Commit
·
cfce9ef
1
Parent(s):
9c666aa
add 9
Browse files- 9/paper.pdf +3 -0
- 9/replication_package/Ado/brain.ado +772 -0
- 9/replication_package/Code/FS.do +139 -0
- 9/replication_package/Code/Figures.do +150 -0
- 9/replication_package/Code/MASTER.do +14 -0
- 9/replication_package/Code/NOAA Weather Data (NEW!)/Alt_weather_var_v1.do +587 -0
- 9/replication_package/Code/NOAA Weather Data (NEW!)/NOAA_download.R +28 -0
- 9/replication_package/Code/Prepare_Data.do +325 -0
- 9/replication_package/Code/Prepare_Data_New.do +447 -0
- 9/replication_package/Code/TS.do +301 -0
- 9/replication_package/Code/TS_NEW_1.do +393 -0
- 9/replication_package/Code/Tables.do +163 -0
- 9/replication_package/Code/Tables_NEW_1.do +503 -0
- 9/replication_package/Code/Tables_NEW_2.do +436 -0
- 9/replication_package/Data/aod_month.dta +3 -0
- 9/replication_package/Data/city_info.dta +3 -0
- 9/replication_package/Data/city_info_rd.dta +3 -0
- 9/replication_package/Data/city_month.dta +3 -0
- 9/replication_package/Data/did_ddl_match.dta +3 -0
- 9/replication_package/Data/mask_filter_search.dta +3 -0
- 9/replication_package/Data/pm10_corrected_reference.dta +3 -0
- 9/replication_package/Data/pollution.csv +3 -0
- 9/replication_package/Data/pollution_1116.dta +3 -0
- 9/replication_package/Data/search_sale.dta +3 -0
- 9/replication_package/Data/station_day_1116.dta +3 -0
- 9/replication_package/Data/station_list.dta +3 -0
- 9/replication_package/Data/station_month.dta +3 -0
- 9/replication_package/Data/weather_1116.dta +3 -0
- 9/replication_package/Data/weather_1116_alt.dta +3 -0
- 9/replication_package/README.pdf +3 -0
- 9/replication_package/Readme_new.txt +3 -0
- 9/should_reproduce.txt +3 -0
9/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd9e664c51fc3fb20dfd0ba909c148b3cab68aaaa60c800038ebc3b8b44d79f1
|
3 |
+
size 838205
|
9/replication_package/Ado/brain.ado
ADDED
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cap program drop brain
|
2 |
+
program define brain, rclass
|
3 |
+
version 9.0
|
4 |
+
syntax anything(id="command") [if] [in], [Hidden(numlist)] [INput(varlist)] [Output(varlist)] [ITer(integer 0)] [Eta(real 0.25)] [Spread(real 0.5)] [RAW] [NOSort]
|
5 |
+
token `"`anything'"'
|
6 |
+
if length(`"`1'"') < 2 {
|
7 |
+
di as error "invalid brain command"
|
8 |
+
error 999
|
9 |
+
}
|
10 |
+
if `"`1'"' == substr("define",1,length(`"`1'"')) {
|
11 |
+
if `"`input'"' == "" {
|
12 |
+
di as error "no input variables specified"
|
13 |
+
error 999
|
14 |
+
}
|
15 |
+
if `"`output'"' == "" {
|
16 |
+
di as error "no output variables specified"
|
17 |
+
error 999
|
18 |
+
}
|
19 |
+
local inp = wordcount(`"`input'"')
|
20 |
+
local out = wordcount(`"`output'"')
|
21 |
+
local hidden = `"`inp' `hidden' `out'"'
|
22 |
+
token `"`hidden'"'
|
23 |
+
local layer = ""
|
24 |
+
local i = 1
|
25 |
+
while "``i''" != "" {
|
26 |
+
cap confirm integer number ``i''
|
27 |
+
if _rc > 0 {
|
28 |
+
di as error "invalid layer number"
|
29 |
+
error 999
|
30 |
+
}
|
31 |
+
if ``i'' <= 0 {
|
32 |
+
di as error "invalid layer definition"
|
33 |
+
error 999
|
34 |
+
}
|
35 |
+
local layer = `"`layer',``i''"'
|
36 |
+
local i = `i' + 1
|
37 |
+
}
|
38 |
+
local layer = "("+substr(`"`layer'"',2,.)+")"
|
39 |
+
matrix layer = `layer'
|
40 |
+
if wordcount(`"`input'"') != layer[1,1] {
|
41 |
+
di as error "invalid number of input variables, " layer[1,1] " required"
|
42 |
+
matrix drop layer
|
43 |
+
error 999
|
44 |
+
}
|
45 |
+
if wordcount(`"`output'"') != layer[1,colsof(layer)] {
|
46 |
+
di as error "invalid number of output variables, " layer[1,colsof(layer)] " required"
|
47 |
+
matrix drop layer
|
48 |
+
error 999
|
49 |
+
}
|
50 |
+
matrix input = J(4,layer[1,1],0)
|
51 |
+
local i = 1
|
52 |
+
foreach v of varlist `input' {
|
53 |
+
qui sum `v' `if' `in'
|
54 |
+
matrix input[1,`i'] = r(min)
|
55 |
+
matrix input[2,`i'] = 1 / (r(max) - r(min))
|
56 |
+
if input[2,`i'] == . {
|
57 |
+
matrix input[2,`i'] = 1
|
58 |
+
}
|
59 |
+
local i = `i'+1
|
60 |
+
}
|
61 |
+
matrix colnames input = `input'
|
62 |
+
matrix rownames input = min norm value signal
|
63 |
+
matrix output = J(4,layer[1,colsof(layer)],0)
|
64 |
+
local i = 1
|
65 |
+
foreach v of varlist `output' {
|
66 |
+
qui sum `v' `if' `in'
|
67 |
+
matrix output[1,`i'] = r(min)
|
68 |
+
matrix output[2,`i'] = 1 / (r(max) - r(min))
|
69 |
+
if output[2,`i'] == . {
|
70 |
+
matrix output[2,`i'] = 1
|
71 |
+
}
|
72 |
+
local i = `i'+1
|
73 |
+
}
|
74 |
+
matrix colnames output = `output'
|
75 |
+
matrix rownames output = min norm value signal
|
76 |
+
braincreate
|
77 |
+
braininit `spread'
|
78 |
+
di as text "Defined matrices:"
|
79 |
+
braindir
|
80 |
+
exit
|
81 |
+
}
|
82 |
+
if `"`1'"' == substr("save",1,length("`1'")) {
|
83 |
+
if `"`2'"' == "" {
|
84 |
+
di as error "no file specified"
|
85 |
+
error 999
|
86 |
+
}
|
87 |
+
local using = `"`2'"'
|
88 |
+
tempname save
|
89 |
+
cap local layer = colsof(layer)
|
90 |
+
if _rc > 0 {
|
91 |
+
di as error "no network defined"
|
92 |
+
error 999
|
93 |
+
}
|
94 |
+
cap local size = colsof(brain)
|
95 |
+
if _rc > 0 {
|
96 |
+
di as error "no network defined"
|
97 |
+
error 999
|
98 |
+
}
|
99 |
+
cap local isize = colsof(input)
|
100 |
+
if _rc > 0 {
|
101 |
+
di as error "no network defined"
|
102 |
+
error 999
|
103 |
+
}
|
104 |
+
cap local osize = colsof(output)
|
105 |
+
if _rc > 0 {
|
106 |
+
di as error "no network defined"
|
107 |
+
error 999
|
108 |
+
}
|
109 |
+
local using = subinstr(trim(`"`using'"'),"\","/",.)
|
110 |
+
if regex(`"`using'?"',"\.[^/]*\?") == 0 {
|
111 |
+
local using = `"`using'.brn"'
|
112 |
+
}
|
113 |
+
qui file open `save' using `"`using'"', write binary replace
|
114 |
+
file write `save' %9s `"braindead"'
|
115 |
+
file write `save' %4bu (`layer')
|
116 |
+
forvalue i = 1/`layer' {
|
117 |
+
file write `save' %4bu (layer[1,`i'])
|
118 |
+
}
|
119 |
+
local names : colnames input
|
120 |
+
local len = length(`"`names'"')
|
121 |
+
file write `save' %4bu (`len')
|
122 |
+
file write `save' %`len's `"`names'"'
|
123 |
+
local isize = layer[1,1]
|
124 |
+
forvalue i = 1/`isize' {
|
125 |
+
file write `save' %8z (input[1,`i'])
|
126 |
+
file write `save' %8z (input[2,`i'])
|
127 |
+
}
|
128 |
+
local names : colnames output
|
129 |
+
local len = length(`"`names'"')
|
130 |
+
file write `save' %4bu (`len')
|
131 |
+
file write `save' %`len's `"`names'"'
|
132 |
+
local osize = layer[1,colsof(layer)]
|
133 |
+
forvalue i = 1/`osize' {
|
134 |
+
file write `save' %8z (output[1,`i'])
|
135 |
+
file write `save' %8z (output[2,`i'])
|
136 |
+
}
|
137 |
+
forvalue i = 1/`size' {
|
138 |
+
file write `save' %8z (brain[1,`i'])
|
139 |
+
}
|
140 |
+
file close `save'
|
141 |
+
exit
|
142 |
+
}
|
143 |
+
if "`1'" == substr("load",1,length("`1'")) {
|
144 |
+
if `"`2'"' == "" {
|
145 |
+
di as error "no file specified"
|
146 |
+
error 999
|
147 |
+
}
|
148 |
+
local using = `"`2'"'
|
149 |
+
tempname load bin
|
150 |
+
local using = subinstr(trim(`"`using'"'),"\","/",.)
|
151 |
+
if regex(`"`using'?"',"\.[^/]*\?") == 0 {
|
152 |
+
local using = "`using'.brn"
|
153 |
+
}
|
154 |
+
file open `load' using `"`using'"', read binary
|
155 |
+
file read `load' %9s str
|
156 |
+
if `"`str'"' != "braindead" {
|
157 |
+
di as error "invalid file format"
|
158 |
+
file close `load'
|
159 |
+
error 999
|
160 |
+
}
|
161 |
+
file read `load' %4bu `bin'
|
162 |
+
local layer = `bin'
|
163 |
+
matrix layer = J(1,`layer',0)
|
164 |
+
forvalue i = 1/`layer' {
|
165 |
+
file read `load' %4bu `bin'
|
166 |
+
if r(eof) {
|
167 |
+
di as error "invalid file format"
|
168 |
+
file close `load'
|
169 |
+
error 999
|
170 |
+
}
|
171 |
+
matrix layer[1,`i'] = `bin'
|
172 |
+
}
|
173 |
+
file read `load' %4bu `bin'
|
174 |
+
local len = `bin'
|
175 |
+
file read `load' %`len's str
|
176 |
+
local layer = layer[1,1]
|
177 |
+
matrix input = J(4,`layer',0)
|
178 |
+
matrix colnames input = `str'
|
179 |
+
matrix rownames input = min norm value signal
|
180 |
+
forvalue i = 1/`layer' {
|
181 |
+
file read `load' %8z `bin'
|
182 |
+
matrix input[1,`i'] = `bin'
|
183 |
+
file read `load' %8z `bin'
|
184 |
+
matrix input[2,`i'] = `bin'
|
185 |
+
}
|
186 |
+
file read `load' %4bu `bin'
|
187 |
+
local len = `bin'
|
188 |
+
file read `load' %`len's str
|
189 |
+
local layer = layer[1,colsof(layer)]
|
190 |
+
matrix output = J(4,`layer',0)
|
191 |
+
matrix colnames output = `str'
|
192 |
+
matrix rownames output = min norm value signal
|
193 |
+
forvalue i = 1/`layer' {
|
194 |
+
file read `load' %8z `bin'
|
195 |
+
matrix output[1,`i'] = `bin'
|
196 |
+
file read `load' %8z `bin'
|
197 |
+
matrix output[2,`i'] = `bin'
|
198 |
+
}
|
199 |
+
braincreate
|
200 |
+
local size = colsof(brain)
|
201 |
+
local i = 0
|
202 |
+
while 1 {
|
203 |
+
file read `load' %8z `bin'
|
204 |
+
if r(eof) {
|
205 |
+
continue, break
|
206 |
+
}
|
207 |
+
local i = `i'+1
|
208 |
+
if `i' > `size' {
|
209 |
+
di as error "invalid file format"
|
210 |
+
file close `load'
|
211 |
+
error 999
|
212 |
+
}
|
213 |
+
matrix brain[1,`i'] = `bin'
|
214 |
+
}
|
215 |
+
if `i' < `size' {
|
216 |
+
di as error "invalid file format"
|
217 |
+
file close `load'
|
218 |
+
error 999
|
219 |
+
}
|
220 |
+
file close `load'
|
221 |
+
di as text "Loaded matrices:"
|
222 |
+
braindir
|
223 |
+
exit
|
224 |
+
}
|
225 |
+
if `"`1'"' == substr("feed",1,length("`1'")) {
|
226 |
+
macro shift
|
227 |
+
tempname output
|
228 |
+
local isize = colsof(input)
|
229 |
+
local osize = colsof(output)
|
230 |
+
local ostart = colsof(neuron)-`osize'+1
|
231 |
+
local wc = wordcount(`"`*'"')
|
232 |
+
if `wc' != `isize' {
|
233 |
+
di as error "number of values does not match input neurons (`wc' <> `isize')"
|
234 |
+
error 999
|
235 |
+
}
|
236 |
+
foreach v in `*' {
|
237 |
+
cap confirm number `v'
|
238 |
+
if _rc != 0 {
|
239 |
+
di as error "invalid value: `v'"
|
240 |
+
error 999
|
241 |
+
}
|
242 |
+
}
|
243 |
+
local i = 1
|
244 |
+
if `"`raw'"' == "" {
|
245 |
+
while `"``i''"' != "" {
|
246 |
+
matrix input[3,`i'] = ``i''
|
247 |
+
local i = `i'+1
|
248 |
+
}
|
249 |
+
forvalue i = 1/`isize' {
|
250 |
+
matrix input[4,`i'] = max(min((input[3,`i']-input[1,`i']) * input[2,`i'],1),0)
|
251 |
+
matrix neuron[1,`i'] = input[4,`i']
|
252 |
+
}
|
253 |
+
}
|
254 |
+
else {
|
255 |
+
while `"``i''"' != "" {
|
256 |
+
matrix input[4,`i'] = max(min(``i'',1),0)
|
257 |
+
local i = `i'+1
|
258 |
+
}
|
259 |
+
forvalue i = 1/`isize' {
|
260 |
+
matrix input[3,`i'] = input[4,`i'] / input[2,`i'] + input[1,`i']
|
261 |
+
matrix neuron[1,`i'] = input[4,`i']
|
262 |
+
}
|
263 |
+
}
|
264 |
+
mata: brainforward()
|
265 |
+
mata: brainoutputget(0)
|
266 |
+
matrix `output' = output[3..4,1...]
|
267 |
+
matrix list `output', noheader format(%18.9f)
|
268 |
+
return matrix output = `output'
|
269 |
+
exit
|
270 |
+
}
|
271 |
+
if `"`1'"' == substr("signal",1,length("`1'")) {
|
272 |
+
macro shift
|
273 |
+
tempname signal
|
274 |
+
local isize = colsof(input)
|
275 |
+
local osize = colsof(output)
|
276 |
+
local ostart = colsof(neuron)-`osize'+1
|
277 |
+
local nsize = colsof(neuron)
|
278 |
+
local inames : colnames input
|
279 |
+
local onames : colnames output
|
280 |
+
matrix `signal' = J(`isize'+1, `osize', 0)
|
281 |
+
matrix colnames `signal' = `onames'
|
282 |
+
matrix rownames `signal' = `inames' flatline
|
283 |
+
matrix neuron[1, 1] = J(1,`isize', 0)
|
284 |
+
mata: brainforward()
|
285 |
+
mata: brainoutputget(0)
|
286 |
+
if "`raw'" == "" {
|
287 |
+
matrix `signal'[`isize'+1,1] = output[3,1...]
|
288 |
+
}
|
289 |
+
else {
|
290 |
+
matrix `signal'[`isize'+1,1] = output[4,1...]
|
291 |
+
}
|
292 |
+
forvalue i = 1/`isize' {
|
293 |
+
matrix neuron[1, 1] = J(1,`isize', 0)
|
294 |
+
matrix neuron[1, `i'] = 1
|
295 |
+
mata: brainforward()
|
296 |
+
if `"`raw'"' == "" {
|
297 |
+
forvalue j = 1/`osize' {
|
298 |
+
local k = `ostart'+`j'-1
|
299 |
+
matrix `signal'[`i',`j'] = neuron[1,`k'] / output[2,`j'] + output[1,`j']
|
300 |
+
matrix `signal'[`i',`j'] = `signal'[`i',`j'] - output[3,`j']
|
301 |
+
}
|
302 |
+
}
|
303 |
+
else {
|
304 |
+
forvalue j = 1/`osize' {
|
305 |
+
local k = `ostart'+`j'-1
|
306 |
+
matrix `signal'[`i',`j'] = neuron[1,`k'] - output[4,`j']
|
307 |
+
}
|
308 |
+
}
|
309 |
+
}
|
310 |
+
matrix list `signal', noheader format(%18.9f)
|
311 |
+
return matrix signal = `signal'
|
312 |
+
exit
|
313 |
+
}
|
314 |
+
if `"`1'"' == substr("margin",1,length("`1'")) {
|
315 |
+
tempname signal
|
316 |
+
tempvar delta nouse
|
317 |
+
macro shift
|
318 |
+
local inames : colnames input
|
319 |
+
local onames : colnames output
|
320 |
+
local mnames = "`inames'"
|
321 |
+
local osize = colsof(output)
|
322 |
+
local isize = colsof(input)
|
323 |
+
local msize = `isize'
|
324 |
+
if `"`*'"' != "" {
|
325 |
+
local mnames = ""
|
326 |
+
local msize = 0
|
327 |
+
foreach v of varlist `*' {
|
328 |
+
if index(" `inames' ", " `v' ") == 0 {
|
329 |
+
di as error "invalid input variable `v'"
|
330 |
+
error 999
|
331 |
+
}
|
332 |
+
if index(" `mnames' "," `v' ") > 0 {
|
333 |
+
di as error "input variable `v' already defined"
|
334 |
+
error 999
|
335 |
+
}
|
336 |
+
local mnames = "`mnames' `v'"
|
337 |
+
local msize = `msize'+1
|
338 |
+
}
|
339 |
+
}
|
340 |
+
qui des, varlist
|
341 |
+
local names = r(varlist)
|
342 |
+
qui gen byte `nouse' = 1
|
343 |
+
qui replace `nouse' = 0 `in' `if'
|
344 |
+
local snames = subinstr(`"`inames',`onames'"'," ",",",.)
|
345 |
+
qui replace `nouse' = 1 `in' if `nouse' == 0 & missing(`snames')
|
346 |
+
local snames = ""
|
347 |
+
local bnames = ""
|
348 |
+
forvalue o = 1/`osize' {
|
349 |
+
tempvar signal`o' base`o'
|
350 |
+
qui gen double `signal`o'' = .
|
351 |
+
qui gen double `base`o'' = .
|
352 |
+
local snames = "`snames' `signal`o''"
|
353 |
+
local bnames = "`bnames' `base`o''"
|
354 |
+
}
|
355 |
+
qui gen double `delta' = .
|
356 |
+
matrix `signal' = J(`msize',`osize',0)
|
357 |
+
matrix rownames `signal' = `mnames'
|
358 |
+
local cnames = ""
|
359 |
+
forvalue o = 1/`osize' {
|
360 |
+
local oname = word("`onames'", `o')
|
361 |
+
local cnames = "`cnames' `oname'"
|
362 |
+
}
|
363 |
+
di as text "unrestricted " _continue
|
364 |
+
matrix colnames `signal' = `cnames'
|
365 |
+
order `inames' `bnames' `nouse'
|
366 |
+
mata: brainsignal(0)
|
367 |
+
order `inames' `snames' `nouse'
|
368 |
+
local ind = 0
|
369 |
+
foreach v of varlist `mnames' {
|
370 |
+
forvalue i = 1/`isize' {
|
371 |
+
local iname = word("`inames'", `i')
|
372 |
+
if "`v'" == "`iname'" {
|
373 |
+
di as result "`iname' " _continue
|
374 |
+
mata: brainsignal(`i')
|
375 |
+
local ind = `ind' + 1
|
376 |
+
forvalue o = 1/`osize' {
|
377 |
+
local oname = word("`onames'", `o')
|
378 |
+
qui replace `delta' = `base`o''-`signal`o'' if `nouse' == 0
|
379 |
+
qui sum `delta' if `nouse' == 0
|
380 |
+
matrix `signal'[`ind',`o'] = r(mean)
|
381 |
+
}
|
382 |
+
continue, break
|
383 |
+
}
|
384 |
+
}
|
385 |
+
}
|
386 |
+
order `names'
|
387 |
+
di ""
|
388 |
+
matrix list `signal', noheader format(%18.9f)
|
389 |
+
return matrix margin = `signal'
|
390 |
+
exit
|
391 |
+
}
|
392 |
+
if `"`1'"' == substr("think",1,length("`1'")) {
|
393 |
+
tempvar nouse
|
394 |
+
macro shift
|
395 |
+
local wc = wordcount(`"`*'"')
|
396 |
+
local osize = colsof(output)
|
397 |
+
if `wc' != `osize' {
|
398 |
+
di as error "number of target variables does not match output neurons (`wc' <> `osize')"
|
399 |
+
error 999
|
400 |
+
}
|
401 |
+
foreach v in `*' {
|
402 |
+
cap drop `v'
|
403 |
+
qui gen double `v' = .
|
404 |
+
}
|
405 |
+
qui des, varlist
|
406 |
+
local names = r(varlist)
|
407 |
+
qui gen byte `nouse' = 1
|
408 |
+
qui replace `nouse' = 0 `in' `if'
|
409 |
+
local inames : colnames input
|
410 |
+
local mnames = subinstr(`"`inames'"'," ",",",.)
|
411 |
+
qui replace `nouse' = 1 `in' if `nouse' == 0 & missing(`mnames')
|
412 |
+
local mnames = ""
|
413 |
+
order `inames' `*' `nouse'
|
414 |
+
mata: brainthink()
|
415 |
+
order `names'
|
416 |
+
exit
|
417 |
+
}
|
418 |
+
if `"`1'"' == substr("train",1,length("`1'")) {
|
419 |
+
tempvar nouse rnd
|
420 |
+
if `eta' < 0 {
|
421 |
+
di as error "eta has to be a number larger equal zero"
|
422 |
+
error 999
|
423 |
+
}
|
424 |
+
if `iter' < 0 {
|
425 |
+
di as error "number of iterations has to be larger equal zero"
|
426 |
+
error 999
|
427 |
+
}
|
428 |
+
qui des, varlist
|
429 |
+
local names = r(varlist)
|
430 |
+
qui gen byte `nouse' = 1
|
431 |
+
qui replace `nouse' = 0 `in' `if'
|
432 |
+
local inames : colnames input
|
433 |
+
local onames : colnames output
|
434 |
+
local mnames = subinstr(`"`inames',`onames'"'," ",",",.)
|
435 |
+
qui replace `nouse' = 1 `in' if `nouse' == 0 & missing(`mnames')
|
436 |
+
local mnames = ""
|
437 |
+
if `"`nosort'"' != "" {
|
438 |
+
sort `nouse'
|
439 |
+
}
|
440 |
+
else {
|
441 |
+
qui gen double `rnd' = uniform()
|
442 |
+
sort `nouse' `rnd'
|
443 |
+
}
|
444 |
+
qui count if `nouse' == 0
|
445 |
+
local N = r(N)
|
446 |
+
order `inames' `onames'
|
447 |
+
local err = 0
|
448 |
+
local prev = .
|
449 |
+
di as text "{hline 40}"
|
450 |
+
di as text "Brain{dup 7: }Number of obs = " as result %12.0fc `N'
|
451 |
+
di as text "Train{dup 17: }eta = " as result %12.6f `eta'
|
452 |
+
di as text "{hline 10}{c TT}{hline 14}{c TT}{hline 14}
|
453 |
+
di as text "Iteration {c |} Error {c |} Delta"
|
454 |
+
di as text "{hline 10}{c +}{hline 14}{c +}{hline 14}"
|
455 |
+
forvalue i = 1/`iter' {
|
456 |
+
mata: braintrain(`eta', `N')
|
457 |
+
local err = r(error)/`N'/colsof(output)
|
458 |
+
local delta = `err'-`prev'
|
459 |
+
local prev = `err'
|
460 |
+
di as result %9.0f `i' as text " {c |} " as result %12.9f `err' as text " {c |} " as result %12.9f `delta'
|
461 |
+
}
|
462 |
+
mata: braintrain(0, `N')
|
463 |
+
local err = r(error)/`N'/colsof(output)
|
464 |
+
local delta = `err'-`prev'
|
465 |
+
if `iter' == 0 {
|
466 |
+
di as result " current" as text " {c |} " as result %12.9f `err' as text " {c |} " as result %12.9f `delta'
|
467 |
+
}
|
468 |
+
else {
|
469 |
+
di as text "{hline 10}{c +}{hline 14}{c +}{hline 14}"
|
470 |
+
di as result " final" as text " {c |} " as result %12.9f `err' as text " {c |} " as result %12.9f `delta'
|
471 |
+
}
|
472 |
+
order `names'
|
473 |
+
di as text "{hline 10}{c BT}{hline 14}{c BT}{hline 14}"
|
474 |
+
return scalar N = `N'
|
475 |
+
return scalar err = `err'
|
476 |
+
exit
|
477 |
+
}
|
478 |
+
di as error "invalid brain command"
|
479 |
+
error 999
|
480 |
+
end
|
481 |
+
|
482 |
+
cap program drop braindir
|
483 |
+
program define braindir
|
484 |
+
di as result " input[" rowsof(input) "," colsof(input) "]"
|
485 |
+
di as result " output[" rowsof(output) "," colsof(output) "]"
|
486 |
+
di as result " neuron[" rowsof(neuron) "," colsof(neuron) "]"
|
487 |
+
di as result " layer[" rowsof(layer) "," colsof(layer) "]"
|
488 |
+
di as result " brain[" rowsof(brain) "," colsof(brain) "]"
|
489 |
+
end
|
490 |
+
|
491 |
+
cap program drop braincreate
|
492 |
+
program define braincreate
|
493 |
+
local names = ""
|
494 |
+
local size = 0
|
495 |
+
local layer = colsof(layer)
|
496 |
+
forvalue l = 2/`layer' {
|
497 |
+
local p = `l'-1
|
498 |
+
local neurons = layer[1,`l']
|
499 |
+
local weights = layer[1,`p']
|
500 |
+
local size = `size' + `neurons' * (`weights'+1)
|
501 |
+
if `l' < `layer' {
|
502 |
+
local prefix = "h`p'n"
|
503 |
+
}
|
504 |
+
else {
|
505 |
+
local prefix = "o"
|
506 |
+
}
|
507 |
+
forvalue n = 1/`neurons' {
|
508 |
+
forvalue w = 1/`weights' {
|
509 |
+
local names = "`names' `prefix'`n'w`w'"
|
510 |
+
}
|
511 |
+
local names = "`names' `prefix'`n'b"
|
512 |
+
}
|
513 |
+
}
|
514 |
+
cap matrix brain = J(1,`size',0)
|
515 |
+
if _rc > 0 {
|
516 |
+
local matsize = int(`size'*1.1)
|
517 |
+
set matsize `matsize'
|
518 |
+
matrix brain = J(1,`size',0)
|
519 |
+
}
|
520 |
+
matrix colnames brain = `names'
|
521 |
+
matrix rownames brain = weight
|
522 |
+
local names = "in"
|
523 |
+
local layer = `layer'-2
|
524 |
+
forvalue l = 1/`layer' {
|
525 |
+
local names = "`names' hid`l'"
|
526 |
+
}
|
527 |
+
local names = "`names' out"
|
528 |
+
matrix colnames layer = `names'
|
529 |
+
matrix rownames layer = neurons
|
530 |
+
local layer = colsof(layer)
|
531 |
+
local names = ""
|
532 |
+
local size = 0
|
533 |
+
forvalue i = 1/`layer' {
|
534 |
+
local neurons = layer[1,`i']
|
535 |
+
local size = `size'+`neurons'
|
536 |
+
if `i' == 1 {
|
537 |
+
local prefix = "in"
|
538 |
+
}
|
539 |
+
else if `i' == `layer' {
|
540 |
+
local prefix = "out"
|
541 |
+
}
|
542 |
+
else {
|
543 |
+
local j = `i'-1
|
544 |
+
local prefix = "h`j'n"
|
545 |
+
}
|
546 |
+
forvalue j = 1/`neurons' {
|
547 |
+
local names = "`names' `prefix'`j'"
|
548 |
+
}
|
549 |
+
}
|
550 |
+
matrix neuron = J(1,`size',0)
|
551 |
+
matrix colnames neuron = `names'
|
552 |
+
matrix rownames neuron = signal
|
553 |
+
end
|
554 |
+
|
555 |
+
cap program drop braininit
|
556 |
+
program define braininit
|
557 |
+
local spread = abs(`1')
|
558 |
+
local range = `spread'*2
|
559 |
+
local size = colsof(brain)
|
560 |
+
forvalue i = 1/`size' {
|
561 |
+
matrix brain[1,`i'] = uniform()*`range'-`spread'
|
562 |
+
}
|
563 |
+
end
|
564 |
+
|
565 |
+
mata:
|
566 |
+
|
567 |
+
void braininp(real scalar obs, real matrix input, real matrix neuron)
|
568 |
+
{ real matrix inp3, inp4, mm
|
569 |
+
real scalar i, icnt, ncnt
|
570 |
+
icnt = cols(input)
|
571 |
+
ncnt = cols(neuron)
|
572 |
+
inp3 = st_data(obs, 1..icnt)
|
573 |
+
inp4 = (inp3[1, .] - input[1, .]) :* input[2, .]
|
574 |
+
mm = minmax(inp4)
|
575 |
+
if (mm[1,1] < 0 | mm[1,2] > 1)
|
576 |
+
{ for (i = 1; i <= icnt; i++)
|
577 |
+
{ if (inp4[1, i] < 0) inp4[1, i] = 0
|
578 |
+
if (inp4[1, i] > 1) inp4[1, i] = 1
|
579 |
+
}
|
580 |
+
}
|
581 |
+
neuron = inp4[1,.], neuron[1,icnt+1..ncnt]
|
582 |
+
input = input[1::2,.] \ inp3 \ inp4
|
583 |
+
}
|
584 |
+
|
585 |
+
void brainoutputget(real scalar obs)
|
586 |
+
{ real matrix output
|
587 |
+
output = st_matrix("output")
|
588 |
+
brainoutget(obs, cols(st_matrix("input")), st_matrix("neuron"), output)
|
589 |
+
st_replacematrix("output", output)
|
590 |
+
}
|
591 |
+
|
592 |
+
void brainoutputset(real scalar obs)
|
593 |
+
{ real matrix output
|
594 |
+
output = st_matrix("output")
|
595 |
+
brainoutset(obs, cols(st_matrix("input")), output)
|
596 |
+
st_replacematrix("output", output)
|
597 |
+
}
|
598 |
+
|
599 |
+
void brainoutset(real scalar obs, real scalar icnt, real matrix output)
|
600 |
+
{ real matrix out3, out4, mm
|
601 |
+
real scalar i, ocnt
|
602 |
+
ocnt = cols(output)
|
603 |
+
out3 = st_data(obs, icnt+1..icnt+ocnt)
|
604 |
+
out4 = (out3[1, .] - output[1, .]) :* output[2, .]
|
605 |
+
mm = minmax(out4)
|
606 |
+
if (mm[1,1] < 0 | mm[1,2] > 1)
|
607 |
+
{ for (i = 1; i <= ocnt; i++)
|
608 |
+
{ if (out4[1, i] < 0) out4[1, i] = 0
|
609 |
+
if (out4[1, i] > 1) out4[1, i] = 1
|
610 |
+
}
|
611 |
+
}
|
612 |
+
output = output[1::2,.] \ out3 \ out4
|
613 |
+
}
|
614 |
+
|
615 |
+
void brainoutget(real scalar obs, real scalar icnt, real matrix neuron, real matrix output)
|
616 |
+
{ real matrix out3, out4
|
617 |
+
real scalar i, ocnt, ostart
|
618 |
+
ocnt = cols(output)
|
619 |
+
ostart = cols(neuron) - ocnt + 1
|
620 |
+
out4 = neuron[1, ostart..ostart+ocnt-1]
|
621 |
+
out3 = out4[1, .] :/ output[2, .] + output[1, .]
|
622 |
+
output = output[1::2,.] \ out3 \ out4
|
623 |
+
if (obs > 0) st_store(obs, icnt+1..icnt+ocnt, out3)
|
624 |
+
}
|
625 |
+
|
626 |
+
void brainforward()
|
627 |
+
{ real matrix neuron
|
628 |
+
neuron = st_matrix("neuron")
|
629 |
+
brainforw(st_matrix("layer"), neuron, st_matrix("brain"))
|
630 |
+
st_replacematrix("neuron", neuron)
|
631 |
+
}
|
632 |
+
|
633 |
+
void brainforw(layer, neuron, brain)
|
634 |
+
{ real scalar layers, neurons, npos, wpos
|
635 |
+
real scalar l, n, start, weights, net
|
636 |
+
real matrix feed
|
637 |
+
layers = cols(layer)
|
638 |
+
npos = layer[1,1]+1
|
639 |
+
wpos = 1
|
640 |
+
start = 1
|
641 |
+
for (l = 2; l <= layers; l++)
|
642 |
+
{ neurons = layer[1,l]
|
643 |
+
weights = layer[1,l-1]
|
644 |
+
feed = neuron[1, start..start+weights-1], 1
|
645 |
+
start = start+weights
|
646 |
+
for (n = 1; n <= neurons; n++)
|
647 |
+
{ net = sum(feed :* brain[1,wpos..wpos+weights])
|
648 |
+
neuron[1,npos] = 1/(1+exp(-net))
|
649 |
+
wpos = wpos + weights + 1
|
650 |
+
npos++
|
651 |
+
}
|
652 |
+
}
|
653 |
+
}
|
654 |
+
|
655 |
+
void brainbackward(real scalar eta)
|
656 |
+
{ real matrix brain
|
657 |
+
real scalar error
|
658 |
+
brain = st_matrix("brain")
|
659 |
+
error = brainbackw(eta, st_matrix("output"), st_matrix("layer"), st_matrix("neuron"), brain)
|
660 |
+
st_replacematrix("brain",brain)
|
661 |
+
st_rclear()
|
662 |
+
st_numscalar("r(error)", error)
|
663 |
+
}
|
664 |
+
|
665 |
+
void brainsignal(real scalar inp)
|
666 |
+
{ real matrix neuron, layer, brain, input, output
|
667 |
+
real scalar obs, icnt, ocnt, N
|
668 |
+
layer = st_matrix("layer")
|
669 |
+
neuron = st_matrix("neuron")
|
670 |
+
brain = st_matrix("brain")
|
671 |
+
output = st_matrix("output")
|
672 |
+
input = st_matrix("input")
|
673 |
+
icnt = cols(input)
|
674 |
+
ocnt = cols(output)
|
675 |
+
ncnt = cols(neuron)
|
676 |
+
nouse = icnt+ocnt+1
|
677 |
+
N = st_nobs()
|
678 |
+
for (obs = 1; obs <= N; obs++)
|
679 |
+
{ if (st_data(obs, nouse) == 1)
|
680 |
+
{ continue
|
681 |
+
}
|
682 |
+
braininp(obs, input, neuron)
|
683 |
+
if (inp >= 1 & inp <= icnt)
|
684 |
+
{ neuron[1,inp] = 0
|
685 |
+
}
|
686 |
+
brainforw(layer, neuron, brain)
|
687 |
+
brainoutget(obs, icnt, neuron, output)
|
688 |
+
}
|
689 |
+
}
|
690 |
+
|
691 |
+
void brainthink()
|
692 |
+
{ brainsignal(0)
|
693 |
+
}
|
694 |
+
|
695 |
+
real scalar brainbackw(real scalar eta, real matrix output, real matrix layer, real matrix neuron, real matrix brain)
|
696 |
+
{ real matrix delta, err, diff, sub
|
697 |
+
real scalar dpos, wpos, npos, lay, error
|
698 |
+
real scalar n, l
|
699 |
+
real scalar ncol, ocol, dcol
|
700 |
+
ncol = cols(neuron)
|
701 |
+
ocol = cols(output)
|
702 |
+
diff = (J(1, ncol-layer[1,1],1) :- neuron[1, layer[1,1]+1..ncol]) :* neuron[1, layer[1,1]+1..ncol]
|
703 |
+
err = output[4, .] :- neuron[1, ncol-ocol+1..ncol]
|
704 |
+
error = 0
|
705 |
+
for (n = 1; n <= ocol; n++) error = error + abs(err[1, n])
|
706 |
+
if (eta <= 0)
|
707 |
+
{ return(error)
|
708 |
+
}
|
709 |
+
dcol = cols(diff)
|
710 |
+
delta = err :* diff[1, dcol-ocol+1..dcol]
|
711 |
+
wpos = cols(brain)+1
|
712 |
+
dpos = dcol-ocol+1
|
713 |
+
for (l = cols(layer)-1; l >= 2; l--)
|
714 |
+
{ lay = layer[1, l]
|
715 |
+
err = J(1, lay, 0)
|
716 |
+
dcol = dpos-1
|
717 |
+
dpos = dpos-lay
|
718 |
+
sub = diff[1, dpos..dcol]
|
719 |
+
for (n = layer[1, l+1]; n >= 1; n--)
|
720 |
+
{ wpos = wpos - lay - 1
|
721 |
+
err = err :+ delta[1, n] :* brain[1, wpos..wpos+lay-1] :* sub
|
722 |
+
}
|
723 |
+
delta = err, delta
|
724 |
+
}
|
725 |
+
npos = 1
|
726 |
+
dpos = 1
|
727 |
+
for (l = 2; l <= cols(layer); l++)
|
728 |
+
{ lay = layer[1, l-1]
|
729 |
+
sub = eta * (neuron[1, npos..npos+lay-1], 1)
|
730 |
+
if (l == 2)
|
731 |
+
{ err = delta[1, dpos] :* sub
|
732 |
+
dpos++
|
733 |
+
for (n = 2; n <= layer[1, l]; n++)
|
734 |
+
{ err = err, (delta[1, dpos] :* sub)
|
735 |
+
dpos++
|
736 |
+
}
|
737 |
+
}
|
738 |
+
else
|
739 |
+
{ for (n = 1; n <= layer[1, l]; n++)
|
740 |
+
{ err = err, (delta[1, dpos] :* sub)
|
741 |
+
dpos++
|
742 |
+
}
|
743 |
+
}
|
744 |
+
npos = npos + lay
|
745 |
+
}
|
746 |
+
brain = brain :+ err
|
747 |
+
return(error)
|
748 |
+
}
|
749 |
+
|
750 |
+
void braintrain(real scalar eta, real scalar N)
|
751 |
+
{ real matrix neuron, layer, brain, input, output
|
752 |
+
real scalar obs, icnt, error
|
753 |
+
layer = st_matrix("layer")
|
754 |
+
neuron = st_matrix("neuron")
|
755 |
+
brain = st_matrix("brain")
|
756 |
+
output = st_matrix("output")
|
757 |
+
input = st_matrix("input")
|
758 |
+
icnt = cols(input)
|
759 |
+
error = 0
|
760 |
+
for (obs = 1; obs <= N; obs++)
|
761 |
+
{ braininp(obs, input, neuron)
|
762 |
+
brainoutset(obs, icnt, output)
|
763 |
+
brainforw(layer, neuron, brain)
|
764 |
+
error = error + brainbackw(eta, output, layer, neuron, brain)
|
765 |
+
}
|
766 |
+
if (eta > 0)
|
767 |
+
{ st_replacematrix("brain",brain)
|
768 |
+
}
|
769 |
+
st_rclear()
|
770 |
+
st_numscalar("r(error)", error)
|
771 |
+
}
|
772 |
+
end
|
9/replication_package/Code/FS.do
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***This is the main program for appendix figures generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
*==============================================================================*
|
9 |
+
*Figures A1 and B5 are plotted using ArcGIS 10.2 based on city_info_rd.dta
|
10 |
+
*==============================================================================*
|
11 |
+
*Figure A3: PM10 and AOD Yearly Trends
|
12 |
+
*==============================================================================*
|
13 |
+
use "$path/Data/station_month.dta",clear
|
14 |
+
bysort year phase: egen pm10_y=mean(pm10)
|
15 |
+
bysort year phase: egen aod_y=mean(aod)
|
16 |
+
duplicates drop year phase,force
|
17 |
+
twoway (line pm10_y year if phase==1) (line aod_y year if phase==1, yaxis(2) lpattern(dash) lcol(black)), xtitle("") ytitle("PM10") ytitle("AOD", axis(2)) ///
|
18 |
+
xline(2013, lcol(black)) ylabel(80(20)160) ylabel(0.3(0.1)0.7, axis(2)) legend(pos(6) row(1) label(1 "PM10 in Wave 1") label(2 "AOD in Wave 1")) scheme(plotplainblind)
|
19 |
+
graph export "$path/Results/figures/FA3A_aod_pm10_year_1116_wave1.png", as(png) replace
|
20 |
+
twoway (line pm10_y year if phase==2, lcol(red)) (line aod_y year if phase==2, yaxis(2) lpattern(dash) lcol(red)), xtitle("") ytitle("PM10") ytitle("AOD", axis(2)) ///
|
21 |
+
xline(2014, lcol(red)) ylabel(80(20)160) ylabel(0.3(0.1)0.7, axis(2)) legend(pos(6) row(1) label(1 "PM10 in Wave 2") label(2 "AOD in Wave 2")) scheme(plotplainblind)
|
22 |
+
graph export "$path/Results/figures/FA3B_aod_pm10_year_1116_wave2.png", as(png) replace
|
23 |
+
|
24 |
+
*==============================================================================*
|
25 |
+
*Figure A4: Examples of PM10 Time Series
|
26 |
+
*==============================================================================*
|
27 |
+
use "$path/Data/station_day_1116.dta",clear
|
28 |
+
twoway (line pm10 date if pm10_n==1316 & date>=18993), ylabel(0(200)800) xline(19359,lpattern(solid) lcolor(red)) ///
|
29 |
+
xlabel(18993 "2012" 19359 "2013" 19724 "2014" 20089 "2015" 20454 "2016" 20820 "2017") legend(pos(6) r(1)) ytitle(PM10(ug/m3)) xtitle("") scheme(plotplainblind)
|
30 |
+
graph export "$path/Results/figures/FA4A_Shijiazhuang.png", as(png) replace
|
31 |
+
twoway (line pm10 date if pm10_n==541 & date>=18993), ylabel(0(200)800) xline(19478,lpattern(solid) lcolor(red)) ///
|
32 |
+
xlabel(18993 "2012" 19359 "2013" 19724 "2014" 20089 "2015" 20454 "2016" 20820 "2017") legend(pos(6) r(1)) ytitle(PM10(ug/m3)) xtitle("") scheme(plotplainblind)
|
33 |
+
graph export "$path/Results/figures/FA4B_Zhuzhou.png", as(png) replace
|
34 |
+
twoway (line pm10 date if pm10_n==325 & date>=18993), ylabel(0(200)800) xline(19264,lpattern(solid) lcolor(red)) ///
|
35 |
+
xlabel(18993 "2012" 19359 "2013" 19724 "2014" 20089 "2015" 20454 "2016" 20820 "2017") legend(pos(6) r(1)) ytitle(PM10(ug/m3)) xtitle("") scheme(plotplainblind)
|
36 |
+
graph export "$path/Results/figures/FA4C_Beijing.png", as(png) replace
|
37 |
+
twoway (line pm10 date if pm10_n==335 & date>=18993), ylabel(0(200)800) xline(19654,lpattern(solid) lcolor(red)) ///
|
38 |
+
xlabel(18993 "2012" 19359 "2013" 19724 "2014" 20089 "2015" 20454 "2016" 20820 "2017") legend(pos(6) r(1)) ytitle(PM10(ug/m3)) xtitle("") scheme(plotplainblind)
|
39 |
+
graph export "$path/Results/figures/FA4D_Beihai.png", as(png) replace
|
40 |
+
|
41 |
+
*==============================================================================*
|
42 |
+
*Figure A5: Distribution of Automation Time
|
43 |
+
*==============================================================================*
|
44 |
+
use "$path/Data/station_day_1116.dta" ,clear
|
45 |
+
duplicates drop pm10_n,force
|
46 |
+
hist auto_date, w(20) xlabel(18993 "2012" 19267 "Oct." 19359 "2013" 19479 "May" 19632 "Oct." 19724 "2014") xtitle("") scheme(plotplainblind)
|
47 |
+
graph export "$path/Results/figures/FA5_auto_time.png", as(png) replace
|
48 |
+
|
49 |
+
*==============================================================================*
|
50 |
+
*Figure B1:RD Plots Using Raw Daily PM10 in Wave 1 & 2, Deadline, and Monthly PM10
|
51 |
+
*==============================================================================*
|
52 |
+
***station-day
|
53 |
+
use "$path/Data/station_day_1116.dta",clear
|
54 |
+
gen T=date-auto_date
|
55 |
+
rdplot pm10 T if T>=-364 & T<=364 & phase==1, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
56 |
+
graph_options(xlabel(-360(60)360) ylabel(0(50)250) legend(off) ytitle(PM10 - Wave 1) xtitle(Days before/after Automation) scheme(plotplainblind))
|
57 |
+
graph export "$path/Results/figures/FB1A_rd_pm10_raw_wave1_365d.png", as(png) replace
|
58 |
+
rdplot pm10 T if T>=-364 & T<=364 & phase==2, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
59 |
+
graph_options(xlabel(-360(60)360) ylabel(0(50)250) legend(off) ytitle(PM10 - Wave 2) xtitle(Days before/after Automation) scheme(plotplainblind))
|
60 |
+
graph export "$path/Results/figures/FB1B_rd_pm10_raw_wave2_365d.png", as(png) replace
|
61 |
+
rdplot pm10 T if T>=-364 & T<=364 & (auto_date==19359 | auto_date==19724), lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
62 |
+
graph_options(xlabel(-360(60)360) ylabel(0(50)250) legend(off) ytitle(PM10 - Deadline) xtitle(Days before/after Automation) scheme(plotplainblind))
|
63 |
+
graph export "$path/Results/figures/FB1C_rd_pm10_raw_deadline_365d.png", as(png) replace
|
64 |
+
|
65 |
+
***station-month
|
66 |
+
use "$path/Data/station_month.dta" ,clear
|
67 |
+
rdplot pm10 n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(2) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
68 |
+
graph_options(xlabel(-12(3)12) ylabel(0(50)200) legend(off) ytitle(Monthly PM10) xtitle(Months before/after Automation) scheme(plotplainblind))
|
69 |
+
graph export "$path/Results/figures/FB1D_rd_pm10_raw_station_12m.png", as(png) replace
|
70 |
+
|
71 |
+
*==============================================================================*
|
72 |
+
*Figure B2: Station-Daily Weather
|
73 |
+
*==============================================================================*
|
74 |
+
use "$path/Data/station_day_1116.dta",clear
|
75 |
+
gen T=date-auto_date
|
76 |
+
gen month=month(date)
|
77 |
+
foreach v in temp rain rh wind_speed{
|
78 |
+
qui reghdfe `v', absorb(pm10_n month) res(resid_`v'_sm)
|
79 |
+
}
|
80 |
+
rdplot resid_temp_sm T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
81 |
+
graph_options(xlabel(-360(60)360) legend(off) ytitle(Residual - Temperature) xtitle(Days before/after Automation) scheme(plotplainblind))
|
82 |
+
graph export "$path/Results/figures/FB2A_rd_temp_sm_365d.png", as(png) replace
|
83 |
+
rdplot resid_rain_sm T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
84 |
+
graph_options(xlabel(-360(60)360) legend(off) ytitle(Residual - Precipitation) xtitle(Days before/after Automation) scheme(plotplainblind))
|
85 |
+
graph export "$path/Results/figures/FB2B_rd_rain_sm_365d.png", as(png) replace
|
86 |
+
rdplot resid_rh_sm T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
87 |
+
graph_options(xlabel(-360(60)360) legend(off) ytitle(Residual - Relative Humidity) xtitle(Days before/after Automation) scheme(plotplainblind))
|
88 |
+
graph export "$path/Results/figures/FB2C_rd_rh_sm_365d.png", as(png) replace
|
89 |
+
rdplot resid_wind_speed_sm T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
90 |
+
graph_options(xlabel(-360(60)360) legend(off) ytitle(Residual - Wind Speed) xtitle(Days before/after Automation) scheme(plotplainblind))
|
91 |
+
graph export "$path/Results/figures/FB2D_rd_wdsp_sm_365d.png", as(png) replace
|
92 |
+
|
93 |
+
*==============================================================================*
|
94 |
+
*Figure B6: RD Plots for PM10 Variability
|
95 |
+
*==============================================================================*
|
96 |
+
use "$path/Data/station_day_1116.dta",clear
|
97 |
+
gen year=year(date)
|
98 |
+
gen month=month(date)
|
99 |
+
gen T = date - auto_date
|
100 |
+
gen n_month=floor(T/30)
|
101 |
+
bysort pm10_n n_month: egen sd_pm10=sd(pm10)
|
102 |
+
foreach v of var pm10-rh{
|
103 |
+
bysort pm10_n n_month: egen `v'_m=mean(`v')
|
104 |
+
drop `v'
|
105 |
+
rename `v'_m `v'
|
106 |
+
}
|
107 |
+
duplicates drop pm10_n n_month,force
|
108 |
+
qui reghdfe sd_pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_sd_pm10_smw)
|
109 |
+
rdplot resid_sd_pm10_smw n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(2) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
110 |
+
graph_options(xlabel(-12(3)12) legend(off) ylabel(-20(10)20) ytitle("Residual - PM10 Monthly Standard Deviation") xtitle(Months before/after Automation) scheme(plotplainblind))
|
111 |
+
graph export "$path/Results/figures/FB6_rd_sd_PM10_12m.png", as(png) replace
|
112 |
+
|
113 |
+
*==============================================================================*
|
114 |
+
*Figure C: Correction of Pre-Automation PM10 Data
|
115 |
+
*==============================================================================*
|
116 |
+
use "$path/Data/city_month.dta" ,clear
|
117 |
+
hist pm10 if after==0 & rd==1,fcolor(none) lp("-") lcolor(black) w(20) start(0) addplot(hist pm10_corrected if after==0 & rd==1 & pm10!=., ///
|
118 |
+
fcolor(none) lcolor(red) w(20) start(0)) scheme(plotplainblind) ylabel(0(0.005)0.015) xtitle("PM10") legend(pos(6) r(1) label(1 "Reported PM10") label(2 "Corrected PM10"))
|
119 |
+
graph export "$path/Results/figures/FC_hist_pm_corrected.png", as(png) replace
|
120 |
+
*su pm10_corrected if after==0 & rd==1 & pm10!=.
|
121 |
+
*su pm10 if after==0 & rd==1
|
122 |
+
|
123 |
+
*==============================================================================*
|
124 |
+
*Figure D2: RD Plots for Online Searches: January 1st 2015
|
125 |
+
*==============================================================================*
|
126 |
+
use "$path/Data/search_city_month.dta" ,clear
|
127 |
+
egen year_month=group(year month)
|
128 |
+
gen n_month2=year_month-49
|
129 |
+
|
130 |
+
rdplot pmmask n_month2 if n_month2>=-12 & n_month2<=12, lowerend(-12) upperend(12) p(2) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
131 |
+
graph_options(xlabel(-12(3)12) legend(off) ylabel(0(10)80) ytitle(Baidu Search Index: Anti-Haze Face Mask) xtitle("Months before/after January 1st, 2015") scheme(plotplainblind))
|
132 |
+
graph export "$path/Results/figures/FD2A_rd_pmmask_raw_city_month_12m_2015.png", as(png) replace
|
133 |
+
rdplot filter n_month2 if n_month2>=-12 & n_month2<=12, lowerend(-12) upperend(12) p(2) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
134 |
+
graph_options(xlabel(-12(3)12) legend(off) ylabel(0(10)80) ytitle(Baidu Search Index: Air Filter) xtitle("Months before/after January 1st, 2015") scheme(plotplainblind))
|
135 |
+
graph export "$path/Results/figures/FD2B_rd_filter_raw_city_month_12m_2015.png", as(png) replace
|
136 |
+
|
137 |
+
|
138 |
+
***The End
|
139 |
+
|
9/replication_package/Code/Figures.do
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***This is the main program for Figures 1 and 2 generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
set matsize 5000
|
7 |
+
set scheme plotplain
|
8 |
+
|
9 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
10 |
+
|
11 |
+
*==============================================================================*
|
12 |
+
*Figure 1: RD Plots for PM10, AOD and Online Search
|
13 |
+
*==============================================================================*
|
14 |
+
***Figure 1A & 1B: station-daily raw and residual PM10
|
15 |
+
use "$path/Data/station_day_1116.dta",clear
|
16 |
+
gen T=date-auto_date
|
17 |
+
gen month=month(date)
|
18 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
19 |
+
rdplot pm10 T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
20 |
+
graph_options(xlabel(-360(60)360) ylabel(0(50)250) legend(off) ytitle(PM10) xtitle(Days before/after Automation) scheme(plotplainblind))
|
21 |
+
graph export "$path/Results/figures/F1A_rd_PM10_raw_station_365d.png", as(png) replace
|
22 |
+
rdplot resid_pm10_smw T if T>=-364 & T<=364, lowerend(-364) upperend(364) p(3) kernel(tri) nbins(364 364) ci(95) masspoints(off) ///
|
23 |
+
graph_options(xlabel(-360(60)360) ylabel(-75(25)75) legend(off) ytitle(Residual - PM10) xtitle(Days before/after Automation) scheme(plotplainblind))
|
24 |
+
graph export "$path/Results/figures/F1B_rd_PM10_smw_station_365d.png", as(png) replace
|
25 |
+
|
26 |
+
***Figure 1C & 1D: station-monthly PM10 and AOD
|
27 |
+
use "$path/Data/station_month.dta" ,clear
|
28 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
29 |
+
rdplot resid_pm10_smw n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(3) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
30 |
+
graph_options(xlabel(-12(3)12) legend(off) ytitle(Residual - PM10) xtitle(Months before/after Automation) scheme(plotplainblind))
|
31 |
+
graph export "$path/Results/figures/F1C_rd_pm10_smw_station_12m.png", as(png) replace
|
32 |
+
qui reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_smw)
|
33 |
+
rdplot resid_aod_smw n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(2) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
34 |
+
graph_options(xlabel(-12(3)12) ylabel(-0.08(0.02)0.08) legend(off) ytitle(Residual - AOD, margin(none)) xtitle(Months before/after Automation) scheme(plotplainblind))
|
35 |
+
graph export "$path/Results/figures/F1D_rd_aod_smw_station_12m.png", as(png) replace
|
36 |
+
|
37 |
+
***Figure 1E & 1F: city-monthly search for face mask and air filter
|
38 |
+
use "$path/Data/search_city_month.dta",clear
|
39 |
+
foreach v in pmmask filter{
|
40 |
+
qui reghdfe `v' wind_speed rain temp rh, absorb(code_city month) res(resid_`v'_smw)
|
41 |
+
}
|
42 |
+
rdplot resid_pmmask_smw n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(4) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
43 |
+
graph_options(xlabel(-12(3)12) legend(off) ylabel(-20(10)20) ytitle(Baidu Search Index: Anti-Haze Face Mask) xtitle(Months before/after Automation) scheme(plotplainblind))
|
44 |
+
graph export "$path/Results/figures/F1E_rd_pmmask_smw_city_month_12m.png", as(png) replace
|
45 |
+
rdplot resid_filter_smw n_month if n_month>=-12 & n_month<=12, lowerend(-12) upperend(12) p(3) kernel(tri) nbins(12 12) ci(95) masspoints(off) ///
|
46 |
+
graph_options(xlabel(-12(3)12) legend(off) ylabel(-20(10)20) ytitle(Baidu Search Index: Air Filter) xtitle(Months before/after Automation) scheme(plotplainblind))
|
47 |
+
graph export "$path/Results/figures/F1F_rd_filter_smw_city_month_12m.png", as(png) replace
|
48 |
+
|
49 |
+
*==============================================================================*
|
50 |
+
*Figure 2: City RD for PM10 in 76 Cities
|
51 |
+
*==============================================================================*
|
52 |
+
use "$path/Data/city_info_rd.dta",clear
|
53 |
+
keep if list_76==1
|
54 |
+
sort rd_estimate_1116
|
55 |
+
gen city_N=_n
|
56 |
+
gen l_95_1116=rd_estimate_1116-1.96*error_1116
|
57 |
+
gen h_95_1116=rd_estimate_1116+1.96*error_1116
|
58 |
+
|
59 |
+
input y1 x1 y2 x2
|
60 |
+
-100 13 -30 13
|
61 |
+
-100 18 -10 18
|
62 |
+
-100 25 -10 25
|
63 |
+
-100 29 -10 29
|
64 |
+
-100 43 15 43
|
65 |
+
-100 53 15 53
|
66 |
+
-100 57 25 57
|
67 |
+
-100 59 25 59
|
68 |
+
-100 63 40 63
|
69 |
+
-100 73 70 73
|
70 |
+
-100 76 71 76
|
71 |
+
end
|
72 |
+
|
73 |
+
twoway rspike l_95_1116 h_95_1116 city_N, color(black) || scatter rd_estimate_1116 city_N if l_95_1116 >0, msymbol(square) mcolor(cranberry) msize(0.5) ///
|
74 |
+
|| scatter rd_estimate_1116 city_N if l_95_1116 <=0 , mstyle(p1) msize(0.3) color(cranberry) lp(dash) ///
|
75 |
+
|| pcarrow y1 x1 y2 x2, mc(ebblue) msize(0.6) lp(shortdash) lc(ebblue) yline(0,lp(solid) lcol(black)) yline(-100 100, lp(dot)) yline(28.2, lp(dash)) ///
|
76 |
+
ylabel(-100 "-100" 0 "0" 28.2 "Mean" 100 "100" 200 "200",labsize(small)) ///
|
77 |
+
xlabel(13 "Beijing" 18 "Shanghai" 25 "Guangzhou" 29 "Shenzhen" 43 "Chongqing" 53 "Chengdu" 57 "Tianjin" 59 "Shenyang" 63 "Wuhan" 73 "Xi'an" 76 "Shijiazhuang", labsize(tiny) alt) ///
|
78 |
+
ytitle(City-Specific RD Estimates) xtitle(City) legend(ring(0) position(11) col(1) order(2 "RD Estimate Positive and Significant at 5%" 3 "RD Estimate" 1 "95% CI" )) ///
|
79 |
+
plotregion(lcolor(black) fcolor(white)) scheme(plottig)
|
80 |
+
graph export "$path/Results/figures/F2.png", as(png) replace
|
81 |
+
graph export "$path/Results/figures/F2.pdf", replace
|
82 |
+
|
83 |
+
*==============================================================================*
|
84 |
+
*Figure 3: DiD Plots for PM10 and online searches
|
85 |
+
*==============================================================================*
|
86 |
+
***Figure 3A: PM10
|
87 |
+
use "$path/Data/did_ddl_match.dta",clear
|
88 |
+
gen year=year(date)
|
89 |
+
gen month=month(date)
|
90 |
+
egen year_month=group(year month)
|
91 |
+
gen treat=(auto_date==19359)
|
92 |
+
gen after2=(year>=2013)
|
93 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
94 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
95 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
96 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
97 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
98 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
99 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
100 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
101 |
+
|
102 |
+
foreach v in 12 34 56 712{
|
103 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
104 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
105 |
+
}
|
106 |
+
|
107 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 ///
|
108 |
+
wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
109 |
+
plotbeta treat_m712_before2 | treat_m56_before2 | treat_m34_before2 | 0 | treat_m12_after2 | treat_m34_after2 | treat_m56_after2 | treat_m712_after2, ///
|
110 |
+
vertical level(90) xlab(1 "7-12" 2 "5-6" 3 "3-4" 4 "1-2" 5 "1-2" 6 "3-4" 7 "5-6" 8 "7-12" , labsize(medsmall) labcolor(black) axis(1)) ///
|
111 |
+
xlab(none, axis(2)) xtitle("Months before/after Automation", col(black)) ytitle("Estimated Coefficients: Log(PM10)") yline(0, lp(dash)) xline(4.5, lp(dash)) scheme(plotplainblind)
|
112 |
+
graph export "$path/Results/figures/F3A_DiD_pm10.png", as(png) replace
|
113 |
+
|
114 |
+
***Figure 3B & 3C: searches for masks and air filters
|
115 |
+
use "$path/Data/did_ddl_search.dta" ,clear
|
116 |
+
gen year=year(date)
|
117 |
+
gen month=month(date)
|
118 |
+
egen year_month=group(year month)
|
119 |
+
gen treat=(auto_date==19359)
|
120 |
+
gen after2=(year>=2013)
|
121 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
122 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
123 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
124 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
125 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
126 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
127 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
128 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
129 |
+
|
130 |
+
foreach v in 12 34 56 712{
|
131 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
132 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
133 |
+
}
|
134 |
+
|
135 |
+
qui reghdfe filter treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 ///
|
136 |
+
wind_speed rain temp rh, absorb(code_city year_month) vce(cluster code_city)
|
137 |
+
plotbeta treat_m712_before2 | treat_m56_before2 | treat_m34_before2 | 0 | treat_m12_after2 | treat_m34_after2 | treat_m56_after2 | treat_m712_after2, ///
|
138 |
+
vertical level(90) xlab(1 "7-12" 2 "5-6" 3 "3-4" 4 "1-2" 5 "1-2" 6 "3-4" 7 "5-6" 8 "7-12" , labsize(medsmall) labcolor(black) axis(1)) ///
|
139 |
+
xlab(none, axis(2)) xtitle("Months before/after Automation", col(black)) ytitle("Estimated Coefficients: Air Filter Searches") yline(0, lp(dash)) xline(4.5, lp(dash)) scheme(plotplainblind)
|
140 |
+
graph export "$path/Results/figures/F3B_filter_DiD.png", as(png) replace
|
141 |
+
|
142 |
+
qui reghdfe pmmask treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 ///
|
143 |
+
wind_speed rain temp rh, absorb(code_city year_month) vce(cluster code_city)
|
144 |
+
plotbeta treat_m712_before2 | treat_m56_before2 | treat_m34_before2 | 0 | treat_m12_after2 | treat_m34_after2 | treat_m56_after2 | treat_m712_after2, ///
|
145 |
+
vertical level(90) xlab(1 "7-12" 2 "5-6" 3 "3-4" 4 "1-2" 5 "1-2" 6 "3-4" 7 "5-6" 8 "7-12" , labsize(medsmall) labcolor(black) axis(1)) ///
|
146 |
+
xlab(none, axis(2)) xtitle("Months before/after Automation", col(black)) ytitle("Estimated Coefficients: Mask Searches") yline(0, lp(dash)) xline(4.5, lp(dash)) scheme(plotplainblind)
|
147 |
+
graph export "$path/Results/figures/F3C_pmmask_DiD.png", as(png) replace
|
148 |
+
|
149 |
+
|
150 |
+
***The End
|
9/replication_package/Code/MASTER.do
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*** Master file for China Pollution Monitoring Paper
|
2 |
+
*** Instructions: Set path to directory with Codes, Data, and Results folders (including Results/figures folder).
|
3 |
+
*** Then run master file to produce all output.
|
4 |
+
global path "/Users/garrethgibney/Library/CloudStorage/OneDrive-Personal/Work/PhD Project/Research Projects/OSLO Replication Games/Replication Package/125321-V1/China_Pollution_Monitoring"
|
5 |
+
cd "$path/Code"
|
6 |
+
|
7 |
+
do Prepare_Data.do
|
8 |
+
do Figures.do
|
9 |
+
do Tables.do
|
10 |
+
do FS.do
|
11 |
+
do TS.do
|
12 |
+
|
13 |
+
|
14 |
+
***The End
|
9/replication_package/Code/NOAA Weather Data (NEW!)/Alt_weather_var_v1.do
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*==============================================================================*
|
2 |
+
*0. Preparation
|
3 |
+
*==============================================================================*]
|
4 |
+
* Weather data downloading in file name
|
5 |
+
*Setting a global path & data directory
|
6 |
+
clear
|
7 |
+
global path "/Volumes/External Drive A/Greenstone et al/NOAA Weather Data/China"
|
8 |
+
* Note: Weather Data was downloaded from the NOAA weather station data archive, using NOAA_download.R
|
9 |
+
|
10 |
+
*==============================================================================*
|
11 |
+
*1. Matching weather & pollution stations
|
12 |
+
*==============================================================================*
|
13 |
+
*Notes: (a) This section takes a very long time to run. One loop can take a couple hours to run. This entire section took 3 days to run over christmas! (b) I had huge issues with the datafile sizes. The output from this section is 25GB. It needs to run in weekly sections, due to hardware limitations!
|
14 |
+
timer clear 1
|
15 |
+
timer on 1
|
16 |
+
forvalues i = 1/52 {
|
17 |
+
use "$path/pollution_station.dta", clear
|
18 |
+
gen year = year(date)
|
19 |
+
gen week = week(date)
|
20 |
+
keep if year == 2011 & week == `i'
|
21 |
+
drop year week
|
22 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
23 |
+
save "$path/pollution_station_wide_`i'_2011.dta", replace
|
24 |
+
|
25 |
+
use "$path/china_weather_2011_16_v2.dta", clear
|
26 |
+
gen year = year(date)
|
27 |
+
gen week = week(date)
|
28 |
+
keep if year == 2011 & week == `i'
|
29 |
+
drop year week
|
30 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
31 |
+
|
32 |
+
use "$path/pollution_station_wide_`i'_2011.dta", clear
|
33 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
34 |
+
drop _m
|
35 |
+
gen seq=_n
|
36 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
37 |
+
save "$path/pw_station_2011/pw_station_long_`i'_2011.dta", replace
|
38 |
+
}
|
39 |
+
timer off 1
|
40 |
+
timer list 1
|
41 |
+
|
42 |
+
|
43 |
+
timer on 2
|
44 |
+
forvalues i = 1/52 {
|
45 |
+
use "$path/Raw CSV/pollution_station.dta", clear
|
46 |
+
gen year = year(date)
|
47 |
+
gen week = week(date)
|
48 |
+
keep if year == 2012 & week == `i'
|
49 |
+
drop year week
|
50 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
51 |
+
save "$path/pollution_station_wide_`i'_2011.dta", replace
|
52 |
+
|
53 |
+
use "$path/Raw CSV/weather_station.dta", clear
|
54 |
+
gen year = year(date)
|
55 |
+
gen week = week(date)
|
56 |
+
keep if year == 2012 & week == `i'
|
57 |
+
drop year week
|
58 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
59 |
+
|
60 |
+
use "$path/pollution_station_wide_`i'_2011.dta", clear
|
61 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
62 |
+
drop _m
|
63 |
+
gen seq=_n
|
64 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
65 |
+
save "$path/pw_station_2012/pw_station_long_`i'_2011.dta", replace
|
66 |
+
}
|
67 |
+
timer off 2
|
68 |
+
timer list 2
|
69 |
+
|
70 |
+
|
71 |
+
timer on 3
|
72 |
+
forvalues i = 1/52 {
|
73 |
+
use "$path/Raw CSV/pollution_station.dta", clear
|
74 |
+
gen year = year(date)
|
75 |
+
gen week = week(date)
|
76 |
+
keep if year == 2013 & week == `i'
|
77 |
+
drop year week
|
78 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
79 |
+
save "$path/Raw CSV/pollution_station_wide_`i'_2011.dta", replace
|
80 |
+
|
81 |
+
use "$path/Raw CSV/weather_station.dta", clear
|
82 |
+
gen year = year(date)
|
83 |
+
gen week = week(date)
|
84 |
+
keep if year == 2013 & week == `i'
|
85 |
+
drop year week
|
86 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
87 |
+
|
88 |
+
use "$path/pollution_station_wide_`i'_2011.dta", clear
|
89 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
90 |
+
drop _m
|
91 |
+
gen seq=_n
|
92 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
93 |
+
save "$path/pw_station_2013/pw_station_long_`i'_2011.dta", replace
|
94 |
+
}
|
95 |
+
timer off 3
|
96 |
+
timer list 3
|
97 |
+
|
98 |
+
|
99 |
+
timer on 4
|
100 |
+
forvalues i = 1/52 {
|
101 |
+
use "$path/Raw CSV/pollution_station.dta", clear
|
102 |
+
gen year = year(date)
|
103 |
+
gen week = week(date)
|
104 |
+
keep if year == 2014 & week == `i'
|
105 |
+
drop year week
|
106 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
107 |
+
save "$path/pollution_station_wide_`i'_2011.dta", replace
|
108 |
+
|
109 |
+
use "$path/Raw CSV/weather_station.dta", clear
|
110 |
+
gen year = year(date)
|
111 |
+
gen week = week(date)
|
112 |
+
keep if year == 2014 & week == `i'
|
113 |
+
drop year week
|
114 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
115 |
+
|
116 |
+
use "$path/pollution_station_wide_`i'_2011.dta", clear
|
117 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
118 |
+
drop _m
|
119 |
+
gen seq=_n
|
120 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
121 |
+
save "$path/pw_station_2014/pw_station_long_`i'_2011.dta", replace
|
122 |
+
}
|
123 |
+
timer off 4
|
124 |
+
timer list 4
|
125 |
+
|
126 |
+
|
127 |
+
timer on 5
|
128 |
+
forvalues i = 1/52 {
|
129 |
+
use "$path/Raw CSV/pollution_station.dta", clear
|
130 |
+
gen year = year(date)
|
131 |
+
gen week = week(date)
|
132 |
+
keep if year == 2015 & week == `i'
|
133 |
+
drop year week
|
134 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
135 |
+
save "$path/pollution_station_wide_`i'_2011.dta", replace
|
136 |
+
|
137 |
+
use "$path/Raw CSV/weather_station.dta", clear
|
138 |
+
gen year = year(date)
|
139 |
+
gen week = week(date)
|
140 |
+
keep if year == 2015 & week == `i'
|
141 |
+
drop year week
|
142 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
143 |
+
|
144 |
+
use "$path/pollution_station_wide_`i'_2011.dta", clear
|
145 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
146 |
+
drop _m
|
147 |
+
gen seq=_n
|
148 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
149 |
+
save "$path/pw_station_2015/pw_station_long_`i'_2011.dta", replace
|
150 |
+
}
|
151 |
+
timer off 5
|
152 |
+
timer list 5
|
153 |
+
|
154 |
+
timer on 6
|
155 |
+
forvalues i = 1/52 {
|
156 |
+
use "$path/pollution_station.dta", clear
|
157 |
+
gen year = year(date)
|
158 |
+
gen week = week(date)
|
159 |
+
keep if year == 2016 & week == `i'
|
160 |
+
drop year week
|
161 |
+
reshape wide pollution_lat pollution_lon, i(date) j(pm10_n)
|
162 |
+
save "$path/pollution_station_wide_`i'_2011.dta", replace
|
163 |
+
|
164 |
+
use "$path/Raw CSV/weather_station.dta", clear
|
165 |
+
gen year = year(date)
|
166 |
+
gen week = week(date)
|
167 |
+
keep if year == 2016 & week == `i'
|
168 |
+
drop year week
|
169 |
+
save "$path/weather_station_`i'_2011.dta", replace
|
170 |
+
|
171 |
+
use "$path/Raw CSV/pollution_station_wide_`i'_2011.dta", clear
|
172 |
+
merge 1:m date using "$path/weather_station_`i'_2011.dta"
|
173 |
+
drop _m
|
174 |
+
gen seq=_n
|
175 |
+
reshape long pollution_lat pollution_lon, i(seq) j(pm10_n)
|
176 |
+
save "$path/pw_station_2016/pw_station_long_`i'_2011.dta", replace
|
177 |
+
}
|
178 |
+
timer off 6
|
179 |
+
timer list 6
|
180 |
+
|
181 |
+
*==============================================================================*
|
182 |
+
*2. Estimating the distance between each pollution station & ALL weather stations on each day.
|
183 |
+
*==============================================================================*
|
184 |
+
*Notes: This section takes a couple of hours to run! In case of error, each year is ran seperately.
|
185 |
+
* 2011
|
186 |
+
filelist , dir($path/pw_station_2011) pattern(*.dta) norecur
|
187 |
+
|
188 |
+
* save a copy so that we can load each observation in the loop below
|
189 |
+
tempfile files
|
190 |
+
split filename, parse(".") generate(filename)
|
191 |
+
drop filename filename2
|
192 |
+
rename filename1 filename
|
193 |
+
save "files_2011", replace
|
194 |
+
|
195 |
+
* loop over each file and input each file into temporary datasets.
|
196 |
+
forvalues i = 1/52 {
|
197 |
+
use "files_2011" in `i', clear
|
198 |
+
global f = dirname + "/" + filename + ".dta"
|
199 |
+
global d = filename
|
200 |
+
|
201 |
+
use "$f", clear
|
202 |
+
drop seq
|
203 |
+
replace wdsp = "" if wdsp == "NA"
|
204 |
+
destring wdsp, gen(wind_speed)
|
205 |
+
replace prcp = "" if prcp == "NA"
|
206 |
+
destring prcp, gen(rain)
|
207 |
+
replace rh = "" if rh == "NA"
|
208 |
+
rename rh rh_s
|
209 |
+
destring rh_s, gen(rh)
|
210 |
+
|
211 |
+
drop wdsp prcp rh_s
|
212 |
+
|
213 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
214 |
+
|
215 |
+
save "$path/pw_station_distances/$d", replace
|
216 |
+
}
|
217 |
+
|
218 |
+
* 2012
|
219 |
+
filelist , dir($path/pw_station_2012) pattern(*.dta) norecur
|
220 |
+
|
221 |
+
* save a copy so that we can load each observation in the loop below
|
222 |
+
tempfile files
|
223 |
+
split filename, parse(".") generate(filename)
|
224 |
+
drop filename filename2
|
225 |
+
rename filename1 filename
|
226 |
+
save "files_2012", replace
|
227 |
+
|
228 |
+
* loop over each file and input each file into temporary datasets.
|
229 |
+
forvalues i = 1/52 {
|
230 |
+
use "files_2012" in `i', clear
|
231 |
+
global f = dirname + "/" + filename + ".dta"
|
232 |
+
global d = filename
|
233 |
+
|
234 |
+
use "$f", clear
|
235 |
+
drop seq
|
236 |
+
replace wdsp = "" if wdsp == "NA"
|
237 |
+
destring wdsp, gen(wind_speed)
|
238 |
+
replace prcp = "" if prcp == "NA"
|
239 |
+
destring prcp, gen(rain)
|
240 |
+
replace rh = "" if rh == "NA"
|
241 |
+
rename rh rh_s
|
242 |
+
destring rh_s, gen(rh)
|
243 |
+
|
244 |
+
drop wdsp prcp rh_s
|
245 |
+
|
246 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
247 |
+
|
248 |
+
save "$path/pw_station_distances/$d", replace
|
249 |
+
}
|
250 |
+
|
251 |
+
* 2013
|
252 |
+
filelist , dir($path/pw_station_2013) pattern(*.dta) norecur
|
253 |
+
|
254 |
+
* save a copy so that we can load each observation in the loop below
|
255 |
+
tempfile files
|
256 |
+
split filename, parse(".") generate(filename)
|
257 |
+
drop filename filename2
|
258 |
+
rename filename1 filename
|
259 |
+
save "files_2013", replace
|
260 |
+
|
261 |
+
* loop over each file and input each file into temporary datasets.
|
262 |
+
forvalues i = 1/52 {
|
263 |
+
use "files_2013" in `i', clear
|
264 |
+
global f = dirname + "/" + filename + ".dta"
|
265 |
+
global d = filename
|
266 |
+
|
267 |
+
use "$f", clear
|
268 |
+
drop seq
|
269 |
+
replace wdsp = "" if wdsp == "NA"
|
270 |
+
destring wdsp, gen(wind_speed)
|
271 |
+
replace prcp = "" if prcp == "NA"
|
272 |
+
destring prcp, gen(rain)
|
273 |
+
replace rh = "" if rh == "NA"
|
274 |
+
rename rh rh_s
|
275 |
+
destring rh_s, gen(rh)
|
276 |
+
|
277 |
+
|
278 |
+
drop wdsp prcp rh_s
|
279 |
+
|
280 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
281 |
+
|
282 |
+
save "$path/pw_station_distances/$d", replace
|
283 |
+
}
|
284 |
+
|
285 |
+
* 2014
|
286 |
+
filelist , dir($path/pw_station_2014) pattern(*.dta) norecur
|
287 |
+
|
288 |
+
* save a copy so that we can load each observation in the loop below
|
289 |
+
tempfile files
|
290 |
+
split filename, parse(".") generate(filename)
|
291 |
+
drop filename filename2
|
292 |
+
rename filename1 filename
|
293 |
+
save "files_2014", replace
|
294 |
+
|
295 |
+
* loop over each file and input each file into temporary datasets.
|
296 |
+
forvalues i = 1/52 {
|
297 |
+
use "files_2014" in `i', clear
|
298 |
+
global f = dirname + "/" + filename + ".dta"
|
299 |
+
global d = filename
|
300 |
+
|
301 |
+
use "$f", clear
|
302 |
+
drop seq
|
303 |
+
replace wdsp = "" if wdsp == "NA"
|
304 |
+
destring wdsp, gen(wind_speed)
|
305 |
+
replace prcp = "" if prcp == "NA"
|
306 |
+
destring prcp, gen(rain)
|
307 |
+
replace rh = "" if rh == "NA"
|
308 |
+
rename rh rh_s
|
309 |
+
destring rh_s, gen(rh)
|
310 |
+
|
311 |
+
|
312 |
+
drop wdsp prcp rh_s
|
313 |
+
|
314 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
315 |
+
|
316 |
+
save "$path/pw_station_distances/$d", replace
|
317 |
+
}
|
318 |
+
|
319 |
+
* 2015
|
320 |
+
filelist , dir($path/pw_station_2015) pattern(*.dta) norecur
|
321 |
+
|
322 |
+
* save a copy so that we can load each observation in the loop below
|
323 |
+
tempfile files
|
324 |
+
split filename, parse(".") generate(filename)
|
325 |
+
drop filename filename2
|
326 |
+
rename filename1 filename
|
327 |
+
save "files_2015", replace
|
328 |
+
|
329 |
+
* loop over each file and input each file into temporary datasets.
|
330 |
+
forvalues i = 1/52 {
|
331 |
+
use "files_2015" in `i', clear
|
332 |
+
global f = dirname + "/" + filename + ".dta"
|
333 |
+
global d = filename
|
334 |
+
|
335 |
+
use "$f", clear
|
336 |
+
drop seq
|
337 |
+
replace wdsp = "" if wdsp == "NA"
|
338 |
+
destring wdsp, gen(wind_speed)
|
339 |
+
replace prcp = "" if prcp == "NA"
|
340 |
+
destring prcp, gen(rain)
|
341 |
+
replace rh = "" if rh == "NA"
|
342 |
+
rename rh rh_s
|
343 |
+
destring rh_s, gen(rh)
|
344 |
+
|
345 |
+
|
346 |
+
drop wdsp prcp rh_s
|
347 |
+
|
348 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
349 |
+
|
350 |
+
save "$path/pw_station_distances/$d", replace
|
351 |
+
}
|
352 |
+
|
353 |
+
* 2016
|
354 |
+
filelist , dir($path/pw_station_2016) pattern(*.dta) norecur
|
355 |
+
|
356 |
+
* save a copy so that we can load each observation in the loop below
|
357 |
+
tempfile files
|
358 |
+
split filename, parse(".") generate(filename)
|
359 |
+
drop filename filename2
|
360 |
+
rename filename1 filename
|
361 |
+
save "files_2016", replace
|
362 |
+
|
363 |
+
* loop over each file and input each file into temporary datasets.
|
364 |
+
forvalues i = 1/52 {
|
365 |
+
use "files_2016" in `i', clear
|
366 |
+
global f = dirname + "/" + filename + ".dta"
|
367 |
+
global d = filename
|
368 |
+
|
369 |
+
use "$f", clear
|
370 |
+
drop seq
|
371 |
+
replace wdsp = "" if wdsp == "NA"
|
372 |
+
destring wdsp, gen(wind_speed)
|
373 |
+
replace prcp = "" if prcp == "NA"
|
374 |
+
destring prcp, gen(rain)
|
375 |
+
replace rh = "" if rh == "NA"
|
376 |
+
rename rh rh_s
|
377 |
+
destring rh_s, gen(rh)
|
378 |
+
|
379 |
+
|
380 |
+
drop wdsp prcp rh_s
|
381 |
+
|
382 |
+
sphdist, lat1(pollution_lat) lon1(pollution_lon) lat2(latitude) lon2(longitude) radians units(km) gen(distance)
|
383 |
+
|
384 |
+
save "$path/pw_station_distances/$d", replace
|
385 |
+
}
|
386 |
+
|
387 |
+
*==============================================================================*
|
388 |
+
*3. Generation of Alternative weather variables.
|
389 |
+
*==============================================================================*
|
390 |
+
**********************************************
|
391 |
+
** Nearest Station (Conseptual Replication) **
|
392 |
+
**********************************************
|
393 |
+
filelist , dir($path/pw_station_distances) pattern(*.dta) norecur
|
394 |
+
|
395 |
+
* save a copy so that we can load each observation in the loop below
|
396 |
+
tempfile files
|
397 |
+
split filename, parse(".") generate(filename)
|
398 |
+
drop filename filename2
|
399 |
+
rename filename1 filename
|
400 |
+
save "files_2011_16", replace
|
401 |
+
|
402 |
+
* Nearest Station weather measure
|
403 |
+
forvalues i = 1/312 {
|
404 |
+
use "files_2011_16" in `i', clear
|
405 |
+
global f = dirname + "/" + filename + ".dta"
|
406 |
+
global d = filename
|
407 |
+
|
408 |
+
use "$f", clear
|
409 |
+
drop if rain == . | rh == . | temp == . | wind_speed == .
|
410 |
+
bysort pm10_n date: egen min_distance = min(distance)
|
411 |
+
gen closest =1 if distance == min_distance
|
412 |
+
keep if closest == 1
|
413 |
+
keep pm10_n date temp wind_speed rain rh
|
414 |
+
save "$path/Nearest/$d", replace
|
415 |
+
}
|
416 |
+
|
417 |
+
cd "$path/Nearest/"
|
418 |
+
clear
|
419 |
+
append using `: dir . files "*.dta"'
|
420 |
+
drop if pm10_n == .
|
421 |
+
isid pm10_n date
|
422 |
+
rename temp temp_n
|
423 |
+
rename rain rain_n
|
424 |
+
rename rh rh_n
|
425 |
+
rename wind_speed wind_speed_n
|
426 |
+
|
427 |
+
save "$path/output/nearest.dta", replace
|
428 |
+
|
429 |
+
|
430 |
+
***************************************************
|
431 |
+
** DWA (using all stations) (Robust Replication) **
|
432 |
+
***************************************************
|
433 |
+
** DWA using all stations
|
434 |
+
filelist , dir($path/pw_station_distances) pattern(*.dta) norecur
|
435 |
+
|
436 |
+
* save a copy so that we can load each observation in the loop below
|
437 |
+
tempfile files
|
438 |
+
split filename, parse(".") generate(filename)
|
439 |
+
drop filename filename2
|
440 |
+
rename filename1 filename
|
441 |
+
save "files_2011_16", replace
|
442 |
+
|
443 |
+
* DWA (No Limit)
|
444 |
+
forvalues i = 1/312 {
|
445 |
+
use "files_2011_16" in `i', clear
|
446 |
+
global f = dirname + "/" + filename + ".dta"
|
447 |
+
global d = filename
|
448 |
+
|
449 |
+
use "$f", clear
|
450 |
+
|
451 |
+
gen distance1 = 1/distance
|
452 |
+
bysort pm10_n date: egen total_distance1= total(distance1)
|
453 |
+
|
454 |
+
|
455 |
+
foreach var of varlist temp wind_speed rh rain {
|
456 |
+
gen `var'1 = `var'/distance
|
457 |
+
bysort pm10_n date: egen total_`var'1 = total(`var'1)
|
458 |
+
gen `var'_DWA = total_`var'1 / total_distance1
|
459 |
+
}
|
460 |
+
|
461 |
+
keep pm10_n date temp_DWA wind_speed_DWA rh_DWA rain_DWA
|
462 |
+
|
463 |
+
sum temp_DWA wind_speed_DWA rh_DWA rain_DWA
|
464 |
+
|
465 |
+
bysort pm10_n date: gen seq=_n
|
466 |
+
keep if seq == 1
|
467 |
+
drop seq
|
468 |
+
|
469 |
+
save "$path/DWA/$d", replace
|
470 |
+
}
|
471 |
+
|
472 |
+
cd "$path/DWA/"
|
473 |
+
clear
|
474 |
+
append using `: dir . files "*.dta"'
|
475 |
+
drop if pm10_n == .
|
476 |
+
isid pm10_n date
|
477 |
+
|
478 |
+
|
479 |
+
save "$path/output/DWA.dta", replace
|
480 |
+
|
481 |
+
* DWA (Only stations within 100km)
|
482 |
+
forvalues i = 1/312 {
|
483 |
+
use "$path/files_2011_16" in `i', clear
|
484 |
+
global f = dirname + "/" + filename + ".dta"
|
485 |
+
global d = filename
|
486 |
+
|
487 |
+
use "$f", clear
|
488 |
+
|
489 |
+
drop if distance > 100
|
490 |
+
|
491 |
+
gen distance1 = 1/distance
|
492 |
+
bysort pm10_n date: egen total_distance1= total(distance1)
|
493 |
+
|
494 |
+
|
495 |
+
foreach var of varlist temp wind_speed rh rain {
|
496 |
+
gen `var'1 = `var'/distance
|
497 |
+
bysort pm10_n date: egen total_`var'1 = total(`var'1)
|
498 |
+
gen `var'_DWA_100 = total_`var'1 / total_distance1
|
499 |
+
}
|
500 |
+
|
501 |
+
keep pm10_n date temp_DWA_100 wind_speed_DWA_100 rh_DWA_100 rain_DWA_100
|
502 |
+
|
503 |
+
sum temp_DWA_100 wind_speed_DWA_100 rh_DWA_100 rain_DWA_100
|
504 |
+
|
505 |
+
bysort pm10_n date: gen seq=_n
|
506 |
+
keep if seq == 1
|
507 |
+
drop seq
|
508 |
+
|
509 |
+
save "$path/DWA_100/$d", replace
|
510 |
+
}
|
511 |
+
|
512 |
+
cd "$path/DWA_100/"
|
513 |
+
clear
|
514 |
+
append using `: dir . files "*.dta"'
|
515 |
+
isid pm10_n date
|
516 |
+
|
517 |
+
|
518 |
+
save "$path/output/DWA_100.dta", replace
|
519 |
+
|
520 |
+
** DWA using station only near by stations (500km)
|
521 |
+
filelist , dir($path/pw_station_distances) pattern(*.dta) norecur
|
522 |
+
|
523 |
+
* save a copy so that we can load each observation in the loop below
|
524 |
+
tempfile files
|
525 |
+
split filename, parse(".") generate(filename)
|
526 |
+
drop filename filename2
|
527 |
+
rename filename1 filename
|
528 |
+
save "$path/files_2011_16.dta", replace
|
529 |
+
|
530 |
+
* DWA (Only station within 500km)
|
531 |
+
forvalues i = 1/312 {
|
532 |
+
use "$path/files_2011_16" in `i', clear
|
533 |
+
global f = dirname + "/" + filename + ".dta"
|
534 |
+
global d = filename
|
535 |
+
|
536 |
+
use "$f", clear
|
537 |
+
|
538 |
+
drop if distance > 500
|
539 |
+
|
540 |
+
gen distance1 = 1/distance
|
541 |
+
bysort pm10_n date: egen total_distance1= total(distance1)
|
542 |
+
|
543 |
+
|
544 |
+
foreach var of varlist temp wind_speed rh rain {
|
545 |
+
gen `var'1 = `var'/distance
|
546 |
+
bysort pm10_n date: egen total_`var'1 = total(`var'1)
|
547 |
+
gen `var'_DWA_500 = total_`var'1 / total_distance1
|
548 |
+
}
|
549 |
+
|
550 |
+
keep pm10_n date temp_DWA_500 wind_speed_DWA_500 rh_DWA_500 rain_DWA_500
|
551 |
+
|
552 |
+
sum temp_DWA_500 wind_speed_DWA_500 rh_DWA_500 rain_DWA_500
|
553 |
+
|
554 |
+
bysort pm10_n date: gen seq=_n
|
555 |
+
keep if seq == 1
|
556 |
+
drop seq
|
557 |
+
|
558 |
+
save "$path/DWA_500/$d", replace
|
559 |
+
}
|
560 |
+
|
561 |
+
cd "$path/DWA_500/"
|
562 |
+
clear
|
563 |
+
append using `: dir . files "*.dta"'
|
564 |
+
isid pm10_n date
|
565 |
+
|
566 |
+
|
567 |
+
save "$path/output/DWA_500.dta", replace
|
568 |
+
|
569 |
+
*==============================================================================*
|
570 |
+
*4. Merging Weather Data files
|
571 |
+
*==============================================================================*
|
572 |
+
cd "$path/Output"
|
573 |
+
clear
|
574 |
+
use weather_1116.dta, clear
|
575 |
+
rename station_n pm10_n
|
576 |
+
merge 1:1 pm10_n date using nearest.dta
|
577 |
+
drop _m
|
578 |
+
merge 1:1 pm10_n date using DWA.dta
|
579 |
+
drop _m
|
580 |
+
merge 1:1 pm10_n date using DWA_100.dta
|
581 |
+
drop _m
|
582 |
+
merge 1:1 pm10_n date using DWA_500.dta
|
583 |
+
drop _m
|
584 |
+
rename pm10_n station_n
|
585 |
+
save "$path/output/weather_1116_alt.dta", replace
|
586 |
+
|
587 |
+
|
9/replication_package/Code/NOAA Weather Data (NEW!)/NOAA_download.R
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Library
|
2 |
+
library(GSODR)
|
3 |
+
|
4 |
+
#==============================================================================*
|
5 |
+
#0. Downloading weather station data!
|
6 |
+
#==============================================================================*
|
7 |
+
# Downloading NOAA weather station Data! (https://www.ncei.noaa.gov/data/global-summary-of-the-day/doc/readme.txt)
|
8 |
+
|
9 |
+
# Downloading & Data Cleaning!
|
10 |
+
China_weather_2011_F <- get_GSOD(years = 2011, country = "China")
|
11 |
+
China_weather_2011_S <- subset(China_weather_2011_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
12 |
+
China_weather_2012_F <- get_GSOD(years = 2012, country = "China")
|
13 |
+
China_weather_2012_S <- subset(China_weather_2012_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
14 |
+
China_weather_2013_F <- get_GSOD(years = 2013, country = "China")
|
15 |
+
China_weather_2013_S <- subset(China_weather_2013_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
16 |
+
China_weather_2014_F <- get_GSOD(years = 2014, country = "China")
|
17 |
+
China_weather_2014_S <- subset(China_weather_2014_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
18 |
+
China_weather_2015_F <- get_GSOD(years = 2015, country = "China")
|
19 |
+
China_weather_2015_S <- subset(China_weather_2015_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
20 |
+
China_weather_2016_F <- get_GSOD(years = 2016, country = "China")
|
21 |
+
China_weather_2016_S <- subset(China_weather_2016_F, select = c("STNID", "NAME", "YEARMODA","YEAR","MONTH","DAY", "TEMP", "WDSP", "PRCP", "RH", "LATITUDE", "LONGITUDE"))
|
22 |
+
# Creation of Weather Station Dataset!
|
23 |
+
china_weather_2011_16_S <- rbind(China_weather_2011_S, China_weather_2012_S, China_weather_2013_S, China_weather_2014_S, China_weather_2015_S, China_weather_2016_S)
|
24 |
+
rm(China_weather_2011_S, China_weather_2011_F, China_weather_2012_S, China_weather_2012_F, China_weather_2013_S, China_weather_2013_F, China_weather_2014_S, China_weather_2014_F, China_weather_2015_S, China_weather_2015_F, China_weather_2016_S, China_weather_2016_F)
|
25 |
+
write.csv(china_weather_2011_16_S, "/Volumes/External Drive A/Greenstone et al/NOAA Weather Data/China/china_weather_2011_16_v2.csv", row.names=TRUE)
|
26 |
+
|
27 |
+
# Checking if the weather data are in the correct units
|
28 |
+
summary(china_weather_2011_16_S)
|
9/replication_package/Code/Prepare_Data.do
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***Prepare Data for Tables/Figures Based on Raw Data using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
*==============================================================================*
|
9 |
+
*0. Set Up
|
10 |
+
*The most recent package versions are used as of March 2021.
|
11 |
+
*The estimates and output format may change slightly using different package versions.
|
12 |
+
*==============================================================================*
|
13 |
+
*Manually copy brain.ado from https://github.com/ThorstenDoherr/brain
|
14 |
+
net install rdrobust, from("https://raw.githubusercontent.com/rdpackages/rdrobust/master/stata") replace
|
15 |
+
net install rddensity, from("https://raw.githubusercontent.com/rdpackages/rddensity/master/stata") replace
|
16 |
+
local ssc_packages "reghdfe ftools sxpose tsspell geonear plotbeta outreg2 estout"
|
17 |
+
if !missing("`ssc_packages'") {
|
18 |
+
foreach pkg in "`ssc_packages'" {
|
19 |
+
* install using ssc, but avoid re-installing if already present
|
20 |
+
capture which `pkg'
|
21 |
+
if _rc == 111 {
|
22 |
+
dis "Installing `pkg'"
|
23 |
+
qui ssc install `pkg',replace
|
24 |
+
}
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
*==============================================================================*
|
29 |
+
*1. Generate station_day_1116.dta
|
30 |
+
*==============================================================================*
|
31 |
+
use "$path/Data/pollution_1116.dta",clear
|
32 |
+
merge 1:1 station_n date using "$path/Data/weather_1116.dta",nogen
|
33 |
+
rename station_n pm10_n
|
34 |
+
merge m:1 pm10_n using "$path/Data/station_list.dta",nogen
|
35 |
+
drop station_lat station_lon
|
36 |
+
save "$path/Data/station_day_1116.dta",replace
|
37 |
+
|
38 |
+
*==============================================================================*
|
39 |
+
*2. Generate did_ddl_match.dta: station-daily PM10 data for deadline stations with distance matching (Table 1B, columns 3-5)
|
40 |
+
*==============================================================================*
|
41 |
+
use "$path/Data/station_list.dta",clear
|
42 |
+
keep if auto_date==19359
|
43 |
+
rename pm10_n pm10_n1
|
44 |
+
save "$path/Data/temp/station_ddl_1.dta",replace
|
45 |
+
|
46 |
+
use "$path/Data/station_list.dta",clear
|
47 |
+
keep if auto_date==19724
|
48 |
+
save "$path/Data/temp/station_ddl_2.dta",replace
|
49 |
+
|
50 |
+
use "$path/Data/temp/station_ddl_1.dta",clear
|
51 |
+
geonear pm10_n1 station_lat station_lon using "$path/Data/temp/station_ddl_2.dta", n(pm10_n station_lat station_lon) long ellipsoid
|
52 |
+
keep if km_to_pm10_n<=400
|
53 |
+
save "$path/Data/temp/station_ddl_match.dta",replace
|
54 |
+
|
55 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
56 |
+
keep pm10_n1
|
57 |
+
rename pm10_n1 pm10_n
|
58 |
+
gen treat=1
|
59 |
+
save "$path/Data/temp/station_ddl_treated.dta",replace
|
60 |
+
|
61 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
62 |
+
keep pm10_n
|
63 |
+
gen treat=0
|
64 |
+
save "$path/Data/temp/station_ddl_control.dta",replace
|
65 |
+
|
66 |
+
use "$path/Data/station_day_1116.dta",clear
|
67 |
+
gen year=year(date)
|
68 |
+
keep if year==2012 | year==2013
|
69 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_treated.dta"
|
70 |
+
save "$path/Data/temp/station_day_ddl_treated.dta",replace
|
71 |
+
|
72 |
+
use "$path/Data/station_day_1116.dta",clear
|
73 |
+
gen year=year(date)
|
74 |
+
keep if year==2012 | year==2013
|
75 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_control.dta"
|
76 |
+
save "$path/Data/temp/station_day_ddl_control.dta",replace
|
77 |
+
|
78 |
+
use "$path/Data/temp/station_day_ddl_treated.dta",clear
|
79 |
+
append using "$path/Data/temp/station_day_ddl_control.dta"
|
80 |
+
drop year so2 no2 phase treat
|
81 |
+
gen l_pm10=log(pm10), after(pm10)
|
82 |
+
label variable l_pm10 "logarithm of pm10"
|
83 |
+
compress
|
84 |
+
save "$path/Data/did_ddl_match.dta",replace
|
85 |
+
|
86 |
+
*==============================================================================*
|
87 |
+
*3. Generate station_month.dta
|
88 |
+
*==============================================================================*
|
89 |
+
use "$path/Data/station_day_1116.dta",clear
|
90 |
+
gen month_date = mofd(date)
|
91 |
+
gen month_auto_date = mofd(auto_date)
|
92 |
+
format month* %tm
|
93 |
+
gen n_month = month_date - month_auto_date
|
94 |
+
gen after = (month_date >= month_auto_date)
|
95 |
+
drop month_date month_auto_date
|
96 |
+
gen year=year(date)
|
97 |
+
gen month=month(date)
|
98 |
+
foreach v of varlist pm10-rh{
|
99 |
+
bysort pm10_n year month: egen `v'_month=mean(`v')
|
100 |
+
drop `v'
|
101 |
+
rename `v'_month `v'
|
102 |
+
}
|
103 |
+
duplicates drop pm10_n year month,force
|
104 |
+
drop date
|
105 |
+
merge m:1 pm10_n year month using "$path/Data/aod_month.dta", keep(match) nogen
|
106 |
+
save "$path/Data/station_month.dta",replace
|
107 |
+
|
108 |
+
*==============================================================================*
|
109 |
+
*4. Generate city_month.dta to be added with corrected PM10 in Section 10
|
110 |
+
*for plotting Appendix Figure C
|
111 |
+
*==============================================================================*
|
112 |
+
use "$path/Data/station_month.dta",clear
|
113 |
+
foreach v of varlist pm10-aod{
|
114 |
+
bysort code_city year month: egen `v'_month=mean(`v')
|
115 |
+
drop `v'
|
116 |
+
rename `v'_month `v'
|
117 |
+
}
|
118 |
+
gsort code_city year month -auto_date
|
119 |
+
duplicates drop code_city year month,force
|
120 |
+
drop pm10_n so2 no2
|
121 |
+
save "$path/Data/city_month.dta",replace
|
122 |
+
|
123 |
+
*==============================================================================*
|
124 |
+
*5. Compare city PM10 in Jan-June in 2013 vs 2014
|
125 |
+
*==============================================================================*
|
126 |
+
use "$path/Data/city_month.dta",clear
|
127 |
+
gen period=0 if year==2013 & month>=1 & month<=6
|
128 |
+
replace period=1 if year==2014 & month>=1 & month<=6
|
129 |
+
drop if period==.
|
130 |
+
collapse (mean) pm10, by(code_city period)
|
131 |
+
reshape wide pm10, i(code_city) j(period)
|
132 |
+
gen diff_period=pm101-pm100
|
133 |
+
drop pm100 pm101
|
134 |
+
label variable diff_period "Mean Difference in PM10 between 2014 Jan-June and 2013 Jan-June"
|
135 |
+
save "$path/Data/temp/city_period_compare.dta",replace
|
136 |
+
|
137 |
+
*==============================================================================*
|
138 |
+
*6. Generate RD estimates for each city
|
139 |
+
*==============================================================================*
|
140 |
+
use "$path/Data/station_day_1116.dta",clear
|
141 |
+
levelsof code_city, local (p)
|
142 |
+
cap qui erase "$path/Results/rd_pm10_city.txt"
|
143 |
+
foreach y of local p{
|
144 |
+
use "$path/Data/station_day_1116.dta",clear
|
145 |
+
qui gen T=date-auto_date
|
146 |
+
qui gen month=month(date)
|
147 |
+
keep if code_city==`y'
|
148 |
+
cap qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_`y'_smw)
|
149 |
+
cap qui rdrobust resid_pm10_`y'_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster pm10_n) masspoints(off)
|
150 |
+
cap outreg2 using "$path/Results/rd_pm10_city", excel dec(4) append ctitle(`y') addtext(Kernel, Tri., Station FE, Y, Month FE, Y, Weather, Y) sortvar(RD_Estimate)
|
151 |
+
}
|
152 |
+
|
153 |
+
***import the city-level RD estimates
|
154 |
+
clear
|
155 |
+
import delimited "$path/Results/rd_pm10_city.txt", rowrange(2:5) colrange(2)
|
156 |
+
drop in 2
|
157 |
+
sxpose, clear
|
158 |
+
split _var2, parse("*")
|
159 |
+
split _var3, parse("(" ")")
|
160 |
+
drop _var3 _var22-_var31
|
161 |
+
rename _var1 code_city
|
162 |
+
rename _var2 rd_estimate_1116_raw
|
163 |
+
rename _var21 rd_estimate_1116
|
164 |
+
rename _var32 error_1116
|
165 |
+
destring code_city rd_estimate_1116 error_1116, replace
|
166 |
+
label variable rd_estimate_1116_raw "Raw RD Estimate"
|
167 |
+
label variable rd_estimate_1116 "RD_Estimate_1116"
|
168 |
+
label variable error_1116 "Standard error of RD estimate"
|
169 |
+
/*City 230100 and 510400 have a large number of missing PM10 prior to automation.
|
170 |
+
Some Stata/rdrobust version still generate RD estimates for the two cities with a warning:
|
171 |
+
"Estimates might be unreliable due to low number of effective observations"
|
172 |
+
An earlier Stata 15 MP/rdrobust version (Winter 2020) does not generate RD estimates for the two cities with the following warning:
|
173 |
+
"Not enough observations to perform calculations"
|
174 |
+
Therefore, we replace the RD estimate for the two cities with missing values for compatibility and consistency.
|
175 |
+
*/
|
176 |
+
replace rd_estimate_1116_raw="" if rd_estimate_1116_raw!="" & (code_city==230100 | code_city==510400)
|
177 |
+
replace rd_estimate_1116=. if rd_estimate_1116!=. & (code_city==230100 | code_city==510400)
|
178 |
+
save "$path/Data/temp/city_rd_estimate.dta",replace
|
179 |
+
*==============================================================================*
|
180 |
+
*7. Generate dummy list_76 indicating cities with fewer missing observations prior to automation
|
181 |
+
*==============================================================================*
|
182 |
+
use "$path/Data/station_day_1116.dta", clear
|
183 |
+
drop no2-rh
|
184 |
+
gen T=date-auto_date
|
185 |
+
keep if T<0 & T>=-120
|
186 |
+
xtset pm10_n date
|
187 |
+
tsspell pm10
|
188 |
+
keep if pm10==.
|
189 |
+
gsort code_city pm10_n -_seq
|
190 |
+
duplicates drop pm10_n,force
|
191 |
+
sort code_city _seq
|
192 |
+
duplicates drop code_city,force
|
193 |
+
gen list_76=(_seq<60)
|
194 |
+
/*city 650100 has 56 (or 21) missing days pre (or post) automation, with large
|
195 |
+
RD estimate and standard error, thus the estimate is unreliable and dropped.
|
196 |
+
*/
|
197 |
+
replace list_76=0 if code_city==650100
|
198 |
+
keep code_city list_76
|
199 |
+
save "$path/Data/temp/city_list_76.dta",replace
|
200 |
+
*==============================================================================*
|
201 |
+
*8. Merge city characteristics with city-level RD and differences in PM10
|
202 |
+
*==============================================================================*
|
203 |
+
use "$path/Data/city_info.dta",clear
|
204 |
+
merge 1:1 code_city using "$path/Data/temp/city_list_76.dta", nogen
|
205 |
+
merge 1:1 code_city using "$path/Data/temp/city_rd_estimate.dta", nogen
|
206 |
+
merge 1:1 code_city using "$path/Data/temp/city_period_compare.dta", nogen
|
207 |
+
gen sig=(substr(rd_estimate_1116_raw,-2,2)=="**")
|
208 |
+
*define RD dummy: also used for Table 2A columns 3-4
|
209 |
+
gen rd=1 if list_76==1 & sig==1 & rd_estimate_1116>0, after(phase)
|
210 |
+
replace rd=1 if list_76==0 & diff_period>=35 & diff_period!=.
|
211 |
+
replace rd=0 if rd==.
|
212 |
+
label variable rd "underreporting dummy"
|
213 |
+
drop sig
|
214 |
+
save "$path/Data/city_info_rd.dta",replace
|
215 |
+
|
216 |
+
*==============================================================================*
|
217 |
+
*9. Generate city-daily deadline data and city-monthly search data (Table 2A)
|
218 |
+
*==============================================================================*
|
219 |
+
use "$path/Data/station_day_1116.dta", clear
|
220 |
+
foreach v of varlist pm10-rh{
|
221 |
+
bysort code_city date: egen `v'_m=mean(`v')
|
222 |
+
drop `v'
|
223 |
+
rename `v'_m `v'
|
224 |
+
}
|
225 |
+
gsort code_city date -auto_date
|
226 |
+
duplicates drop code_city date,force
|
227 |
+
drop pm10_n
|
228 |
+
merge 1:1 code_city date using "$path/Data/mask_filter_search.dta", keep(match) nogen
|
229 |
+
|
230 |
+
***add city RD dummy info for Table 2A: column 3-4
|
231 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta",nogen
|
232 |
+
drop list_76 rd_estimate_1116_raw-diff_period
|
233 |
+
save "$path/Data/temp/search_city_day.dta",replace
|
234 |
+
|
235 |
+
***generate city-daily search for deadline cities (Table 2B)
|
236 |
+
gen year=year(date)
|
237 |
+
keep if year>=2012 & year<=2013
|
238 |
+
drop year phase pm10-so2 rd
|
239 |
+
keep if auto_date==19724 | auto_date==19359
|
240 |
+
save "$path/Data/did_ddl_search.dta",replace
|
241 |
+
|
242 |
+
***aggregate to city-monthly level (Table 2A)
|
243 |
+
use "$path/Data/temp/search_city_day.dta",clear
|
244 |
+
gen year=year(date)
|
245 |
+
gen month=month(date)
|
246 |
+
gen month_date = mofd(date)
|
247 |
+
gen month_auto_date = mofd(auto_date)
|
248 |
+
format month* %tm
|
249 |
+
gen n_month = month_date - month_auto_date
|
250 |
+
drop month_date month_auto_date
|
251 |
+
|
252 |
+
foreach v of varlist pm10-pmmask {
|
253 |
+
bysort code_city n_month: egen `v'_m=mean(`v')
|
254 |
+
drop `v'
|
255 |
+
rename `v'_m `v'
|
256 |
+
}
|
257 |
+
duplicates drop code_city n_month,force
|
258 |
+
drop date so2 no2
|
259 |
+
foreach v of varlist pmmask filter{
|
260 |
+
gen l_`v'=log(`v'+1)
|
261 |
+
}
|
262 |
+
save "$path/Data/search_city_month.dta",replace
|
263 |
+
|
264 |
+
*==============================================================================*
|
265 |
+
*10. Correct city-month PM10 using neural network
|
266 |
+
*==============================================================================*
|
267 |
+
*do "$path/Codes/PM_correction.do"
|
268 |
+
set seed 123456
|
269 |
+
use "$path/Data/city_month.dta",clear
|
270 |
+
foreach v of var aod wind_speed temp rh rain{
|
271 |
+
gen `v'2=`v'^2
|
272 |
+
gen `v'3=`v'^3
|
273 |
+
gen `v'4=`v'^4
|
274 |
+
}
|
275 |
+
*** separate into training (70%) and testing (30%) sets within after data
|
276 |
+
gen random = runiform()
|
277 |
+
sort after random
|
278 |
+
bysort after: gen test_set = (_n < 0.3*_N)
|
279 |
+
replace test_set = . if after == 0
|
280 |
+
*** save sst as local
|
281 |
+
summ pm10 if test_set==1
|
282 |
+
scalar pm10mean = r(mean)
|
283 |
+
egen sst = sum((pm10-pm10mean)^2) if test_set == 1
|
284 |
+
summ sst
|
285 |
+
local sst = r(mean)
|
286 |
+
*** neural net
|
287 |
+
xi: brain define, input(aod aod2 aod3 aod4 temp rain rh wind_speed temp2 rain2 rh2 wind_speed2 temp3 rain3 rh3 wind_speed3 temp4 rain4 rh4 wind_speed4 i.month i.code_city) output(pm10) hidden(20 20)
|
288 |
+
brain train if test_set == 0, iter(300) eta(.5)
|
289 |
+
brain think pm10_ann
|
290 |
+
egen rbrain_ann = sum((pm10-pm10_ann)^2) if test_set==1
|
291 |
+
summ rbrain_ann
|
292 |
+
local rbrain_ann = r(mean)
|
293 |
+
di "R-sq. brain: " 1-(`rbrain_ann'/`sst')
|
294 |
+
***polynomial
|
295 |
+
reghdfe pm10 aod aod2 aod3 aod4 temp rain rh wind_speed temp2 rain2 rh2 wind_speed2 temp3 rain3 rh3 wind_speed3 temp4 rain4 rh4 wind_speed4 if test_set == 0, absorb(month code_city) vce(cl code_city)
|
296 |
+
predict pm10_ols, xb
|
297 |
+
egen r_ols = sum((pm10-pm10_ols)^2) if test_set==1
|
298 |
+
summ r_ols
|
299 |
+
local r_ols = r(mean)
|
300 |
+
di "R-sq. brain: " 1-`r_ols'/`sst'
|
301 |
+
drop _I*
|
302 |
+
***Corrected PM10 as appendix data for future use
|
303 |
+
gen pm10_corrected=pm10
|
304 |
+
replace pm10_corrected=pm10_ann if after==0 & pm10_ann !=.
|
305 |
+
drop sst rbrain_ann r_ols
|
306 |
+
save "$path/Data/city_month.dta",replace
|
307 |
+
|
308 |
+
keep code_city year month pm10 pm10_corrected
|
309 |
+
sort code_city year month
|
310 |
+
format %9.1f pm10 pm10_corrected
|
311 |
+
label variable pm10 "Reported PM10 (ug/m3)"
|
312 |
+
label variable pm10_corrected "Corrected PM10 (ug/m3)"
|
313 |
+
save "$path/Data/pm10_corrected.dta",replace
|
314 |
+
|
315 |
+
*==============================================================================*
|
316 |
+
*11. Add city RD dummy to city_month.dta for plotting Appendix Figure C
|
317 |
+
*==============================================================================*
|
318 |
+
use "$path/Data/city_month.dta",clear
|
319 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta",nogen
|
320 |
+
drop list_76 rd_estimate_1116_raw-diff_period
|
321 |
+
compress
|
322 |
+
save "$path/Data/city_month.dta",replace
|
323 |
+
|
324 |
+
|
325 |
+
***The End
|
9/replication_package/Code/Prepare_Data_New.do
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***Prepare Data for Tables/Figures Based on Raw Data using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
*==============================================================================*
|
9 |
+
*0. Set Up
|
10 |
+
*The most recent package versions are used as of March 2021.
|
11 |
+
*The estimates and output format may change slightly using different package versions.
|
12 |
+
*==============================================================================*
|
13 |
+
*Manually copy brain.ado from https://github.com/ThorstenDoherr/brain
|
14 |
+
net install rdrobust, from("https://raw.githubusercontent.com/rdpackages/rdrobust/master/stata") replace
|
15 |
+
net install rddensity, from("https://raw.githubusercontent.com/rdpackages/rddensity/master/stata") replace
|
16 |
+
local ssc_packages "reghdfe ftools sxpose tsspell geonear plotbeta outreg2 estout"
|
17 |
+
if !missing("`ssc_packages'") {
|
18 |
+
foreach pkg in "`ssc_packages'" {
|
19 |
+
* install using ssc, but avoid re-installing if already present
|
20 |
+
capture which `pkg'
|
21 |
+
if _rc == 111 {
|
22 |
+
dis "Installing `pkg'"
|
23 |
+
qui ssc install `pkg',replace
|
24 |
+
}
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
/* Original Weather Data
|
29 |
+
*==============================================================================*
|
30 |
+
*1. Generate station_day_1116.dta
|
31 |
+
*==============================================================================*
|
32 |
+
use "$path/Data/pollution_1116.dta",clear
|
33 |
+
merge 1:1 station_n date using "$path/Data/weather_1116.dta",nogen
|
34 |
+
rename station_n pm10_n
|
35 |
+
merge m:1 pm10_n using "$path/Data/station_list.dta",nogen
|
36 |
+
drop station_lat station_lon
|
37 |
+
save "$path/Data/station_day_1116.dta",replace
|
38 |
+
*/
|
39 |
+
*==============================================================================*
|
40 |
+
*1GG. Generate station_day_1116.dta (New!)
|
41 |
+
*==============================================================================*
|
42 |
+
use "$path/Data/pollution_1116.dta",clear
|
43 |
+
merge 1:1 station_n date using "$path/Data/weather_1116.dta",nogen // Merging Old Data File
|
44 |
+
merge 1:1 station_n date using "$path/Data/weather_1116_alt.dta",nogen //Merge with new altertaive weather data, generate in using alt_weather_var.do
|
45 |
+
rename station_n pm10_n
|
46 |
+
merge m:1 pm10_n using "$path/Data/station_list.dta",nogen
|
47 |
+
drop station_lat station_lon
|
48 |
+
save "$path/Data/station_day_1116.dta",replace
|
49 |
+
|
50 |
+
*==============================================================================*
|
51 |
+
*2. Generate did_ddl_match.dta: station-daily PM10 data for deadline stations with distance matching (Table 1B, columns 3-5)
|
52 |
+
*==============================================================================*
|
53 |
+
use "$path/Data/station_list.dta",clear
|
54 |
+
keep if auto_date==19359
|
55 |
+
rename pm10_n pm10_n1
|
56 |
+
save "$path/Data/temp/station_ddl_1.dta",replace
|
57 |
+
|
58 |
+
use "$path/Data/station_list.dta",clear
|
59 |
+
keep if auto_date==19724
|
60 |
+
save "$path/Data/temp/station_ddl_2.dta",replace
|
61 |
+
|
62 |
+
use "$path/Data/temp/station_ddl_1.dta",clear
|
63 |
+
geonear pm10_n1 station_lat station_lon using "$path/Data/temp/station_ddl_2.dta", n(pm10_n station_lat station_lon) long ellipsoid
|
64 |
+
keep if km_to_pm10_n<=400
|
65 |
+
save "$path/Data/temp/station_ddl_match.dta",replace
|
66 |
+
|
67 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
68 |
+
keep pm10_n1
|
69 |
+
rename pm10_n1 pm10_n
|
70 |
+
gen treat=1
|
71 |
+
save "$path/Data/temp/station_ddl_treated.dta",replace
|
72 |
+
|
73 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
74 |
+
keep pm10_n
|
75 |
+
gen treat=0
|
76 |
+
save "$path/Data/temp/station_ddl_control.dta",replace
|
77 |
+
|
78 |
+
use "$path/Data/station_day_1116.dta",clear
|
79 |
+
gen year=year(date)
|
80 |
+
keep if year==2012 | year==2013
|
81 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_treated.dta"
|
82 |
+
save "$path/Data/temp/station_day_ddl_treated.dta",replace
|
83 |
+
|
84 |
+
use "$path/Data/station_day_1116.dta",clear
|
85 |
+
gen year=year(date)
|
86 |
+
keep if year==2012 | year==2013
|
87 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_control.dta"
|
88 |
+
save "$path/Data/temp/station_day_ddl_control.dta",replace
|
89 |
+
|
90 |
+
use "$path/Data/temp/station_day_ddl_treated.dta",clear
|
91 |
+
append using "$path/Data/temp/station_day_ddl_control.dta"
|
92 |
+
drop year so2 no2 phase treat
|
93 |
+
gen l_pm10=log(pm10), after(pm10)
|
94 |
+
label variable l_pm10 "logarithm of pm10"
|
95 |
+
compress
|
96 |
+
save "$path/Data/did_ddl_match.dta",replace
|
97 |
+
|
98 |
+
|
99 |
+
*==============================================================================*
|
100 |
+
*2. Generate did_ddl_match.dta: station-daily AOD data for deadline stations with distance matching (Table 1B, columns 3-5)
|
101 |
+
*==============================================================================*
|
102 |
+
use "$path/Data/station_list.dta",clear
|
103 |
+
keep if auto_date==19359
|
104 |
+
rename pm10_n pm10_n1
|
105 |
+
save "$path/Data/temp/station_ddl_1.dta",replace
|
106 |
+
|
107 |
+
use "$path/Data/station_list.dta",clear
|
108 |
+
keep if auto_date==19724
|
109 |
+
save "$path/Data/temp/station_ddl_2.dta",replace
|
110 |
+
|
111 |
+
use "$path/Data/temp/station_ddl_1.dta",clear
|
112 |
+
geonear pm10_n1 station_lat station_lon using "$path/Data/temp/station_ddl_2.dta", n(pm10_n station_lat station_lon) long ellipsoid
|
113 |
+
keep if km_to_pm10_n<=400
|
114 |
+
save "$path/Data/temp/station_ddl_match.dta",replace
|
115 |
+
|
116 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
117 |
+
keep pm10_n1
|
118 |
+
rename pm10_n1 pm10_n
|
119 |
+
gen treat=1
|
120 |
+
save "$path/Data/temp/station_ddl_treated.dta",replace
|
121 |
+
|
122 |
+
use "$path/Data/temp/station_ddl_match.dta",clear
|
123 |
+
keep pm10_n
|
124 |
+
gen treat=0
|
125 |
+
save "$path/Data/temp/station_ddl_control.dta",replace
|
126 |
+
|
127 |
+
use "$path/Data/station_day_1116.dta",clear
|
128 |
+
gen year=year(date)
|
129 |
+
keep if year==2012 | year==2013
|
130 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_treated.dta"
|
131 |
+
save "$path/Data/temp/station_day_ddl_treated.dta",replace
|
132 |
+
|
133 |
+
use "$path/Data/station_day_1116.dta",clear
|
134 |
+
gen year=year(date)
|
135 |
+
keep if year==2012 | year==2013
|
136 |
+
joinby pm10_n using "$path/Data/temp/station_ddl_control.dta"
|
137 |
+
save "$path/Data/temp/station_day_ddl_control.dta",replace
|
138 |
+
|
139 |
+
use "$path/Data/temp/station_day_ddl_treated.dta",clear
|
140 |
+
append using "$path/Data/temp/station_day_ddl_control.dta"
|
141 |
+
drop year so2 no2 phase treat
|
142 |
+
gen l_pm10=log(pm10), after(pm10)
|
143 |
+
label variable l_pm10 "logarithm of pm10"
|
144 |
+
compress
|
145 |
+
save "$path/Data/did_ddl_match.dta",replace
|
146 |
+
*==============================================================================*
|
147 |
+
*3. Generate station_month.dta
|
148 |
+
*==============================================================================*
|
149 |
+
use "$path/Data/station_day_1116.dta",clear
|
150 |
+
gen month_date = mofd(date)
|
151 |
+
gen month_auto_date = mofd(auto_date)
|
152 |
+
format month* %tm
|
153 |
+
gen n_month = month_date - month_auto_date
|
154 |
+
gen after = (month_date >= month_auto_date)
|
155 |
+
drop month_date month_auto_date
|
156 |
+
gen year=year(date)
|
157 |
+
gen month=month(date)
|
158 |
+
foreach v of varlist pm10-rh{
|
159 |
+
bysort pm10_n year month: egen `v'_month=mean(`v')
|
160 |
+
drop `v'
|
161 |
+
rename `v'_month `v'
|
162 |
+
}
|
163 |
+
duplicates drop pm10_n year month,force
|
164 |
+
drop date
|
165 |
+
merge m:1 pm10_n year month using "$path/Data/aod_month.dta", keep(match) nogen
|
166 |
+
save "$path/Data/station_month.dta",replace
|
167 |
+
|
168 |
+
*==============================================================================*
|
169 |
+
*4. Generate city_month.dta to be added with corrected PM10 in Section 10
|
170 |
+
*for plotting Appendix Figure C
|
171 |
+
*==============================================================================*
|
172 |
+
use "$path/Data/station_month.dta",clear
|
173 |
+
foreach v of varlist pm10-aod{
|
174 |
+
bysort code_city year month: egen `v'_month=mean(`v')
|
175 |
+
drop `v'
|
176 |
+
rename `v'_month `v'
|
177 |
+
}
|
178 |
+
gsort code_city year month -auto_date
|
179 |
+
duplicates drop code_city year month,force
|
180 |
+
drop pm10_n so2 no2
|
181 |
+
save "$path/Data/city_month.dta",replace
|
182 |
+
|
183 |
+
*==============================================================================*
|
184 |
+
*5. Compare city PM10 in Jan-June in 2013 vs 2014
|
185 |
+
*==============================================================================*
|
186 |
+
use "$path/Data/city_month.dta",clear
|
187 |
+
gen period=0 if year==2013 & month>=1 & month<=6
|
188 |
+
replace period=1 if year==2014 & month>=1 & month<=6
|
189 |
+
drop if period==.
|
190 |
+
collapse (mean) pm10, by(code_city period)
|
191 |
+
reshape wide pm10, i(code_city) j(period)
|
192 |
+
gen diff_period=pm101-pm100
|
193 |
+
drop pm100 pm101
|
194 |
+
label variable diff_period "Mean Difference in PM10 between 2014 Jan-June and 2013 Jan-June"
|
195 |
+
save "$path/Data/temp/city_period_compare.dta",replace
|
196 |
+
|
197 |
+
*==============================================================================*
|
198 |
+
*6. Generate RD estimates for each city
|
199 |
+
*==============================================================================*
|
200 |
+
*Original
|
201 |
+
use "$path/Data/station_day_1116.dta",clear
|
202 |
+
levelsof code_city, local (p)
|
203 |
+
cap qui erase "$path/Results/rd_pm10_city.txt"
|
204 |
+
foreach y of local p{
|
205 |
+
use "$path/Data/station_day_1116.dta",clear
|
206 |
+
qui gen T=date-auto_date
|
207 |
+
qui gen month=month(date)
|
208 |
+
keep if code_city==`y'
|
209 |
+
cap qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_`y'_smw)
|
210 |
+
cap qui rdrobust resid_pm10_`y'_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster pm10_n) masspoints(off)
|
211 |
+
cap outreg2 using "$path/Results/rd_pm10_city", excel dec(4) append ctitle(`y') addtext(Kernel, Tri., Station FE, Y, Month FE, Y, Weather, Y) sortvar(RD_Estimate)
|
212 |
+
}
|
213 |
+
***import the city-level RD estimates
|
214 |
+
clear
|
215 |
+
import delimited "$path/Results/rd_pm10_city.txt", rowrange(2:5) colrange(2)
|
216 |
+
drop in 2
|
217 |
+
sxpose, clear
|
218 |
+
split _var2, parse("*")
|
219 |
+
split _var3, parse("(" ")")
|
220 |
+
drop _var3 _var22-_var31
|
221 |
+
rename _var1 code_city
|
222 |
+
rename _var2 rd_estimate_1116_raw
|
223 |
+
rename _var21 rd_estimate_1116
|
224 |
+
rename _var32 error_1116
|
225 |
+
destring code_city rd_estimate_1116 error_1116, replace
|
226 |
+
label variable rd_estimate_1116_raw "Raw RD Estimate"
|
227 |
+
label variable rd_estimate_1116 "RD_Estimate_1116"
|
228 |
+
label variable error_1116 "Standard error of RD estimate"
|
229 |
+
/*City 230100 and 510400 have a large number of missing PM10 prior to automation.
|
230 |
+
Some Stata/rdrobust version still generate RD estimates for the two cities with a warning:
|
231 |
+
"Estimates might be unreliable due to low number of effective observations"
|
232 |
+
An earlier Stata 15 MP/rdrobust version (Winter 2020) does not generate RD estimates for the two cities with the following warning:
|
233 |
+
"Not enough observations to perform calculations"
|
234 |
+
Therefore, we replace the RD estimate for the two cities with missing values for compatibility and consistency.
|
235 |
+
*/
|
236 |
+
replace rd_estimate_1116_raw="" if rd_estimate_1116_raw!="" & (code_city==230100 | code_city==510400)
|
237 |
+
replace rd_estimate_1116=. if rd_estimate_1116!=. & (code_city==230100 | code_city==510400)
|
238 |
+
save "$path/Data/temp/city_rd_estimate.dta",replace
|
239 |
+
|
240 |
+
|
241 |
+
*==============================================================================*
|
242 |
+
*6b. Generate RD (for AOD) estimates for each city
|
243 |
+
*==============================================================================*
|
244 |
+
** Original
|
245 |
+
use "$path/Data/station_month.dta" ,clear
|
246 |
+
levelsof code_city, local (p)
|
247 |
+
cap qui erase "$path/Results/rd_AOD_city.txt"
|
248 |
+
foreach y of local p{
|
249 |
+
use "$path/Data/station_month.dta",clear
|
250 |
+
keep if code_city==`y'
|
251 |
+
cap qui reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_`y'_smw)
|
252 |
+
rdrobust resid_aod_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
253 |
+
}
|
254 |
+
|
255 |
+
outreg2 using "$path/Results/rd_aod_city", excel dec(4) append ctitle(`y') addtext(Kernel, Tri., Station FE, Y, Month FE, Y, Weather, Y) sortvar(RD_Estimate)
|
256 |
+
|
257 |
+
use "$path/Data/station_month.dta",clear
|
258 |
+
keep if code_city==340200
|
259 |
+
reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_340200_smw)
|
260 |
+
rdrobust resid_aod_340200_smw n_month, c(0) p(1) q(2) kernel(tri) masspoints(off)
|
261 |
+
|
262 |
+
***import the city-level RD AOD estimates
|
263 |
+
clear
|
264 |
+
import delimited "$path/Results/rd_aod_city", rowrange(2:5) colrange(2)
|
265 |
+
drop in 2
|
266 |
+
sxpose, clear //command sxpose is unrecognized, solution install sxpose
|
267 |
+
split _var2, parse("*")
|
268 |
+
split _var3, parse("(" ")")
|
269 |
+
drop _var3 _var22-_var31
|
270 |
+
rename _var1 code_city
|
271 |
+
rename _var2 rd_estimate_1116_raw
|
272 |
+
rename _var21 rd_estimate_1116
|
273 |
+
rename _var32 error_1116
|
274 |
+
destring code_city rd_estimate_1116 error_1116, replace
|
275 |
+
label variable rd_estimate_1116_raw "Raw RD Estimate"
|
276 |
+
label variable rd_estimate_1116 "RD_Estimate_1116"
|
277 |
+
label variable error_1116 "Standard error of RD estimate"
|
278 |
+
|
279 |
+
/*City 230100 and 510400 have a large number of missing PM10 prior to automation.
|
280 |
+
Some Stata/rdrobust version still generate RD estimates for the two cities with a warning:
|
281 |
+
"Estimates might be unreliable due to low number of effective observations"
|
282 |
+
An earlier Stata 15 MP/rdrobust version (Winter 2020) does not generate RD estimates for the two cities with the following warning:
|
283 |
+
"Not enough observations to perform calculations"
|
284 |
+
Therefore, we replace the RD estimate for the two cities with missing values for compatibility and consistency.
|
285 |
+
*/
|
286 |
+
replace rd_estimate_1116_raw="" if rd_estimate_1116_raw!="" & (code_city==230100 | code_city==510400)
|
287 |
+
replace rd_estimate_1116=. if rd_estimate_1116!=. & (code_city==230100 | code_city==510400)
|
288 |
+
save "$path/Data/temp/city_rd_aod_estimate.dta",replace
|
289 |
+
|
290 |
+
*==============================================================================*
|
291 |
+
*7. Generate dummy list_76 indicating cities with fewer missing observations prior to automation
|
292 |
+
*==============================================================================*
|
293 |
+
use "$path/Data/station_day_1116.dta", clear
|
294 |
+
drop no2-rh
|
295 |
+
gen T=date-auto_date
|
296 |
+
keep if T<0 & T>=-120
|
297 |
+
xtset pm10_n date
|
298 |
+
tsspell pm10
|
299 |
+
keep if pm10==.
|
300 |
+
gsort code_city pm10_n -_seq
|
301 |
+
duplicates drop pm10_n,force
|
302 |
+
sort code_city _seq
|
303 |
+
duplicates drop code_city,force
|
304 |
+
gen list_76=(_seq<60)
|
305 |
+
/*city 650100 has 56 (or 21) missing days pre (or post) automation, with large
|
306 |
+
RD estimate and standard error, thus the estimate is unreliable and dropped.
|
307 |
+
*/
|
308 |
+
replace list_76=0 if code_city==650100
|
309 |
+
keep code_city list_76
|
310 |
+
save "$path/Data/temp/city_list_76.dta",replace
|
311 |
+
*==============================================================================*
|
312 |
+
*8. Merge city characteristics with city-level RD and differences in PM10
|
313 |
+
*==============================================================================*
|
314 |
+
use "$path/Data/city_info.dta",clear
|
315 |
+
merge 1:1 code_city using "$path/Data/temp/city_list_76.dta", nogen
|
316 |
+
merge 1:1 code_city using "$path/Data/temp/city_rd_estimate.dta", nogen
|
317 |
+
merge 1:1 code_city using "$path/Data/temp/city_period_compare.dta", nogen
|
318 |
+
gen sig=(substr(rd_estimate_1116_raw,-2,2)=="**")
|
319 |
+
*define RD dummy: also used for Table 2A columns 3-4
|
320 |
+
gen rd=1 if list_76==1 & sig==1 & rd_estimate_1116>0, after(phase)
|
321 |
+
replace rd=1 if list_76==0 & diff_period>=35 & diff_period!=.
|
322 |
+
replace rd=0 if rd==.
|
323 |
+
label variable rd "underreporting dummy"
|
324 |
+
drop sig
|
325 |
+
save "$path/Data/city_info_rd.dta",replace
|
326 |
+
|
327 |
+
|
328 |
+
*==============================================================================*
|
329 |
+
*8b. Merge city characteristics with city-level RD and differences in aod
|
330 |
+
*==============================================================================*
|
331 |
+
use "$path/Data/city_info.dta",clear
|
332 |
+
merge 1:1 code_city using "$path/Data/temp/city_list_76.dta", nogen
|
333 |
+
merge 1:1 code_city using "$path/Data/temp/city_rd_aod_estimate.dta", nogen
|
334 |
+
merge 1:1 code_city using "$path/Data/temp/city_period_compare.dta", nogen
|
335 |
+
gen sig=(substr(rd_estimate_1116_raw,-2,2)=="**")
|
336 |
+
save "$path/Data/city_info_rd_aod.dta",replace
|
337 |
+
|
338 |
+
*==============================================================================*
|
339 |
+
*9. Generate city-daily deadline data and city-monthly search data (Table 2A)
|
340 |
+
*==============================================================================*
|
341 |
+
use "$path/Data/station_day_1116.dta", clear
|
342 |
+
foreach v of varlist pm10-rh{
|
343 |
+
bysort code_city date: egen `v'_m=mean(`v')
|
344 |
+
drop `v'
|
345 |
+
rename `v'_m `v'
|
346 |
+
}
|
347 |
+
gsort code_city date -auto_date
|
348 |
+
duplicates drop code_city date,force
|
349 |
+
drop pm10_n
|
350 |
+
merge 1:1 code_city date using "$path/Data/mask_filter_search.dta", keep(match) nogen
|
351 |
+
|
352 |
+
***add city RD dummy info for Table 2A: column 3-4
|
353 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta",nogen
|
354 |
+
drop list_76 rd_estimate_1116_raw-diff_period
|
355 |
+
save "$path/Data/temp/search_city_day.dta",replace
|
356 |
+
|
357 |
+
***generate city-daily search for deadline cities (Table 2B)
|
358 |
+
gen year=year(date)
|
359 |
+
keep if year>=2012 & year<=2013
|
360 |
+
drop year phase pm10-so2 rd
|
361 |
+
keep if auto_date==19724 | auto_date==19359
|
362 |
+
save "$path/Data/did_ddl_search.dta",replace
|
363 |
+
|
364 |
+
***aggregate to city-monthly level (Table 2A)
|
365 |
+
use "$path/Data/temp/search_city_day.dta",clear
|
366 |
+
gen year=year(date)
|
367 |
+
gen month=month(date)
|
368 |
+
gen month_date = mofd(date)
|
369 |
+
gen month_auto_date = mofd(auto_date)
|
370 |
+
format month* %tm
|
371 |
+
gen n_month = month_date - month_auto_date
|
372 |
+
drop month_date month_auto_date
|
373 |
+
|
374 |
+
foreach v of varlist pm10-pmmask {
|
375 |
+
bysort code_city n_month: egen `v'_m=mean(`v')
|
376 |
+
drop `v'
|
377 |
+
rename `v'_m `v'
|
378 |
+
}
|
379 |
+
duplicates drop code_city n_month,force
|
380 |
+
drop date so2 no2
|
381 |
+
foreach v of varlist pmmask filter{
|
382 |
+
gen l_`v'=log(`v'+1)
|
383 |
+
}
|
384 |
+
save "$path/Data/search_city_month.dta",replace
|
385 |
+
|
386 |
+
*==============================================================================*
|
387 |
+
*10. Correct city-month PM10 using neural network
|
388 |
+
*==============================================================================*
|
389 |
+
*do "$path/Codes/PM_correction.do"
|
390 |
+
set seed 123456
|
391 |
+
use "$path/Data/city_month.dta",clear
|
392 |
+
foreach v of var aod wind_speed temp rh rain{
|
393 |
+
gen `v'2=`v'^2
|
394 |
+
gen `v'3=`v'^3
|
395 |
+
gen `v'4=`v'^4
|
396 |
+
}
|
397 |
+
*** separate into training (70%) and testing (30%) sets within after data
|
398 |
+
gen random = runiform()
|
399 |
+
sort after random
|
400 |
+
bysort after: gen test_set = (_n < 0.3*_N)
|
401 |
+
replace test_set = . if after == 0
|
402 |
+
*** save sst as local
|
403 |
+
summ pm10 if test_set==1
|
404 |
+
scalar pm10mean = r(mean)
|
405 |
+
egen sst = sum((pm10-pm10mean)^2) if test_set == 1
|
406 |
+
summ sst
|
407 |
+
local sst = r(mean)
|
408 |
+
*** neural net
|
409 |
+
xi: brain define, input(aod aod2 aod3 aod4 temp rain rh wind_speed temp2 rain2 rh2 wind_speed2 temp3 rain3 rh3 wind_speed3 temp4 rain4 rh4 wind_speed4 i.month i.code_city) output(pm10) hidden(20 20)
|
410 |
+
brain train if test_set == 0, iter(300) eta(.5)
|
411 |
+
brain think pm10_ann
|
412 |
+
egen rbrain_ann = sum((pm10-pm10_ann)^2) if test_set==1
|
413 |
+
summ rbrain_ann
|
414 |
+
local rbrain_ann = r(mean)
|
415 |
+
di "R-sq. brain: " 1-(`rbrain_ann'/`sst')
|
416 |
+
***polynomial
|
417 |
+
reghdfe pm10 aod aod2 aod3 aod4 temp rain rh wind_speed temp2 rain2 rh2 wind_speed2 temp3 rain3 rh3 wind_speed3 temp4 rain4 rh4 wind_speed4 if test_set == 0, absorb(month code_city) vce(cl code_city)
|
418 |
+
predict pm10_ols, xb
|
419 |
+
egen r_ols = sum((pm10-pm10_ols)^2) if test_set==1
|
420 |
+
summ r_ols
|
421 |
+
local r_ols = r(mean)
|
422 |
+
di "R-sq. brain: " 1-`r_ols'/`sst'
|
423 |
+
drop _I*
|
424 |
+
***Corrected PM10 as appendix data for future use
|
425 |
+
gen pm10_corrected=pm10
|
426 |
+
replace pm10_corrected=pm10_ann if after==0 & pm10_ann !=.
|
427 |
+
drop sst rbrain_ann r_ols
|
428 |
+
save "$path/Data/city_month.dta",replace
|
429 |
+
|
430 |
+
keep code_city year month pm10 pm10_corrected
|
431 |
+
sort code_city year month
|
432 |
+
format %9.1f pm10 pm10_corrected
|
433 |
+
label variable pm10 "Reported PM10 (ug/m3)"
|
434 |
+
label variable pm10_corrected "Corrected PM10 (ug/m3)"
|
435 |
+
save "$path/Data/pm10_corrected.dta",replace
|
436 |
+
|
437 |
+
*==============================================================================*
|
438 |
+
*11. Add city RD dummy to city_month.dta for plotting Appendix Figure C
|
439 |
+
*==============================================================================*
|
440 |
+
use "$path/Data/city_month.dta",clear
|
441 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta",nogen
|
442 |
+
drop list_76 rd_estimate_1116_raw-diff_period
|
443 |
+
compress
|
444 |
+
save "$path/Data/city_month.dta",replace
|
445 |
+
|
446 |
+
|
447 |
+
***The End
|
9/replication_package/Code/TS.do
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
****This is the main program for appendix tables generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
*==============================================================================*
|
9 |
+
*Table A2. Summary Statistics by Year
|
10 |
+
*==============================================================================*
|
11 |
+
***AOD
|
12 |
+
use "$path/Data/station_month",clear
|
13 |
+
qui levelsof year, loc(y)
|
14 |
+
qui foreach v of loc y {
|
15 |
+
estpost summ aod if year==`v'
|
16 |
+
est sto y`v'
|
17 |
+
}
|
18 |
+
esttab * using "$path/Results/Table_A2.csv", cell(mean(fmt(%9.2f)) sd(par)) mti collabels(none) noobs replace
|
19 |
+
|
20 |
+
***pollution and weather
|
21 |
+
use "$path/Data/station_day_1116",clear
|
22 |
+
gen year=year(date)
|
23 |
+
qui levelsof year, loc(y)
|
24 |
+
qui foreach v of loc y {
|
25 |
+
estpost summ pm10 so2 no2 temp rain rh wind_speed if year==`v'
|
26 |
+
est sto y`v'
|
27 |
+
}
|
28 |
+
esttab * using "$path/Results/Table_A2.csv", cell(mean(fmt(%9.1f)) sd(par)) mti collabels(none) noobs nonum append
|
29 |
+
|
30 |
+
*==============================================================================*
|
31 |
+
*Table B2. Changes in Weather Conditions after Automation
|
32 |
+
*==============================================================================*
|
33 |
+
use "$path/Data/station_day_1116",clear
|
34 |
+
gen T=date-auto_date
|
35 |
+
gen month=month(date)
|
36 |
+
foreach y in temp rain rh wind_speed{
|
37 |
+
qui reghdfe `y', absorb(pm10_n month) res(resid_`y'_sm)
|
38 |
+
*all sample
|
39 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
40 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Tri., Station FE, Y, Month FE, Y)
|
41 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
42 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Epa., Station FE, Y, Month FE, Y)
|
43 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
44 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Uni., Station FE, Y, Month FE, Y)
|
45 |
+
*no missing PM10
|
46 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
47 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Tri., Station FE, Y, Month FE, Y)
|
48 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
49 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Epa., Station FE, Y, Month FE, Y)
|
50 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
51 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Uni., Station FE, Y, Month FE, Y)
|
52 |
+
}
|
53 |
+
|
54 |
+
*==============================================================================*
|
55 |
+
*Table B3. RD Estimates Using Alternative Kernel Weightings and Polynomials
|
56 |
+
*==============================================================================*
|
57 |
+
***Panel A: station-day PM10
|
58 |
+
use "$path/Data/station_day_1116",clear
|
59 |
+
gen T=date-auto_date
|
60 |
+
gen month=month(date)
|
61 |
+
gen after=(T>0)
|
62 |
+
gen T2=T^2
|
63 |
+
gen T3=T^3
|
64 |
+
gen T4=T^4
|
65 |
+
gen after_T=after*T
|
66 |
+
gen after_T2=after*T2
|
67 |
+
gen after_T3=after*T3
|
68 |
+
gen after_T4=after*T4
|
69 |
+
|
70 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
71 |
+
*kernel
|
72 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
73 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Tri., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
74 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
75 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Epa., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
76 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
77 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Uni., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
78 |
+
*parametric
|
79 |
+
qui reghdfe pm10 after T after_T wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
80 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Linear, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
81 |
+
qui reghdfe pm10 after T after_T T2 after_T2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
82 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Quadratic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
83 |
+
qui reghdfe pm10 after T after_T T2 after_T2 T3 after_T3 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
84 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Cubic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
85 |
+
qui reghdfe pm10 after T after_T T2 after_T2 T3 after_T3 T4 after_T4 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
86 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Quartic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
87 |
+
|
88 |
+
***Panel B: station-month PM10 and AOD
|
89 |
+
use "$path/Data/station_month.dta",clear
|
90 |
+
foreach v in pm10 aod{
|
91 |
+
qui reghdfe `v' wind_speed rain temp rh, absorb(pm10_n month) res(resid_`v'_smw)
|
92 |
+
}
|
93 |
+
|
94 |
+
gen m2=n_month^2
|
95 |
+
gen m3=n_month^3
|
96 |
+
gen m4=n_month^4
|
97 |
+
gen after_m=after*n_month
|
98 |
+
gen after_m2=after*m2
|
99 |
+
gen after_m3=after*m3
|
100 |
+
gen after_m4=after*m4
|
101 |
+
|
102 |
+
foreach y of var pm10 aod {
|
103 |
+
if "`y'" == "pm10" local dec = 1
|
104 |
+
if "`y'" == "aod" local dec = 3
|
105 |
+
*kernel
|
106 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
107 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Tri., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
108 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
109 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Epa., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
110 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
111 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Uni., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
112 |
+
***parametric
|
113 |
+
qui reghdfe `y' after n_month after_m wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
114 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Linear, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
115 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
116 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Quadratic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
117 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 m3 after_m3 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
118 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Cubic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
119 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 m3 after_m3 m4 after_m4 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
120 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Quartic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
121 |
+
}
|
122 |
+
|
123 |
+
*==============================================================================*
|
124 |
+
*Table B4. Automation and Reported PM10 in 76 Cities
|
125 |
+
*==============================================================================*
|
126 |
+
use "$path/Data/station_day_1116",clear
|
127 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta"
|
128 |
+
keep if list_76==1
|
129 |
+
gen T=date-auto_date
|
130 |
+
gen month=month(date)
|
131 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
132 |
+
*raw
|
133 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
134 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
135 |
+
*residual
|
136 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
137 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
138 |
+
*wave 1
|
139 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
140 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
141 |
+
*wave 2
|
142 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
143 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
144 |
+
*deadline
|
145 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
146 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
147 |
+
|
148 |
+
*==============================================================================*
|
149 |
+
*Table B6. Automation and PM10 Variability
|
150 |
+
*==============================================================================*
|
151 |
+
use "$path/Data/station_day_1116.dta",clear
|
152 |
+
gen year=year(date)
|
153 |
+
gen month=month(date)
|
154 |
+
gen T = date - auto_date
|
155 |
+
gen n_month=floor(T/30)
|
156 |
+
bysort pm10_n n_month: egen sd_pm10=sd(pm10)
|
157 |
+
foreach v of var pm10-rh{
|
158 |
+
bysort pm10_n n_month: egen `v'_m=mean(`v')
|
159 |
+
drop `v'
|
160 |
+
rename `v'_m `v'
|
161 |
+
}
|
162 |
+
duplicates drop pm10_n n_month,force
|
163 |
+
qui reghdfe sd_pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_sd_pm10_smw)
|
164 |
+
*residual
|
165 |
+
qui rdrobust resid_sd_pm10_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
166 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(All) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
167 |
+
*wave1
|
168 |
+
qui rdrobust resid_sd_pm10_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
169 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Wave 1) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
170 |
+
*wave2
|
171 |
+
qui rdrobust resid_sd_pm10_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
172 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Wave 2) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
173 |
+
*deadline
|
174 |
+
qui rdrobust resid_sd_pm10_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
175 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Deadline) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
176 |
+
|
177 |
+
*==============================================================================*
|
178 |
+
*Table B7. Automation and Reported SO2 and NO2
|
179 |
+
*==============================================================================*
|
180 |
+
use "$path/Data/station_day_1116",clear
|
181 |
+
gen T=date-auto_date
|
182 |
+
gen month=month(date)
|
183 |
+
foreach y of var so2 no2{
|
184 |
+
qui reghdfe `y' wind_speed rain temp rh, absorb(pm10_n month) res(resid_`y'_smw)
|
185 |
+
*residual
|
186 |
+
qui rdrobust resid_`y'_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
187 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_All) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
188 |
+
*wave1
|
189 |
+
qui rdrobust resid_`y'_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
190 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Wave 1) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
191 |
+
*wave2
|
192 |
+
qui rdrobust resid_`y'_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
193 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Wave 2) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
194 |
+
*deadline
|
195 |
+
qui rdrobust resid_`y'_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
196 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Deadline) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
197 |
+
}
|
198 |
+
|
199 |
+
*==============================================================================*
|
200 |
+
*Table B8. Change in PM10 Reporting Standard
|
201 |
+
*==============================================================================*
|
202 |
+
use "$path/Data/station_day_1116.dta",clear
|
203 |
+
gen T=date-auto_date
|
204 |
+
gen month=month(date)
|
205 |
+
gen miss1=1 if pm10==. & T <0 & T>=-365
|
206 |
+
gen miss2=1 if pm10==. & T >=0 & T<365
|
207 |
+
gen n1=1 if T <0 & T>=-365
|
208 |
+
gen n2=1 if T >=0 & T<365
|
209 |
+
|
210 |
+
bysort pm10_n: egen miss_before_y=sum(miss1)
|
211 |
+
bysort pm10_n: egen miss_after_y=sum(miss2)
|
212 |
+
bysort pm10_n: egen n_before_y=sum(n1)
|
213 |
+
bysort pm10_n: egen n_after_y=sum(n2)
|
214 |
+
|
215 |
+
gen miss_before_ratio=miss_before_y/n_before_y
|
216 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
217 |
+
|
218 |
+
foreach v in 10 15 20 25 30{
|
219 |
+
*residual
|
220 |
+
qui rdrobust resid_pm10_smw T if miss_before_ratio<=`v'/100, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
221 |
+
outreg2 using "$path/Results/Table_B8_miss_before_ratio_1y", excel dec(1) append ctitle(pm10) addtext(Pre-Missing PM10, ≤`v'%, Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
222 |
+
}
|
223 |
+
|
224 |
+
*==============================================================================*
|
225 |
+
*Table B9. RD Density Test at Air Quality Thresholds
|
226 |
+
*==============================================================================*
|
227 |
+
use "$path/Data/station_day_1116.dta",clear
|
228 |
+
gen T=date-auto_date
|
229 |
+
log using "$path/Data/temp/temp1.log", replace
|
230 |
+
foreach v in 50 150 250 350 420 500 600 {
|
231 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(triangular) nomasspoints
|
232 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(epanechnikov) nomasspoints
|
233 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(uniform) nomasspoints
|
234 |
+
}
|
235 |
+
log close
|
236 |
+
|
237 |
+
clear
|
238 |
+
infix str3 cutoff 6-18 str12 kernel 69-80 str6 T 24-30 str6 P_value 37-42 using "$path/Data/temp/temp1.log"
|
239 |
+
keep if trim(cutoff)=="c = 50.000" |trim(cutoff)=="c = 150.000" |trim(cutoff)=="c = 250.000" |trim(cutoff)=="c = 350.000" |trim(cutoff)=="c = 420.000" |trim(cutoff)=="c = 600.000" |trim(cutoff)=="Robust"| trim(kernel)=="triangular"| trim(kernel)=="epanechnikov"| trim(kernel)=="uniform"
|
240 |
+
replace cutoff=cutoff[_n-2] if cutoff=="Robust"
|
241 |
+
replace kernel=kernel[_n-1] if kernel==""
|
242 |
+
drop if cutoff=="Number of obs" | kernel=="709659"
|
243 |
+
export excel using "$path/Results/Table_B9_Threshold", replace firstrow(variables)
|
244 |
+
|
245 |
+
*==============================================================================*
|
246 |
+
*Table B10. Automation and Association between AOD and PM10 (Standardized)
|
247 |
+
*==============================================================================*
|
248 |
+
***station-month
|
249 |
+
use "$path/Data/station_month.dta",clear
|
250 |
+
set matsize 5000
|
251 |
+
egen year_month=group(year month)
|
252 |
+
|
253 |
+
log using "$path/Data/temp/temp2.log", replace
|
254 |
+
pwcorr aod pm10 if after==0, sig
|
255 |
+
pcorr aod pm10 temp rh rain wind_speed if after==0
|
256 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month if after==0
|
257 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month i.pm10_n if after==0
|
258 |
+
pwcorr aod pm10 if after==1, sig
|
259 |
+
pcorr aod pm10 temp rh rain wind_speed if after==1
|
260 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month if after==1
|
261 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month i.pm10_n if after==1
|
262 |
+
log close
|
263 |
+
|
264 |
+
clear
|
265 |
+
infix str4 obs 1-4 str12 thecorr 1-12 str6 partcorr 17-23 str6 thesig 73-78 using "$path/Data/temp/temp2.log"
|
266 |
+
keep if trim(thecorr)=="pm10" | trim(obs)=="(obs"
|
267 |
+
export excel using "$path/Results/Table_B10_PM10_AOD", replace
|
268 |
+
|
269 |
+
*==============================================================================*
|
270 |
+
*Table D1. Association between Baidu Search Index and Taobao Sales Index
|
271 |
+
*==============================================================================*
|
272 |
+
use "$path/Data/search_sale.dta",clear
|
273 |
+
foreach v in mask filter{
|
274 |
+
qui reghdfe l_taobao_`v' l_`v' wind_speed rain temp rh, absorb(code_city) vce(cluster code_city)
|
275 |
+
qui outreg2 using "$path/Results/Table_D1_sale_search", excel dec(2) append drop(wind_speed rain temp rh) ctitle(l_taobao_`v') addtext(Weather Controls, Y, City FE, Y)
|
276 |
+
qui reghdfe l_taobao_`v' l_`v' wind_speed rain temp rh, absorb(code_city month) vce(cluster code_city)
|
277 |
+
qui outreg2 using "$path/Results/Table_D1_sale_search", excel dec(2) append drop(wind_speed rain temp rh) ctitle(l_taobao_`v') addtext(Weather Controls, Y, City FE, Y, Month FE, Y)
|
278 |
+
}
|
279 |
+
|
280 |
+
*==============================================================================*
|
281 |
+
*Table D3: City-Month Online Search in Deadline and Non-Deadline Cities
|
282 |
+
*==============================================================================*
|
283 |
+
use "$path/Data/search_city_month.dta",clear
|
284 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
285 |
+
cap qui reghdfe `y', absorb(code_city month) res(resid_`y'_sm)
|
286 |
+
cap qui reghdfe `y' wind_speed rain temp rh, absorb(code_city month) res(resid_`y'_smw)
|
287 |
+
*ddl in normal and manipulated
|
288 |
+
qui rdrobust resid_`y'_sm n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
289 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, Y, Sample, All, City FE, Y, Month FE, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
290 |
+
qui rdrobust resid_`y'_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
291 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, Y, Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
292 |
+
|
293 |
+
*non_ddl in normal and manipulated
|
294 |
+
qui rdrobust resid_`y'_sm n_month if auto_date!=19359 & auto_date!=19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
295 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, N, Sample, All, City FE, Y, Month FE, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
296 |
+
qui rdrobust resid_`y'_smw n_month if auto_date!=19359 & auto_date!=19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
297 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, N, Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
298 |
+
}
|
299 |
+
|
300 |
+
|
301 |
+
***The End
|
9/replication_package/Code/TS_NEW_1.do
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
****This is the main program for appendix tables generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
*==============================================================================*
|
8 |
+
*Table 1. Robustness Test of Table 1 - Panel C - Only Near by stations.
|
9 |
+
*==============================================================================*
|
10 |
+
** Only Stations within 500km
|
11 |
+
use "$path/Data/station_day_1116",clear
|
12 |
+
gen T=date-auto_date
|
13 |
+
gen month=month(date)
|
14 |
+
qui reghdfe pm10 wind_speed_DWA_500 rain_DWA_500 temp_DWA_500 rh_DWA_500, absorb(pm10_n month) res(resid_pm10_smw)
|
15 |
+
*raw
|
16 |
+
qui rdrobust pm10 T if temp_DWA_500!=. & rain_DWA_500!=. & rh_DWA_500!=. & wind_speed_DWA_500 !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
17 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A1", excel replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
18 |
+
*residual
|
19 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
20 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A1", excel append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
21 |
+
*wave 1
|
22 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
23 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A1", excel append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
24 |
+
*wave 2
|
25 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
26 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A1", excel append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
27 |
+
*deadline
|
28 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
29 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A1", excel append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
30 |
+
|
31 |
+
***Row 2: Monthly AOD
|
32 |
+
use "$path/Data/station_month.dta",clear
|
33 |
+
qui reghdfe aod wind_speed_DWA_500 rain_DWA_500 temp_DWA_500 rh_DWA_500, absorb(pm10_n month) res(resid_aod_smw)
|
34 |
+
*raw
|
35 |
+
qui rdrobust aod n_month if temp_DWA_500!=. & rain_DWA_500!=. & rh_DWA_500!=. & wind_speed_DWA_500 !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
36 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A1", excel replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
37 |
+
*residual
|
38 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
39 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A1", excel append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
40 |
+
*wave 1
|
41 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
42 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A1", excel append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
43 |
+
*wave 2
|
44 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
45 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A1", excel append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
46 |
+
*deadline
|
47 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
48 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A1", excel append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
49 |
+
|
50 |
+
|
51 |
+
** Only Stations within 100km
|
52 |
+
use "$path/Data/station_day_1116",clear
|
53 |
+
gen T=date-auto_date
|
54 |
+
gen month=month(date)
|
55 |
+
qui reghdfe pm10 wind_speed_DWA_100 rain_DWA_100 temp_DWA_100 rh_DWA_100, absorb(pm10_n month) res(resid_pm10_smw)
|
56 |
+
*raw
|
57 |
+
qui rdrobust pm10 T if temp_DWA_100!=. & rain_DWA_100!=. & rh_DWA_100!=. & wind_speed_DWA_100 !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
58 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A2", excel replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
59 |
+
*residual
|
60 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
61 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A2", excel append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
62 |
+
*wave 1
|
63 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
64 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A2", excel append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
65 |
+
*wave 2
|
66 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
67 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A2", excel append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
68 |
+
*deadline
|
69 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
70 |
+
outreg2 using "$path2/Table1_A1_GG_PC_A2", excel append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex pvalue
|
71 |
+
|
72 |
+
***Row 2: Monthly AOD
|
73 |
+
use "$path/Data/station_month.dta",clear
|
74 |
+
qui reghdfe aod wind_speed_DWA_100 rain_DWA_100 temp_DWA_100 rh_DWA_100, absorb(pm10_n month) res(resid_aod_smw)
|
75 |
+
*raw
|
76 |
+
qui rdrobust aod n_month if temp_DWA_100!=. & rain_DWA_100!=. & rh_DWA_100!=. & wind_speed_DWA_100 !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
77 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A2", excel replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
78 |
+
*residual
|
79 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
80 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A2", excel append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
81 |
+
*wave 1
|
82 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
83 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A2", excel append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
84 |
+
*wave 2
|
85 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
86 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A2", excel append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
87 |
+
*deadline
|
88 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
89 |
+
outreg2 using "$path2/Table1_A2_GG_PC_A2", excel append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex pvalue
|
90 |
+
|
91 |
+
|
92 |
+
*==============================================================================*
|
93 |
+
*Table **. Summary Statistics by weather varibles (NEW)
|
94 |
+
*==============================================================================*
|
95 |
+
use "$path/Data/station_day_1116",clear
|
96 |
+
foreach y in "temp" "rain" "wind_speed" "rh" {
|
97 |
+
sum `y' `y'_n `y'_DWA `y'_DWA_500 `y'_DWA_100
|
98 |
+
}
|
99 |
+
|
100 |
+
*==============================================================================*
|
101 |
+
*Table A2. Summary Statistics by Year
|
102 |
+
*==============================================================================*
|
103 |
+
***AOD
|
104 |
+
use "$path/Data/station_month",clear
|
105 |
+
qui levelsof year, loc(y)
|
106 |
+
qui foreach v of loc y {
|
107 |
+
estpost summ aod if year==`v'
|
108 |
+
est sto y`v'
|
109 |
+
}
|
110 |
+
esttab * using "$path/Results/Table_A2.csv", cell(mean(fmt(%9.2f)) sd(par)) mti collabels(none) noobs replace
|
111 |
+
|
112 |
+
***pollution and weather
|
113 |
+
use "$path/Data/station_day_1116",clear
|
114 |
+
gen year=year(date)
|
115 |
+
qui levelsof year, loc(y)
|
116 |
+
qui foreach v of loc y {
|
117 |
+
estpost summ pm10 so2 no2 temp rain rh wind_speed if year==`v'
|
118 |
+
est sto y`v'
|
119 |
+
}
|
120 |
+
esttab * using "$path/Results/Table_A2.csv", cell(mean(fmt(%9.1f)) sd(par)) mti collabels(none) noobs nonum append
|
121 |
+
|
122 |
+
*==============================================================================*
|
123 |
+
*Table B2. Changes in Weather Conditions after Automation
|
124 |
+
*==============================================================================*
|
125 |
+
use "$path/Data/station_day_1116",clear
|
126 |
+
gen T=date-auto_date
|
127 |
+
gen month=month(date)
|
128 |
+
foreach y in temp rain rh wind_speed{
|
129 |
+
qui reghdfe `y', absorb(pm10_n month) res(resid_`y'_sm)
|
130 |
+
*all sample
|
131 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
132 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Tri., Station FE, Y, Month FE, Y)
|
133 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
134 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Epa., Station FE, Y, Month FE, Y)
|
135 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
136 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, All, Kernel, Uni., Station FE, Y, Month FE, Y)
|
137 |
+
*no missing PM10
|
138 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
139 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Tri., Station FE, Y, Month FE, Y)
|
140 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
141 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Epa., Station FE, Y, Month FE, Y)
|
142 |
+
qui rdrobust resid_`y'_sm T if temp!=. & rain!=. & rh!=. & wind_speed !=. & pm10 !=., c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
143 |
+
outreg2 using "$path/Results/Table_B2", excel dec(2) append ctitle(`y') addtext(Sample, No Missing PM10, Kernel, Uni., Station FE, Y, Month FE, Y)
|
144 |
+
}
|
145 |
+
|
146 |
+
*==============================================================================*
|
147 |
+
*Table B3. RD Estimates Using Alternative Kernel Weightings and Polynomials
|
148 |
+
*==============================================================================*
|
149 |
+
***Panel A: station-day PM10
|
150 |
+
use "$path/Data/station_day_1116",clear
|
151 |
+
gen T=date-auto_date
|
152 |
+
gen month=month(date)
|
153 |
+
gen after=(T>0)
|
154 |
+
gen T2=T^2
|
155 |
+
gen T3=T^3
|
156 |
+
gen T4=T^4
|
157 |
+
gen after_T=after*T
|
158 |
+
gen after_T2=after*T2
|
159 |
+
gen after_T3=after*T3
|
160 |
+
gen after_T4=after*T4
|
161 |
+
|
162 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
163 |
+
*kernel
|
164 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
165 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Tri., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
166 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
167 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Epa., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
168 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
169 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append addtext(Kernel/Polynomial, Uni., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
170 |
+
*parametric
|
171 |
+
qui reghdfe pm10 after T after_T wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
172 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Linear, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
173 |
+
qui reghdfe pm10 after T after_T T2 after_T2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
174 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Quadratic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
175 |
+
qui reghdfe pm10 after T after_T T2 after_T2 T3 after_T3 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
176 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Cubic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
177 |
+
qui reghdfe pm10 after T after_T T2 after_T2 T3 after_T3 T4 after_T4 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
178 |
+
outreg2 using "$path/Results/Table_B3A_kernel_parametric_day", excel dec(1) append keep (after) addtext(Kernel/Polynomial, Quartic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(pm10)
|
179 |
+
|
180 |
+
***Panel B: station-month PM10 and AOD
|
181 |
+
use "$path/Data/station_month.dta",clear
|
182 |
+
foreach v in pm10 aod{
|
183 |
+
qui reghdfe `v' wind_speed rain temp rh, absorb(pm10_n month) res(resid_`v'_smw)
|
184 |
+
}
|
185 |
+
|
186 |
+
gen m2=n_month^2
|
187 |
+
gen m3=n_month^3
|
188 |
+
gen m4=n_month^4
|
189 |
+
gen after_m=after*n_month
|
190 |
+
gen after_m2=after*m2
|
191 |
+
gen after_m3=after*m3
|
192 |
+
gen after_m4=after*m4
|
193 |
+
|
194 |
+
foreach y of var pm10 aod {
|
195 |
+
if "`y'" == "pm10" local dec = 1
|
196 |
+
if "`y'" == "aod" local dec = 3
|
197 |
+
*kernel
|
198 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
199 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Tri., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
200 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(epa) vce(cluster code_city) masspoints(off)
|
201 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Epa., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
202 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(uni) vce(cluster code_city) masspoints(off)
|
203 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append addtext(Kernel/Polynomial, Uni., Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y') addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
204 |
+
***parametric
|
205 |
+
qui reghdfe `y' after n_month after_m wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
206 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Linear, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
207 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
208 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Quadratic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
209 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 m3 after_m3 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
210 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Cubic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
211 |
+
qui reghdfe `y' after n_month after_m m2 after_m2 m3 after_m3 m4 after_m4 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
212 |
+
outreg2 using "$path/Results/Table_B3B_kernel_parametric_month", excel dec(`dec') append keep(after) addtext(Kernel/Polynomial, Quartic, Station FE, Y, Month FE, Y, Weather Controls, Y) ctitle(`y')
|
213 |
+
}
|
214 |
+
|
215 |
+
*==============================================================================*
|
216 |
+
*Table B4. Automation and Reported PM10 in 76 Cities
|
217 |
+
*==============================================================================*
|
218 |
+
use "$path/Data/station_day_1116",clear
|
219 |
+
merge m:1 code_city using "$path/Data/city_info_rd.dta"
|
220 |
+
keep if list_76==1
|
221 |
+
gen T=date-auto_date
|
222 |
+
gen month=month(date)
|
223 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
224 |
+
*raw
|
225 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
226 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
227 |
+
*residual
|
228 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
229 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
230 |
+
*wave 1
|
231 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
232 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
233 |
+
*wave 2
|
234 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
235 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
236 |
+
*deadline
|
237 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
238 |
+
outreg2 using "$path/Results/Table_B4_76", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
239 |
+
|
240 |
+
*==============================================================================*
|
241 |
+
*Table B6. Automation and PM10 Variability
|
242 |
+
*==============================================================================*
|
243 |
+
use "$path/Data/station_day_1116.dta",clear
|
244 |
+
gen year=year(date)
|
245 |
+
gen month=month(date)
|
246 |
+
gen T = date - auto_date
|
247 |
+
gen n_month=floor(T/30)
|
248 |
+
bysort pm10_n n_month: egen sd_pm10=sd(pm10)
|
249 |
+
foreach v of var pm10-rh{
|
250 |
+
bysort pm10_n n_month: egen `v'_m=mean(`v')
|
251 |
+
drop `v'
|
252 |
+
rename `v'_m `v'
|
253 |
+
}
|
254 |
+
duplicates drop pm10_n n_month,force
|
255 |
+
qui reghdfe sd_pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_sd_pm10_smw)
|
256 |
+
*residual
|
257 |
+
qui rdrobust resid_sd_pm10_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
258 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(All) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
259 |
+
*wave1
|
260 |
+
qui rdrobust resid_sd_pm10_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
261 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Wave 1) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
262 |
+
*wave2
|
263 |
+
qui rdrobust resid_sd_pm10_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
264 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Wave 2) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
265 |
+
*deadline
|
266 |
+
qui rdrobust resid_sd_pm10_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
267 |
+
outreg2 using "$path/Results/Table_B6_SD", excel dec(1) append ctitle(Deadline) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
268 |
+
|
269 |
+
*==============================================================================*
|
270 |
+
*Table B7. Automation and Reported SO2 and NO2
|
271 |
+
*==============================================================================*
|
272 |
+
use "$path/Data/station_day_1116",clear
|
273 |
+
gen T=date-auto_date
|
274 |
+
gen month=month(date)
|
275 |
+
foreach y of var so2 no2{
|
276 |
+
qui reghdfe `y' wind_speed rain temp rh, absorb(pm10_n month) res(resid_`y'_smw)
|
277 |
+
*residual
|
278 |
+
qui rdrobust resid_`y'_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
279 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_All) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
280 |
+
*wave1
|
281 |
+
qui rdrobust resid_`y'_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
282 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Wave 1) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
283 |
+
*wave2
|
284 |
+
qui rdrobust resid_`y'_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
285 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Wave 2) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
286 |
+
*deadline
|
287 |
+
qui rdrobust resid_`y'_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
288 |
+
outreg2 using "$path/Results/Table_B7_SO2_NO2", excel dec(2) append ctitle(`y'_Deadline) addtext(Station FE, Y, Month FE, Y, Weather Controls, Y, Kernel Function, Tri.) addstat(`y' Obs., e(N_h_l)+e(N_h_r), `y' Bandwidth, floor(e(h_l)))
|
289 |
+
}
|
290 |
+
|
291 |
+
*==============================================================================*
|
292 |
+
*Table B8. Change in PM10 Reporting Standard
|
293 |
+
*==============================================================================*
|
294 |
+
use "$path/Data/station_day_1116.dta",clear
|
295 |
+
gen T=date-auto_date
|
296 |
+
gen month=month(date)
|
297 |
+
gen miss1=1 if pm10==. & T <0 & T>=-365
|
298 |
+
gen miss2=1 if pm10==. & T >=0 & T<365
|
299 |
+
gen n1=1 if T <0 & T>=-365
|
300 |
+
gen n2=1 if T >=0 & T<365
|
301 |
+
|
302 |
+
bysort pm10_n: egen miss_before_y=sum(miss1)
|
303 |
+
bysort pm10_n: egen miss_after_y=sum(miss2)
|
304 |
+
bysort pm10_n: egen n_before_y=sum(n1)
|
305 |
+
bysort pm10_n: egen n_after_y=sum(n2)
|
306 |
+
|
307 |
+
gen miss_before_ratio=miss_before_y/n_before_y
|
308 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
309 |
+
|
310 |
+
foreach v in 10 15 20 25 30{
|
311 |
+
*residual
|
312 |
+
qui rdrobust resid_pm10_smw T if miss_before_ratio<=`v'/100, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
313 |
+
outreg2 using "$path/Results/Table_B8_miss_before_ratio_1y", excel dec(1) append ctitle(pm10) addtext(Pre-Missing PM10, ≤`v'%, Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
314 |
+
}
|
315 |
+
|
316 |
+
*==============================================================================*
|
317 |
+
*Table B9. RD Density Test at Air Quality Thresholds
|
318 |
+
*==============================================================================*
|
319 |
+
use "$path/Data/station_day_1116.dta",clear
|
320 |
+
gen T=date-auto_date
|
321 |
+
log using "$path/Data/temp/temp1.log", replace
|
322 |
+
foreach v in 50 150 250 350 420 500 600 {
|
323 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(triangular) nomasspoints
|
324 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(epanechnikov) nomasspoints
|
325 |
+
rddensity pm10 if T>=0, c(`v') p(1) q(2) kernel(uniform) nomasspoints
|
326 |
+
}
|
327 |
+
log close
|
328 |
+
|
329 |
+
clear
|
330 |
+
infix str3 cutoff 6-18 str12 kernel 69-80 str6 T 24-30 str6 P_value 37-42 using "$path/Data/temp/temp1.log"
|
331 |
+
keep if trim(cutoff)=="c = 50.000" |trim(cutoff)=="c = 150.000" |trim(cutoff)=="c = 250.000" |trim(cutoff)=="c = 350.000" |trim(cutoff)=="c = 420.000" |trim(cutoff)=="c = 600.000" |trim(cutoff)=="Robust"| trim(kernel)=="triangular"| trim(kernel)=="epanechnikov"| trim(kernel)=="uniform"
|
332 |
+
replace cutoff=cutoff[_n-2] if cutoff=="Robust"
|
333 |
+
replace kernel=kernel[_n-1] if kernel==""
|
334 |
+
drop if cutoff=="Number of obs" | kernel=="709659"
|
335 |
+
export excel using "$path/Results/Table_B9_Threshold", replace firstrow(variables)
|
336 |
+
|
337 |
+
*==============================================================================*
|
338 |
+
*Table B10. Automation and Association between AOD and PM10 (Standardized)
|
339 |
+
*==============================================================================*
|
340 |
+
***station-month
|
341 |
+
use "$path/Data/station_month.dta",clear
|
342 |
+
set matsize 5000
|
343 |
+
egen year_month=group(year month)
|
344 |
+
|
345 |
+
log using "$path/Data/temp/temp2.log", replace
|
346 |
+
pwcorr aod pm10 if after==0, sig
|
347 |
+
pcorr aod pm10 temp rh rain wind_speed if after==0
|
348 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month if after==0
|
349 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month i.pm10_n if after==0
|
350 |
+
pwcorr aod pm10 if after==1, sig
|
351 |
+
pcorr aod pm10 temp rh rain wind_speed if after==1
|
352 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month if after==1
|
353 |
+
xi: pcorr aod pm10 temp rh rain wind_speed i.year_month i.pm10_n if after==1
|
354 |
+
log close
|
355 |
+
|
356 |
+
clear
|
357 |
+
infix str4 obs 1-4 str12 thecorr 1-12 str6 partcorr 17-23 str6 thesig 73-78 using "$path/Data/temp/temp2.log"
|
358 |
+
keep if trim(thecorr)=="pm10" | trim(obs)=="(obs"
|
359 |
+
export excel using "$path/Results/Table_B10_PM10_AOD", replace
|
360 |
+
|
361 |
+
*==============================================================================*
|
362 |
+
*Table D1. Association between Baidu Search Index and Taobao Sales Index
|
363 |
+
*==============================================================================*
|
364 |
+
use "$path/Data/search_sale.dta",clear
|
365 |
+
foreach v in mask filter{
|
366 |
+
qui reghdfe l_taobao_`v' l_`v' wind_speed rain temp rh, absorb(code_city) vce(cluster code_city)
|
367 |
+
qui outreg2 using "$path/Results/Table_D1_sale_search", excel dec(2) append drop(wind_speed rain temp rh) ctitle(l_taobao_`v') addtext(Weather Controls, Y, City FE, Y)
|
368 |
+
qui reghdfe l_taobao_`v' l_`v' wind_speed rain temp rh, absorb(code_city month) vce(cluster code_city)
|
369 |
+
qui outreg2 using "$path/Results/Table_D1_sale_search", excel dec(2) append drop(wind_speed rain temp rh) ctitle(l_taobao_`v') addtext(Weather Controls, Y, City FE, Y, Month FE, Y)
|
370 |
+
}
|
371 |
+
|
372 |
+
*==============================================================================*
|
373 |
+
*Table D3: City-Month Online Search in Deadline and Non-Deadline Cities
|
374 |
+
*==============================================================================*
|
375 |
+
use "$path/Data/search_city_month.dta",clear
|
376 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
377 |
+
cap qui reghdfe `y', absorb(code_city month) res(resid_`y'_sm)
|
378 |
+
cap qui reghdfe `y' wind_speed rain temp rh, absorb(code_city month) res(resid_`y'_smw)
|
379 |
+
*ddl in normal and manipulated
|
380 |
+
qui rdrobust resid_`y'_sm n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
381 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, Y, Sample, All, City FE, Y, Month FE, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
382 |
+
qui rdrobust resid_`y'_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
383 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, Y, Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
384 |
+
|
385 |
+
*non_ddl in normal and manipulated
|
386 |
+
qui rdrobust resid_`y'_sm n_month if auto_date!=19359 & auto_date!=19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
387 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, N, Sample, All, City FE, Y, Month FE, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
388 |
+
qui rdrobust resid_`y'_smw n_month if auto_date!=19359 & auto_date!=19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
389 |
+
outreg2 using "$path/Results/Table_D3_ddl_non_ddl", excel dec(2) append ctitle(`y') addtext(Deadline, N, Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
390 |
+
}
|
391 |
+
|
392 |
+
|
393 |
+
***The End
|
9/replication_package/Code/Tables.do
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***This is the main program for Tables 1, 2, 3 generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
*==============================================================================*
|
9 |
+
*Table 1A: RD
|
10 |
+
*==============================================================================*
|
11 |
+
***Row 1. Daily PM10
|
12 |
+
use "$path/Data/station_day_1116",clear
|
13 |
+
gen T=date-auto_date
|
14 |
+
gen month=month(date)
|
15 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
16 |
+
*raw
|
17 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
18 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
19 |
+
*residual
|
20 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
21 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
22 |
+
*wave 1
|
23 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
24 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
25 |
+
*wave 2
|
26 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
27 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
28 |
+
*deadline
|
29 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
30 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l)))
|
31 |
+
|
32 |
+
***Row 2: Monthly AOD
|
33 |
+
use "$path/Data/station_month.dta",clear
|
34 |
+
qui reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_smw)
|
35 |
+
*raw
|
36 |
+
qui rdrobust aod n_month if temp!=. & rain!=. & rh!=. & wind_speed !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
37 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
38 |
+
*residual
|
39 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
40 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
41 |
+
*wave 1
|
42 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
43 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
44 |
+
*wave 2
|
45 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
46 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
47 |
+
*deadline
|
48 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
49 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l)))
|
50 |
+
*==============================================================================*
|
51 |
+
*Table 1B: Event-Study Estimates
|
52 |
+
*==============================================================================*
|
53 |
+
***Deadline
|
54 |
+
use "$path/Data/station_day_1116.dta",clear
|
55 |
+
gen year=year(date)
|
56 |
+
gen month=month(date)
|
57 |
+
egen year_month=group(year month)
|
58 |
+
keep if year>=2012 & year<=2013
|
59 |
+
keep if auto_date==19724 | auto_date==19359
|
60 |
+
gen treat=(auto_date==19359)
|
61 |
+
gen after2=(year>=2013)
|
62 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
63 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
64 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
65 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
66 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
67 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
68 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
69 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
70 |
+
|
71 |
+
foreach v in 12 34 56 712{
|
72 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
73 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
74 |
+
}
|
75 |
+
|
76 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
77 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y)
|
78 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
79 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y)
|
80 |
+
|
81 |
+
***nearest matching
|
82 |
+
use "$path/Data/did_ddl_match.dta" ,clear
|
83 |
+
gen year=year(date)
|
84 |
+
gen month=month(date)
|
85 |
+
egen year_month=group(year month)
|
86 |
+
gen treat=(auto_date==19359)
|
87 |
+
gen after2=(year>=2013)
|
88 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
89 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
90 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
91 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
92 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
93 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
94 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
95 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
96 |
+
|
97 |
+
foreach v in 12 34 56 712{
|
98 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
99 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
100 |
+
}
|
101 |
+
|
102 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
103 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y)
|
104 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
105 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y)
|
106 |
+
*log_pm10
|
107 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
108 |
+
outreg2 using "$path/Results/Table1_B", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y)
|
109 |
+
|
110 |
+
*==============================================================================*
|
111 |
+
*Table 2A: City-Month Online Search
|
112 |
+
*==============================================================================*
|
113 |
+
use "$path/Data/search_city_month.dta",clear
|
114 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
115 |
+
qui reghdfe `y' wind_speed rain temp rh, absorb(code_city month) res(resid_`y'_smw)
|
116 |
+
*raw
|
117 |
+
qui rdrobust `y' n_month if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
118 |
+
outreg2 using "$path/Results/Table2_A", excel dec(2) append ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
119 |
+
*residual
|
120 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
121 |
+
outreg2 using "$path/Results/Table2_A", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
122 |
+
*normal
|
123 |
+
qui rdrobust resid_`y'_smw n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
124 |
+
outreg2 using "$path/Results/Table2_A", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
125 |
+
*manipulated
|
126 |
+
qui rdrobust resid_`y'_smw n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
127 |
+
outreg2 using "$path/Results/Table2_A", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l)))
|
128 |
+
}
|
129 |
+
|
130 |
+
*==============================================================================*
|
131 |
+
*Table 2B: DID Search for Deadline Cities
|
132 |
+
*==============================================================================*
|
133 |
+
use "$path/Data/did_ddl_search.dta" ,clear
|
134 |
+
gen year=year(date)
|
135 |
+
gen month=month(date)
|
136 |
+
egen year_month=group(year month)
|
137 |
+
gen treat=(auto_date==19359)
|
138 |
+
gen after2=(year>=2013)
|
139 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
140 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
141 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
142 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
143 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
144 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
145 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
146 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
147 |
+
|
148 |
+
foreach v in 12 34 56 712{
|
149 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
150 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
151 |
+
}
|
152 |
+
|
153 |
+
foreach y of var pmmask filter{
|
154 |
+
*City FE and year-month FE
|
155 |
+
qui xi: areg `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month , absorb(code_city) vce(cluster code_city)
|
156 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y)
|
157 |
+
*City FE and year-month FE +weather
|
158 |
+
qui xi: areg `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month , absorb(code_city) vce(cluster code_city)
|
159 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y)
|
160 |
+
}
|
161 |
+
|
162 |
+
|
163 |
+
***The End
|
9/replication_package/Code/Tables_NEW_1.do
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***This is the main program for Tables 1, 2, 3 generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
|
9 |
+
*==============================================================================*
|
10 |
+
*Table 1A: RD
|
11 |
+
*==============================================================================*
|
12 |
+
***Row 1. Daily PM10
|
13 |
+
use "$path/Data/station_day_1116",clear
|
14 |
+
gen T=date-auto_date
|
15 |
+
gen month=month(date)
|
16 |
+
|
17 |
+
foreach x in wind_speed rain temp rh {
|
18 |
+
gen `x'2= `x'*`x'
|
19 |
+
gen `x'3= `x'2*`x'
|
20 |
+
}
|
21 |
+
|
22 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
23 |
+
*raw
|
24 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
25 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) title(Table 1 - original) tex
|
26 |
+
*residual
|
27 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
28 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
29 |
+
*wave 1
|
30 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
31 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
32 |
+
*wave 2
|
33 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
34 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
35 |
+
*deadline
|
36 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
37 |
+
outreg2 using "$path/Results/Table1_A1", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
38 |
+
|
39 |
+
|
40 |
+
*** NEW Panel: quadratic polynomial of weather variables
|
41 |
+
qui reghdfe pm10 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2 , absorb(pm10_n month) res(resid_pm10_smw2)
|
42 |
+
*raw
|
43 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
44 |
+
outreg2 using "$path/Results/Table1_A1_cg0", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
45 |
+
*residual
|
46 |
+
* NEW
|
47 |
+
qui rdrobust resid_pm10_smw2 T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
48 |
+
outreg2 using "$path/Results/Table1_A1_cg0", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
49 |
+
*wave 1
|
50 |
+
* NEW
|
51 |
+
qui rdrobust resid_pm10_smw2 T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
52 |
+
outreg2 using "$path/Results/Table1_A1_cg0", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
53 |
+
*wave 2
|
54 |
+
* NEW
|
55 |
+
qui rdrobust resid_pm10_smw2 T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
56 |
+
outreg2 using "$path/Results/Table1_A1_cg0", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
57 |
+
*deadline
|
58 |
+
* NEW
|
59 |
+
qui rdrobust resid_pm10_smw2 T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
60 |
+
outreg2 using "$path/Results/Table1_A1_cg0", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
61 |
+
|
62 |
+
*** NEW Panel2: cubic polynomial of weather variables
|
63 |
+
qui reghdfe pm10 wind_speed* rain* temp* rh* , absorb(pm10_n month) res(resid_pm10_smw3)
|
64 |
+
*raw
|
65 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
66 |
+
outreg2 using "$path/Results/Table1_A1_cg00", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
67 |
+
*residual
|
68 |
+
* NEW
|
69 |
+
qui rdrobust resid_pm10_smw3 T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
70 |
+
outreg2 using "$path/Results/Table1_A1_cg00", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
71 |
+
*wave 1
|
72 |
+
* NEW
|
73 |
+
qui rdrobust resid_pm10_smw3 T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
74 |
+
outreg2 using "$path/Results/Table1_A1_cg00", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
75 |
+
*wave 2
|
76 |
+
* NEW
|
77 |
+
qui rdrobust resid_pm10_smw3 T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
78 |
+
outreg2 using "$path/Results/Table1_A1_cg00", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
79 |
+
*deadline
|
80 |
+
* NEW
|
81 |
+
qui rdrobust resid_pm10_smw3 T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
82 |
+
outreg2 using "$path/Results/Table1_A1_cg00", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
***Row 2: Monthly AOD
|
87 |
+
use "$path/Data/station_month.dta",clear
|
88 |
+
qui reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_smw)
|
89 |
+
*raw
|
90 |
+
qui rdrobust aod n_month if temp!=. & rain!=. & rh!=. & wind_speed !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
91 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
92 |
+
*residual
|
93 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
94 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
95 |
+
*wave 1
|
96 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
97 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
98 |
+
*wave 2
|
99 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
100 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
101 |
+
*deadline
|
102 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
103 |
+
outreg2 using "$path/Results/Table1_A2", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
104 |
+
|
105 |
+
*** NEW panel: quadratic polynomial of weather variables
|
106 |
+
foreach x in wind_speed rain temp rh {
|
107 |
+
gen `x'2= `x'*`x'
|
108 |
+
gen `x'3= `x'2*`x'
|
109 |
+
}
|
110 |
+
qui reghdfe aod wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n month) res(resid_aod_smw2)
|
111 |
+
*raw
|
112 |
+
qui rdrobust aod n_month if temp!=. & rain!=. & rh!=. & wind_speed !=. & resid_aod_smw2!=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
113 |
+
outreg2 using "$path/Results/Table1_A2_cg0", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
114 |
+
*residual
|
115 |
+
qui rdrobust resid_aod_smw2 n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
116 |
+
outreg2 using "$path/Results/Table1_A2_cg0", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
117 |
+
*wave 1
|
118 |
+
qui rdrobust resid_aod_smw2 n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
119 |
+
outreg2 using "$path/Results/Table1_A2_cg0", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
120 |
+
*wave 2
|
121 |
+
qui rdrobust resid_aod_smw2 n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
122 |
+
outreg2 using "$path/Results/Table1_A2_cg0", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
123 |
+
*deadline
|
124 |
+
qui rdrobust resid_aod_smw2 n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
125 |
+
outreg2 using "$path/Results/Table1_A2_cg0", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
126 |
+
|
127 |
+
* NEW panel2: cubic polynomial of weather variables
|
128 |
+
qui reghdfe aod wind_speed* rain* temp* rh*, absorb(pm10_n month) res(resid_aod_smw3)
|
129 |
+
*raw
|
130 |
+
qui rdrobust aod n_month if temp!=. & rain!=. & rh!=. & wind_speed !=. & resid_aod_smw3!=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
131 |
+
outreg2 using "$path/Results/Table1_A2_cg00", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
132 |
+
*residual
|
133 |
+
qui rdrobust resid_aod_smw3 n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
134 |
+
outreg2 using "$path/Results/Table1_A2_cg00", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
135 |
+
*wave 1
|
136 |
+
qui rdrobust resid_aod_smw3 n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
137 |
+
outreg2 using "$path/Results/Table1_A2_cg00", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
138 |
+
*wave 2
|
139 |
+
qui rdrobust resid_aod_smw3 n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
140 |
+
outreg2 using "$path/Results/Table1_A2_cg00", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
141 |
+
*deadline
|
142 |
+
qui rdrobust resid_aod_smw3 n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
143 |
+
outreg2 using "$path/Results/Table1_A2_cg00", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
144 |
+
|
145 |
+
|
146 |
+
*==============================================================================*
|
147 |
+
*Table 1B: Event-Study Estimates
|
148 |
+
*==============================================================================*
|
149 |
+
***Deadline
|
150 |
+
use "$path/Data/station_day_1116.dta",clear
|
151 |
+
gen year=year(date)
|
152 |
+
gen month=month(date)
|
153 |
+
egen year_month=group(year month)
|
154 |
+
keep if year>=2012 & year<=2013
|
155 |
+
keep if auto_date==19724 | auto_date==19359
|
156 |
+
gen treat=(auto_date==19359)
|
157 |
+
gen after2=(year>=2013)
|
158 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
159 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
160 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
161 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
162 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
163 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
164 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
165 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
166 |
+
|
167 |
+
foreach v in 12 34 56 712{
|
168 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
169 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
170 |
+
}
|
171 |
+
|
172 |
+
foreach x in wind_speed rain temp rh {
|
173 |
+
gen `x'2= `x'*`x'
|
174 |
+
gen `x'3= `x'2*`x'
|
175 |
+
}
|
176 |
+
|
177 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
178 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
179 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
180 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
181 |
+
|
182 |
+
* NEW panel: quadratic polynomial of weather variables
|
183 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n month) vce(cluster code_city)
|
184 |
+
outreg2 using "$path/Results/Table1_B_cg0", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
185 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n year_month) vce(cluster code_city)
|
186 |
+
outreg2 using "$path/Results/Table1_B_cg0", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
187 |
+
* NEW panel2: cubic polynomial of weather variables
|
188 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain temp* rh* , absorb(pm10_n month) vce(cluster code_city)
|
189 |
+
outreg2 using "$path/Results/Table1_B_cg00", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
190 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain* temp* rh*, absorb(pm10_n year_month) vce(cluster code_city)
|
191 |
+
outreg2 using "$path/Results/Table1_B_cg00", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
192 |
+
|
193 |
+
* NEW panel with time trend
|
194 |
+
qui egen cityxyear = group(code_city year)
|
195 |
+
qui egen cityxmonth = group(code_city year_month)
|
196 |
+
|
197 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.code_city#c.year_month, absorb(pm10_n month) vce(cluster code_city)
|
198 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y, Yearly city trend, Y) tex
|
199 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh , absorb(pm10_n month cityxyear) vce(cluster code_city)
|
200 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y, City-Year FE, Y) tex
|
201 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh , absorb(pm10_n cityxmonth) vce(cluster code_city)
|
202 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, City-Year-Month FE, Y) tex
|
203 |
+
|
204 |
+
***nearest matching
|
205 |
+
use "$path/Data/did_ddl_match.dta" ,clear
|
206 |
+
gen year=year(date)
|
207 |
+
gen month=month(date)
|
208 |
+
egen year_month=group(year month)
|
209 |
+
gen treat=(auto_date==19359)
|
210 |
+
gen after2=(year>=2013)
|
211 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
212 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
213 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
214 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
215 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
216 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
217 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
218 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
219 |
+
|
220 |
+
foreach v in 12 34 56 712{
|
221 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
222 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
223 |
+
}
|
224 |
+
|
225 |
+
foreach x in wind_speed rain temp rh {
|
226 |
+
gen `x'2= `x'*`x'
|
227 |
+
gen `x'3= `x'2*`x'
|
228 |
+
}
|
229 |
+
|
230 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
231 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
232 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
233 |
+
outreg2 using "$path/Results/Table1_B", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
234 |
+
*log_pm10
|
235 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
236 |
+
outreg2 using "$path/Results/Table1_B", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
237 |
+
|
238 |
+
* NEW panel: quadratic polynomial of weather variables
|
239 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n month) vce(cluster code_city)
|
240 |
+
outreg2 using "$path/Results/Table1_B_cg0", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
241 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n year_month) vce(cluster code_city)
|
242 |
+
outreg2 using "$path/Results/Table1_B_cg0", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
243 |
+
*log_pm10
|
244 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(pm10_n year_month) vce(cluster code_city)
|
245 |
+
outreg2 using "$path/Results/Table1_B_cg0", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
246 |
+
|
247 |
+
* NEW panel2: cubic polynomial of weather variables
|
248 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain* temp* rh*, absorb(pm10_n month) vce(cluster code_city)
|
249 |
+
outreg2 using "$path/Results/Table1_B_cg00", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
250 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain* temp* rh*, absorb(pm10_n year_month) vce(cluster code_city)
|
251 |
+
outreg2 using "$path/Results/Table1_B_cg00", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
252 |
+
*log_pm10
|
253 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain* temp* rh*, absorb(pm10_n year_month) vce(cluster code_city)
|
254 |
+
outreg2 using "$path/Results/Table1_B_cg00", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
255 |
+
|
256 |
+
|
257 |
+
* NEW panel with time trend
|
258 |
+
qui egen cityxyear = group(code_city year)
|
259 |
+
qui egen cityxmonth = group(code_city year_month)
|
260 |
+
|
261 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.code_city#c.year_month, absorb(pm10_n month) vce(cluster code_city)
|
262 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y, Yearly city trend, Y) tex
|
263 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh , absorb(pm10_n month cityxyear) vce(cluster code_city)
|
264 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y, City-Year FE, Y) tex
|
265 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh , absorb(pm10_n cityxmonth) vce(cluster code_city)
|
266 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, City-Year-Month FE, Y) tex
|
267 |
+
*log_pm10
|
268 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.code_city#c.year_month, absorb(pm10_n month) vce(cluster code_city)
|
269 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y, Yearly city trend) tex
|
270 |
+
*log_pm10
|
271 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month cityxyear) vce(cluster code_city)
|
272 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y, City-Year FE, Y) tex
|
273 |
+
*log_pm10
|
274 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n cityxmonth) vce(cluster code_city)
|
275 |
+
outreg2 using "$path/Results/Table1_B_cg1", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, City-Year-Month FE, Y) tex
|
276 |
+
|
277 |
+
|
278 |
+
* NEW nearest neighbor matching
|
279 |
+
use "$path/Data/station_day_1116.dta",clear
|
280 |
+
gen year=year(date)
|
281 |
+
gen month=month(date)
|
282 |
+
egen year_month=group(year month)
|
283 |
+
keep if year>=2012 & year<=2013
|
284 |
+
keep if auto_date==19724 | auto_date==19359
|
285 |
+
gen treat=(auto_date==19359)
|
286 |
+
gen after2=(year>=2013)
|
287 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
288 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
289 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
290 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
291 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
292 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
293 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
294 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
295 |
+
|
296 |
+
foreach v in 12 34 56 712{
|
297 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
298 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
299 |
+
}
|
300 |
+
|
301 |
+
merge m:1 pm10_n using "$path/Data/station_list.dta"
|
302 |
+
keep if _merge==3
|
303 |
+
drop _merge
|
304 |
+
collapse year, by(pm10_n treat)
|
305 |
+
|
306 |
+
*cem station_lat station_lon , treatment(treat)
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
*==============================================================================*
|
312 |
+
*Table 2A: City-Month Online Search
|
313 |
+
*==============================================================================*
|
314 |
+
use "$path/Data/search_city_month.dta",clear
|
315 |
+
|
316 |
+
foreach x in wind_speed rain temp rh {
|
317 |
+
gen `x'2= `x'*`x'
|
318 |
+
gen `x'3= `x'2*`x'
|
319 |
+
}
|
320 |
+
|
321 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
322 |
+
qui reghdfe `y' wind_speed rain temp rh, absorb(code_city month) res(resid_`y'_smw)
|
323 |
+
*raw
|
324 |
+
qui rdrobust `y' n_month if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
325 |
+
outreg2 using "$path/Results/Table2_A`y'", excel dec(2) replace ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
326 |
+
*residual
|
327 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
328 |
+
outreg2 using "$path/Results/Table2_A`y'", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
329 |
+
*normal
|
330 |
+
qui rdrobust resid_`y'_smw n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
331 |
+
outreg2 using "$path/Results/Table2_A`y'", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
332 |
+
*manipulated
|
333 |
+
qui rdrobust resid_`y'_smw n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
334 |
+
outreg2 using "$path/Results/Table2_A`y'", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
335 |
+
|
336 |
+
* NEW PANEL: using 1% significance for selecting manipulating cities - variable rd2 defined in section 8. of Prepare_Data_cg0
|
337 |
+
*normal
|
338 |
+
qui rdrobust resid_`y'_smw n_month if rd2==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
339 |
+
outreg2 using "$path/Results/Table2_A`y'_cg3", excel dec(2) replace ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
340 |
+
*manipulated
|
341 |
+
qui rdrobust resid_`y'_smw n_month if rd2==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
342 |
+
outreg2 using "$path/Results/Table2_A`y'_cg3", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
343 |
+
* NEW 2SD: using above 2SD for selecting manipulating cities - variable rd3 defined in section 8. of Prepare_Data_cg0
|
344 |
+
*normal
|
345 |
+
qui rdrobust resid_`y'_smw n_month if rd3==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
346 |
+
outreg2 using "$path/Results/Table2_A`y'_cg3", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
347 |
+
*manipulated
|
348 |
+
qui rdrobust resid_`y'_smw n_month if rd3==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
349 |
+
outreg2 using "$path/Results/Table2_A`y'_cg3", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
350 |
+
|
351 |
+
* NEW panel: quadratic polynomial of weather variables
|
352 |
+
qui reghdfe `y' wind_speed rain temp rh wind_speed2 rain2 temp2 rh2, absorb(code_city month) res(resid_`y'_smw2)
|
353 |
+
*raw
|
354 |
+
qui rdrobust `y' n_month if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
355 |
+
outreg2 using "$path/Results/Table2_A`y'_cg0", excel dec(2) replace ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
356 |
+
*residual
|
357 |
+
qui rdrobust resid_`y'_smw2 n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
358 |
+
outreg2 using "$path/Results/Table2_A`y'_cg0", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
359 |
+
*normal
|
360 |
+
qui rdrobust resid_`y'_smw2 n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
361 |
+
outreg2 using "$path/Results/Table2_A`y'_cg0", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
362 |
+
*manipulated
|
363 |
+
qui rdrobust resid_`y'_smw2 n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
364 |
+
outreg2 using "$path/Results/Table2_A`y'_cg0", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
365 |
+
|
366 |
+
* NEW panel2: cubic polynomial of weather variables
|
367 |
+
qui reghdfe `y' wind_speed* rain* temp* rh*, absorb(code_city month) res(resid_`y'_smw3)
|
368 |
+
*raw
|
369 |
+
qui rdrobust `y' n_month if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) covs(wind_speed rain temp rh) kernel(tri) vce(cluster code_city) masspoints(off)
|
370 |
+
outreg2 using "$path/Results/Table2_A`y'_cg00", excel dec(2) replace ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
371 |
+
*residual
|
372 |
+
qui rdrobust resid_`y'_smw3 n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
373 |
+
outreg2 using "$path/Results/Table2_A`y'_cg00", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
374 |
+
*normal
|
375 |
+
qui rdrobust resid_`y'_smw3 n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
376 |
+
outreg2 using "$path/Results/Table2_A`y'_cg00", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
377 |
+
*manipulated
|
378 |
+
qui rdrobust resid_`y'_smw3 n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
379 |
+
outreg2 using "$path/Results/Table2_A`y'_cg00", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
380 |
+
}
|
381 |
+
|
382 |
+
*==============================================================================*
|
383 |
+
*Table 2B: DID Search for Deadline Cities
|
384 |
+
*==============================================================================*
|
385 |
+
use "$path/Data/did_ddl_search.dta" ,clear
|
386 |
+
gen year=year(date)
|
387 |
+
gen month=month(date)
|
388 |
+
egen year_month=group(year month)
|
389 |
+
gen treat=(auto_date==19359)
|
390 |
+
gen after2=(year>=2013)
|
391 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
392 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
393 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
394 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
395 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
396 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
397 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
398 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
399 |
+
|
400 |
+
foreach v in 12 34 56 712{
|
401 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
402 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
403 |
+
}
|
404 |
+
|
405 |
+
qui egen cityxyear = group(code_city year)
|
406 |
+
qui egen cityxmonth = group(code_city year_month)
|
407 |
+
|
408 |
+
foreach x in wind_speed rain temp rh {
|
409 |
+
gen `x'2= `x'*`x'
|
410 |
+
gen `x'3= `x'2*`x'
|
411 |
+
}
|
412 |
+
|
413 |
+
foreach y of var pmmask filter{
|
414 |
+
*City FE and year-month FE
|
415 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month , absorb(code_city) vce(cluster code_city)
|
416 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
417 |
+
*City FE and year-month FE +weather
|
418 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month , absorb(code_city) vce(cluster code_city)
|
419 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
420 |
+
|
421 |
+
* NEW Panel - City FE and year-month FE +quadratic polynomial of weather variables
|
422 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh wind_speed2 rain2 temp2 rh2 i.year_month , absorb(code_city) vce(cluster code_city)
|
423 |
+
outreg2 using "$path/Results/Table2_B_cg0", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
424 |
+
|
425 |
+
* NEW Panel2 - City FE and year-month FE +cubic polynomial of weather variables
|
426 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed* rain* temp* rh* i.year_month , absorb(code_city) vce(cluster code_city)
|
427 |
+
outreg2 using "$path/Results/Table2_B_cg0", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
428 |
+
}
|
429 |
+
|
430 |
+
foreach y of var pmmask filter{
|
431 |
+
* NEW city trend - City FE and year-month FE
|
432 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.code_city#c.year_month, absorb(month ) vce(cluster code_city)
|
433 |
+
outreg2 using "$path/Results/Table2_B_cg1", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, Month FE, Y, Yearly city trend, Y, Weather Controls, Y) tex
|
434 |
+
* NEW city year FE and month FE
|
435 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(cityxyear month) vce(cluster code_city)
|
436 |
+
outreg2 using "$path/Results/Table2_B_cg1", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, Month FE, Y, City-Year FE, Y, Weather Controls, Y) tex
|
437 |
+
}
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
foreach y of var pmmask filter{
|
442 |
+
*** rd
|
443 |
+
* NEW: normal cities
|
444 |
+
*City FE and year-month FE
|
445 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd==0, absorb(code_city) vce(cluster code_city)
|
446 |
+
outreg2 using "$path/Results/Table2_B_cg30", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
447 |
+
*City FE and year-month FE +weather
|
448 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd==0, absorb(code_city) vce(cluster code_city)
|
449 |
+
outreg2 using "$path/Results/Table2_B_cg30", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
450 |
+
}
|
451 |
+
|
452 |
+
foreach y of var pmmask filter{
|
453 |
+
* NEW: manipulating cities
|
454 |
+
*City FE and year-month FE
|
455 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd==1, absorb(code_city) vce(cluster code_city)
|
456 |
+
outreg2 using "$path/Results/Table2_B_cg31", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
457 |
+
*City FE and year-month FE +weather
|
458 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd==1, absorb(code_city) vce(cluster code_city)
|
459 |
+
outreg2 using "$path/Results/Table2_B_cg31", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
460 |
+
}
|
461 |
+
|
462 |
+
foreach y of var pmmask filter{
|
463 |
+
*** rd2: using 1% significance for selecting manipulating cities - variable rd2 defined in section 8. of Prepare_Data_cg0
|
464 |
+
* NEW: normal cities
|
465 |
+
*City FE and year-month FE
|
466 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd2==0, absorb(code_city) vce(cluster code_city)
|
467 |
+
outreg2 using "$path/Results/Table2_B_cg32", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
468 |
+
*City FE and year-month FE +weather
|
469 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd2==0, absorb(code_city) vce(cluster code_city)
|
470 |
+
outreg2 using "$path/Results/Table2_B_cg32", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
471 |
+
}
|
472 |
+
|
473 |
+
foreach y of var pmmask filter{
|
474 |
+
* NEW manipulating cities
|
475 |
+
*City FE and year-month FE
|
476 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd2==1, absorb(code_city) vce(cluster code_city)
|
477 |
+
outreg2 using "$path/Results/Table2_B_cg321", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
478 |
+
*City FE and year-month FE +weather
|
479 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd2==1, absorb(code_city) vce(cluster code_city)
|
480 |
+
outreg2 using "$path/Results/Table2_B_cg321", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
481 |
+
}
|
482 |
+
foreach y of var pmmask filter{
|
483 |
+
*** rd3: using above 2SD for selecting manipulating cities - variable rd3 defined in section 8. of Prepare_Data_cg0
|
484 |
+
* NEW normal cities
|
485 |
+
*City FE and year-month FE
|
486 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd3==0, absorb(code_city) vce(cluster code_city)
|
487 |
+
outreg2 using "$path/Results/Table2_B_cg33", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
488 |
+
*City FE and year-month FE +weather
|
489 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd3==0, absorb(code_city) vce(cluster code_city)
|
490 |
+
outreg2 using "$path/Results/Table2_B_cg33", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
491 |
+
}
|
492 |
+
foreach y of var pmmask filter{
|
493 |
+
* NEW manipulating cities
|
494 |
+
*City FE and year-month FE
|
495 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month if rd3==1, absorb(code_city) vce(cluster code_city)
|
496 |
+
outreg2 using "$path/Results/Table2_B_cg331", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y) tex
|
497 |
+
*City FE and year-month FE +weather
|
498 |
+
qui reghdfe `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month if rd3==1, absorb(code_city) vce(cluster code_city)
|
499 |
+
outreg2 using "$path/Results/Table2_B_cg331", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y) tex
|
500 |
+
}
|
501 |
+
|
502 |
+
|
503 |
+
***The End
|
9/replication_package/Code/Tables_NEW_2.do
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
***This is the main program for Tables 1, 2, 3 generated using Stata 15 MP
|
2 |
+
|
3 |
+
clear all
|
4 |
+
set more off
|
5 |
+
|
6 |
+
*global path "/Users/`c(username)'/Dropbox/China_Pollution_Monitoring"
|
7 |
+
|
8 |
+
|
9 |
+
use "$path/Data/station_day_1116",clear
|
10 |
+
foreach var of varlist temp rain wind_speed rh {
|
11 |
+
count if `var' == `var'_n
|
12 |
+
}
|
13 |
+
|
14 |
+
*==============================================================================*
|
15 |
+
*Table 1A: RD
|
16 |
+
*==============================================================================*
|
17 |
+
***Row 1. Daily PM10 (Original) - Panel A - Table 1*
|
18 |
+
use "$path/Data/station_day_1116",clear
|
19 |
+
gen T=date-auto_date
|
20 |
+
gen month=month(date)
|
21 |
+
qui reghdfe pm10 wind_speed rain temp rh, absorb(pm10_n month) res(resid_pm10_smw)
|
22 |
+
*raw
|
23 |
+
qui rdrobust pm10 T if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
24 |
+
outreg2 using "$path/Results/Table1_A1_GG_PA", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
25 |
+
*residual
|
26 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
27 |
+
outreg2 using "$path/Results/Table1_A1_GG_PA", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
28 |
+
*wave 1
|
29 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
30 |
+
outreg2 using "$path/Results/Table1_A1_GG_PA", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
31 |
+
*wave 2
|
32 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
33 |
+
outreg2 using "$path/Results/Table1_A1_GG_PA", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
34 |
+
*deadline
|
35 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
36 |
+
outreg2 using "$path/Results/Table1_A1_GG_PA", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
37 |
+
|
38 |
+
***Row 2: Monthly AOD
|
39 |
+
use "$path/Data/station_month.dta",clear
|
40 |
+
qui reghdfe aod wind_speed rain temp rh, absorb(pm10_n month) res(resid_aod_smw)
|
41 |
+
*raw
|
42 |
+
qui rdrobust aod n_month if temp!=. & rain!=. & rh!=. & wind_speed !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
43 |
+
outreg2 using "$path/Results/Table1_A2_GG_PA", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
44 |
+
*residual
|
45 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
46 |
+
outreg2 using "$path/Results/Table1_A2_GG_PA", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
47 |
+
*wave 1
|
48 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
49 |
+
outreg2 using "$path/Results/Table1_A2_GG_PA", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
50 |
+
*wave 2
|
51 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
52 |
+
outreg2 using "$path/Results/Table1_A2_GG_PA", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
53 |
+
*deadline
|
54 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
55 |
+
outreg2 using "$path/Results/Table1_A2_GG_PA", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
56 |
+
|
57 |
+
***Row 1. Daily PM10 (Nearest) - Panel B - Table 1*
|
58 |
+
use "$path/Data/station_day_1116",clear
|
59 |
+
gen T=date-auto_date
|
60 |
+
gen month=month(date)
|
61 |
+
qui reghdfe pm10 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n month) res(resid_pm10_smw)
|
62 |
+
*raw
|
63 |
+
qui rdrobust pm10 T if temp_n!=. & rain_n!=. & rh_n!=. & wind_speed_n !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
64 |
+
outreg2 using "$path/Results/Table1_A1_GG_PB", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
65 |
+
*residual
|
66 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
67 |
+
outreg2 using "$path/Results/Table1_A1_GG_PB", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
68 |
+
*wave 1
|
69 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
70 |
+
outreg2 using "$path/Results/Table1_A1_GG_PB", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
71 |
+
*wave 2
|
72 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
73 |
+
outreg2 using "$path/Results/Table1_A1_GG_PB", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
74 |
+
*deadline
|
75 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
76 |
+
outreg2 using "$path/Results/Table1_A1_GG_PB", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
77 |
+
|
78 |
+
***Row 2: Monthly AOD
|
79 |
+
use "$path/Data/station_month.dta",clear
|
80 |
+
qui reghdfe aod wind_speed_n rain_n temp_n rh_n, absorb(pm10_n month) res(resid_aod_smw)
|
81 |
+
*raw
|
82 |
+
qui rdrobust aod n_month if temp_n!=. & rain_n!=. & rh_n!=. & wind_speed_n !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
83 |
+
outreg2 using "$path/Results/Table1_A2_GG_PB", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
84 |
+
*residual
|
85 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
86 |
+
outreg2 using "$path/Results/Table1_A2_GG_PB", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
87 |
+
*wave 1
|
88 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
89 |
+
outreg2 using "$path/Results/Table1_A2_GG_PB", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
90 |
+
*wave 2
|
91 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
92 |
+
outreg2 using "$path/Results/Table1_A2_GG_PB", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
93 |
+
*deadline
|
94 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
95 |
+
outreg2 using "$path/Results/Table1_A2_GG_PB", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
96 |
+
|
97 |
+
***Row 1. Daily PM10 (DWA) - Panel C - Table 1*
|
98 |
+
use "$path/Data/station_day_1116",clear
|
99 |
+
gen T=date-auto_date
|
100 |
+
gen month=month(date)
|
101 |
+
qui reghdfe pm10 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n month) res(resid_pm10_smw)
|
102 |
+
*raw
|
103 |
+
qui rdrobust pm10 T if temp_DWA!=. & rain_DWA!=. & rh_DWA!=. & wind_speed_DWA !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
104 |
+
outreg2 using "$path/Results/Table1_A1_GG_PC", excel dec(1) replace ctitle(pm10) addtext(Sample, All) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
105 |
+
*residual
|
106 |
+
qui rdrobust resid_pm10_smw T, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
107 |
+
outreg2 using "$path/Results/Table1_A1_GG_PC", excel dec(1) append ctitle(pm10) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
108 |
+
*wave 1
|
109 |
+
qui rdrobust resid_pm10_smw T if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
110 |
+
outreg2 using "$path/Results/Table1_A1_GG_PC", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
111 |
+
*wave 2
|
112 |
+
qui rdrobust resid_pm10_smw T if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
113 |
+
outreg2 using "$path/Results/Table1_A1_GG_PC", excel dec(1) append ctitle(pm10) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
114 |
+
*deadline
|
115 |
+
qui rdrobust resid_pm10_smw T if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
116 |
+
outreg2 using "$path/Results/Table1_A1_GG_PC", excel dec(1) append ctitle(pm10) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Daily), e(N_h_l)+e(N_h_r), Bandwidth (Days), floor(e(h_l))) tex
|
117 |
+
|
118 |
+
***Row 2: Monthly AOD
|
119 |
+
use "$path/Data/station_month.dta",clear
|
120 |
+
qui reghdfe aod wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n month) res(resid_aod_smw)
|
121 |
+
*raw
|
122 |
+
qui rdrobust aod n_month if temp_DWA!=. & rain_DWA!=. & rh_DWA!=. & wind_speed_DWA !=. & resid_aod_smw!=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
123 |
+
outreg2 using "$path/Results/Table1_A2_GG_PC", excel dec(3) replace ctitle(aod) addtext(Sample, All) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
124 |
+
*residual
|
125 |
+
qui rdrobust resid_aod_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
126 |
+
outreg2 using "$path/Results/Table1_A2_GG_PC", excel dec(3) append ctitle(aod) addtext(Sample, All, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
127 |
+
*wave 1
|
128 |
+
qui rdrobust resid_aod_smw n_month if phase==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
129 |
+
outreg2 using "$path/Results/Table1_A2_GG_PC", excel dec(3) append ctitle(aod) addtext(Sample, Wave 1, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
130 |
+
*wave 2
|
131 |
+
qui rdrobust resid_aod_smw n_month if phase==2, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
132 |
+
outreg2 using "$path/Results/Table1_A2_GG_PC", excel dec(3) append ctitle(aod) addtext(Sample, Wave 2, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
133 |
+
*deadline
|
134 |
+
qui rdrobust resid_aod_smw n_month if auto_date==19359 | auto_date==19724, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
135 |
+
outreg2 using "$path/Results/Table1_A2_GG_PC", excel dec(3) append ctitle(aod) addtext(Sample, Deadline, Station FE, Y, Month FE, Y, Weather Controls, Y) addstat(Obs.(Monthly), e(N_h_l)+e(N_h_r), Bandwidth (Months), floor(e(h_l))) tex
|
136 |
+
|
137 |
+
*==============================================================================*
|
138 |
+
*Table 1B: Event-Study Estimates
|
139 |
+
*==============================================================================*
|
140 |
+
** Original
|
141 |
+
***Deadline
|
142 |
+
use "$path/Data/station_day_1116.dta",clear
|
143 |
+
gen year=year(date)
|
144 |
+
gen month=month(date)
|
145 |
+
egen year_month=group(year month)
|
146 |
+
keep if year>=2012 & year<=2013
|
147 |
+
keep if auto_date==19724 | auto_date==19359
|
148 |
+
gen treat=(auto_date==19359)
|
149 |
+
gen after2=(year>=2013)
|
150 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
151 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
152 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
153 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
154 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
155 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
156 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
157 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
158 |
+
|
159 |
+
foreach v in 12 34 56 712{
|
160 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
161 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
162 |
+
}
|
163 |
+
|
164 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
165 |
+
outreg2 using "$path/Results/Table1_B_GG_PA", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
166 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
167 |
+
outreg2 using "$path/Results/Table1_B_GG_PA", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
168 |
+
|
169 |
+
***nearest matching
|
170 |
+
use "$path/Data/did_ddl_match.dta" ,clear
|
171 |
+
gen year=year(date)
|
172 |
+
gen month=month(date)
|
173 |
+
egen year_month=group(year month)
|
174 |
+
gen treat=(auto_date==19359)
|
175 |
+
gen after2=(year>=2013)
|
176 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
177 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
178 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
179 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
180 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
181 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
182 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
183 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
184 |
+
|
185 |
+
foreach v in 12 34 56 712{
|
186 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
187 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
188 |
+
}
|
189 |
+
|
190 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n month) vce(cluster code_city)
|
191 |
+
outreg2 using "$path/Results/Table1_B_GG_PA", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
192 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
193 |
+
outreg2 using "$path/Results/Table1_B_GG_PA", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
194 |
+
*log_pm10
|
195 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh, absorb(pm10_n year_month) vce(cluster code_city)
|
196 |
+
outreg2 using "$path/Results/Table1_B_GG_PA", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
197 |
+
|
198 |
+
** Nearest (conseptual replication)
|
199 |
+
***Deadline
|
200 |
+
use "$path/Data/station_day_1116.dta",clear
|
201 |
+
gen year=year(date)
|
202 |
+
gen month=month(date)
|
203 |
+
egen year_month=group(year month)
|
204 |
+
keep if year>=2012 & year<=2013
|
205 |
+
keep if auto_date==19724 | auto_date==19359
|
206 |
+
gen treat=(auto_date==19359)
|
207 |
+
gen after2=(year>=2013)
|
208 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
209 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
210 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
211 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
212 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
213 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
214 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
215 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
216 |
+
|
217 |
+
foreach v in 12 34 56 712{
|
218 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
219 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
220 |
+
}
|
221 |
+
|
222 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n month) vce(cluster code_city)
|
223 |
+
outreg2 using "$path/Results/Table1_B_GG_PB", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
224 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n year_month) vce(cluster code_city)
|
225 |
+
outreg2 using "$path/Results/Table1_B_GG_PB", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
226 |
+
|
227 |
+
***nearest matching
|
228 |
+
use "$path/Data/did_ddl_match.dta" ,clear
|
229 |
+
gen year=year(date)
|
230 |
+
gen month=month(date)
|
231 |
+
egen year_month=group(year month)
|
232 |
+
gen treat=(auto_date==19359)
|
233 |
+
gen after2=(year>=2013)
|
234 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
235 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
236 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
237 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
238 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
239 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
240 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
241 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
242 |
+
|
243 |
+
foreach v in 12 34 56 712{
|
244 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
245 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
246 |
+
}
|
247 |
+
|
248 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n month) vce(cluster code_city)
|
249 |
+
outreg2 using "$path/Results/Table1_B_GG_PB", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
250 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n year_month) vce(cluster code_city)
|
251 |
+
outreg2 using "$path/Results/Table1_B_GG_PB", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
252 |
+
*log_pm10
|
253 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_n rain_n temp_n rh_n, absorb(pm10_n year_month) vce(cluster code_city)
|
254 |
+
outreg2 using "$path/Results/Table1_B_GG_PB", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
255 |
+
|
256 |
+
|
257 |
+
** DWA (Robustness Replication)
|
258 |
+
***Deadline
|
259 |
+
use "$path/Data/station_day_1116.dta",clear
|
260 |
+
gen year=year(date)
|
261 |
+
gen month=month(date)
|
262 |
+
egen year_month=group(year month)
|
263 |
+
keep if year>=2012 & year<=2013
|
264 |
+
keep if auto_date==19724 | auto_date==19359
|
265 |
+
gen treat=(auto_date==19359)
|
266 |
+
gen after2=(year>=2013)
|
267 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
268 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
269 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
270 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
271 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
272 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
273 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
274 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
275 |
+
|
276 |
+
foreach v in 12 34 56 712{
|
277 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
278 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
279 |
+
}
|
280 |
+
|
281 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n month) vce(cluster code_city)
|
282 |
+
outreg2 using "$path/Results/Table1_B_GG_PC", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
283 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n year_month) vce(cluster code_city)
|
284 |
+
outreg2 using "$path/Results/Table1_B_GG_PC", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
285 |
+
|
286 |
+
***nearest matching
|
287 |
+
use "$path/Data/did_ddl_match.dta" ,clear
|
288 |
+
gen year=year(date)
|
289 |
+
gen month=month(date)
|
290 |
+
egen year_month=group(year month)
|
291 |
+
gen treat=(auto_date==19359)
|
292 |
+
gen after2=(year>=2013)
|
293 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
294 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
295 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
296 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
297 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
298 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
299 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
300 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
301 |
+
|
302 |
+
foreach v in 12 34 56 712{
|
303 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
304 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
305 |
+
}
|
306 |
+
|
307 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n month) vce(cluster code_city)
|
308 |
+
outreg2 using "$path/Results/Table1_B_GG_PC", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
309 |
+
qui reghdfe pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n year_month) vce(cluster code_city)
|
310 |
+
outreg2 using "$path/Results/Table1_B_GG_PC", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
311 |
+
*log_pm10
|
312 |
+
qui reghdfe l_pm10 treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n year_month) vce(cluster code_city)
|
313 |
+
outreg2 using "$path/Results/Table1_B_GG_PC", excel dec(2) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(log_PM10) addtext(Sample, +Matching, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
314 |
+
|
315 |
+
*==============================================================================*
|
316 |
+
*Table 1B: Event-Study Estimates for AOD
|
317 |
+
*==============================================================================*
|
318 |
+
** DWA (Robustness Replication)
|
319 |
+
***Deadline
|
320 |
+
use "$path/Data/station_month.dta",clear
|
321 |
+
egen year_month=group(year month)
|
322 |
+
keep if year>=2012 & year<=2013
|
323 |
+
keep if auto_date==19724 | auto_date==19359
|
324 |
+
gen treat=(auto_date==19359)
|
325 |
+
gen after2=(year>=2013)
|
326 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
327 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
328 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
329 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
330 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
331 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
332 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
333 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
334 |
+
|
335 |
+
foreach v in 12 34 56 712{
|
336 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
337 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
338 |
+
}
|
339 |
+
|
340 |
+
qui reghdfe aod treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n month) vce(cluster code_city)
|
341 |
+
outreg2 using "$path/Results/Table_DID_aod_GG", excel dec(1) replace keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Month FE, Y) tex
|
342 |
+
qui reghdfe aod treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(pm10_n year_month) vce(cluster code_city)
|
343 |
+
outreg2 using "$path/Results/Table_DID_aod_GG", excel dec(1) append keep (treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(PM10) addtext(Sample, Deadline, Weather Controls, Y, Station FE, Y, Year-Month FE, Y) tex
|
344 |
+
|
345 |
+
|
346 |
+
*==============================================================================*
|
347 |
+
*Table 2A: City-Month Online Search
|
348 |
+
*==============================================================================*
|
349 |
+
* Original
|
350 |
+
use "$path/Data/search_city_month.dta",clear
|
351 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
352 |
+
qui reghdfe `y' wind_speed rain temp rh, absorb(code_city month) res(resid_`y'_smw)
|
353 |
+
*raw
|
354 |
+
qui rdrobust `y' n_month if temp!=. & rain!=. & rh!=. & wind_speed !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
355 |
+
outreg2 using "$path/Results/Table2_GG_PA", excel dec(2) append ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
356 |
+
*residual
|
357 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
358 |
+
outreg2 using "$path/Results/Table2_GG_PA", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
359 |
+
*normal
|
360 |
+
qui rdrobust resid_`y'_smw n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
361 |
+
outreg2 using "$path/Results/Table2_GG_PA", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
362 |
+
*manipulated
|
363 |
+
qui rdrobust resid_`y'_smw n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
364 |
+
outreg2 using "$path/Results/Table2_GG_PA", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
365 |
+
}
|
366 |
+
|
367 |
+
* Nearest
|
368 |
+
use "$path/Data/search_city_month.dta",clear
|
369 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
370 |
+
qui reghdfe `y' wind_speed_n rain_n temp_n rh_n, absorb(code_city month) res(resid_`y'_smw)
|
371 |
+
*raw
|
372 |
+
qui rdrobust `y' n_month if temp_n!=. & rain_n!=. & rh_n!=. & wind_speed_n !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
373 |
+
outreg2 using "$path/Results/Table2_GG_PB_`y'", excel dec(2) append ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
374 |
+
*residual
|
375 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
376 |
+
outreg2 using "$path/Results/Table2_GG_PB_`y'", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
377 |
+
*normal
|
378 |
+
qui rdrobust resid_`y'_smw n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
379 |
+
outreg2 using "$path/Results/Table2_GG_PB_`y'", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
380 |
+
*manipulated
|
381 |
+
qui rdrobust resid_`y'_smw n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
382 |
+
outreg2 using "$path/Results/Table2_GG_PB_`y'", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
383 |
+
}
|
384 |
+
|
385 |
+
* DWA
|
386 |
+
use "$path/Data/search_city_month.dta",clear
|
387 |
+
foreach y in pmmask filter l_pmmask l_filter {
|
388 |
+
qui reghdfe `y' wind_speed_DWA rain_DWA temp_DWA rh_DWA, absorb(code_city month) res(resid_`y'_smw)
|
389 |
+
*raw
|
390 |
+
qui rdrobust `y' n_month if temp_DWA!=. & rain_DWA!=. & rh_DWA!=. & wind_speed_DWA !=., c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
391 |
+
outreg2 using "$path/Results/Table2_GG_PC_`y'", excel dec(2) append ctitle(`y') addtext(Sample, All) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
392 |
+
*residual
|
393 |
+
qui rdrobust resid_`y'_smw n_month, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
394 |
+
outreg2 using "$path/Results/Table2_GG_PC_`y'", excel dec(2) append ctitle(`y') addtext(Sample, All, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
395 |
+
*normal
|
396 |
+
qui rdrobust resid_`y'_smw n_month if rd==0, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
397 |
+
outreg2 using "$path/Results/Table2_GG_PC_`y'", excel dec(2) append ctitle(`y') addtext(Sample, Normal, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
398 |
+
*manipulated
|
399 |
+
qui rdrobust resid_`y'_smw n_month if rd==1, c(0) p(1) q(2) kernel(tri) vce(cluster code_city) masspoints(off)
|
400 |
+
outreg2 using "$path/Results/Table2_GG_PC_`y'", excel dec(2) append ctitle(`y') addtext(Sample, Manipulate, City FE, Y, Month FE, Y, Weather Controls, Y) addstat(Effective Obs, e(N_h_l)+e(N_h_r), Bandwidth, floor(e(h_l))) tex
|
401 |
+
}
|
402 |
+
|
403 |
+
*==============================================================================*
|
404 |
+
*Table 2B: DID Search for Deadline Cities
|
405 |
+
*==============================================================================*
|
406 |
+
use "$path/Data/did_ddl_search.dta" ,clear
|
407 |
+
gen year=year(date)
|
408 |
+
gen month=month(date)
|
409 |
+
egen year_month=group(year month)
|
410 |
+
gen treat=(auto_date==19359)
|
411 |
+
gen after2=(year>=2013)
|
412 |
+
gen m12_before2=(year==2012 & month>=11 & month<=12)
|
413 |
+
gen m34_before2=(year==2012 & month>=9 & month<=10)
|
414 |
+
gen m56_before2=(year==2012 & month>=7 & month<=8)
|
415 |
+
gen m712_before2=(year==2012 & month>=1 & month<=6)
|
416 |
+
gen m12_after2=(year==2013 & month>=1 & month<=2)
|
417 |
+
gen m34_after2=(year==2013 & month>=3 & month<=4)
|
418 |
+
gen m56_after2=(year==2013 & month>=5 & month<=6)
|
419 |
+
gen m712_after2=(year==2013 & month>=7 & month<=12)
|
420 |
+
|
421 |
+
foreach v in 12 34 56 712{
|
422 |
+
gen treat_m`v'_before2=treat*m`v'_before2
|
423 |
+
gen treat_m`v'_after2=treat*m`v'_after2
|
424 |
+
}
|
425 |
+
|
426 |
+
foreach y of var pmmask filter{
|
427 |
+
*City FE and year-month FE
|
428 |
+
qui xi: areg `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 i.year_month , absorb(code_city) vce(cluster code_city)
|
429 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y)
|
430 |
+
*City FE and year-month FE +weather
|
431 |
+
qui xi: areg `y' treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2 wind_speed rain temp rh i.year_month , absorb(code_city) vce(cluster code_city)
|
432 |
+
outreg2 using "$path/Results/Table2_B", excel dec(2) append keep(treat_m712_before2 treat_m56_before2 treat_m34_before2 treat_m12_after2 treat_m34_after2 treat_m56_after2 treat_m712_after2) ctitle(`y') addtext(Sample, Deadline, City FE, Y, Year-Month FE, Y, Weather Controls, Y)
|
433 |
+
}
|
434 |
+
|
435 |
+
|
436 |
+
***The End
|
9/replication_package/Data/aod_month.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:571ed7a7fde179b0745942f19709e7d71ebc908339c982883af30855433431c1
|
3 |
+
size 431750
|
9/replication_package/Data/city_info.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d2390e9e1d0c676a63d591fb41c4e3d59bc84c0dc9dd6e6543072b66b1a901
|
3 |
+
size 12527
|
9/replication_package/Data/city_info_rd.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dcf73891bab722719cb3590722036d736b4c3f2037c5f998dc489ad6b02628d
|
3 |
+
size 23316
|
9/replication_package/Data/city_month.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2ca299265755f93c933731130617f2e207f14b1b42ccdce04596c301c2a175b
|
3 |
+
size 2142290
|
9/replication_package/Data/did_ddl_match.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfedf750d8013cf0f50c6337eb24aa9d7b16da0b959bd2e3ccf589416c8327db
|
3 |
+
size 32202162
|
9/replication_package/Data/mask_filter_search.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f6a3e4887bc43bafa3e27e35ed8bfc274a6ab99bd68e2571372fbfb9c9ebec4
|
3 |
+
size 7125468
|
9/replication_package/Data/pm10_corrected_reference.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6cb3fc5509898626993764c7fb16804117666a207655a3c8053dd67ab59cf9f
|
3 |
+
size 192883
|
9/replication_package/Data/pollution.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37da78fb5a04e005fe8519f76ac5d8a15b428b73fea81ea00702a0c11f4dd5ac
|
3 |
+
size 78143017
|
9/replication_package/Data/pollution_1116.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed5b2c83e6716c17c35acfa65c6fba91a38a49a5b6ca60dbb64515b76acdb509
|
3 |
+
size 40154199
|
9/replication_package/Data/search_sale.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46ce9fd5b1cf3ffcd84c39c7cb6be0c84dcf47ad66f1fa1457dcdc10c2383e52
|
3 |
+
size 42348
|
9/replication_package/Data/station_day_1116.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b65db2ec9c3bb14c8c5020cfac9df5e81b8dcd0760f31ce8f3c0b1ff107bdc25
|
3 |
+
size 342669276
|
9/replication_package/Data/station_list.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46d9f767799a1965181ee6515d621dd4f6a592632b7d4ace93b6cd3750162f28
|
3 |
+
size 15513
|
9/replication_package/Data/station_month.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d133b0e07d5ef73ab936f9e44b0b79277e14b92d5a3ce6d1ef898e29fa441d81
|
3 |
+
size 11676684
|
9/replication_package/Data/weather_1116.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93c1fe2f0ba8a1873e075a5b8aa47e3c55797d68d7fc25b656c502dddf6b46d3
|
3 |
+
size 28686289
|
9/replication_package/Data/weather_1116_alt.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df86c557d324120fab531d0d63e01da87e045a7215b3645f7a518765fde7ad6e
|
3 |
+
size 303957252
|
9/replication_package/README.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:914e989639ff04582dbaa8b4eeb146783c2489be36cfbb7ecc1698197940cdaa
|
3 |
+
size 125464
|
9/replication_package/Readme_new.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2252d019a624daaac5732a176855c18a8ade42a17675c94b8149125633b139c6
|
3 |
+
size 1348
|
9/should_reproduce.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdd6a0d3fa3c58213acec4b2949638f45635114bb4a10cecec2ecb3b63853c84
|
3 |
+
size 15
|