Commit
·
04304ef
1
Parent(s):
cfce9ef
add 10
Browse files- 10/paper.pdf +3 -0
- 10/replication_package/Codebook for Dyadic Party Dataset.docx +0 -0
- 10/replication_package/Codebook for Gender Disaggregated Dyadic Party Dataset.docx +0 -0
- 10/replication_package/Codebook for Multilevel Dataset.docx +0 -0
- 10/replication_package/dyadic_data_1-4-22.Rdata +3 -0
- 10/replication_package/gender_disagregated_8-8-21.rds +3 -0
- 10/replication_package/multilevel_1-5-22.Rdata +3 -0
- 10/replication_package/readme.rtf +28 -0
- 10/replication_package/replication_code.R +716 -0
- 10/should_reproduce.txt +3 -0
10/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0acc812e16e593efb2b9fbaf9ca35773a87a55f1753f85360f84c17e003da5d5
|
3 |
+
size 220140
|
10/replication_package/Codebook for Dyadic Party Dataset.docx
ADDED
Binary file (17.5 kB). View file
|
|
10/replication_package/Codebook for Gender Disaggregated Dyadic Party Dataset.docx
ADDED
Binary file (18 kB). View file
|
|
10/replication_package/Codebook for Multilevel Dataset.docx
ADDED
Binary file (18.3 kB). View file
|
|
10/replication_package/dyadic_data_1-4-22.Rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce16b80cec72dc2c069ac245c09faa56aa40a80aba7bc21038539f6b16076b05
|
3 |
+
size 253615
|
10/replication_package/gender_disagregated_8-8-21.rds
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:050817c347915cd18baf4412e7cda9445a15ced3a4d7362c28ee3405a4fcc12f
|
3 |
+
size 272286
|
10/replication_package/multilevel_1-5-22.Rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd9a14418d24853992cdc860953b56a09afad73d32a8e8a0f78f02522a0d853a
|
3 |
+
size 10236336
|
10/replication_package/readme.rtf
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{\rtf1\ansi\ansicpg1252\cocoartf2513
|
2 |
+
\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 ArialMT;\f1\fswiss\fcharset0 Helvetica;}
|
3 |
+
{\colortbl;\red255\green255\blue255;\red26\green26\blue26;\red255\green255\blue255;\red26\green26\blue26;
|
4 |
+
}
|
5 |
+
{\*\expandedcolortbl;;\cssrgb\c13348\c13348\c13331;\cssrgb\c100000\c100000\c100000\c0;\cssrgb\c13348\c13348\c13331;
|
6 |
+
}
|
7 |
+
\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0
|
8 |
+
\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
|
9 |
+
|
10 |
+
\f0\fs24 \cf0 Replication Data ReadMe for \cf2 \cb3 \expnd0\expndtw0\kerning0
|
11 |
+
Can\'92t We All Just Get Along? How Women MPs Can Ameliorate Affective Polarization in Western Publics\
|
12 |
+
\
|
13 |
+
Code files: \
|
14 |
+
\
|
15 |
+
1. replication_code.r - Contains code to replicate all figures and tables in both article and supplementary information memo\
|
16 |
+
\
|
17 |
+
Datasets:\
|
18 |
+
1. dyadic_data_1-4-22.Rdata - Dataset of directed party dyads, associated with codebook \'93Codebook for Dyadic Party Dataset\'94. Dataset required to replicate table 1 and Figure 1 in article, as well as tables S2, S3A, S3B, S4, S5, S6, S7, S8, S9, S10, and Figure S1 and S2 in supplementary information memo.\
|
19 |
+
\
|
20 |
+
2. gender_disagregated_8-8-21.rds - Dataset of directed party dyads, disaggregated by gender of partisans, associated with codebook \'93Codebook for Gender Disaggregated Dyadic Party Dataset\'94. Dataset required to replicate Table 1 in main article, as well as Table S2 in the supplementary \cf4 information memo\cf2 .\
|
21 |
+
\
|
22 |
+
3. multilevel_1-5-22.Rdata - Dataset of individual evaluations of out-parties, with contextual variables, associated with Codebook \'93Codebook for Multilevel Dataset\'94. Required to replicate Tables S11 and S12 in the supplementary information memo.\
|
23 |
+
\
|
24 |
+
\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
|
25 |
+
|
26 |
+
\f1 \cf0 \cb1 \kerning1\expnd0\expndtw0 *** NOTE: TO RUN THESE FILES AS THEY ARE SET UP, CREATE A DIRECTORY INCLUDING ALL THREE DATASETS***\
|
27 |
+
\
|
28 |
+
}
|
10/replication_package/replication_code.R
ADDED
@@ -0,0 +1,716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#install.packages("tidyverse")
|
2 |
+
#install.packages("stargazer")
|
3 |
+
library(tidyverse) ##data cleaning
|
4 |
+
library(stargazer) ##tex output
|
5 |
+
library(haven)
|
6 |
+
library(estimatr)
|
7 |
+
library(dplyr)
|
8 |
+
library(fixest)
|
9 |
+
library(modelsummary)
|
10 |
+
|
11 |
+
|
12 |
+
############################################
|
13 |
+
############## CREATING FIGURE 1 ###########
|
14 |
+
############################################
|
15 |
+
|
16 |
+
#Load in data
|
17 |
+
load("dyadic_data_1-4-22.Rdata")
|
18 |
+
dta <- updated_data
|
19 |
+
|
20 |
+
#### Remove unneeded variables
|
21 |
+
vars <- c("to_mp_number", "to_rile", "to_economy", "to_society", "year", "country",
|
22 |
+
"to_pfeml", "to_femaleleader")
|
23 |
+
dta <- dta[vars]
|
24 |
+
dta <- na.omit(dta)
|
25 |
+
|
26 |
+
### Identiy unique parties being evaluated
|
27 |
+
dta_unique <- unique(dta)
|
28 |
+
|
29 |
+
|
30 |
+
fig1 <- ggplot(dta_unique, aes(x = to_pfeml)) +
|
31 |
+
geom_histogram(color="black", fill="grey40", binwidth =0.1, center=0.25) +
|
32 |
+
scale_x_continuous(breaks = seq(0,1,0.1)) +
|
33 |
+
theme_minimal() +
|
34 |
+
theme(plot.title = element_text(size=12)) +
|
35 |
+
ylab("Frequency")+
|
36 |
+
xlab("Proportion of Women MPs");fig1
|
37 |
+
|
38 |
+
|
39 |
+
############################################
|
40 |
+
###### CREATING TABLE 1 COLUMNS 1 & 2 ######
|
41 |
+
############################################
|
42 |
+
|
43 |
+
#Out party % women, non-clustered SEs
|
44 |
+
load("dyadic_data_1-4-22.Rdata")
|
45 |
+
|
46 |
+
dta <-updated_data
|
47 |
+
|
48 |
+
#creating the country-year fixed effects
|
49 |
+
dta$cntryyr <-paste(dta$country, dta$year, sep = "")
|
50 |
+
|
51 |
+
## Removing smaller parties
|
52 |
+
dta <- subset(dta, dta$to_prior_seats >=4)
|
53 |
+
|
54 |
+
|
55 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
56 |
+
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number")
|
57 |
+
dta <- dta[vars]
|
58 |
+
dta <- na.omit(dta)
|
59 |
+
|
60 |
+
|
61 |
+
table1.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta)
|
62 |
+
table1.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
|
63 |
+
|
64 |
+
### With clustered SEs
|
65 |
+
stargazer(table1.1, table1.2,
|
66 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
67 |
+
se = starprep(table1.1, table1.2,
|
68 |
+
clusters = dta$country),
|
69 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
70 |
+
"econ_distance_s", "society_distance_s"))
|
71 |
+
|
72 |
+
############################################
|
73 |
+
###### CREATING TABLE 1 COLUMNS 3 & 4 ######
|
74 |
+
############################################
|
75 |
+
|
76 |
+
## Note in gendered data, the party_like and party_dislike variable indicate mean levels of
|
77 |
+
## like/dislike for party by ALL partisans
|
78 |
+
## the "dislike" variable indicates level of dislike towards out-party by partisans of specified gender
|
79 |
+
dta <- readRDS("gender_disagregated_8-8-21.rds")
|
80 |
+
|
81 |
+
#creating the country-year fixed effects
|
82 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
83 |
+
|
84 |
+
## Removing smaller parties
|
85 |
+
dta <- subset(dta, dta$to_prior_seats >=4)
|
86 |
+
|
87 |
+
### Create Like variable for gendered data from dislike
|
88 |
+
dta$like <- 10- dta$dislike
|
89 |
+
|
90 |
+
## Remove unneeded variables and NAs
|
91 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
92 |
+
"year", "country", "to_pfeml",
|
93 |
+
"countryyear", "gender", "like", "dislike", "to_prior_seats")
|
94 |
+
dta <- dta[vars]
|
95 |
+
dta <- na.omit(dta)
|
96 |
+
|
97 |
+
## Only men subset
|
98 |
+
dta_male <- subset(dta, gender==1)
|
99 |
+
dta_female <- subset(dta, gender==2)
|
100 |
+
|
101 |
+
table1.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female)
|
102 |
+
table1.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male)
|
103 |
+
|
104 |
+
### With clustered SEs - women
|
105 |
+
stargazer(table1.3,
|
106 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
107 |
+
se = starprep(table1.3,
|
108 |
+
clusters = dta_female$country),
|
109 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
|
110 |
+
|
111 |
+
### With clustered SEs - men
|
112 |
+
stargazer(table1.4,
|
113 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
114 |
+
se = starprep(table1.4,
|
115 |
+
clusters = dta_male$country),
|
116 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
|
117 |
+
|
118 |
+
|
119 |
+
############################################
|
120 |
+
###### CREATING TABLE S2 COLUMNS 1 & 2 ######
|
121 |
+
############################################
|
122 |
+
|
123 |
+
#Out party % women, non-clustered SEs
|
124 |
+
load("dyadic_data_1-4-22.Rdata")
|
125 |
+
|
126 |
+
dta <-updated_data
|
127 |
+
|
128 |
+
#creating the country-year fixed effects
|
129 |
+
dta$cntryyr <-paste(dta$country, dta$year, sep = "")
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
134 |
+
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number")
|
135 |
+
dta <- dta[vars]
|
136 |
+
dta <- na.omit(dta)
|
137 |
+
|
138 |
+
|
139 |
+
tableS2.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta)
|
140 |
+
tableS2.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
|
141 |
+
|
142 |
+
summary(tableS2.1)
|
143 |
+
summary(tableS2.2)
|
144 |
+
|
145 |
+
### With clustered SEs
|
146 |
+
stargazer(tableS2.1, tableS2.2,
|
147 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
148 |
+
se = starprep(tableS2.1, tableS2.2,
|
149 |
+
clusters = dta$country),
|
150 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
151 |
+
"econ_distance_s", "society_distance_s"))
|
152 |
+
|
153 |
+
############################################
|
154 |
+
###### CREATING TABLE S2 COLUMNS 3 & 4 ######
|
155 |
+
############################################
|
156 |
+
|
157 |
+
dta <- readRDS("gender_disagregated_8-8-21.rds")
|
158 |
+
|
159 |
+
#creating the country-year fixed effects
|
160 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
161 |
+
|
162 |
+
|
163 |
+
### Create Like variable for gendered data from dislike
|
164 |
+
dta$like <- 10- dta$dislike
|
165 |
+
|
166 |
+
## Remove unneeded variables and NAs
|
167 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
168 |
+
"year", "country", "to_pfeml",
|
169 |
+
"countryyear", "gender", "like", "dislike", "to_prior_seats")
|
170 |
+
dta <- dta[vars]
|
171 |
+
dta <- na.omit(dta)
|
172 |
+
|
173 |
+
## Only men subset
|
174 |
+
dta_male <- subset(dta, gender==1)
|
175 |
+
dta_female <- subset(dta, gender==2)
|
176 |
+
|
177 |
+
tableS2.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female)
|
178 |
+
tableS2.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male)
|
179 |
+
|
180 |
+
summary(tableS2.3)
|
181 |
+
summary(tableS2.4)
|
182 |
+
|
183 |
+
### With clustered SEs - women
|
184 |
+
stargazer(tableS2.3,
|
185 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
186 |
+
se = starprep(tableS2.3,
|
187 |
+
clusters = dta_female$country),
|
188 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
|
189 |
+
|
190 |
+
### With clustered SEs - men
|
191 |
+
stargazer(tableS2.4,
|
192 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
193 |
+
se = starprep(tableS2.4,
|
194 |
+
clusters = dta_male$country),
|
195 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
|
196 |
+
|
197 |
+
|
198 |
+
############################################
|
199 |
+
############ CREATING TABLE S3 #############
|
200 |
+
############################################
|
201 |
+
|
202 |
+
## Read in data
|
203 |
+
load("dyadic_data_1-4-22.Rdata")
|
204 |
+
|
205 |
+
dta <-updated_data
|
206 |
+
colnames(dta)
|
207 |
+
|
208 |
+
#creating the country-year fixed effects
|
209 |
+
dta$cntryyr <-paste(dta$country, dta$year, sep = "")
|
210 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
211 |
+
"year", "country", "party_dislike","party_like", "cntryyr", "to_pfeml", "from_rile", "to_rile",
|
212 |
+
"from_left_bloc", "from_right_bloc", "to_left_bloc", "to_right_bloc", "from_parfam", "to_parfam",
|
213 |
+
"to_prior_seats")
|
214 |
+
dta <- dta[vars]
|
215 |
+
dta <- na.omit(dta)
|
216 |
+
|
217 |
+
dta_nrr <- subset(dta, dta$to_parfam!=70)
|
218 |
+
dta_nrr <- subset(dta_nrr, dta_nrr$from_parfam!=70)
|
219 |
+
|
220 |
+
## Remove small parties, with fewer than 4 seats
|
221 |
+
dta_small_nrr <- subset(dta_nrr, dta_nrr$to_prior_seats >=4)
|
222 |
+
|
223 |
+
table.S3 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small_nrr)
|
224 |
+
summary(table.S3)
|
225 |
+
|
226 |
+
stargazer(table.S3,
|
227 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
228 |
+
se = starprep(table.S3,
|
229 |
+
clusters = dta_small_nrr$country),
|
230 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
231 |
+
"econ_distance_s", "society_distance_s"))
|
232 |
+
|
233 |
+
|
234 |
+
############################################
|
235 |
+
############ CREATING TABLE S3B ############
|
236 |
+
############################################
|
237 |
+
|
238 |
+
## Load
|
239 |
+
load("dyadic_data_1-4-22.Rdata")
|
240 |
+
|
241 |
+
dta <-updated_data
|
242 |
+
|
243 |
+
#creating the country-year fixed effects
|
244 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
245 |
+
"year", "country", "party_dislike", "party_like", "to_parfam", "to_left_bloc", "to_right_bloc", "cntryyr", "to_pfeml",
|
246 |
+
"to_prior_seats")
|
247 |
+
dta <- dta[vars]
|
248 |
+
dta <- na.omit(dta)
|
249 |
+
|
250 |
+
## Remove small parties, with fewer than 4 seats
|
251 |
+
dta_small <- subset(dta, dta$to_prior_seats >=4)
|
252 |
+
|
253 |
+
table.3B.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta_small)
|
254 |
+
table.3B.2 <-lm(party_like ~ to_pfeml + rile_distance_s + to_left_bloc + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta_small)
|
255 |
+
|
256 |
+
summary(table.3B.2)
|
257 |
+
|
258 |
+
### With clustered SEs
|
259 |
+
stargazer(table.3B.1, table.3B.2,
|
260 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
261 |
+
se = starprep(table.3B.1, table.3B.2,
|
262 |
+
clusters = dta_small$country),
|
263 |
+
keep = c("to_pfeml", "rile_distance_s", "to_left_bloc", "prior_coalition", "prior_opposition",
|
264 |
+
"econ_distance_s", "society_distance_s"))
|
265 |
+
|
266 |
+
|
267 |
+
############################################
|
268 |
+
############ CREATING TABLE S4 ############
|
269 |
+
############################################
|
270 |
+
|
271 |
+
## Read in data
|
272 |
+
load("dyadic_data_1-4-22.Rdata")
|
273 |
+
|
274 |
+
dta <-updated_data
|
275 |
+
|
276 |
+
#creating the country-year fixed effects
|
277 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
278 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
279 |
+
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile",
|
280 |
+
"logDM", "to_left_bloc", "to_prior_seats")
|
281 |
+
dta <- dta[vars]
|
282 |
+
dta <- na.omit(dta)
|
283 |
+
|
284 |
+
### Split by year, 1996-2006 and 2007-2017
|
285 |
+
dta_early <- subset(dta, dta$year<=2006)
|
286 |
+
dta_late <- subset(dta, dta$year>=2007)
|
287 |
+
|
288 |
+
|
289 |
+
table.early <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early)
|
290 |
+
table.late <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late)
|
291 |
+
|
292 |
+
### Without small parties
|
293 |
+
dta_early_small <- subset(dta_early, dta_early$to_prior_seats >=4)
|
294 |
+
dta_late_small <- subset(dta_late, dta_late$to_prior_seats >=4)
|
295 |
+
|
296 |
+
table.4.1 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early_small)
|
297 |
+
table.4.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late_small)
|
298 |
+
|
299 |
+
summary(table.4.1)
|
300 |
+
summary(table.4.2)
|
301 |
+
|
302 |
+
### With clustered SEs
|
303 |
+
stargazer(table.4.1,
|
304 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
305 |
+
se = starprep(table.4.1,
|
306 |
+
clusters = dta_early_small$country),
|
307 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition"
|
308 |
+
))
|
309 |
+
|
310 |
+
### With clustered SEs
|
311 |
+
stargazer(table.4.2,
|
312 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
313 |
+
se = starprep(table.4.2,
|
314 |
+
clusters = dta_late_small$country),
|
315 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition"
|
316 |
+
))
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
############################################
|
321 |
+
############ CREATING TABLE S5 #############
|
322 |
+
############################################
|
323 |
+
|
324 |
+
load("dyadic_data_1-4-22.Rdata")
|
325 |
+
|
326 |
+
dta <-updated_data
|
327 |
+
|
328 |
+
#creating the country-year fixed effects
|
329 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
330 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
331 |
+
"year", "country", "party_dislike", "party_like", "countryyear",
|
332 |
+
"to_pfeml", "from_pfeml", "diff_pfeml", "to_prior_seats")
|
333 |
+
dta <- dta[vars]
|
334 |
+
dta <- na.omit(dta)
|
335 |
+
|
336 |
+
## Remove small parties, with fewer than 4 seats
|
337 |
+
dta_small <- subset(dta, dta$to_prior_seats >=4)
|
338 |
+
|
339 |
+
table.S5.1 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + as.factor(countryyear), data = dta_small)
|
340 |
+
table.S5.2 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_small)
|
341 |
+
|
342 |
+
summary(table.S5.1)
|
343 |
+
summary(table.S5.2)
|
344 |
+
|
345 |
+
### With clustered SEs
|
346 |
+
stargazer(table.S5.1, table.S5.2,
|
347 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
348 |
+
se = starprep(table.S5.1, table.S5.2,
|
349 |
+
clusters = dta_small$country),
|
350 |
+
keep = c("to_pfeml", "from_pfeml", "diff_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
351 |
+
"econ_distance_s", "society_distance_s"))
|
352 |
+
|
353 |
+
############################################
|
354 |
+
############ CREATING FIG. S1 #############
|
355 |
+
############################################
|
356 |
+
|
357 |
+
|
358 |
+
### Create Plot Data
|
359 |
+
|
360 |
+
## All values of Out-Party % women
|
361 |
+
plot_1 <- as.data.frame((unique(dta$to_pfeml)))
|
362 |
+
colnames(plot_1) <- c("to_pfeml")
|
363 |
+
|
364 |
+
## All 1 Sd above mean of In-party % women
|
365 |
+
plot_1$from_pfeml <- mean(dta$from_pfeml, na.rm=T) + sd(dta$from_pfeml, na.rm=T)
|
366 |
+
|
367 |
+
## Create difference between in-and out-party women
|
368 |
+
plot_1$diff_pfeml <- abs(plot_1$to_pfeml - plot_1$from_pfeml)
|
369 |
+
|
370 |
+
## Select other values (mean RILE distance, opposition together, France 2012 country year)
|
371 |
+
plot_1$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
|
372 |
+
plot_1$prior_coalition <- 0
|
373 |
+
plot_1$prior_opposition <- 1
|
374 |
+
plot_1$countryyear <- "France2012"
|
375 |
+
plot_1$to_mp_number <- "31320"
|
376 |
+
plot_1$group <- "above_mean"
|
377 |
+
|
378 |
+
## All values of Out-Party % women
|
379 |
+
plot_2 <- as.data.frame((unique(dta$to_pfeml)))
|
380 |
+
colnames(plot_2) <- c("to_pfeml")
|
381 |
+
|
382 |
+
## All 1 Sd below mean of In-party % women
|
383 |
+
plot_2$from_pfeml <- mean(dta$from_pfeml, na.rm=T) - sd(dta$from_pfeml, na.rm=T)
|
384 |
+
|
385 |
+
## Create difference between in-and out-party women
|
386 |
+
plot_2$diff_pfeml <- abs(plot_2$to_pfeml - plot_2$from_pfeml)
|
387 |
+
|
388 |
+
## Select other values (opposition together, France 2012 country year)
|
389 |
+
plot_2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
|
390 |
+
plot_2$prior_coalition <- 0
|
391 |
+
plot_2$prior_opposition <- 1
|
392 |
+
plot_2$countryyear <- "France2012"
|
393 |
+
plot_2$to_mp_number <- "31320"
|
394 |
+
plot_2$group <- "below_mean"
|
395 |
+
|
396 |
+
plot_dta <- rbind(plot_1, plot_2)
|
397 |
+
|
398 |
+
|
399 |
+
###### Plot based on table.S5.2
|
400 |
+
figureS1.data <- as.data.frame(predict(table.S5.2, newdata = plot_dta, interval = "confidence"))
|
401 |
+
|
402 |
+
plot_dta$fit <- figureS1.data$fit
|
403 |
+
plot_dta$lwr <- figureS1.data$lwr
|
404 |
+
plot_dta$upr <- figureS1.data$upr
|
405 |
+
|
406 |
+
figS1 <- ggplot(plot_dta, aes(x=to_pfeml, y=fit, lty=group))
|
407 |
+
figS1 <- figS1 + geom_line() +
|
408 |
+
geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr,
|
409 |
+
ymax = upr),
|
410 |
+
lwd = 1/2, alpha=0.1) +
|
411 |
+
theme_minimal() +
|
412 |
+
theme(plot.title = element_text(size=12)) +
|
413 |
+
ylab("Predicted Out-Party Thermometer Rating")+
|
414 |
+
xlab("Proportion of Out-Party Women MPs") +
|
415 |
+
theme(legend.position = "none") +
|
416 |
+
geom_text(x=0.70, y=5.3, label="in-party % of women is \n1 SD above the mean") +
|
417 |
+
geom_text(x=0.70, y=4.0, label="in-party % of women is \n1 SD below the mean", color="grey37") +
|
418 |
+
ylim(c(2.5,6.5));figS1
|
419 |
+
|
420 |
+
pdf("figS1.pdf")
|
421 |
+
figS1
|
422 |
+
dev.off()
|
423 |
+
|
424 |
+
|
425 |
+
############################################
|
426 |
+
############ CREATING TABLE S6 #############
|
427 |
+
############################################
|
428 |
+
|
429 |
+
## Read in data
|
430 |
+
load("dyadic_data_1-4-22.Rdata")
|
431 |
+
|
432 |
+
dta <-updated_data
|
433 |
+
|
434 |
+
#creating the country-year fixed effects
|
435 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
436 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
437 |
+
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile",
|
438 |
+
"logDM", "to_left_bloc", "to_prior_seats")
|
439 |
+
dta <- dta[vars]
|
440 |
+
dta <- na.omit(dta)
|
441 |
+
|
442 |
+
dta_small <- subset(dta, dta$to_prior_seats >=4)
|
443 |
+
|
444 |
+
table.S6.1 <-lm(party_like ~ to_pfeml + rile_distance_s + logDM + prior_coalition + prior_opposition + as.factor(year), data = dta_small)
|
445 |
+
table.S6.2 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s + prior_coalition + prior_opposition + as.factor(year), data = dta_small)
|
446 |
+
table.S6.3 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s*logDM + prior_coalition*logDM + prior_opposition*logDM + as.factor(year), data = dta_small)
|
447 |
+
|
448 |
+
summary(table.S6.1)
|
449 |
+
summary(table.S6.2)
|
450 |
+
summary(table.S6.3)
|
451 |
+
|
452 |
+
stargazer(table.S6.1, table.S6.2, table.S6.3,
|
453 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
454 |
+
se = starprep(table.S6.1, table.S6.2, table.S6.3,
|
455 |
+
clusters = dta_small$country),
|
456 |
+
keep = c("to_pfeml", "rile_distance_s", "logDM", "prior_coalition", "prior_opposition",
|
457 |
+
"econ_distance_s", "society_distance_s"))
|
458 |
+
|
459 |
+
|
460 |
+
############################################
|
461 |
+
############ CREATING TABLE S7 #############
|
462 |
+
############################################
|
463 |
+
|
464 |
+
#Out party % women, non-clustered SEs
|
465 |
+
load("dyadic_data_1-4-22.Rdata")
|
466 |
+
|
467 |
+
dta <-updated_data
|
468 |
+
|
469 |
+
#creating the country-year fixed effects
|
470 |
+
dta$cntryyr <-paste(dta$country, dta$year, sep = "")
|
471 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
472 |
+
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats")
|
473 |
+
dta <- dta[vars]
|
474 |
+
dta <- na.omit(dta)
|
475 |
+
|
476 |
+
## Creating squared term for out-party % women
|
477 |
+
dta$to_pfeml2 <- dta$to_pfeml^2
|
478 |
+
|
479 |
+
## Remove small parties, with fewer than 4 seats
|
480 |
+
dta <- subset(dta, dta$to_prior_seats >=4)
|
481 |
+
|
482 |
+
table.S7.1 <-lm(party_like ~ to_pfeml + to_pfeml2 + as.factor(cntryyr), data = dta)
|
483 |
+
table.S7.2 <-lm(party_like ~ to_pfeml + to_pfeml2 + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
|
484 |
+
|
485 |
+
summary(table.S7.1)
|
486 |
+
summary(table.S7.2)
|
487 |
+
|
488 |
+
### With clustered SEs
|
489 |
+
stargazer(table.S7.1, table.S7.2,
|
490 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
491 |
+
se = starprep(table.S7.1, table.S7.2,
|
492 |
+
clusters = dta$country),
|
493 |
+
keep = c("to_pfeml", "to_pfeml2", "rile_distance_s", "prior_coalition", "prior_opposition",
|
494 |
+
"econ_distance_s", "society_distance_s"))
|
495 |
+
|
496 |
+
############################################
|
497 |
+
############ CREATING FIG. S2 #############
|
498 |
+
############################################
|
499 |
+
|
500 |
+
### Create Plot Data
|
501 |
+
|
502 |
+
## All values of Out-Party % women
|
503 |
+
plot_S2 <- as.data.frame((unique(dta$to_pfeml)))
|
504 |
+
colnames(plot_S2) <- c("to_pfeml")
|
505 |
+
|
506 |
+
## Create difference between in-and out-party women
|
507 |
+
plot_S2$to_pfeml2 <- plot_S2$to_pfeml^2
|
508 |
+
|
509 |
+
## Select other values (mean RILE distance, opposition together, France 2012 country year)
|
510 |
+
plot_S2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
|
511 |
+
plot_S2$prior_coalition <- 0
|
512 |
+
plot_S2$prior_opposition <- 1
|
513 |
+
plot_S2$cntryyr <- "France2012"
|
514 |
+
plot_S2$to_mp_number <- "31320"
|
515 |
+
|
516 |
+
figureS2.data <- as.data.frame(predict(table.S7.2, newdata = plot_S2, interval = "confidence"))
|
517 |
+
|
518 |
+
plot_S2$fit <- figureS2.data$fit
|
519 |
+
plot_S2$lwr <- figureS2.data$lwr
|
520 |
+
plot_S2$upr <- figureS2.data$upr
|
521 |
+
|
522 |
+
figS2 <- ggplot(plot_S2, aes(x=to_pfeml, y=fit))
|
523 |
+
figS2 <- figS2 + geom_line() +
|
524 |
+
geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr,
|
525 |
+
ymax = upr),
|
526 |
+
lwd = 1/2, alpha=0.1) +
|
527 |
+
theme_minimal() +
|
528 |
+
theme(plot.title = element_text(size=12)) +
|
529 |
+
ylab("Predicted Out-Party Thermometer Rating")+
|
530 |
+
xlab("Proportion of Out-Party Women MPs") +
|
531 |
+
ylim(c(2,5));figS2
|
532 |
+
|
533 |
+
pdf("figS2.pdf")
|
534 |
+
figS2
|
535 |
+
dev.off()
|
536 |
+
|
537 |
+
############################################
|
538 |
+
############ CREATING TABLE S8 #############
|
539 |
+
############################################
|
540 |
+
|
541 |
+
#Women-led parties
|
542 |
+
load("dyadic_data_1-4-22.Rdata")
|
543 |
+
|
544 |
+
dta <-updated_data
|
545 |
+
|
546 |
+
dta_womenlead <- subset(dta, dta$to_femaleleader==1)
|
547 |
+
|
548 |
+
#creating the country-year fixed effects
|
549 |
+
dta_womenlead$countryyear <-paste(dta_womenlead$country, dta_womenlead$year, sep = "")
|
550 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
551 |
+
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats")
|
552 |
+
dta_womenlead <- dta_womenlead[vars]
|
553 |
+
dta_womenlead <- na.omit(dta_womenlead)
|
554 |
+
|
555 |
+
## Exclude small parties
|
556 |
+
dta_womenlead <- subset(dta_womenlead, dta_womenlead$to_prior_seats >=4)
|
557 |
+
|
558 |
+
table.S8A1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_womenlead)
|
559 |
+
table.S8A2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_womenlead)
|
560 |
+
|
561 |
+
summary(table.S8A1)
|
562 |
+
summary(table.S8A2)
|
563 |
+
|
564 |
+
### With clustered SEs
|
565 |
+
stargazer(table.S8A1, table.S8A2,
|
566 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
567 |
+
se = starprep(table.S8A1, table.S8A2,
|
568 |
+
clusters = dta_womenlead$country),
|
569 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
570 |
+
"econ_distance_s", "society_distance_s"))
|
571 |
+
|
572 |
+
#Male-led parties
|
573 |
+
load("dyadic_data_1-4-22.Rdata")
|
574 |
+
dta <-updated_data
|
575 |
+
|
576 |
+
dta_malelead <- subset(dta, dta$to_femaleleader==0)
|
577 |
+
|
578 |
+
#creating the country-year fixed effects
|
579 |
+
dta_malelead$countryyear <-paste(dta_malelead$country, dta_malelead$year, sep = "")
|
580 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
581 |
+
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats")
|
582 |
+
dta_malelead <- dta_malelead[vars]
|
583 |
+
dta_malelead <- na.omit(dta_malelead)
|
584 |
+
|
585 |
+
## Exclude small parties
|
586 |
+
dta_malelead <- subset(dta_malelead, dta_malelead$to_prior_seats >=4)
|
587 |
+
|
588 |
+
table.S8B1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_malelead)
|
589 |
+
table.S8B2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_malelead)
|
590 |
+
|
591 |
+
summary(table.S8B1)
|
592 |
+
summary(table.S8B2)
|
593 |
+
|
594 |
+
### With clustered SEs
|
595 |
+
stargazer(table.S8B1, table.S8B2,
|
596 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
597 |
+
se = starprep(table.S8B1, table.S8B2,
|
598 |
+
clusters = dta_malelead$country),
|
599 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
600 |
+
"econ_distance_s", "society_distance_s"))
|
601 |
+
|
602 |
+
############################################
|
603 |
+
############ CREATING TABLE S9 #############
|
604 |
+
############################################
|
605 |
+
|
606 |
+
## Read in data
|
607 |
+
load("dyadic_data_1-4-22.Rdata")
|
608 |
+
|
609 |
+
dta <- updated_data
|
610 |
+
|
611 |
+
#creating the country-year fixed effects
|
612 |
+
dta$countryyear <-paste(dta$country, dta$year, sep = "")
|
613 |
+
|
614 |
+
#creating the party fixed effects / cluster
|
615 |
+
dta$partydyad <-paste(dta$from_mp_number, dta$to_mp_number, sep = "")
|
616 |
+
|
617 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
618 |
+
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml",
|
619 |
+
"from_rile", "to_rile", "to_mp_number", "partydyad", "to_prior_seats")
|
620 |
+
dta <- dta[vars]
|
621 |
+
dta <- na.omit(dta)
|
622 |
+
|
623 |
+
## Exclude small parties
|
624 |
+
dta <- subset(dta, dta$to_prior_seats >=4)
|
625 |
+
|
626 |
+
table.S9 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta)
|
627 |
+
summary(table.S9)
|
628 |
+
|
629 |
+
### With clustered SEs
|
630 |
+
stargazer(table.S9,
|
631 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
632 |
+
se = starprep(table.S9,
|
633 |
+
clusters = dta$partydyad),
|
634 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
635 |
+
"econ_distance_s", "society_distance_s"))
|
636 |
+
|
637 |
+
|
638 |
+
############################################
|
639 |
+
############ CREATING TABLE 10 #############
|
640 |
+
############################################
|
641 |
+
|
642 |
+
load("dyadic_data_1-4-22.Rdata")
|
643 |
+
|
644 |
+
dta <-updated_data
|
645 |
+
|
646 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
647 |
+
"year", "country", "party_dislike", "to_pfeml", "party_like", "to_prior_seats")
|
648 |
+
dta <- dta[vars]
|
649 |
+
dta <- na.omit(dta)
|
650 |
+
|
651 |
+
## Remove small parties, with fewer than 4 seats
|
652 |
+
dta_small <- subset(dta, dta$to_prior_seats >=4)
|
653 |
+
|
654 |
+
table.S10.1 <-lm(party_like ~ to_pfeml + as.factor(country), data = dta_small)
|
655 |
+
table.S10.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small)
|
656 |
+
|
657 |
+
summary(table.S10.2)
|
658 |
+
|
659 |
+
### With clustered SEs
|
660 |
+
stargazer(table.S10.1, table.S10.2,
|
661 |
+
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
|
662 |
+
se = starprep(table.S10.1, table.S10.2,
|
663 |
+
clusters = dta_small$country),
|
664 |
+
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
|
665 |
+
"econ_distance_s", "society_distance_s"))
|
666 |
+
|
667 |
+
##################################################
|
668 |
+
############ CREATING TABLES 11 & 12 #############
|
669 |
+
##################################################
|
670 |
+
|
671 |
+
load("Data/multilevel_1-5-22.Rdata")
|
672 |
+
|
673 |
+
indiv_data <-multilevel_data
|
674 |
+
|
675 |
+
|
676 |
+
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
|
677 |
+
"year", "country", "cntryyr", "to_pfeml", "from_pfeml", "thermometer_score", "ID", "party_to", "party_from",
|
678 |
+
"from_partyname", "to_partyname", "to_left_bloc", "from_left_bloc",
|
679 |
+
"to_right_bloc", "from_right_bloc", "gender", "to_parfam", "from_parfam", "to_prior_seats",
|
680 |
+
"from_mp_number", "to_mp_number")
|
681 |
+
|
682 |
+
|
683 |
+
indiv_data <- indiv_data[vars]
|
684 |
+
|
685 |
+
## Create gender variable
|
686 |
+
indiv_data <-mutate(indiv_data, gender = ifelse(gender == "1", "male",
|
687 |
+
ifelse(gender == "2", "female", NA)))
|
688 |
+
|
689 |
+
indiv_data$gender <-as.factor(indiv_data$gender)
|
690 |
+
|
691 |
+
##filter out parties with no data, mainly parties who were not in parliament plus a few cases from early 1990s
|
692 |
+
indiv_data <-filter(indiv_data, is.na(to_pfeml) == F)
|
693 |
+
|
694 |
+
### Create dyads for FEs/Clustered SEs
|
695 |
+
indiv_data$dyad <-paste(indiv_data$from_mp_number, indiv_data$to_mp_number, sep ="_to_")
|
696 |
+
|
697 |
+
### Create Table 11, column 1, with Standard errors clustered at country-year, party-dyad, and individual levels
|
698 |
+
table11A.1.1 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~cntryyr)
|
699 |
+
table11A.1.2 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~dyad)
|
700 |
+
table11A.1.3 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~ID)
|
701 |
+
|
702 |
+
### Create Table 11, column 2, with Standard errors clustered at country-year, party-dyad, and individual levels
|
703 |
+
table11A.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~cntryyr)
|
704 |
+
table11A.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~dyad)
|
705 |
+
table11A.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~ID)
|
706 |
+
|
707 |
+
### Create Table 11B, column 1, with Standard errors clustered at country-year, party-dyad, and individual levels
|
708 |
+
table11B.1.1 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~cntryyr)
|
709 |
+
table11B.1.2 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~dyad)
|
710 |
+
table11B.1.3 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~ID)
|
711 |
+
|
712 |
+
### Create Table 11B, column 2, with Standard errors clustered at country-year, party-dyad, and individual levels
|
713 |
+
table11B.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~cntryyr)
|
714 |
+
table11B.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~dyad)
|
715 |
+
table11B.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~ID)
|
716 |
+
|
10/should_reproduce.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e948c9ddded565a15bdaa55c5f0001dcc6e8f1c0857305a6eaf31e19ff7b2dc0
|
3 |
+
size 16
|