anonymous-submission-acl2025 commited on
Commit
04304ef
·
1 Parent(s): cfce9ef
10/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0acc812e16e593efb2b9fbaf9ca35773a87a55f1753f85360f84c17e003da5d5
3
+ size 220140
10/replication_package/Codebook for Dyadic Party Dataset.docx ADDED
Binary file (17.5 kB). View file
 
10/replication_package/Codebook for Gender Disaggregated Dyadic Party Dataset.docx ADDED
Binary file (18 kB). View file
 
10/replication_package/Codebook for Multilevel Dataset.docx ADDED
Binary file (18.3 kB). View file
 
10/replication_package/dyadic_data_1-4-22.Rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce16b80cec72dc2c069ac245c09faa56aa40a80aba7bc21038539f6b16076b05
3
+ size 253615
10/replication_package/gender_disagregated_8-8-21.rds ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:050817c347915cd18baf4412e7cda9445a15ced3a4d7362c28ee3405a4fcc12f
3
+ size 272286
10/replication_package/multilevel_1-5-22.Rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd9a14418d24853992cdc860953b56a09afad73d32a8e8a0f78f02522a0d853a
3
+ size 10236336
10/replication_package/readme.rtf ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {\rtf1\ansi\ansicpg1252\cocoartf2513
2
+ \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 ArialMT;\f1\fswiss\fcharset0 Helvetica;}
3
+ {\colortbl;\red255\green255\blue255;\red26\green26\blue26;\red255\green255\blue255;\red26\green26\blue26;
4
+ }
5
+ {\*\expandedcolortbl;;\cssrgb\c13348\c13348\c13331;\cssrgb\c100000\c100000\c100000\c0;\cssrgb\c13348\c13348\c13331;
6
+ }
7
+ \paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0
8
+ \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
9
+
10
+ \f0\fs24 \cf0 Replication Data ReadMe for \cf2 \cb3 \expnd0\expndtw0\kerning0
11
+ Can\'92t We All Just Get Along? How Women MPs Can Ameliorate Affective Polarization in Western Publics\
12
+ \
13
+ Code files: \
14
+ \
15
+ 1. replication_code.r - Contains code to replicate all figures and tables in both article and supplementary information memo\
16
+ \
17
+ Datasets:\
18
+ 1. dyadic_data_1-4-22.Rdata - Dataset of directed party dyads, associated with codebook \'93Codebook for Dyadic Party Dataset\'94. Dataset required to replicate table 1 and Figure 1 in article, as well as tables S2, S3A, S3B, S4, S5, S6, S7, S8, S9, S10, and Figure S1 and S2 in supplementary information memo.\
19
+ \
20
+ 2. gender_disagregated_8-8-21.rds - Dataset of directed party dyads, disaggregated by gender of partisans, associated with codebook \'93Codebook for Gender Disaggregated Dyadic Party Dataset\'94. Dataset required to replicate Table 1 in main article, as well as Table S2 in the supplementary \cf4 information memo\cf2 .\
21
+ \
22
+ 3. multilevel_1-5-22.Rdata - Dataset of individual evaluations of out-parties, with contextual variables, associated with Codebook \'93Codebook for Multilevel Dataset\'94. Required to replicate Tables S11 and S12 in the supplementary information memo.\
23
+ \
24
+ \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
25
+
26
+ \f1 \cf0 \cb1 \kerning1\expnd0\expndtw0 *** NOTE: TO RUN THESE FILES AS THEY ARE SET UP, CREATE A DIRECTORY INCLUDING ALL THREE DATASETS***\
27
+ \
28
+ }
10/replication_package/replication_code.R ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #install.packages("tidyverse")
2
+ #install.packages("stargazer")
3
+ library(tidyverse) ##data cleaning
4
+ library(stargazer) ##tex output
5
+ library(haven)
6
+ library(estimatr)
7
+ library(dplyr)
8
+ library(fixest)
9
+ library(modelsummary)
10
+
11
+
12
+ ############################################
13
+ ############## CREATING FIGURE 1 ###########
14
+ ############################################
15
+
16
+ #Load in data
17
+ load("dyadic_data_1-4-22.Rdata")
18
+ dta <- updated_data
19
+
20
+ #### Remove unneeded variables
21
+ vars <- c("to_mp_number", "to_rile", "to_economy", "to_society", "year", "country",
22
+ "to_pfeml", "to_femaleleader")
23
+ dta <- dta[vars]
24
+ dta <- na.omit(dta)
25
+
26
+ ### Identiy unique parties being evaluated
27
+ dta_unique <- unique(dta)
28
+
29
+
30
+ fig1 <- ggplot(dta_unique, aes(x = to_pfeml)) +
31
+ geom_histogram(color="black", fill="grey40", binwidth =0.1, center=0.25) +
32
+ scale_x_continuous(breaks = seq(0,1,0.1)) +
33
+ theme_minimal() +
34
+ theme(plot.title = element_text(size=12)) +
35
+ ylab("Frequency")+
36
+ xlab("Proportion of Women MPs");fig1
37
+
38
+
39
+ ############################################
40
+ ###### CREATING TABLE 1 COLUMNS 1 & 2 ######
41
+ ############################################
42
+
43
+ #Out party % women, non-clustered SEs
44
+ load("dyadic_data_1-4-22.Rdata")
45
+
46
+ dta <-updated_data
47
+
48
+ #creating the country-year fixed effects
49
+ dta$cntryyr <-paste(dta$country, dta$year, sep = "")
50
+
51
+ ## Removing smaller parties
52
+ dta <- subset(dta, dta$to_prior_seats >=4)
53
+
54
+
55
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
56
+ "year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number")
57
+ dta <- dta[vars]
58
+ dta <- na.omit(dta)
59
+
60
+
61
+ table1.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta)
62
+ table1.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
63
+
64
+ ### With clustered SEs
65
+ stargazer(table1.1, table1.2,
66
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
67
+ se = starprep(table1.1, table1.2,
68
+ clusters = dta$country),
69
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
70
+ "econ_distance_s", "society_distance_s"))
71
+
72
+ ############################################
73
+ ###### CREATING TABLE 1 COLUMNS 3 & 4 ######
74
+ ############################################
75
+
76
+ ## Note in gendered data, the party_like and party_dislike variable indicate mean levels of
77
+ ## like/dislike for party by ALL partisans
78
+ ## the "dislike" variable indicates level of dislike towards out-party by partisans of specified gender
79
+ dta <- readRDS("gender_disagregated_8-8-21.rds")
80
+
81
+ #creating the country-year fixed effects
82
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
83
+
84
+ ## Removing smaller parties
85
+ dta <- subset(dta, dta$to_prior_seats >=4)
86
+
87
+ ### Create Like variable for gendered data from dislike
88
+ dta$like <- 10- dta$dislike
89
+
90
+ ## Remove unneeded variables and NAs
91
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
92
+ "year", "country", "to_pfeml",
93
+ "countryyear", "gender", "like", "dislike", "to_prior_seats")
94
+ dta <- dta[vars]
95
+ dta <- na.omit(dta)
96
+
97
+ ## Only men subset
98
+ dta_male <- subset(dta, gender==1)
99
+ dta_female <- subset(dta, gender==2)
100
+
101
+ table1.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female)
102
+ table1.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male)
103
+
104
+ ### With clustered SEs - women
105
+ stargazer(table1.3,
106
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
107
+ se = starprep(table1.3,
108
+ clusters = dta_female$country),
109
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
110
+
111
+ ### With clustered SEs - men
112
+ stargazer(table1.4,
113
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
114
+ se = starprep(table1.4,
115
+ clusters = dta_male$country),
116
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
117
+
118
+
119
+ ############################################
120
+ ###### CREATING TABLE S2 COLUMNS 1 & 2 ######
121
+ ############################################
122
+
123
+ #Out party % women, non-clustered SEs
124
+ load("dyadic_data_1-4-22.Rdata")
125
+
126
+ dta <-updated_data
127
+
128
+ #creating the country-year fixed effects
129
+ dta$cntryyr <-paste(dta$country, dta$year, sep = "")
130
+
131
+
132
+
133
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
134
+ "year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number")
135
+ dta <- dta[vars]
136
+ dta <- na.omit(dta)
137
+
138
+
139
+ tableS2.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta)
140
+ tableS2.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
141
+
142
+ summary(tableS2.1)
143
+ summary(tableS2.2)
144
+
145
+ ### With clustered SEs
146
+ stargazer(tableS2.1, tableS2.2,
147
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
148
+ se = starprep(tableS2.1, tableS2.2,
149
+ clusters = dta$country),
150
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
151
+ "econ_distance_s", "society_distance_s"))
152
+
153
+ ############################################
154
+ ###### CREATING TABLE S2 COLUMNS 3 & 4 ######
155
+ ############################################
156
+
157
+ dta <- readRDS("gender_disagregated_8-8-21.rds")
158
+
159
+ #creating the country-year fixed effects
160
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
161
+
162
+
163
+ ### Create Like variable for gendered data from dislike
164
+ dta$like <- 10- dta$dislike
165
+
166
+ ## Remove unneeded variables and NAs
167
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
168
+ "year", "country", "to_pfeml",
169
+ "countryyear", "gender", "like", "dislike", "to_prior_seats")
170
+ dta <- dta[vars]
171
+ dta <- na.omit(dta)
172
+
173
+ ## Only men subset
174
+ dta_male <- subset(dta, gender==1)
175
+ dta_female <- subset(dta, gender==2)
176
+
177
+ tableS2.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female)
178
+ tableS2.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male)
179
+
180
+ summary(tableS2.3)
181
+ summary(tableS2.4)
182
+
183
+ ### With clustered SEs - women
184
+ stargazer(tableS2.3,
185
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
186
+ se = starprep(tableS2.3,
187
+ clusters = dta_female$country),
188
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
189
+
190
+ ### With clustered SEs - men
191
+ stargazer(tableS2.4,
192
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
193
+ se = starprep(tableS2.4,
194
+ clusters = dta_male$country),
195
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2"))
196
+
197
+
198
+ ############################################
199
+ ############ CREATING TABLE S3 #############
200
+ ############################################
201
+
202
+ ## Read in data
203
+ load("dyadic_data_1-4-22.Rdata")
204
+
205
+ dta <-updated_data
206
+ colnames(dta)
207
+
208
+ #creating the country-year fixed effects
209
+ dta$cntryyr <-paste(dta$country, dta$year, sep = "")
210
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
211
+ "year", "country", "party_dislike","party_like", "cntryyr", "to_pfeml", "from_rile", "to_rile",
212
+ "from_left_bloc", "from_right_bloc", "to_left_bloc", "to_right_bloc", "from_parfam", "to_parfam",
213
+ "to_prior_seats")
214
+ dta <- dta[vars]
215
+ dta <- na.omit(dta)
216
+
217
+ dta_nrr <- subset(dta, dta$to_parfam!=70)
218
+ dta_nrr <- subset(dta_nrr, dta_nrr$from_parfam!=70)
219
+
220
+ ## Remove small parties, with fewer than 4 seats
221
+ dta_small_nrr <- subset(dta_nrr, dta_nrr$to_prior_seats >=4)
222
+
223
+ table.S3 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small_nrr)
224
+ summary(table.S3)
225
+
226
+ stargazer(table.S3,
227
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
228
+ se = starprep(table.S3,
229
+ clusters = dta_small_nrr$country),
230
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
231
+ "econ_distance_s", "society_distance_s"))
232
+
233
+
234
+ ############################################
235
+ ############ CREATING TABLE S3B ############
236
+ ############################################
237
+
238
+ ## Load
239
+ load("dyadic_data_1-4-22.Rdata")
240
+
241
+ dta <-updated_data
242
+
243
+ #creating the country-year fixed effects
244
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
245
+ "year", "country", "party_dislike", "party_like", "to_parfam", "to_left_bloc", "to_right_bloc", "cntryyr", "to_pfeml",
246
+ "to_prior_seats")
247
+ dta <- dta[vars]
248
+ dta <- na.omit(dta)
249
+
250
+ ## Remove small parties, with fewer than 4 seats
251
+ dta_small <- subset(dta, dta$to_prior_seats >=4)
252
+
253
+ table.3B.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta_small)
254
+ table.3B.2 <-lm(party_like ~ to_pfeml + rile_distance_s + to_left_bloc + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta_small)
255
+
256
+ summary(table.3B.2)
257
+
258
+ ### With clustered SEs
259
+ stargazer(table.3B.1, table.3B.2,
260
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
261
+ se = starprep(table.3B.1, table.3B.2,
262
+ clusters = dta_small$country),
263
+ keep = c("to_pfeml", "rile_distance_s", "to_left_bloc", "prior_coalition", "prior_opposition",
264
+ "econ_distance_s", "society_distance_s"))
265
+
266
+
267
+ ############################################
268
+ ############ CREATING TABLE S4 ############
269
+ ############################################
270
+
271
+ ## Read in data
272
+ load("dyadic_data_1-4-22.Rdata")
273
+
274
+ dta <-updated_data
275
+
276
+ #creating the country-year fixed effects
277
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
278
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
279
+ "year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile",
280
+ "logDM", "to_left_bloc", "to_prior_seats")
281
+ dta <- dta[vars]
282
+ dta <- na.omit(dta)
283
+
284
+ ### Split by year, 1996-2006 and 2007-2017
285
+ dta_early <- subset(dta, dta$year<=2006)
286
+ dta_late <- subset(dta, dta$year>=2007)
287
+
288
+
289
+ table.early <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early)
290
+ table.late <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late)
291
+
292
+ ### Without small parties
293
+ dta_early_small <- subset(dta_early, dta_early$to_prior_seats >=4)
294
+ dta_late_small <- subset(dta_late, dta_late$to_prior_seats >=4)
295
+
296
+ table.4.1 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early_small)
297
+ table.4.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late_small)
298
+
299
+ summary(table.4.1)
300
+ summary(table.4.2)
301
+
302
+ ### With clustered SEs
303
+ stargazer(table.4.1,
304
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
305
+ se = starprep(table.4.1,
306
+ clusters = dta_early_small$country),
307
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition"
308
+ ))
309
+
310
+ ### With clustered SEs
311
+ stargazer(table.4.2,
312
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
313
+ se = starprep(table.4.2,
314
+ clusters = dta_late_small$country),
315
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition"
316
+ ))
317
+
318
+
319
+
320
+ ############################################
321
+ ############ CREATING TABLE S5 #############
322
+ ############################################
323
+
324
+ load("dyadic_data_1-4-22.Rdata")
325
+
326
+ dta <-updated_data
327
+
328
+ #creating the country-year fixed effects
329
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
330
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
331
+ "year", "country", "party_dislike", "party_like", "countryyear",
332
+ "to_pfeml", "from_pfeml", "diff_pfeml", "to_prior_seats")
333
+ dta <- dta[vars]
334
+ dta <- na.omit(dta)
335
+
336
+ ## Remove small parties, with fewer than 4 seats
337
+ dta_small <- subset(dta, dta$to_prior_seats >=4)
338
+
339
+ table.S5.1 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + as.factor(countryyear), data = dta_small)
340
+ table.S5.2 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_small)
341
+
342
+ summary(table.S5.1)
343
+ summary(table.S5.2)
344
+
345
+ ### With clustered SEs
346
+ stargazer(table.S5.1, table.S5.2,
347
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
348
+ se = starprep(table.S5.1, table.S5.2,
349
+ clusters = dta_small$country),
350
+ keep = c("to_pfeml", "from_pfeml", "diff_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
351
+ "econ_distance_s", "society_distance_s"))
352
+
353
+ ############################################
354
+ ############ CREATING FIG. S1 #############
355
+ ############################################
356
+
357
+
358
+ ### Create Plot Data
359
+
360
+ ## All values of Out-Party % women
361
+ plot_1 <- as.data.frame((unique(dta$to_pfeml)))
362
+ colnames(plot_1) <- c("to_pfeml")
363
+
364
+ ## All 1 Sd above mean of In-party % women
365
+ plot_1$from_pfeml <- mean(dta$from_pfeml, na.rm=T) + sd(dta$from_pfeml, na.rm=T)
366
+
367
+ ## Create difference between in-and out-party women
368
+ plot_1$diff_pfeml <- abs(plot_1$to_pfeml - plot_1$from_pfeml)
369
+
370
+ ## Select other values (mean RILE distance, opposition together, France 2012 country year)
371
+ plot_1$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
372
+ plot_1$prior_coalition <- 0
373
+ plot_1$prior_opposition <- 1
374
+ plot_1$countryyear <- "France2012"
375
+ plot_1$to_mp_number <- "31320"
376
+ plot_1$group <- "above_mean"
377
+
378
+ ## All values of Out-Party % women
379
+ plot_2 <- as.data.frame((unique(dta$to_pfeml)))
380
+ colnames(plot_2) <- c("to_pfeml")
381
+
382
+ ## All 1 Sd below mean of In-party % women
383
+ plot_2$from_pfeml <- mean(dta$from_pfeml, na.rm=T) - sd(dta$from_pfeml, na.rm=T)
384
+
385
+ ## Create difference between in-and out-party women
386
+ plot_2$diff_pfeml <- abs(plot_2$to_pfeml - plot_2$from_pfeml)
387
+
388
+ ## Select other values (opposition together, France 2012 country year)
389
+ plot_2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
390
+ plot_2$prior_coalition <- 0
391
+ plot_2$prior_opposition <- 1
392
+ plot_2$countryyear <- "France2012"
393
+ plot_2$to_mp_number <- "31320"
394
+ plot_2$group <- "below_mean"
395
+
396
+ plot_dta <- rbind(plot_1, plot_2)
397
+
398
+
399
+ ###### Plot based on table.S5.2
400
+ figureS1.data <- as.data.frame(predict(table.S5.2, newdata = plot_dta, interval = "confidence"))
401
+
402
+ plot_dta$fit <- figureS1.data$fit
403
+ plot_dta$lwr <- figureS1.data$lwr
404
+ plot_dta$upr <- figureS1.data$upr
405
+
406
+ figS1 <- ggplot(plot_dta, aes(x=to_pfeml, y=fit, lty=group))
407
+ figS1 <- figS1 + geom_line() +
408
+ geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr,
409
+ ymax = upr),
410
+ lwd = 1/2, alpha=0.1) +
411
+ theme_minimal() +
412
+ theme(plot.title = element_text(size=12)) +
413
+ ylab("Predicted Out-Party Thermometer Rating")+
414
+ xlab("Proportion of Out-Party Women MPs") +
415
+ theme(legend.position = "none") +
416
+ geom_text(x=0.70, y=5.3, label="in-party % of women is \n1 SD above the mean") +
417
+ geom_text(x=0.70, y=4.0, label="in-party % of women is \n1 SD below the mean", color="grey37") +
418
+ ylim(c(2.5,6.5));figS1
419
+
420
+ pdf("figS1.pdf")
421
+ figS1
422
+ dev.off()
423
+
424
+
425
+ ############################################
426
+ ############ CREATING TABLE S6 #############
427
+ ############################################
428
+
429
+ ## Read in data
430
+ load("dyadic_data_1-4-22.Rdata")
431
+
432
+ dta <-updated_data
433
+
434
+ #creating the country-year fixed effects
435
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
436
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
437
+ "year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile",
438
+ "logDM", "to_left_bloc", "to_prior_seats")
439
+ dta <- dta[vars]
440
+ dta <- na.omit(dta)
441
+
442
+ dta_small <- subset(dta, dta$to_prior_seats >=4)
443
+
444
+ table.S6.1 <-lm(party_like ~ to_pfeml + rile_distance_s + logDM + prior_coalition + prior_opposition + as.factor(year), data = dta_small)
445
+ table.S6.2 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s + prior_coalition + prior_opposition + as.factor(year), data = dta_small)
446
+ table.S6.3 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s*logDM + prior_coalition*logDM + prior_opposition*logDM + as.factor(year), data = dta_small)
447
+
448
+ summary(table.S6.1)
449
+ summary(table.S6.2)
450
+ summary(table.S6.3)
451
+
452
+ stargazer(table.S6.1, table.S6.2, table.S6.3,
453
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
454
+ se = starprep(table.S6.1, table.S6.2, table.S6.3,
455
+ clusters = dta_small$country),
456
+ keep = c("to_pfeml", "rile_distance_s", "logDM", "prior_coalition", "prior_opposition",
457
+ "econ_distance_s", "society_distance_s"))
458
+
459
+
460
+ ############################################
461
+ ############ CREATING TABLE S7 #############
462
+ ############################################
463
+
464
+ #Out party % women, non-clustered SEs
465
+ load("dyadic_data_1-4-22.Rdata")
466
+
467
+ dta <-updated_data
468
+
469
+ #creating the country-year fixed effects
470
+ dta$cntryyr <-paste(dta$country, dta$year, sep = "")
471
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
472
+ "year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats")
473
+ dta <- dta[vars]
474
+ dta <- na.omit(dta)
475
+
476
+ ## Creating squared term for out-party % women
477
+ dta$to_pfeml2 <- dta$to_pfeml^2
478
+
479
+ ## Remove small parties, with fewer than 4 seats
480
+ dta <- subset(dta, dta$to_prior_seats >=4)
481
+
482
+ table.S7.1 <-lm(party_like ~ to_pfeml + to_pfeml2 + as.factor(cntryyr), data = dta)
483
+ table.S7.2 <-lm(party_like ~ to_pfeml + to_pfeml2 + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta)
484
+
485
+ summary(table.S7.1)
486
+ summary(table.S7.2)
487
+
488
+ ### With clustered SEs
489
+ stargazer(table.S7.1, table.S7.2,
490
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
491
+ se = starprep(table.S7.1, table.S7.2,
492
+ clusters = dta$country),
493
+ keep = c("to_pfeml", "to_pfeml2", "rile_distance_s", "prior_coalition", "prior_opposition",
494
+ "econ_distance_s", "society_distance_s"))
495
+
496
+ ############################################
497
+ ############ CREATING FIG. S2 #############
498
+ ############################################
499
+
500
+ ### Create Plot Data
501
+
502
+ ## All values of Out-Party % women
503
+ plot_S2 <- as.data.frame((unique(dta$to_pfeml)))
504
+ colnames(plot_S2) <- c("to_pfeml")
505
+
506
+ ## Create difference between in-and out-party women
507
+ plot_S2$to_pfeml2 <- plot_S2$to_pfeml^2
508
+
509
+ ## Select other values (mean RILE distance, opposition together, France 2012 country year)
510
+ plot_S2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T)
511
+ plot_S2$prior_coalition <- 0
512
+ plot_S2$prior_opposition <- 1
513
+ plot_S2$cntryyr <- "France2012"
514
+ plot_S2$to_mp_number <- "31320"
515
+
516
+ figureS2.data <- as.data.frame(predict(table.S7.2, newdata = plot_S2, interval = "confidence"))
517
+
518
+ plot_S2$fit <- figureS2.data$fit
519
+ plot_S2$lwr <- figureS2.data$lwr
520
+ plot_S2$upr <- figureS2.data$upr
521
+
522
+ figS2 <- ggplot(plot_S2, aes(x=to_pfeml, y=fit))
523
+ figS2 <- figS2 + geom_line() +
524
+ geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr,
525
+ ymax = upr),
526
+ lwd = 1/2, alpha=0.1) +
527
+ theme_minimal() +
528
+ theme(plot.title = element_text(size=12)) +
529
+ ylab("Predicted Out-Party Thermometer Rating")+
530
+ xlab("Proportion of Out-Party Women MPs") +
531
+ ylim(c(2,5));figS2
532
+
533
+ pdf("figS2.pdf")
534
+ figS2
535
+ dev.off()
536
+
537
+ ############################################
538
+ ############ CREATING TABLE S8 #############
539
+ ############################################
540
+
541
+ #Women-led parties
542
+ load("dyadic_data_1-4-22.Rdata")
543
+
544
+ dta <-updated_data
545
+
546
+ dta_womenlead <- subset(dta, dta$to_femaleleader==1)
547
+
548
+ #creating the country-year fixed effects
549
+ dta_womenlead$countryyear <-paste(dta_womenlead$country, dta_womenlead$year, sep = "")
550
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
551
+ "year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats")
552
+ dta_womenlead <- dta_womenlead[vars]
553
+ dta_womenlead <- na.omit(dta_womenlead)
554
+
555
+ ## Exclude small parties
556
+ dta_womenlead <- subset(dta_womenlead, dta_womenlead$to_prior_seats >=4)
557
+
558
+ table.S8A1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_womenlead)
559
+ table.S8A2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_womenlead)
560
+
561
+ summary(table.S8A1)
562
+ summary(table.S8A2)
563
+
564
+ ### With clustered SEs
565
+ stargazer(table.S8A1, table.S8A2,
566
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
567
+ se = starprep(table.S8A1, table.S8A2,
568
+ clusters = dta_womenlead$country),
569
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
570
+ "econ_distance_s", "society_distance_s"))
571
+
572
+ #Male-led parties
573
+ load("dyadic_data_1-4-22.Rdata")
574
+ dta <-updated_data
575
+
576
+ dta_malelead <- subset(dta, dta$to_femaleleader==0)
577
+
578
+ #creating the country-year fixed effects
579
+ dta_malelead$countryyear <-paste(dta_malelead$country, dta_malelead$year, sep = "")
580
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
581
+ "year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats")
582
+ dta_malelead <- dta_malelead[vars]
583
+ dta_malelead <- na.omit(dta_malelead)
584
+
585
+ ## Exclude small parties
586
+ dta_malelead <- subset(dta_malelead, dta_malelead$to_prior_seats >=4)
587
+
588
+ table.S8B1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_malelead)
589
+ table.S8B2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_malelead)
590
+
591
+ summary(table.S8B1)
592
+ summary(table.S8B2)
593
+
594
+ ### With clustered SEs
595
+ stargazer(table.S8B1, table.S8B2,
596
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
597
+ se = starprep(table.S8B1, table.S8B2,
598
+ clusters = dta_malelead$country),
599
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
600
+ "econ_distance_s", "society_distance_s"))
601
+
602
+ ############################################
603
+ ############ CREATING TABLE S9 #############
604
+ ############################################
605
+
606
+ ## Read in data
607
+ load("dyadic_data_1-4-22.Rdata")
608
+
609
+ dta <- updated_data
610
+
611
+ #creating the country-year fixed effects
612
+ dta$countryyear <-paste(dta$country, dta$year, sep = "")
613
+
614
+ #creating the party fixed effects / cluster
615
+ dta$partydyad <-paste(dta$from_mp_number, dta$to_mp_number, sep = "")
616
+
617
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
618
+ "year", "country", "party_dislike","party_like", "countryyear", "to_pfeml",
619
+ "from_rile", "to_rile", "to_mp_number", "partydyad", "to_prior_seats")
620
+ dta <- dta[vars]
621
+ dta <- na.omit(dta)
622
+
623
+ ## Exclude small parties
624
+ dta <- subset(dta, dta$to_prior_seats >=4)
625
+
626
+ table.S9 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta)
627
+ summary(table.S9)
628
+
629
+ ### With clustered SEs
630
+ stargazer(table.S9,
631
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
632
+ se = starprep(table.S9,
633
+ clusters = dta$partydyad),
634
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
635
+ "econ_distance_s", "society_distance_s"))
636
+
637
+
638
+ ############################################
639
+ ############ CREATING TABLE 10 #############
640
+ ############################################
641
+
642
+ load("dyadic_data_1-4-22.Rdata")
643
+
644
+ dta <-updated_data
645
+
646
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
647
+ "year", "country", "party_dislike", "to_pfeml", "party_like", "to_prior_seats")
648
+ dta <- dta[vars]
649
+ dta <- na.omit(dta)
650
+
651
+ ## Remove small parties, with fewer than 4 seats
652
+ dta_small <- subset(dta, dta$to_prior_seats >=4)
653
+
654
+ table.S10.1 <-lm(party_like ~ to_pfeml + as.factor(country), data = dta_small)
655
+ table.S10.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small)
656
+
657
+ summary(table.S10.2)
658
+
659
+ ### With clustered SEs
660
+ stargazer(table.S10.1, table.S10.2,
661
+ add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")),
662
+ se = starprep(table.S10.1, table.S10.2,
663
+ clusters = dta_small$country),
664
+ keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition",
665
+ "econ_distance_s", "society_distance_s"))
666
+
667
+ ##################################################
668
+ ############ CREATING TABLES 11 & 12 #############
669
+ ##################################################
670
+
671
+ load("Data/multilevel_1-5-22.Rdata")
672
+
673
+ indiv_data <-multilevel_data
674
+
675
+
676
+ vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s",
677
+ "year", "country", "cntryyr", "to_pfeml", "from_pfeml", "thermometer_score", "ID", "party_to", "party_from",
678
+ "from_partyname", "to_partyname", "to_left_bloc", "from_left_bloc",
679
+ "to_right_bloc", "from_right_bloc", "gender", "to_parfam", "from_parfam", "to_prior_seats",
680
+ "from_mp_number", "to_mp_number")
681
+
682
+
683
+ indiv_data <- indiv_data[vars]
684
+
685
+ ## Create gender variable
686
+ indiv_data <-mutate(indiv_data, gender = ifelse(gender == "1", "male",
687
+ ifelse(gender == "2", "female", NA)))
688
+
689
+ indiv_data$gender <-as.factor(indiv_data$gender)
690
+
691
+ ##filter out parties with no data, mainly parties who were not in parliament plus a few cases from early 1990s
692
+ indiv_data <-filter(indiv_data, is.na(to_pfeml) == F)
693
+
694
+ ### Create dyads for FEs/Clustered SEs
695
+ indiv_data$dyad <-paste(indiv_data$from_mp_number, indiv_data$to_mp_number, sep ="_to_")
696
+
697
+ ### Create Table 11, column 1, with Standard errors clustered at country-year, party-dyad, and individual levels
698
+ table11A.1.1 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~cntryyr)
699
+ table11A.1.2 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~dyad)
700
+ table11A.1.3 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~ID)
701
+
702
+ ### Create Table 11, column 2, with Standard errors clustered at country-year, party-dyad, and individual levels
703
+ table11A.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~cntryyr)
704
+ table11A.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~dyad)
705
+ table11A.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~ID)
706
+
707
+ ### Create Table 11B, column 1, with Standard errors clustered at country-year, party-dyad, and individual levels
708
+ table11B.1.1 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~cntryyr)
709
+ table11B.1.2 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~dyad)
710
+ table11B.1.3 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~ID)
711
+
712
+ ### Create Table 11B, column 2, with Standard errors clustered at country-year, party-dyad, and individual levels
713
+ table11B.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~cntryyr)
714
+ table11B.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~dyad)
715
+ table11B.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~ID)
716
+
10/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e948c9ddded565a15bdaa55c5f0001dcc6e8f1c0857305a6eaf31e19ff7b2dc0
3
+ size 16