+ cor.test(CRT,FI)
131
+ cor.test(CRT,IRI)
132
+ cor.test(CRT,SRP)
133
+ cor.test(CRT,TAS)
134
+ cor.test(NFC,FI)
135
+ cor.test(NFC,IRI)
136
+ cor.test(NFC,SRP)
137
+ cor.test(NFC,TAS)
138
+ cor.test(FI,IRI)
139
+ cor.test(FI,SRP)
140
+ cor.test(FI,TAS)
141
+ cor.test(IRI,SRP)
142
+ cor.test(IRI,TAS)
143
+ cor.test(SRP,TAS)
144
+
145
+ #Correlations between individual traits and utilitarian scores
146
+
147
+ cor.test(CRT,UD_ut)
148
+ cor.test(CRT,PD_ut)
149
+ cor.test(CRT,HC_ut)
150
+ cor.test(CRT,AO_ut)
151
+ cor.test(CRT,DE_ut)
152
+ cor.test(CRT,P_ut)
153
+ cor.test(NFC,UD_ut)
154
+ cor.test(NFC,PD_ut)
155
+ cor.test(NFC,HC_ut)
156
+ cor.test(NFC,AO_ut)
157
+ cor.test(NFC,DE_ut)
158
+ cor.test(NFC,P_ut)
159
+ cor.test(FI,UD_ut)
160
+ cor.test(FI,PD_ut)
161
+ cor.test(FI,HC_ut)
162
+ cor.test(FI,AO_ut)
163
+ cor.test(FI,DE_ut)
164
+ cor.test(FI,P_ut)
165
+ cor.test(IRI,UD_ut)
166
+ cor.test(IRI,PD_ut)
167
+ cor.test(IRI,HC_ut)
168
+ cor.test(IRI,AO_ut)
169
+ cor.test(IRI,DE_ut)
170
+ cor.test(IRI,P_ut)
171
+ cor.test(SRP,PD_ut)
172
+ cor.test(SRP,HC_ut)
173
+ cor.test(SRP,AO_ut)
174
+ cor.test(SRP,DE_ut)
175
+ cor.test(SRP,P_ut)
176
+ cor.test(TAS,UD_ut)
177
+ cor.test(TAS,PD_ut)
178
+ cor.test(TAS,HC_ut)
179
+ cor.test(TAS,AO_ut)
180
+ cor.test(TAS,DE_ut)
181
+ cor.test(TAS,P_ut)
182
+
183
+ #Calculating a global utilitarian score
184
+
185
+ util <- (UD_ut+PD_ut+HC_ut+DE_ut+AO_ut+P_ut)/6
186
+ mean(util)
187
+ sd(util)
188
+
189
+ #Correlations between global utilitarian score and individual traits measures
190
+
191
+ cor.test(util,CRT)
192
+ cor.test(util,NFC)
193
+ cor.test(util,FI)
194
+ cor.test(util,IRI)
195
+ cor.test(util,SRP)
196
+ cor.test(util,TAS)
197
+ cor.test(util,TAS)
198
+ cor.test(util,CRT)
199
+ cor.test(util,NFC)
200
+
201
+ #Calculating average utilitarian score (and standard deviation) for each individual scenario
202
+
203
+ 8-mean(U.D.01)
204
+ sd(U.D.01)
205
+ 8-mean(U.D.02)
206
+ sd(U.D.02)
207
+ 8-mean(U.D.03)
208
+ sd(U.D.03)
209
+ 8-mean(U.D.04)
210
+ sd(U.D.04)
211
+ 8-mean(U.D.05)
212
+ sd(U.D.05)
213
+ 8-mean(U.D.06)
214
+ sd(U.D.06)
215
+ 8-mean(U.D.07)
216
+ sd(U.D.07)
217
+ 8-mean(U.D.08)
218
+ sd(U.D.08)
219
+ 8-mean(U.D.09)
220
+ sd(U.D.09)
221
+ 8-mean(U.D.10)
222
+ sd(U.D.10)
223
+ 8-mean(P.D.01)
224
+ sd(P.D.01)
225
+ 8-mean(P.D.02)
226
+ sd(P.D.02)
227
+ 8-mean(P.D.03)
228
+ sd(P.D.03)
229
+ 8-mean(P.D.04)
230
+ sd(P.D.04)
231
+ 8-mean(P.D.05)
232
+ sd(P.D.05)
233
+ 8-mean(P.D.06)
234
+ sd(P.D.06)
235
+ 8-mean(P.D.07)
236
+ sd(P.D.07)
237
+ 8-mean(P.D.08)
238
+ sd(P.D.08)
239
+ 8-mean(P.D.09)
240
+ sd(P.D.09)
241
+ 8-mean(P.D.10)
242
+ sd(P.D.10)
243
+ 8-mean(H.C.01)
244
+ sd(H.C.01)
245
+ 8-mean(H.C.02)
246
+ sd(H.C.02)
247
+ 8-mean(H.C.03)
248
+ sd(H.C.03)
249
+ 8-mean(H.C.04)
250
+ sd(H.C.04)
251
+ 8-mean(H.C.05)
252
+ sd(H.C.05)
253
+ 8-mean(H.C.06)
254
+ sd(H.C.06)
255
+ 8-mean(H.C.07)
256
+ sd(H.C.07)
257
+ 8-mean(H.C.08)
258
+ sd(H.C.08)
259
+ 8-mean(H.C.09)
260
+ sd(H.C.09)
261
+ 8-mean(H.C.10)
262
+ sd(H.C.10)
263
+ 8-mean(A.O.01)
264
+ sd(A.O.01)
265
+ 8-mean(A.O.02)
266
+ sd(A.O.02)
267
+ 8-mean(A.O.03)
268
+ sd(A.O.03)
269
+ 8-mean(A.O.04)
270
+ sd(A.O.04)
271
+ 8-mean(A.O.05)
272
+ sd(A.O.05)
273
+ 8-mean(A.O.06)
274
+ sd(A.O.06)
275
+ 8-mean(A.O.07)
276
+ sd(A.O.07)
277
+ 8-mean(A.O.08)
278
+ sd(A.O.08)
279
+ 8-mean(A.O.09)
280
+ sd(A.O.09)
281
+ 8-mean(A.O.10)
282
+ sd(A.O.10)
283
+ 8-mean(P.01)
284
+ sd(P.01)
285
+ 8-mean(P.02)
286
+ sd(P.02)
287
+ 8-mean(P.03)
288
+ sd(P.03)
289
+ 8-mean(P.04)
290
+ sd(P.04)
291
+ 8-mean(P.05)
292
+ sd(P.05)
293
+ 8-mean(P.06)
294
+ sd(P.06)
295
+ 8-mean(P.07)
296
+ sd(P.07)
297
+ 8-mean(P.08)
298
+ sd(P.08)
299
+ 8-mean(P.09)
300
+ sd(P.09)
301
+ 8-mean(P.10)
302
+ sd(P.10)
303
+ mean(D.E.01)
304
+ sd(D.E.01)
305
+ mean(D.E.02)
306
+ sd(D.E.02)
307
+ mean(D.E.03)
308
+ sd(D.E.03)
309
+ mean(D.E.04)
310
+ sd(D.E.04)
311
+ mean(D.E.05)
312
+ sd(D.E.05)
313
+ mean(D.E.06)
314
+ sd(D.E.06)
315
+ mean(D.E.07)
316
+ sd(D.E.07)
317
+ mean(D.E.08)
318
+ sd(D.E.08)
319
+ mean(D.E.09)
320
+ sd(D.E.09)
321
+ mean(D.E.10)
322
+ sd(D.E.10)
323
+
324
+ #Cluster analysis
325
+
326
+ library(pvclust)
327
+
328
+ mydata <- data.frame(UD_ut,PD_ut,HC_ut,AO_ut,DE_ut,P_ut)
329
+ fit <- pvclust(mydata, method.hclust="ward", method.dist="euclidean")
330
+ plot(fit)
331
+
332
+ pvrect(fit, alpha=.95)
333
+
334
+ #Correlation plot
335
+
336
+ > pairs.panels(mydata,
337
+ + method = "pearson", # correlation method
338
+ + hist.col = "#00AFBB",
339
+ + density = FALSE, # show density plots
340
+ + ellipses = FALSE, # show correlation ellipses
341
+ + lm = TRUE,
342
+ + stars = TRUE)
102/replication_package/step2/Step2_Materials.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47b171007ed468cb77ae1cfa788be1ba8e61902aa9a741ba9bef3f2fc3c18aa1
3
+ size 35248
102/replication_package/step2/Step2_Procedure.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb31c915219f71bfbff451bb811aefcf2d5061bcb55474ddb332cad3b801b76
3
+ size 107879
102/replication_package/step2/Step2_Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe3c4cbcb41289c9619d1db2006f43721e124e8516c7a8c09a1e90dd7726c73
3
+ size 3251730
102/replication_package/step2/Step2_Results_CLEAN_EnglishVersion.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:374ffcdba02495afec0f553856779200bd449683bf3af0645ce18142e02437dd
3
+ size 53248
102/replication_package/step2/Step2_Results_CLEAN_FrenchVersion.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:309ddda6f73fecef3a0d77010555ebb07317787841cba75f312eeedc59fdd026
3
+ size 53216
102/replication_package/step2/Step2_Scales.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd61ddd8f27e82c857330983f6b1261213020a186ee0c92095c7678c0b1c9a9d
3
+ size 21423
102/replication_package/step2/Step2_Stimuli.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b8d58af1f496dcf32e2bfbfb831843ef59a4ec865d7713e9b6f805a086fc667
3
+ size 34702
102/replication_package/step3/Step3_NewScenarios.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:245d99f59d7e0baf942619c89c25ed55f98a9d98fd3777c2ee679b6329ddb45e
3
+ size 17612
102/replication_package/step3/step3.1/Step3.1_DemographicInformation.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:128e9cd422da49da5fcc383b6c06515bbd8180f0da52e1acea329ea678760909
3
+ size 8854
102/replication_package/step3/step3.1/Step3.1_Procedure.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48c91e1d4f43b295bf70df8c30afff61804200cc953f42003b12230d592130f
3
+ size 15440
102/replication_package/step3/step3.1/Step3.1_Questionnaire.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:903659b9485d0b9ceb8722d2ce8aeee69103b0dc9468b8735d88a5d21e41c70c
3
+ size 19789
102/replication_package/step3/step3.1/Step3.1_RawDATA.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92fc47898552c8065ed4b6c6f8f12ff83f4cdc6e15d2885583029ede8102c373
3
+ size 99555
102/replication_package/step3/step3.1/Step3.1_Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:019c9d2c6b8d577b00cc6c46bcfc20f7eb3d948d5e34e2f1a6e2c179f2bef61a
3
+ size 16824
102/replication_package/step3/step3.1/Step3.1_ResultsSheet.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:070bfb5072d5ade8638020e8df96259d216783ed6a0f4d4cccbe9d8191601c99
3
+ size 8593
102/replication_package/step3/step3.2/Step3.2_Procedure.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d78937834176735c4ff81f942392cffa0332bd1f9790055f8d97efe7db2f82fa
3
+ size 16314
102/replication_package/step3/step3.2/Step3.2_Questionnaire.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:696870e82789d8e84a33d8ab0a3d3969576906aed68c50671859035bf7eb4e02
3
+ size 26013
102/replication_package/step3/step3.2/Step3.2_Results.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15ae549d14b5df2cbc38b4f4a862245082f0bcc7d8f1159a2972de8c043bc18f
3
+ size 23580
102/replication_package/step3/step3.2/Step3.2_Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59c8b7a97f4e301d767b5ff39c3ac9dfcf2912e1e89f13ff6dab357bef38460d
3
+ size 17323
102/replication_package/step4/Step4_ControlScenarios.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc368ed08eb7a13b2c52a01629e5010d8dba69d8b7a434d08458fe93dab8b539
3
+ size 16267
102/replication_package/step4/Step4_MainScenarios.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16bc3ad954c6d799cd5c650c84503a948afd46b2ee10034b10b3e9e0c6016367
3
+ size 35723
102/replication_package/step4/Step4_Procedure.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15fc8825d7da1bf4bf6589eba8c730bc5a68f7c5329bc1708276ca90c7e8e813
3
+ size 16713
102/replication_package/step4/Step4_QualtricsQuestionnaire.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8d8d7b912c790294e35db13bd925f3a7aa3ad2d05b16b63afa57db79460e780
3
+ size 61158
102/replication_package/step4/Step4_Scales.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5a7df37f53b8089a99a06a95419ca27e54ab06622c03379fd23a4a8a649722
3
+ size 20708
102/replication_package/step5/Step 5 ATA analysis.R ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Step 5 Attitudes Towards Animals analysis
2
+
3
+ library(psych)
4
+ library(dplyr)
5
+
6
+ dat <- Step5_CleanData
7
+
8
+ ##Excluding participants who failed attention checks
9
+ dat <- dat[dat$AOT.Attentioncheck1. == '5', ]
10
+ dat <- dat[dat$AOT.Attentioncheck2. == '1',]
11
+ attach(dat)
12
+
13
+ ##Demographics
14
+
15
+ mean(InfoD01)
16
+ sd(InfoD01)
17
+ table(InfoD02)
18
+
19
+ ##Attitudes towards animal scales
20
+ dat$ATA.AE2. <- 8-ATA.AE2R.
21
+ dat$ATA.AE6. <- 8-ATA.AE6R.
22
+ dat$ATA.AE7. <- 8-ATA.AE7R.
23
+ dat$ATA.AE7. <- 8-ATA.AE7R.
24
+ dat$ATA.AE8. <- 8-ATA.AE8R.
25
+ dat$ATA.AE10. <- 8-ATA.AE10R.
26
+ dat$ATA.AE11. <- 8-ATA.AE11R.
27
+ dat$ATA.AE16. <- 8-ATA.AE16R.
28
+
29
+ ATA1_frame <- data.frame(ATA.AE1., ATA.AE2.)
30
+ alpha(ATA1_frame)
31
+ ATA1 <- rowMeans(ATA1_frame)
32
+
33
+ ATA2_frame <- data.frame(ATA.AE3., ATA.AE4., ATA.AE5.,ATA.AE6., ATA.AE7., ATA.AE8., ATA.AE9., ATA.AE10., ATA.AE11.)
34
+ alpha(ATA2_frame)
35
+ ATA2 <- rowMeans(ATA2_frame)
36
+
37
+ ATA3_frame <- data.frame(ATA.AE12., ATA.AE13., ATA.AE14.,ATA.AE15., ATA.AE16., ATA.AE17.)
38
+ alpha(ATA3_frame)
39
+ ATA3 <- rowMeans(ATA3_frame)
40
+
41
+
42
+ cor.test(ATA1,ATA2)
43
+ cor.test(ATA1,ATA3)
44
+ cor.test(ATA2,ATA3)
45
+
46
+
47
+ ##Measures of utilitarianism
48
+ #GUI = Geneva Utilitarianism Inventory
49
+
50
+ # Sacrificial Dilemmas
51
+ GUISD_frame <- data.frame (UD1, UD2, UD10, PD3, PD8)
52
+ alpha(GUISD_frame)
53
+ GUISD <- 8- rowMeans(GUISD_frame)
54
+
55
+ #Harmless Crimes
56
+ GUIHC_frame <- data.frame(HC1, HC2, HC3, HC4, HC9)
57
+ alpha(GUIHC_frame)
58
+ GUIHC <- 8 - rowMeans(GUIHC_frame)
59
+
60
+ #Action vs Omission
61
+ GUIAO_frame <- data.frame(AO1, AO5, AO6, AO8, AO10)
62
+ alpha(GUIAO_frame)
63
+ GUIAO <- 8 - rowMeans(GUIAO_frame)
64
+
65
+ #Demanding Ethics
66
+ GUIDE_frame <- data.frame(DE2, DE3, DE4, DE5, DE7)
67
+ alpha(GUIDE_frame)
68
+ GUIDE <- rowMeans(GUIDE_frame)
69
+
70
+ #Punishment
71
+ GUIP_frame <- data.frame(P3, P4, P6, P7, P10)
72
+ alpha(GUIP_frame)
73
+ GUIP <- 8-rowMeans(GUIP_frame)
74
+
75
+
76
+ ##Measures of cognitive style
77
+
78
+ ##CRT
79
+ dat$CRT1B <- ifelse(CRT1 == "2" , 1, 0)
80
+ dat$CRT2B <- ifelse(CRT2 == "225" , 1, 0)
81
+ dat$CRT3B <- ifelse(CRT3 == "5" , 1, 0)
82
+ dat$CRT <- rowSums(dat[,c("CRT1B", "CRT2B", "CRT3B")])
83
+
84
+ datONE <- dat # new dataset with only those who knew no more than 1 item of the modified CRT
85
+ datONE <- filter(datONE, datONE$CRTknowledge1 <= 1)
86
+
87
+ CRTa <- dat[,c("CRT1B", "CRT2B", "CRT3B")]
88
+ CRTaONE <- datONE[,c("CRT1B", "CRT2B", "CRT3B")]
89
+
90
+ alpha(CRTa, cumulative = FALSE, n.obs = 234)
91
+ alpha(CRTaONE,cumulative = FALSE, n.obs = 188)
92
+
93
+
94
+ # Faith in Intuition for Facts
95
+ FI_frame <- data.frame(FI.FI1.,FI.FI2., FI.FI3., FI.FI4.)
96
+ alpha(FI_frame)
97
+ FI <- rowMeans(FI_frame)
98
+
99
+
100
+ # Actively Open-minded Thinking
101
+ AOT.AOT4. <- 6-AOT.AOT4R.
102
+ AOT.AOT5. <- 6-AOT.AOT5R.
103
+ AOT.AOT6. <- 6-AOT.AOT6R.
104
+ AOT.AOT7. <- 6-AOT.AOT7R.
105
+
106
+ AOT_frame <- data.frame(AOT.AOT1.,AOT.AOT2.,AOT.AOT3.,AOT.AOT4.,AOT.AOT5.,AOT.AOT6.,AOT.AOT7.,AOT.AOT8.)
107
+ alpha(AOT_frame)
108
+ AOT <- rowMeans(AOT_frame)
109
+
110
+ #### Interpersonal Reactivity Index
111
+ IRI.IRI2. = 6- IRI.IRI2R.
112
+ IRI.IRI4. = 6- IRI.IRI4R.
113
+ IRI.IRI5. = 6- IRI.IRI5R.
114
+
115
+ IRI_frame <- data.frame(IRI.IRI1. , IRI.IRI2. , IRI.IRI3. , IRI.IRI4. , IRI.IRI5. , IRI.IRI6. , IRI.IRI7. )
116
+ alpha(IRI_frame)
117
+ IRI <- rowMeans(IRI_frame)
118
+
119
+ #Self Report Psychopathy Scale
120
+ SRP.SRP23. = 8- SRP.SRP23R.
121
+ SRP.SRP24. = 8- SRP.SRP24R.
122
+ SRP.SRP25. = 8- SRP.SRP25R.
123
+ SRP.SRP26. = 8- SRP.SRP26R.
124
+ SRP.SRP28. = 8- SRP.SRP28R.
125
+
126
+ SRP_frame <- data.frame(SRP.SRP01.,SRP.SRP02., SRP.SRP03., SRP.SRP04., SRP.SRP05., SRP.SRP06., SRP.SRP07., SRP.SRP08., SRP.SRP09., SRP.SRP10., SRP.SRP11., SRP.SRP12., SRP.SRP13., SRP.SRP14., SRP.SRP15., SRP.SRP16., SRP.SRP17., SRP.SRP18., SRP.SRP19., SRP.SRP20., SRP.SRP21., SRP.SRP22., SRP.SRP23., SRP.SRP24., SRP.SRP25., SRP.SRP26., SRP.SRP27., SRP.SRP28. , SRP.SRP29., SRP.SRP30. )
127
+ alpha(SRP_frame)
128
+ SRP <- rowMeans(SRP_frame)
129
+
130
+ ##
131
+ cor.test (GUISD, ATA1)
132
+
133
+
134
+
135
+
136
+ ## Supplementary materials
137
+
138
+ ## Principal component analysis on the Attitudes towards Animals measures
139
+
140
+ C <- lowerCor(dat[, c("ATA.AE1.", "ATA.AE2.", "ATA.AE3.", "ATA.AE4.", "ATA.AE5.","ATA.AE6.", "ATA.AE7.", "ATA.AE8.", "ATA.AE9.", "ATA.AE10.", "ATA.AE11.","ATA.AE12.", "ATA.AE13.", "ATA.AE14.","ATA.AE15.", "ATA.AE16.", "ATA.AE17.")])
141
+
142
+ principal(C, nfactors =3, n.obs = 234, rotate = "none")
143
+
144
+ fa.parallel(C, n.obs= 234, fa = "pc", nfactors = 3)
145
+
102/replication_package/step5/Step5_CleanData.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dedf083e21c164fe24d9aaa233a37c688f10c3ba90fbbd0db5796ee3451d2e2b
3
+ size 189645
102/replication_package/step5/Step5_LimeSurvey.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:506ecfe29bcff56bd7ff4ecf6c7a09ab28f88cfbaa2e4c9fc894b630d0a67787
3
+ size 567922
102/replication_package/step6/Step6_MiniMeta_Analyses.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1347fea7d90f1a1294e25dc4cc79b9504fe331b4c55787eecf42699100b0e01a
3
+ size 1698
102/replication_package/step6/Step6_MiniMeta_Cohen.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aed48f8c595d33ca1b752565df6bd02c4b0189ff20c0494ebfa7fa11da99b47
3
+ size 991
102/replication_package/step6/Step6_MiniMeta_Pearson.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fd11bd59d0dd01c11dff123608b90aaa9580e14669db7c90c5a945b4fd72247
3
+ size 482
102/replication_package/step6/step6.1/Step6.1._Method&Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:734d694d1b7c7c7c3619a1e8778cb95b50f4594889ca9deb8d682ad48c11214c
3
+ size 188754
102/replication_package/step6/step6.1/Step6.1_Analyses.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc4da50ea6b4811dc3d7450f4a70206aace6fffa3b9c8da5d48ae72f3aea445
3
+ size 13347
102/replication_package/step6/step6.1/Step6.1_Boxplot.jpg ADDED

Git LFS Details

  • SHA256: d5424470bfa450c9c228704d260074a7351d9a45dee3de23ef863416adbcb47f
  • Pointer size: 132 Bytes
  • Size of remote file: 2.12 MB
102/replication_package/step6/step6.1/Step6.1_Boxplot.tiff ADDED

Git LFS Details

  • SHA256: c00b32720c5c27597593ed2474c3e5860e844fc0858ff614be3ffde200b3d479
  • Pointer size: 131 Bytes
  • Size of remote file: 947 kB
102/replication_package/step6/step6.1/Step6.1_Data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5486378e61bf14dc521dc71e4730155d2b3b7c47badf6b76bfe3cdb4ca99fd1
3
+ size 463465
102/replication_package/step6/step6.1/Step6.1_Materials.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b766d229e182c48c5599e6387ef240ab8806d80dbb1b2008185c478b8384d846
3
+ size 139470
102/replication_package/step6/step6.1/Step6.1_Procedure.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f0f0e2a1f317d712f32d1c8d3cf2f63b59c0d9b943ad0a1917d17d3df749cef
3
+ size 105901
102/replication_package/step6/step6.2/Step6.2._Method&Results.docx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f72a990c5aa2ca28a5d1cd2fca8384b45e0e39563e14f335595e3d0662df6ee
3
+ size 121152
102/replication_package/step6/step6.2/Step6.2_Analyses.Rhistory ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dat <- read.table("Step6.2_Total.dat",header=TRUE)
2
+
3
+ ##Participants
4
+
5
+ length(levels(as.factor(dat$SUBJECT)))
6
+ table(dat$GENDER)/48
7
+ mean(dat$AGE)
8
+ sd(dat$AGE)
9
+
10
+ ##Exclusion of mistranslated scenario
11
+
12
+ dat <- dat[dat$SCENARIO!="P_08",]
13
+
14
+ ##Exclusion
15
+
16
+ COND <- as.factor(dat$CONDITION1_PRESSURE)
17
+ levels(COND) <- c("SLOW","FAST")
18
+
19
+ tab <- table(dat$SUBJECT[COND=="FAST"],dat$BINARY[COND=="FAST"],dat$CATEGORY[COND=="FAST"])
20
+ (tab[,1,1]+tab[,2,1])<3
21
+ (tab[,1,2]+tab[,2,2])<3
22
+ (tab[,1,3]+tab[,2,3])<3
23
+ (tab[,1,4]+tab[,2,4])<3
24
+ (tab[,1,5]+tab[,2,5])<3
25
+ (tab[,1,6]+tab[,2,6])<3
26
+
27
+ dat <- dat[dat$SUBJECT!=64,]
28
+
29
+ ##Average time constraint in the Fast condition
30
+
31
+ COND <- as.factor(dat$CONDITION1_PRESSURE)
32
+ levels(COND) <- c("SLOW","FAST")
33
+
34
+ mean(dat$BINARY_LIMIT[COND=="FAST"],na.rm=TRUE)
35
+ sd(dat$BINARY_LIMIT[COND=="FAST"],na.rm=TRUE)
36
+
37
+ ##Computation of utilitarian scores
38
+
39
+ raw_score <- as.numeric(as.factor(dat$BINARY))-1
40
+ dat2 <- aggregate(raw_score,list(SUBJECT=dat$SUBJECT,CATEGORY=dat$CATEGORY,COND=COND),mean,na.rm=TRUE)
41
+
42
+ score <- dat2$x
43
+ score[dat2$CATEGORY=="UD"] <- 1-score[dat2$CATEGORY=="UD"]
44
+ score[dat2$CATEGORY=="PD"] <- 1-score[dat2$CATEGORY=="PD"]
45
+ score[dat2$CATEGORY=="HC"] <- 1-score[dat2$CATEGORY=="HC"]
46
+ score[dat2$CATEGORY=="AO"] <- 1-score[dat2$CATEGORY=="AO"]
47
+ score[dat2$CATEGORY=="P"] <- 1-score[dat2$CATEGORY=="P"]
48
+
49
+ ##Mean and SD for Utilitarian Scores
50
+
51
+ mean(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],na.rm=TRUE)
52
+ sd(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],na.rm=TRUE)
53
+ mean(score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"],na.rm=TRUE)
54
+ sd(score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"],na.rm=TRUE)
55
+
56
+ mean(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],na.rm=TRUE)
57
+ sd(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],na.rm=TRUE)
58
+ mean(score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"],na.rm=TRUE)
59
+ sd(score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"],na.rm=TRUE)
60
+
61
+ mean(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
62
+ sd(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
63
+ mean(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
64
+ sd(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
65
+
66
+ mean(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
67
+ sd(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
68
+ mean(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
69
+ sd(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
70
+
71
+ mean(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
72
+ sd(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
73
+ mean(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
74
+ sd(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
75
+
76
+ mean(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
77
+ sd(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
78
+ mean(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
79
+ sd(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
80
+
81
+ ##Correlations between scores
82
+
83
+ cor.test(score[dat2$CATEGORY=="UD" & dat2$COND=="FAST"],score[dat2$CATEGORY=="UD" & dat2$COND=="SLOW"])
84
+ cor.test(score[dat2$CATEGORY=="PD" & dat2$COND=="FAST"],score[dat2$CATEGORY=="PD" & dat2$COND=="SLOW"])
85
+ cor.test(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"])
86
+ cor.test(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"])
87
+ cor.test(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"])
88
+ cor.test(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"])
89
+
90
+ ##Comparison between conditions
91
+
92
+ CATEGORY <- dat2$CATEGORY
93
+ CONDITION <- dat2$COND
94
+ dat3 <- data.frame(score,CATEGORY,CONDITION)
95
+
96
+ library(lsr)
97
+
98
+ t.test(score[dat3$CATEGORY=="UD" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="UD" & dat3$CONDITION=="SLOW"],paired=TRUE)
99
+ datUD <- dat3[dat3$CATEGORY=="UD",]
100
+ cohensD(score ~ CONDITION, data = datUD, method = "paired")
101
+
102
+ t.test(score[dat3$CATEGORY=="PD" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="PD" & dat3$CONDITION=="SLOW"],paired=TRUE)
103
+ datPD <- dat3[dat3$CATEGORY=="PD",]
104
+ cohensD(score ~ CONDITION, data = datPD, method = "paired")
105
+
106
+ t.test(score[dat3$CATEGORY=="HC" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="HC" & dat3$CONDITION=="SLOW"],paired=TRUE)
107
+ datHC <- dat3[dat3$CATEGORY=="HC",]
108
+ cohensD(score ~ CONDITION, data = datHC, method = "paired")
109
+
110
+ t.test(score[dat3$CATEGORY=="AO" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="AO" & dat3$CONDITION=="SLOW"],paired=TRUE)
111
+ datAO <- dat3[dat3$CATEGORY=="AO",]
112
+ cohensD(score ~ CONDITION, data = datAO, method = "paired")
113
+
114
+ t.test(score[dat3$CATEGORY=="DE" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="DE" & dat3$CONDITION=="SLOW"],paired=TRUE)
115
+ datDE <- dat3[dat3$CATEGORY=="DE",]
116
+ cohensD(score ~ CONDITION, data = datDE, method = "paired")
117
+
118
+ t.test(score[dat3$CATEGORY=="P" & dat3$CONDITION=="FAST"],score[dat3$CATEGORY=="P" & dat3$CONDITION=="SLOW"],paired=TRUE)
119
+ datP <- dat3[dat3$CATEGORY=="P",]
120
+ cohensD(score ~ CONDITION, data = datP, method = "paired")
121
+
122
+ ##Figures
123
+
124
+ cond_class <- ordered(dat3$CONDITION, levels = c("FAST", "SLOW"))
125
+ type_class <- ordered(dat3$CATEGORY, levels = c("UD", "PD", "HC","AO","DE","P"))
126
+ dat4 <- data.frame(score,type_class,cond_class)
127
+
128
+ library(ggplot2)
129
+ ggplot(dat3, aes(type_class, score, fill=factor(cond_class))) +
130
+ geom_boxplot()+
131
+ scale_y_continuous(breaks = seq(0, 1, by = 0.1))+
132
+ ggtitle("Study 2 (Time constraint) - Utilitarian scores per type of scenarios and condition")+
133
+ xlab("Type of scenarios")+
134
+ ylab("Utilitarian scores")+
135
+ scale_fill_discrete(name = "Condition", labels = c("Fast", "Slow"))+
136
+ theme(axis.title=element_text(size=16,face="bold"), axis.text=element_text(size=14),legend.title=element_text(size=16,face="bold"),
137
+ legend.text=element_text(size=14), plot.title=element_text(size=20,face="bold",hjust=0.5))+
138
+ annotate(geom="text", x=1, y=1.1, label="d=-0.09, p=.33", color="black",size=5)+
139
+ annotate(geom="text", x=2, y=1.1, label="d=-0.16, p=.08", color="black",size=5)+
140
+ annotate(geom="text", x=3, y=1.1, label="d=0.60, p<.001***", color="black",size=5)+
141
+ annotate(geom="text", x=4, y=1.1, label="d=-0.15, p=.10", color="black",size=5)+
142
+ annotate(geom="text", x=5, y=1.1, label="d=0.26, p=.005**", color="black",size=5)+
143
+ annotate(geom="text", x=6, y=1.1, label="d=0.03, p=.75", color="black",size=5)
144
+
145
+ ggsave('Step6.2.tiff', width = 15, height = 10,dpi=600, compression = "lzw")
146
+
147
+ ##Preparation of data for mini-meta
148
+
149
+ library(effsize)
150
+
151
+ #D
152
+
153
+ mean(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="FAST"],na.rm=TRUE)
154
+ sd(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="FAST"],na.rm=TRUE)
155
+
156
+ mean(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="SLOW"],na.rm=TRUE)
157
+ sd(score[(dat2$CATEGORY=="UD" | dat2$CATEGORY=="PD") & dat2$COND=="SLOW"],na.rm=TRUE)
158
+
159
+ cohen.d((datUD$score+datPD$score) ~ datUD$CONDITION)
160
+
161
+ #HC
162
+
163
+ mean(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
164
+ sd(score[dat2$CATEGORY=="HC" & dat2$COND=="FAST"],na.rm=TRUE)
165
+
166
+ mean(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
167
+ sd(score[dat2$CATEGORY=="HC" & dat2$COND=="SLOW"],na.rm=TRUE)
168
+
169
+ cohen.d(datHC$score ~ datHC$CONDITION)
170
+
171
+ #AO
172
+
173
+ mean(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
174
+ sd(score[dat2$CATEGORY=="AO" & dat2$COND=="FAST"],na.rm=TRUE)
175
+
176
+ mean(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
177
+ sd(score[dat2$CATEGORY=="AO" & dat2$COND=="SLOW"],na.rm=TRUE)
178
+
179
+ cohen.d(datAO$score ~ datAO$CONDITION)
180
+
181
+ #DE
182
+
183
+ mean(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
184
+ sd(score[dat2$CATEGORY=="DE" & dat2$COND=="FAST"],na.rm=TRUE)
185
+
186
+ mean(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
187
+ sd(score[dat2$CATEGORY=="DE" & dat2$COND=="SLOW"],na.rm=TRUE)
188
+
189
+ cohen.d(datDE$score ~ datDE$CONDITION)
190
+
191
+ #P
192
+
193
+ mean(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
194
+ sd(score[dat2$CATEGORY=="P" & dat2$COND=="FAST"],na.rm=TRUE)
195
+
196
+ mean(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
197
+ sd(score[dat2$CATEGORY=="P" & dat2$COND=="SLOW"],na.rm=TRUE)
198
+
199
+ cohen.d(datP$score ~ datP$CONDITION)
200
+
201
+
202
+
203
+
204
+
205
+
206
+
102/replication_package/step6/step6.2/Step6.2_Boxplot.jpg ADDED

Git LFS Details

  • SHA256: 9aab8c843929819cbad55542438fea0373c01c7698a664b621c93b8c6672c7a7
  • Pointer size: 132 Bytes
  • Size of remote file: 2.22 MB
102/replication_package/step6/step6.2/Step6.2_Boxplot.tiff ADDED

Git LFS Details

  • SHA256: 0118cf3edf93a37c6acc5c15bb8125e2712dc8300a8babc6593efc98be0c4740
  • Pointer size: 132 Bytes
  • Size of remote file: 1.18 MB