Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
id
stringlengths
21
21
subject
stringclasses
1 value
topic
stringclasses
3 values
subtopic
stringlengths
9
41
level
stringclasses
6 values
keywords
sequencelengths
1
4
problem_v1
stringlengths
97
1.84k
answer_v1
sequencelengths
1
22
answer_type_v1
sequencelengths
1
22
options_v1
sequencelengths
1
22
problem_v2
stringlengths
97
1.85k
answer_v2
sequencelengths
1
12
answer_type_v2
sequencelengths
1
12
options_v2
sequencelengths
1
12
problem_v3
stringlengths
97
1.84k
answer_v3
sequencelengths
1
16
answer_type_v3
sequencelengths
1
16
options_v3
sequencelengths
1
16
Abstract_algebra_0000
Abstract_algebra
Fields and polynomials
Polynomials
3
[ "minimal polynomials" ]
Determine the minimal polynomial $f(x)$ of the following quantities: (a) $5+2 i$ over $\mathbb{R}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (b) $5+2 i$ over $\mathbb{C}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (c) $5^{1/4}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (d) $\sqrt{3}+\sqrt{5}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (e) $\sqrt{3}+\sqrt{5}$ over $\mathbb{Q}(c)$, where $c=\sqrt{15}$ $f(x)=$ [ANS] (Your answer should be written using $c$, not $\sqrt{15}$)
[ "x^2-10*x+29", "x-(5+2*i)", "x^4-5", "x^4-16*x^2+4", "x^2-2*c-8" ]
[ "EX", "EX", "EX", "EX", "EX" ]
[ [], [], [], [], [] ]
Determine the minimal polynomial $f(x)$ of the following quantities: (a) $-9+9 i$ over $\mathbb{R}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (b) $-9+9 i$ over $\mathbb{C}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (c) $2^{1/3}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (d) $\sqrt{13}+\sqrt{3}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (e) $\sqrt{13}+\sqrt{3}$ over $\mathbb{Q}(c)$, where $c=\sqrt{39}$ $f(x)=$ [ANS] (Your answer should be written using $c$, not $\sqrt{39}$)
[ "x^2+18*x+162", "x-(9*i-9)", "x^3-2", "x^4-32*x^2+100", "x^2-2*c-16" ]
[ "EX", "EX", "EX", "EX", "EX" ]
[ [], [], [], [], [] ]
Determine the minimal polynomial $f(x)$ of the following quantities: (a) $-4+2 i$ over $\mathbb{R}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (b) $-4+2 i$ over $\mathbb{C}$, where $i=\sqrt{-1}$ $f(x)=$ [ANS] (c) $3^{1/3}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (d) $\sqrt{3}+\sqrt{5}$ over $\mathbb{Q}$ $f(x)=$ [ANS] (e) $\sqrt{3}+\sqrt{5}$ over $\mathbb{Q}(c)$, where $c=\sqrt{15}$ $f(x)=$ [ANS] (Your answer should be written using $c$, not $\sqrt{15}$)
[ "x^2+8*x+20", "x-(2*i-4)", "x^3-3", "x^4-16*x^2+4", "x^2-2*c-8" ]
[ "EX", "EX", "EX", "EX", "EX" ]
[ [], [], [], [], [] ]
Abstract_algebra_0001
Abstract_algebra
Fields and polynomials
Polynomials
4
[ "quotient fields", "polynomial rings" ]
Let $t \in \mathbb{Q}[x]/(x^2-11)$ be a root of the irreducible polynomial $x^2-11 \in \mathbb{Q}[x]$. Express each of the following elements in the form $u+wt$ with $u, w \in \mathbb{Q}$. The correct answers may involve fractions. (a) $t^5$: [ANS] $+$ [ANS] $t$ (b) $(6-t)(7+2t)$: [ANS] $+$ [ANS] $t$ (c) $(7+2t)^2$: [ANS] $+$ [ANS] $t$ (d) $1/(6-t)$: [ANS] $+$ [ANS] $t$
[ "0", "121", "20", "5", "93", "28", "0.24", "0.04" ]
[ "NV", "NV", "NV", "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [], [], [], [] ]
Let $t \in \mathbb{Q}[x]/(x^2-3)$ be a root of the irreducible polynomial $x^2-3 \in \mathbb{Q}[x]$. Express each of the following elements in the form $u+wt$ with $u, w \in \mathbb{Q}$. The correct answers may involve fractions. (a) $t^5$: [ANS] $+$ [ANS] $t$ (b) $(2-t)(1+2t)$: [ANS] $+$ [ANS] $t$ (c) $(1+2t)^2$: [ANS] $+$ [ANS] $t$ (d) $1/(2-t)$: [ANS] $+$ [ANS] $t$
[ "0", "9", "-4", "3", "13", "4", "2", "1" ]
[ "NV", "NV", "NV", "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [], [], [], [] ]
Let $t \in \mathbb{Q}[x]/(x^2-5)$ be a root of the irreducible polynomial $x^2-5 \in \mathbb{Q}[x]$. Express each of the following elements in the form $u+wt$ with $u, w \in \mathbb{Q}$. The correct answers may involve fractions. (a) $t^5$: [ANS] $+$ [ANS] $t$ (b) $(3-t)(1+2t)$: [ANS] $+$ [ANS] $t$ (c) $(1+2t)^2$: [ANS] $+$ [ANS] $t$ (d) $1/(3-t)$: [ANS] $+$ [ANS] $t$
[ "0", "25", "-7", "5", "21", "4", "0.75", "0.25" ]
[ "NV", "NV", "NV", "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [], [], [], [] ]
Abstract_algebra_0002
Abstract_algebra
Fields and polynomials
Polynomials
[ "polynomials" ]
Find a polynomial $f(x)$ of degree 3 over $\mathbb{Z}_{11}$ such that f(0)=6, \quad f(7)=7, \quad f(8)=8 $f(x)=$ [ANS]
[ "x^3+2*x^2+6" ]
[ "EX" ]
[ [] ]
Find a polynomial $f(x)$ of degree 3 over $\mathbb{Z}_{3}$ such that f(0)=2, \quad f(1)=1, \quad f(2)=2 $f(x)=$ [ANS]
[ "x^3+x^2+2" ]
[ "EX" ]
[ [] ]
Find a polynomial $f(x)$ of degree 3 over $\mathbb{Z}_{5}$ such that f(0)=3, \quad f(2)=2, \quad f(3)=3 $f(x)=$ [ANS]
[ "x^3+3*x^2+2*x+3" ]
[ "EX" ]
[ [] ]
Abstract_algebra_0003
Abstract_algebra
Groups
Group axioms
3
[ "group tables", "center of groups" ]
The center of a group $G$ is defined to be the set of all elements $x$ in $G$ such that $xy=yx$ for all $y$ in $G$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x11 & x10 & x9 & x8 & x7 & x3 & x2 & x1 & e & x5 & x4 \\ \hline x7 & x7 & x6 & x11 & x10 & x9 & x8 & x4 & x3 & x2 & x1 & e & x5 \\ \hline x8 & x8 & x7 & x6 & x11 & x10 & x9 & x5 & x4 & x3 & x2 & x1 & e \\ \hline x9 & x9 & x8 & x7 & x6 & x11 & x10 & e & x5 & x4 & x3 & x2 & x1 \\ \hline x10 & x10 & x9 & x8 & x7 & x6 & x11 & x1 & e & x5 & x4 & x3 & x2 \\ \hline x11 & x11 & x10 & x9 & x8 & x7 & x6 & x2 & x1 & e & x5 & x4 & x3 \\ \hline \end{array}$ Using this group table, determine the elements that lie in the center of $G$ and enter them as a comma-separated list. [ANS]
[ "(e, x3)" ]
[ "UOL" ]
[ [] ]
The center of a group $G$ is defined to be the set of all elements $x$ in $G$ such that $xy=yx$ for all $y$ in $G$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & e & x3 & x2 & x6 & x7 & x4 & x5 & x11 & x10 & x9 & x8 \\ \hline x2 & x2 & x3 & e & x1 & x7 & x6 & x5 & x4 & x9 & x8 & x11 & x10 \\ \hline x3 & x3 & x2 & x1 & e & x5 & x4 & x7 & x6 & x10 & x11 & x8 & x9 \\ \hline x4 & x4 & x7 & x5 & x6 & x11 & x8 & x10 & x9 & x2 & x1 & x3 & e \\ \hline x5 & x5 & x6 & x4 & x7 & x9 & x10 & x8 & x11 & x1 & x2 & e & x3 \\ \hline x6 & x6 & x5 & x7 & x4 & x8 & x11 & x9 & x10 & x3 & e & x2 & x1 \\ \hline x7 & x7 & x4 & x6 & x5 & x10 & x9 & x11 & x8 & e & x3 & x1 & x2 \\ \hline x8 & x8 & x10 & x11 & x9 & x1 & x3 & x2 & e & x7 & x5 & x4 & x6 \\ \hline x9 & x9 & x11 & x10 & x8 & x3 & x1 & e & x2 & x4 & x6 & x7 & x5 \\ \hline x10 & x10 & x8 & x9 & x11 & x2 & e & x1 & x3 & x6 & x4 & x5 & x7 \\ \hline x11 & x11 & x9 & x8 & x10 & e & x2 & x3 & x1 & x5 & x7 & x6 & x4 \\ \hline \end{array}$ Using this group table, determine the elements that lie in the center of $G$ and enter them as a comma-separated list. [ANS]
[ "e" ]
[ "EX" ]
[ [] ]
The center of a group $G$ is defined to be the set of all elements $x$ in $G$ such that $xy=yx$ for all $y$ in $G$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x7 & x8 & x9 & x10 & x11 & e & x1 & x2 & x3 & x4 & x5 \\ \hline x7 & x7 & x8 & x9 & x10 & x11 & x6 & x1 & x2 & x3 & x4 & x5 & e \\ \hline x8 & x8 & x9 & x10 & x11 & x6 & x7 & x2 & x3 & x4 & x5 & e & x1 \\ \hline x9 & x9 & x10 & x11 & x6 & x7 & x8 & x3 & x4 & x5 & e & x1 & x2 \\ \hline x10 & x10 & x11 & x6 & x7 & x8 & x9 & x4 & x5 & e & x1 & x2 & x3 \\ \hline x11 & x11 & x6 & x7 & x8 & x9 & x10 & x5 & e & x1 & x2 & x3 & x4 \\ \hline \end{array}$ Using this group table, determine the elements that lie in the center of $G$ and enter them as a comma-separated list. [ANS]
[ "(e, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0004
Abstract_algebra
Groups
Group axioms
3
[ "group tables", "order of elements" ]
The following is the group table of a group whose elements are $\lbrace e, x1, x2, \ldots, x11 \rbrace$, where $e$ is the identity: $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x11 & x10 & x9 & x8 & x7 & x3 & x2 & x1 & e & x5 & x4 \\ \hline x7 & x7 & x6 & x11 & x10 & x9 & x8 & x4 & x3 & x2 & x1 & e & x5 \\ \hline x8 & x8 & x7 & x6 & x11 & x10 & x9 & x5 & x4 & x3 & x2 & x1 & e \\ \hline x9 & x9 & x8 & x7 & x6 & x11 & x10 & e & x5 & x4 & x3 & x2 & x1 \\ \hline x10 & x10 & x9 & x8 & x7 & x6 & x11 & x1 & e & x5 & x4 & x3 & x2 \\ \hline x11 & x11 & x10 & x9 & x8 & x7 & x6 & x2 & x1 & e & x5 & x4 & x3 \\ \hline \end{array}$ (a) Express each of the following elements in terms of one element from $\lbrace e, x1, x2, \ldots, x11 \rbrace$. $\begin{array}{cc}\hline (x7)^2 & [ANS] \\ \hline (x8)^3 & [ANS] \\ \hline (x7)(x8) & [ANS] \\ \hline (x8)(x7) & [ANS] \\ \hline (x7)^{-1} & [ANS] \\ \hline \end{array}$ (b) Find all elements $x$ such that $x^3=e$. Enter N if no such element exists. [ANS] (c) Find all elements $x$ such that $x^2=x7$. Enter N if no such element exists. [ANS] (d) Find all elements $x$ such that $x^3=x8$. Enter N if no such element exists. [ANS]
[ "x3", "x11", "x2", "x4", "x10", "(e, x2, x4)", "N", "x11" ]
[ "EX", "EX", "EX", "EX", "EX", "UOL", "EX", "EX" ]
[ [], [], [], [], [], [], [], [] ]
The following is the group table of a group whose elements are $\lbrace e, x1, x2, \ldots, x11 \rbrace$, where $e$ is the identity: $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & e & x3 & x2 & x6 & x7 & x4 & x5 & x11 & x10 & x9 & x8 \\ \hline x2 & x2 & x3 & e & x1 & x7 & x6 & x5 & x4 & x9 & x8 & x11 & x10 \\ \hline x3 & x3 & x2 & x1 & e & x5 & x4 & x7 & x6 & x10 & x11 & x8 & x9 \\ \hline x4 & x4 & x7 & x5 & x6 & x11 & x8 & x10 & x9 & x2 & x1 & x3 & e \\ \hline x5 & x5 & x6 & x4 & x7 & x9 & x10 & x8 & x11 & x1 & x2 & e & x3 \\ \hline x6 & x6 & x5 & x7 & x4 & x8 & x11 & x9 & x10 & x3 & e & x2 & x1 \\ \hline x7 & x7 & x4 & x6 & x5 & x10 & x9 & x11 & x8 & e & x3 & x1 & x2 \\ \hline x8 & x8 & x10 & x11 & x9 & x1 & x3 & x2 & e & x7 & x5 & x4 & x6 \\ \hline x9 & x9 & x11 & x10 & x8 & x3 & x1 & e & x2 & x4 & x6 & x7 & x5 \\ \hline x10 & x10 & x8 & x9 & x11 & x2 & e & x1 & x3 & x6 & x4 & x5 & x7 \\ \hline x11 & x11 & x9 & x8 & x10 & e & x2 & x3 & x1 & x5 & x7 & x6 & x4 \\ \hline \end{array}$ (a) Express each of the following elements in terms of one element from $\lbrace e, x1, x2, \ldots, x11 \rbrace$. $\begin{array}{cc}\hline (x11)^2 & [ANS] \\ \hline (x2)^3 & [ANS] \\ \hline (x11)(x2) & [ANS] \\ \hline (x2)(x11) & [ANS] \\ \hline (x11)^{-1} & [ANS] \\ \hline \end{array}$ (b) Find all elements $x$ such that $x^3=e$. Enter N if no such element exists. [ANS] (c) Find all elements $x$ such that $x^2=x11$. Enter N if no such element exists. [ANS] (d) Find all elements $x$ such that $x^3=x2$. Enter N if no such element exists. [ANS]
[ "x4", "x2", "x8", "x10", "x4", "(e, x4, x5, x6, x7, x8, x9, x10, x11)", "x4", "x2" ]
[ "EX", "EX", "EX", "EX", "EX", "UOL", "EX", "EX" ]
[ [], [], [], [], [], [], [], [] ]
The following is the group table of a group whose elements are $\lbrace e, x1, x2, \ldots, x11 \rbrace$, where $e$ is the identity: $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x7 & x8 & x9 & x10 & x11 & e & x1 & x2 & x3 & x4 & x5 \\ \hline x7 & x7 & x8 & x9 & x10 & x11 & x6 & x1 & x2 & x3 & x4 & x5 & e \\ \hline x8 & x8 & x9 & x10 & x11 & x6 & x7 & x2 & x3 & x4 & x5 & e & x1 \\ \hline x9 & x9 & x10 & x11 & x6 & x7 & x8 & x3 & x4 & x5 & e & x1 & x2 \\ \hline x10 & x10 & x11 & x6 & x7 & x8 & x9 & x4 & x5 & e & x1 & x2 & x3 \\ \hline x11 & x11 & x6 & x7 & x8 & x9 & x10 & x5 & e & x1 & x2 & x3 & x4 \\ \hline \end{array}$ (a) Express each of the following elements in terms of one element from $\lbrace e, x1, x2, \ldots, x11 \rbrace$. $\begin{array}{cc}\hline (x7)^2 & [ANS] \\ \hline (x3)^3 & [ANS] \\ \hline (x7)(x3) & [ANS] \\ \hline (x3)(x7) & [ANS] \\ \hline (x7)^{-1} & [ANS] \\ \hline \end{array}$ (b) Find all elements $x$ such that $x^3=e$. Enter N if no such element exists. [ANS] (c) Find all elements $x$ such that $x^2=x7$. Enter N if no such element exists. [ANS] (d) Find all elements $x$ such that $x^3=x3$. Enter N if no such element exists. [ANS]
[ "x2", "x3", "x10", "x10", "x11", "(e, x2, x4)", "N", "(x1, x3, x5)" ]
[ "EX", "EX", "EX", "EX", "EX", "UOL", "EX", "UOL" ]
[ [], [], [], [], [], [], [], [] ]
Abstract_algebra_0005
Abstract_algebra
Groups
Group axioms
3
[ "group tables", "commutativity" ]
Two elements $x$, $y$ of a group are said to commute with each other if $xy=yx$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x11 & x10 & x9 & x8 & x7 & x3 & x2 & x1 & e & x5 & x4 \\ \hline x7 & x7 & x6 & x11 & x10 & x9 & x8 & x4 & x3 & x2 & x1 & e & x5 \\ \hline x8 & x8 & x7 & x6 & x11 & x10 & x9 & x5 & x4 & x3 & x2 & x1 & e \\ \hline x9 & x9 & x8 & x7 & x6 & x11 & x10 & e & x5 & x4 & x3 & x2 & x1 \\ \hline x10 & x10 & x9 & x8 & x7 & x6 & x11 & x1 & e & x5 & x4 & x3 & x2 \\ \hline x11 & x11 & x10 & x9 & x8 & x7 & x6 & x2 & x1 & e & x5 & x4 & x3 \\ \hline \end{array}$ Using this group table, determine the elements that commute with $x7$ and enter them as a comma-separated list. [ANS]
[ "(e, x3, x7, x10)" ]
[ "UOL" ]
[ [] ]
Two elements $x$, $y$ of a group are said to commute with each other if $xy=yx$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & e & x3 & x2 & x6 & x7 & x4 & x5 & x11 & x10 & x9 & x8 \\ \hline x2 & x2 & x3 & e & x1 & x7 & x6 & x5 & x4 & x9 & x8 & x11 & x10 \\ \hline x3 & x3 & x2 & x1 & e & x5 & x4 & x7 & x6 & x10 & x11 & x8 & x9 \\ \hline x4 & x4 & x7 & x5 & x6 & x11 & x8 & x10 & x9 & x2 & x1 & x3 & e \\ \hline x5 & x5 & x6 & x4 & x7 & x9 & x10 & x8 & x11 & x1 & x2 & e & x3 \\ \hline x6 & x6 & x5 & x7 & x4 & x8 & x11 & x9 & x10 & x3 & e & x2 & x1 \\ \hline x7 & x7 & x4 & x6 & x5 & x10 & x9 & x11 & x8 & e & x3 & x1 & x2 \\ \hline x8 & x8 & x10 & x11 & x9 & x1 & x3 & x2 & e & x7 & x5 & x4 & x6 \\ \hline x9 & x9 & x11 & x10 & x8 & x3 & x1 & e & x2 & x4 & x6 & x7 & x5 \\ \hline x10 & x10 & x8 & x9 & x11 & x2 & e & x1 & x3 & x6 & x4 & x5 & x7 \\ \hline x11 & x11 & x9 & x8 & x10 & e & x2 & x3 & x1 & x5 & x7 & x6 & x4 \\ \hline \end{array}$ Using this group table, determine the elements that commute with $x11$ and enter them as a comma-separated list. [ANS]
[ "(e, x4, x11)" ]
[ "UOL" ]
[ [] ]
Two elements $x$, $y$ of a group are said to commute with each other if $xy=yx$. Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline e & e & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 \\ \hline x1 & x1 & x2 & x3 & x4 & x5 & e & x7 & x8 & x9 & x10 & x11 & x6 \\ \hline x2 & x2 & x3 & x4 & x5 & e & x1 & x8 & x9 & x10 & x11 & x6 & x7 \\ \hline x3 & x3 & x4 & x5 & e & x1 & x2 & x9 & x10 & x11 & x6 & x7 & x8 \\ \hline x4 & x4 & x5 & e & x1 & x2 & x3 & x10 & x11 & x6 & x7 & x8 & x9 \\ \hline x5 & x5 & e & x1 & x2 & x3 & x4 & x11 & x6 & x7 & x8 & x9 & x10 \\ \hline x6 & x6 & x7 & x8 & x9 & x10 & x11 & e & x1 & x2 & x3 & x4 & x5 \\ \hline x7 & x7 & x8 & x9 & x10 & x11 & x6 & x1 & x2 & x3 & x4 & x5 & e \\ \hline x8 & x8 & x9 & x10 & x11 & x6 & x7 & x2 & x3 & x4 & x5 & e & x1 \\ \hline x9 & x9 & x10 & x11 & x6 & x7 & x8 & x3 & x4 & x5 & e & x1 & x2 \\ \hline x10 & x10 & x11 & x6 & x7 & x8 & x9 & x4 & x5 & e & x1 & x2 & x3 \\ \hline x11 & x11 & x6 & x7 & x8 & x9 & x10 & x5 & e & x1 & x2 & x3 & x4 \\ \hline \end{array}$ Using this group table, determine the elements that commute with $x7$ and enter them as a comma-separated list. [ANS]
[ "(e, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0006
Abstract_algebra
Groups
Subgroups
3
[ "subgroups" ]
Find all elements of the subgroup $\langle 12 \rangle$ in $\mathbb{Z}_{84}$. [ANS] Find all elements of the subgroup $\langle 9 \rangle$ in $\mathbb{Z}_{72}$. [ANS] For both parts, enter your answers as comma-separated lists.
[ "(0, 12, 24, 36, 48, 60, 72)", "(0, 9, 18, 27, 36, 45, 54, 63)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find all elements of the subgroup $\langle 6 \rangle$ in $\mathbb{Z}_{42}$. [ANS] Find all elements of the subgroup $\langle 12 \rangle$ in $\mathbb{Z}_{96}$. [ANS] For both parts, enter your answers as comma-separated lists.
[ "(0, 6, 12, 18, 24, 30, 36)", "(0, 12, 24, 36, 48, 60, 72, 84)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find all elements of the subgroup $\langle 8 \rangle$ in $\mathbb{Z}_{56}$. [ANS] Find all elements of the subgroup $\langle 11 \rangle$ in $\mathbb{Z}_{77}$. [ANS] For both parts, enter your answers as comma-separated lists.
[ "(0, 8, 16, 24, 32, 40, 48)", "(0, 11, 22, 33, 44, 55, 66)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0007
Abstract_algebra
Groups
Subgroups
3
[ "group tables", "order of elements" ]
Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline e & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline x_{1} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & e & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} \\ \hline x_{2} & x_{2} & x_{3} & x_{4} & x_{5} & e & x_{1} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} \\ \hline x_{3} & x_{3} & x_{4} & x_{5} & e & x_{1} & x_{2} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} \\ \hline x_{4} & x_{4} & x_{5} & e & x_{1} & x_{2} & x_{3} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} \\ \hline x_{5} & x_{5} & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\ \hline x_{6} & x_{6} & x_{11} & x_{10} & x_{9} & x_{8} & x_{7} & x_{3} & x_{2} & x_{1} & e & x_{5} & x_{4} \\ \hline x_{7} & x_{7} & x_{6} & x_{11} & x_{10} & x_{9} & x_{8} & x_{4} & x_{3} & x_{2} & x_{1} & e & x_{5} \\ \hline x_{8} & x_{8} & x_{7} & x_{6} & x_{11} & x_{10} & x_{9} & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & e \\ \hline x_{9} & x_{9} & x_{8} & x_{7} & x_{6} & x_{11} & x_{10} & e & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} \\ \hline x_{10} & x_{10} & x_{9} & x_{8} & x_{7} & x_{6} & x_{11} & x_{1} & e & x_{5} & x_{4} & x_{3} & x_{2} \\ \hline x_{11} & x_{11} & x_{10} & x_{9} & x_{8} & x_{7} & x_{6} & x_{2} & x_{1} & e & x_{5} & x_{4} & x_{3} \\ \hline \end{array}$ Determine the order of the following elements and complete the table: $\begin{array}{cc}\hline x & order(x) \\ \hline x_{7} & [ANS] \\ \hline x_{8} & [ANS] \\ \hline x_{7} x_{8} & [ANS] \\ \hline (x_{7})^{2}(x_{8}) & [ANS] \\ \hline (x_{7})^{-1}(x_{8}) & [ANS] \\ \hline \end{array}$
[ "4", "4", "3", "4", "6" ]
[ "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [] ]
Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline e & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline x_{1} & x_{1} & e & x_{3} & x_{2} & x_{6} & x_{7} & x_{4} & x_{5} & x_{11} & x_{10} & x_{9} & x_{8} \\ \hline x_{2} & x_{2} & x_{3} & e & x_{1} & x_{7} & x_{6} & x_{5} & x_{4} & x_{9} & x_{8} & x_{11} & x_{10} \\ \hline x_{3} & x_{3} & x_{2} & x_{1} & e & x_{5} & x_{4} & x_{7} & x_{6} & x_{10} & x_{11} & x_{8} & x_{9} \\ \hline x_{4} & x_{4} & x_{7} & x_{5} & x_{6} & x_{11} & x_{8} & x_{10} & x_{9} & x_{2} & x_{1} & x_{3} & e \\ \hline x_{5} & x_{5} & x_{6} & x_{4} & x_{7} & x_{9} & x_{10} & x_{8} & x_{11} & x_{1} & x_{2} & e & x_{3} \\ \hline x_{6} & x_{6} & x_{5} & x_{7} & x_{4} & x_{8} & x_{11} & x_{9} & x_{10} & x_{3} & e & x_{2} & x_{1} \\ \hline x_{7} & x_{7} & x_{4} & x_{6} & x_{5} & x_{10} & x_{9} & x_{11} & x_{8} & e & x_{3} & x_{1} & x_{2} \\ \hline x_{8} & x_{8} & x_{10} & x_{11} & x_{9} & x_{1} & x_{3} & x_{2} & e & x_{7} & x_{5} & x_{4} & x_{6} \\ \hline x_{9} & x_{9} & x_{11} & x_{10} & x_{8} & x_{3} & x_{1} & e & x_{2} & x_{4} & x_{6} & x_{7} & x_{5} \\ \hline x_{10} & x_{10} & x_{8} & x_{9} & x_{11} & x_{2} & e & x_{1} & x_{3} & x_{6} & x_{4} & x_{5} & x_{7} \\ \hline x_{11} & x_{11} & x_{9} & x_{8} & x_{10} & e & x_{2} & x_{3} & x_{1} & x_{5} & x_{7} & x_{6} & x_{4} \\ \hline \end{array}$ Determine the order of the following elements and complete the table: $\begin{array}{cc}\hline x & order(x) \\ \hline x_{11} & [ANS] \\ \hline x_{2} & [ANS] \\ \hline x_{11} x_{2} & [ANS] \\ \hline (x_{11})^{2}(x_{2}) & [ANS] \\ \hline (x_{11})^{-1}(x_{2}) & [ANS] \\ \hline \end{array}$
[ "3", "2", "3", "3", "3" ]
[ "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [] ]
Consider the group whose group table is given as follows ($e$ is the identity element): $\begin{array}{ccccccccccccc}\hline & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline e & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} \\ \hline x_{1} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & e & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} \\ \hline x_{2} & x_{2} & x_{3} & x_{4} & x_{5} & e & x_{1} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} \\ \hline x_{3} & x_{3} & x_{4} & x_{5} & e & x_{1} & x_{2} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} \\ \hline x_{4} & x_{4} & x_{5} & e & x_{1} & x_{2} & x_{3} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} \\ \hline x_{5} & x_{5} & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\ \hline x_{6} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & e & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ \hline x_{7} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & e \\ \hline x_{8} & x_{8} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} & x_{2} & x_{3} & x_{4} & x_{5} & e & x_{1} \\ \hline x_{9} & x_{9} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} & x_{3} & x_{4} & x_{5} & e & x_{1} & x_{2} \\ \hline x_{10} & x_{10} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} & x_{4} & x_{5} & e & x_{1} & x_{2} & x_{3} \\ \hline x_{11} & x_{11} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{5} & e & x_{1} & x_{2} & x_{3} & x_{4} \\ \hline \end{array}$ Determine the order of the following elements and complete the table: $\begin{array}{cc}\hline x & order(x) \\ \hline x_{7} & [ANS] \\ \hline x_{3} & [ANS] \\ \hline x_{7} x_{3} & [ANS] \\ \hline (x_{7})^{2}(x_{3}) & [ANS] \\ \hline (x_{7})^{-1}(x_{3}) & [ANS] \\ \hline \end{array}$
[ "6", "2", "6", "6", "6" ]
[ "NV", "NV", "NV", "NV", "NV" ]
[ [], [], [], [], [] ]
Abstract_algebra_0008
Abstract_algebra
Groups
Subgroups
3
[ "subgroups", "generators" ]
Find all elements $x$ in $U(198)$ such that $\langle x \rangle$=$\langle 17 \rangle$: [ANS] Also find all elements $x$ in $U(189)$ such that $\langle x \rangle$=$\langle 4 \rangle$: [ANS] For both parts, enter your answers as comma-separated lists.
[ "(17, 161, 107, 35)", "(4, 16, 67, 79, 130, 142)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find all elements $x$ in $U(164)$ such that $\langle x \rangle$=$\langle 3 \rangle$: [ANS] Also find all elements $x$ in $U(205)$ such that $\langle x \rangle$=$\langle 3 \rangle$: [ANS] For both parts, enter your answers as comma-separated lists.
[ "(3, 27, 79, 55)", "(3, 27, 38, 137)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find all elements $x$ in $U(175)$ such that $\langle x \rangle$=$\langle 6 \rangle$: [ANS] Also find all elements $x$ in $U(190)$ such that $\langle x \rangle$=$\langle 61 \rangle$: [ANS] For both parts, enter your answers as comma-separated lists.
[ "(6, 41, 111, 146)", "(61, 111, 161, 131, 101, 81)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0009
Abstract_algebra
Groups
Subgroups
4
[ "subgroups", "generators" ]
Find one pair of elements $x,$ $y$ in $U(14)$ such that $\langle x \rangle$ and $\langle y \rangle$ are proper subgroups of $U(14)$ and that $\langle x,y \rangle=U(14)$. Be sure that $x<y$ with $1 \leq x, y<n$. $(x,y)=($ [ANS] $,$ [ANS] $)$
[ "9", "13" ]
[ "NV", "NV" ]
[ [] ]
Find one pair of elements $x,$ $y$ in $U(7)$ such that $\langle x \rangle$ and $\langle y \rangle$ are proper subgroups of $U(7)$ and that $\langle x,y \rangle=U(7)$. Be sure that $x<y$ with $1 \leq x, y<n$. $(x,y)=($ [ANS] $,$ [ANS] $)$
[ "(2, 6)" ]
[ "OL" ]
[ [] ]
Find one pair of elements $x,$ $y$ in $U(8)$ such that $\langle x \rangle$ and $\langle y \rangle$ are proper subgroups of $U(8)$ and that $\langle x,y \rangle=U(8)$. Be sure that $x<y$ with $1 \leq x, y<n$. $(x,y)=($ [ANS] $,$ [ANS] $)$
[ "(3, 5)" ]
[ "OL" ]
[ [] ]
Abstract_algebra_0010
Abstract_algebra
Groups
Cyclic groups
3
[ "cyclic groups", "generators" ]
Determine all generators of $\mathbb{Z}_{21}$. Enter your answer as a comma-separated list. [ANS]
[ "(1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20)" ]
[ "UOL" ]
[ [] ]
Determine all generators of $\mathbb{Z}_{15}$. Enter your answer as a comma-separated list. [ANS]
[ "(1, 2, 4, 7, 8, 11, 13, 14)" ]
[ "UOL" ]
[ [] ]
Determine all generators of $\mathbb{Z}_{18}$. Enter your answer as a comma-separated list. [ANS]
[ "(1, 5, 7, 11, 13, 17)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0011
Abstract_algebra
Groups
Cyclic groups
3
[ "cyclic groups", "order of elements" ]
(a) Find all elements in $\{ cyclic(143) \}$ of order $13$. [ANS] (b) Find all elements in the subgroup $\langle 13 \rangle$ of $\{ cyclic(143) \}$. [ANS]
[ "(11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132)", "(0, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130)" ]
[ "UOL", "UOL" ]
[ [], [] ]
(a) Find all elements in $\{ cyclic(51) \}$ of order $3$. [ANS] (b) Find all elements in the subgroup $\langle 3 \rangle$ of $\{ cyclic(51) \}$. [ANS]
[ "(17, 34)", "(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48)" ]
[ "UOL", "UOL" ]
[ [], [] ]
(a) Find all elements in $\{ cyclic(55) \}$ of order $5$. [ANS] (b) Find all elements in the subgroup $\langle 5 \rangle$ of $\{ cyclic(55) \}$. [ANS]
[ "(11, 22, 33, 44)", "(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0012
Abstract_algebra
Groups
Cyclic groups
4
[ "cyclic groups", "generators", "subgroups" ]
Find all elements $x_1, x_2, x_3,...$ in $\mathbb{Z}_{35}$ such that each $\langle x_i \rangle$ is a proper subgroup of $\mathbb{Z}_{35}$. Enter your answer as a comma-separated list. [ANS]
[ "(0, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30)" ]
[ "UOL" ]
[ [] ]
Find all elements $x_1, x_2, x_3,...$ in $\mathbb{Z}_{33}$ such that each $\langle x_i \rangle$ is a proper subgroup of $\mathbb{Z}_{33}$. Enter your answer as a comma-separated list. [ANS]
[ "(0, 3, 6, 9, 11, 12, 15, 18, 21, 22, 24, 27, 30)" ]
[ "UOL" ]
[ [] ]
Find all elements $x_1, x_2, x_3,...$ in $\mathbb{Z}_{28}$ such that each $\langle x_i \rangle$ is a proper subgroup of $\mathbb{Z}_{28}$. Enter your answer as a comma-separated list. [ANS]
[ "(0, 2, 4, 6, 7, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0013
Abstract_algebra
Groups
Cyclic groups
6
[ "cyclic groups", "generators", "subgroups" ]
Find one pair $(x, y)$ of elements of $\mathbb{Z}_{1309}$ such that both $\langle x \rangle, \langle y \rangle$ are proper subgroups of $\mathbb{Z}_{1309}$, and that $\langle x, y \rangle=\mathbb{Z}_{1309}$. $x=$ [ANS] $y=$ [ANS] HINT: 1309 is a product of three primes.
[ "(17, 11)" ]
[ "UOL" ]
[ [] ]
Find one pair $(x, y)$ of elements of $\mathbb{Z}_{114}$ such that both $\langle x \rangle, \langle y \rangle$ are proper subgroups of $\mathbb{Z}_{114}$, and that $\langle x, y \rangle=\mathbb{Z}_{114}$. $x=$ [ANS] $y=$ [ANS] HINT: 114 is a product of three primes.
[ "(2, 19)" ]
[ "UOL" ]
[ [] ]
Find one pair $(x, y)$ of elements of $\mathbb{Z}_{195}$ such that both $\langle x \rangle, \langle y \rangle$ are proper subgroups of $\mathbb{Z}_{195}$, and that $\langle x, y \rangle=\mathbb{Z}_{195}$. $x=$ [ANS] $y=$ [ANS] HINT: 195 is a product of three primes.
[ "(5, 13)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0014
Abstract_algebra
Groups
Cyclic groups
4
[ "cyclic groups", "order of groups", "order of elements", "subgroups" ]
Let $x,$ $y$ be elements of a group G. If $\textrm{ord}(x)=18$ and $\textrm{ord}(y)=24$, what are the possible values for the order of $\langle x \rangle \cap \langle y \rangle$? Enter your answer as a list of numbers separated by commas, or a single number if there is only one possible value. [ANS]
[ "(1, 2, 3, 6)" ]
[ "OL" ]
[ [] ]
Let $x,$ $y$ be elements of a group G. If $\textrm{ord}(x)=12$ and $\textrm{ord}(y)=15$, what are the possible values for the order of $\langle x \rangle \cap \langle y \rangle$? Enter your answer as a list of numbers separated by commas, or a single number if there is only one possible value. [ANS]
[ "(1, 3)" ]
[ "OL" ]
[ [] ]
Let $x,$ $y$ be elements of a group G. If $\textrm{ord}(x)=14$ and $\textrm{ord}(y)=21$, what are the possible values for the order of $\langle x \rangle \cap \langle y \rangle$? Enter your answer as a list of numbers separated by commas, or a single number if there is only one possible value. [ANS]
[ "(1, 7)" ]
[ "OL" ]
[ [] ]
Abstract_algebra_0015
Abstract_algebra
Groups
Cyclic groups
2
[ "cyclic groups", "order of elements" ]
Determine the order of every element of $\mathbb{Z}_{21}$. Enter your answer as a comma-separated ORDERED list of this form: $\textrm{ord}(0),$ $\textrm{ord}(1),$... $\textrm{ord}(j),$... [ANS]
[ "(1, 21, 21, 7, 21, 21, 7, 3, 21, 7, 21, 21, 7, 21, 3, 7, 21, 21, 7, 21, 21)" ]
[ "OL" ]
[ [] ]
Determine the order of every element of $\mathbb{Z}_{15}$. Enter your answer as a comma-separated ORDERED list of this form: $\textrm{ord}(0),$ $\textrm{ord}(1),$... $\textrm{ord}(j),$... [ANS]
[ "(1, 15, 15, 5, 15, 3, 5, 15, 15, 5, 3, 15, 5, 15, 15)" ]
[ "OL" ]
[ [] ]
Determine the order of every element of $\mathbb{Z}_{18}$. Enter your answer as a comma-separated ORDERED list of this form: $\textrm{ord}(0),$ $\textrm{ord}(1),$... $\textrm{ord}(j),$... [ANS]
[ "(1, 18, 9, 6, 9, 18, 3, 18, 9, 2, 9, 18, 3, 18, 9, 6, 9, 18)" ]
[ "OL" ]
[ [] ]
Abstract_algebra_0017
Abstract_algebra
Groups
Product of groups
4
[ "product of groups", "generators" ]
Find a pair of NON-IDENTITY elements $A, B$ in $\mathbb{Z}_{176}$ such that $\mathbb{Z}_{176}$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. $A, B=$ [ANS]
[ "(16, 11)" ]
[ "UOL" ]
[ [] ]
Find a pair of NON-IDENTITY elements $A, B$ in $\mathbb{Z}_{75}$ such that $\mathbb{Z}_{75}$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. $A, B=$ [ANS]
[ "(3, 25)" ]
[ "UOL" ]
[ [] ]
Find a pair of NON-IDENTITY elements $A, B$ in $\mathbb{Z}_{77}$ such that $\mathbb{Z}_{77}$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. $A, B=$ [ANS]
[ "(7, 11)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0018
Abstract_algebra
Groups
Product of groups
4
[ "products of groups", "generators" ]
Find a pair of elements $A, B$ in $U(63)$ such that $U(63)$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. Be sure to enter your answer as a comma-separated list of two POSITIVE integers $< 63$. $A, B=$ [ANS]
[ "(10, 29)" ]
[ "UOL" ]
[ [] ]
Find a pair of elements $A, B$ in $U(69)$ such that $U(69)$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. Be sure to enter your answer as a comma-separated list of two POSITIVE integers $< 69$. $A, B=$ [ANS]
[ "(47, 28)" ]
[ "UOL" ]
[ [] ]
Find a pair of elements $A, B$ in $U(91)$ such that $U(91)$ is isomorphic to $\langle A \rangle \times \langle B \rangle$. Be sure to enter your answer as a comma-separated list of two POSITIVE integers $< 91$. $A, B=$ [ANS]
[ "(66, 15)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0019
Abstract_algebra
Groups
Cosets, Lagrange's theorem, and normality
2
[ "cosets" ]
Let $H$ be a subgroup of $G$. For any element $g$ in $G$. recall that the left coset $gH$ is by definition the subset: $gH:=\lbrace gh: h \in H \rbrace$ For each of the following triples of $(G, H, g)$, write down the elements of the left coset $gH$ (enter your answer as a comma-separated list): (i) $G=\mathbb{Z}_{80}$, $H=10 \mathbb{Z}_{80}$, $g=53 \pmod{80}$ [ANS] (ii) $G=$ the quaternion group $Q_8=\lbrace 1,-1, i,-i, j,-j, k,-k \rbrace$ $H=\left<k\right>$ $g$ $=k$ [ANS]
[ "(53, 63, 73, 3, 13, 23, 33, 43)", "(1, -1, k, -k)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Let $H$ be a subgroup of $G$. For any element $g$ in $G$. recall that the left coset $gH$ is by definition the subset: $gH:=\lbrace gh: h \in H \rbrace$ For each of the following triples of $(G, H, g)$, write down the elements of the left coset $gH$ (enter your answer as a comma-separated list): (i) $G=\mathbb{Z}_{56}$, $H=14 \mathbb{Z}_{56}$, $g=12 \pmod{56}$ [ANS] (ii) $G=$ the quaternion group $Q_8=\lbrace 1,-1, i,-i, j,-j, k,-k \rbrace$ $H=\left<j\right>$ $g$ $=-i$ [ANS]
[ "(12, 26, 40, 54)", "(-i, i, k, -k)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Let $H$ be a subgroup of $G$. For any element $g$ in $G$. recall that the left coset $gH$ is by definition the subset: $gH:=\lbrace gh: h \in H \rbrace$ For each of the following triples of $(G, H, g)$, write down the elements of the left coset $gH$ (enter your answer as a comma-separated list): (i) $G=\mathbb{Z}_{55}$, $H=11 \mathbb{Z}_{55}$, $g=19 \pmod{55}$ [ANS] (ii) $G=$ the quaternion group $Q_8=\lbrace 1,-1, i,-i, j,-j, k,-k \rbrace$ $H=\left<j\right>$ $g$ $=k$ [ANS]
[ "(19, 30, 41, 52, 8)", "(k, -k, i, -i)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0020
Abstract_algebra
Groups
Cosets, Lagrange's theorem, and normality
2
[ "cosets", "coset representatives" ]
Find a complete set of coset representatives of the subgroup $\langle 19 \rangle$ in $U(56)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 56$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS] Find a complete set of coset representatives of the subgroup $\langle 8 \rangle$ in $U(51)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 51$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS]
[ "(1, 5, 11, 29)", "(1, 5, 11, 19)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find a complete set of coset representatives of the subgroup $\langle 4 \rangle$ in $U(35)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 35$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS] Find a complete set of coset representatives of the subgroup $\langle 20 \rangle$ in $U(63)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 63$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS]
[ "(1, 2, 3, 6)", "(1, 2, 4, 5, 8, 10)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Find a complete set of coset representatives of the subgroup $\langle 37 \rangle$ in $U(42)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 42$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS] Find a complete set of coset representatives of the subgroup $\langle 21 \rangle$ in $U(52)$. Enter your answer as a comma separated list; make sure that EACH coset representative you enter $\ast$ is $>0$ and $< 52$, and $\ast$ is the smallest possible value in this range, i.e. if you enter the value $A$, there is not another value $0<B<$ with $B<A$ such that $A, B$ represents the same coset. [ANS]
[ "(1, 5, 11, 13)", "(1, 3, 7, 9, 27, 29)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0022
Abstract_algebra
Groups
Cosets, Lagrange's theorem, and normality
6
[ "Lagrange theorem" ]
Let $H$ be a proper subgroup of a group $G$, and let $K$ be a proper subgroup of $H$. If $\#K=35$ and $\#G=350$, what are the possible orders of $H$? Enter your answer as a comma separated list. [ANS]
[ "(70, 175)" ]
[ "UOL" ]
[ [] ]
Let $H$ be a proper subgroup of a group $G$, and let $K$ be a proper subgroup of $H$. If $\#K=22$ and $\#G=308$, what are the possible orders of $H$? Enter your answer as a comma separated list. [ANS]
[ "(44, 154)" ]
[ "UOL" ]
[ [] ]
Let $H$ be a proper subgroup of a group $G$, and let $K$ be a proper subgroup of $H$. If $\#K=26$ and $\#G=260$, what are the possible orders of $H$? Enter your answer as a comma separated list. [ANS]
[ "(52, 130)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0023
Abstract_algebra
Groups
Cosets, Lagrange's theorem, and normality
2
[ "cosets" ]
(a) Determine all elements of the coset $4+\langle 10 \rangle$ in the group $\mathbb{Z}_{14}$. Enter your answer as a comma separated list; make sure that each element you enter is $\geq 0$ and $< 14$. [ANS] (b) Determine all elements of the coset $1 \langle 26 \rangle$ in the group $U(57)$. Enter your answer as a comma separated list; make sure that each element you enter is $>0$ and $< 57$. [ANS]
[ "(4, 6, 8, 10, 12, 0, 2)", "(26, 49, 20, 7, 11, 1)" ]
[ "UOL", "UOL" ]
[ [], [] ]
(a) Determine all elements of the coset $1+\langle 6 \rangle$ in the group $\mathbb{Z}_{6}$. Enter your answer as a comma separated list; make sure that each element you enter is $\geq 0$ and $< 6$. [ANS] (b) Determine all elements of the coset $2 \langle 26 \rangle$ in the group $U(57)$. Enter your answer as a comma separated list; make sure that each element you enter is $>0$ and $< 57$. [ANS]
[ "1", "(52, 41, 40, 14, 22, 2)" ]
[ "NV", "UOL" ]
[ [], [] ]
(a) Determine all elements of the coset $2+\langle 6 \rangle$ in the group $\mathbb{Z}_{9}$. Enter your answer as a comma separated list; make sure that each element you enter is $\geq 0$ and $< 9$. [ANS] (b) Determine all elements of the coset $1 \langle 41 \rangle$ in the group $U(72)$. Enter your answer as a comma separated list; make sure that each element you enter is $>0$ and $< 72$. [ANS]
[ "(2, 5, 8)", "(41, 25, 17, 49, 65, 1)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0024
Abstract_algebra
Groups
Homomorphisms
6
[ "group homomorphisms", "cyclic groups", "order of groups", "image" ]
In this problem we determine the number of group homomorphisms $f: \mathbb{Z}_{245} \rightarrow \mathbb{Z}_{175}$ such that the image of $f$ has size exactly $7$. First, since $245 \equiv 0$ $\pmod{245}$, we have $\begin{array}{llllllll} 0 & \equiv & f(0) && \text{property of homomorphisms} \\ & \equiv & f(245) \\ & \equiv & 245 f(1) \pmod{175} && \text{property of homomorphisms.} \end{array}$ On the other hand, $f(1)$ is an element of $\mathbb{Z}_{175}$ so $0 \equiv 175 f(1) \pmod{175}$. Thus $\gcd(245,175) f(1) \equiv 0$ $\pmod{175}$ i.e. $35 f(1) \equiv 0$ $\pmod{175}$ whence $(\ast)$ $f(1)=5 u$ for some $u$ in $\mathbb{Z}_{175}$. On the other hand, the image of $f$ is a subgroup of the cyclic group $\mathbb{Z}_{175}$. But a cyclic group has at most ONE subgroup of any given order, so if the image of $f$ has size $7$ then the elements of the image of $f$ must be [ANS] (please enter your answer as an ORDERED list) Combine this with $(\ast)$ and we see that in order for the image of $f$ to have size $7$, the choices for $f(1)$ are [ANS] (please enter your answer as an ORDERED list) Consequently, the number of such functions $f$ is [ANS]. Please enter your answer as a number.
[ "(0, 25, 50, 75, 100, 125, 150)", "(25, 50, 75, 100, 125, 150)", "6" ]
[ "OL", "OL", "NV" ]
[ [], [], [] ]
In this problem we determine the number of group homomorphisms $f: \mathbb{Z}_{28} \rightarrow \mathbb{Z}_{98}$ such that the image of $f$ has size exactly $2$. First, since $28 \equiv 0$ $\pmod{28}$, we have $\begin{array}{llllllll} 0 & \equiv & f(0) && \text{property of homomorphisms} \\ & \equiv & f(28) \\ & \equiv & 28 f(1) \pmod{98} && \text{property of homomorphisms.} \end{array}$ On the other hand, $f(1)$ is an element of $\mathbb{Z}_{98}$ so $0 \equiv 98 f(1) \pmod{98}$. Thus $\gcd(28,98) f(1) \equiv 0$ $\pmod{98}$ i.e. $14 f(1) \equiv 0$ $\pmod{98}$ whence $(\ast)$ $f(1)=7 u$ for some $u$ in $\mathbb{Z}_{98}$. On the other hand, the image of $f$ is a subgroup of the cyclic group $\mathbb{Z}_{98}$. But a cyclic group has at most ONE subgroup of any given order, so if the image of $f$ has size $2$ then the elements of the image of $f$ must be [ANS] (please enter your answer as an ORDERED list) Combine this with $(\ast)$ and we see that in order for the image of $f$ to have size $2$, the choices for $f(1)$ are [ANS] (please enter your answer as an ORDERED list) Consequently, the number of such functions $f$ is [ANS]. Please enter your answer as a number.
[ "(0, 49)", "49", "1" ]
[ "OL", "NV", "NV" ]
[ [], [], [] ]
In this problem we determine the number of group homomorphisms $f: \mathbb{Z}_{45} \rightarrow \mathbb{Z}_{75}$ such that the image of $f$ has size exactly $3$. First, since $45 \equiv 0$ $\pmod{45}$, we have $\begin{array}{llllllll} 0 & \equiv & f(0) && \text{property of homomorphisms} \\ & \equiv & f(45) \\ & \equiv & 45 f(1) \pmod{75} && \text{property of homomorphisms.} \end{array}$ On the other hand, $f(1)$ is an element of $\mathbb{Z}_{75}$ so $0 \equiv 75 f(1) \pmod{75}$. Thus $\gcd(45,75) f(1) \equiv 0$ $\pmod{75}$ i.e. $15 f(1) \equiv 0$ $\pmod{75}$ whence $(\ast)$ $f(1)=5 u$ for some $u$ in $\mathbb{Z}_{75}$. On the other hand, the image of $f$ is a subgroup of the cyclic group $\mathbb{Z}_{75}$. But a cyclic group has at most ONE subgroup of any given order, so if the image of $f$ has size $3$ then the elements of the image of $f$ must be [ANS] (please enter your answer as an ORDERED list) Combine this with $(\ast)$ and we see that in order for the image of $f$ to have size $3$, the choices for $f(1)$ are [ANS] (please enter your answer as an ORDERED list) Consequently, the number of such functions $f$ is [ANS]. Please enter your answer as a number.
[ "(0, 25, 50)", "(25, 50)", "2" ]
[ "OL", "OL", "NV" ]
[ [], [], [] ]
Abstract_algebra_0025
Abstract_algebra
Groups
Group actions
6
[ "group actions", "orbit-stabilizer theorem" ]
Let $G$ be a finite group of order $77$ acting on a finite set $S$ of size $11$. What are the possible values for the NUMBER of orbits of this $G$-action? Enter your answer as a comma-separated list. [ANS]
[ "(1, 5, 11)" ]
[ "UOL" ]
[ [] ]
Let $G$ be a finite group of order $35$ acting on a finite set $S$ of size $7$. What are the possible values for the NUMBER of orbits of this $G$-action? Enter your answer as a comma-separated list. [ANS]
[ "(1, 3, 7)" ]
[ "UOL" ]
[ [] ]
Let $G$ be a finite group of order $15$ acting on a finite set $S$ of size $5$. What are the possible values for the NUMBER of orbits of this $G$-action? Enter your answer as a comma-separated list. [ANS]
[ "(1, 3, 5)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0026
Abstract_algebra
Groups
Group actions
6
[ "group actions", "orbit-stabilizer theorem" ]
Let $G$ be a finite group of order $35$ acting on a finite set $S$ of size $34$. What are the possible values for the size of the orbit of an element of $S$? Enter your answer as a comma-separated list. [ANS]
[ "(1, 5, 7)" ]
[ "UOL" ]
[ [] ]
Let $G$ be a finite group of order $49$ acting on a finite set $S$ of size $17$. What are the possible values for the size of the orbit of an element of $S$? Enter your answer as a comma-separated list. [ANS]
[ "(1, 7)" ]
[ "UOL" ]
[ [] ]
Let $G$ be a finite group of order $36$ acting on a finite set $S$ of size $23$. What are the possible values for the size of the orbit of an element of $S$? Enter your answer as a comma-separated list. [ANS]
[ "(1, 2, 3, 4, 6, 9, 12, 18)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0027
Abstract_algebra
Groups
Group actions
4
[ "group actions", "conjugation", "conjugacy classes" ]
In this problem we determine the conjugacy class of the elements $a^{6} b^0$ and $a^{6} b^1$ in the dihedral group $D_{11}$. Complete the table by entering Y or N in each entry: $\begin{array}{ccc}\hline i & is a^i b^0conjugate to a^{6} b^0? & is a^i b^1conjugate to a^{6} b^1? \\ \hline 0 & [ANS] & [ANS] \\ \hline 1 & [ANS] & [ANS] \\ \hline 2 & [ANS] & [ANS] \\ \hline 3 & [ANS] & [ANS] \\ \hline 4 & [ANS] & [ANS] \\ \hline 5 & [ANS] & [ANS] \\ \hline 6 & [ANS] & [ANS] \\ \hline 7 & [ANS] & [ANS] \\ \hline 8 & [ANS] & [ANS] \\ \hline 9 & [ANS] & [ANS] \\ \hline 10 & [ANS] & [ANS] \\ \hline \end{array}$
[ "N", "Y", "N", "Y", "N", "Y", "N", "Y", "N", "Y", "Y", "Y", "Y", "Y", "N", "Y", "N", "Y", "N", "Y", "N", "Y" ]
[ "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF" ]
[ [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [] ]
In this problem we determine the conjugacy class of the elements $a^{5} b^0$ and $a^{5} b^1$ in the dihedral group $D_{6}$. Complete the table by entering Y or N in each entry: $\begin{array}{ccc}\hline i & is a^i b^0conjugate to a^{5} b^0? & is a^i b^1conjugate to a^{5} b^1? \\ \hline 0 & [ANS] & [ANS] \\ \hline 1 & [ANS] & [ANS] \\ \hline 2 & [ANS] & [ANS] \\ \hline 3 & [ANS] & [ANS] \\ \hline 4 & [ANS] & [ANS] \\ \hline 5 & [ANS] & [ANS] \\ \hline \end{array}$
[ "N", "N", "Y", "Y", "N", "N", "N", "Y", "N", "N", "Y", "Y" ]
[ "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF" ]
[ [], [], [], [], [], [], [], [], [], [], [], [] ]
In this problem we determine the conjugacy class of the elements $a^{5} b^0$ and $a^{5} b^1$ in the dihedral group $D_{8}$. Complete the table by entering Y or N in each entry: $\begin{array}{ccc}\hline i & is a^i b^0conjugate to a^{5} b^0? & is a^i b^1conjugate to a^{5} b^1? \\ \hline 0 & [ANS] & [ANS] \\ \hline 1 & [ANS] & [ANS] \\ \hline 2 & [ANS] & [ANS] \\ \hline 3 & [ANS] & [ANS] \\ \hline 4 & [ANS] & [ANS] \\ \hline 5 & [ANS] & [ANS] \\ \hline 6 & [ANS] & [ANS] \\ \hline 7 & [ANS] & [ANS] \\ \hline \end{array}$
[ "N", "N", "N", "Y", "N", "N", "Y", "Y", "N", "N", "Y", "Y", "N", "N", "N", "Y" ]
[ "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF", "TF" ]
[ [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [] ]
Abstract_algebra_0028
Abstract_algebra
Rings
Ring axioms
2
[ "ring axioms" ]
Let $a=148$ and $b=157$ be elements in the ring $\mathbb{Z}_{175}$. Evaluate the following expressions. For each one, enter your answer as an integer $0 \leq n < 175$. (a) $a+b=$ [ANS] (b) $a-b=$ [ANS] (c) $a \times b=$ [ANS]
[ "130", "166", "136" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Let $a=40$ and $b=62$ be elements in the ring $\mathbb{Z}_{63}$. Evaluate the following expressions. For each one, enter your answer as an integer $0 \leq n < 63$. (a) $a+b=$ [ANS] (b) $a-b=$ [ANS] (c) $a \times b=$ [ANS]
[ "39", "41", "23" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Let $a=56$ and $b=60$ be elements in the ring $\mathbb{Z}_{75}$. Evaluate the following expressions. For each one, enter your answer as an integer $0 \leq n < 75$. (a) $a+b=$ [ANS] (b) $a-b=$ [ANS] (c) $a \times b=$ [ANS]
[ "41", "71", "60" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Abstract_algebra_0029
Abstract_algebra
Rings
Ring axioms
3
[ "ring axioms" ]
For any set $X$, denote by $P^X$ the set of all subsets of $X$ (including the empty set $\emptyset$ and $X$ itself). This is called the power set of $X$. If $A, B$ are elements of $P^X$, define $A+B:=(A-B) \cup (B-A)$ $A \times B:=A \cap B$ FACT: $P^X$ together with these two operations forms a commutative ring with a multiplicative identity. For the rest of this exercise, take $X$ to be the set $\lbrace {1,2,3,4,5,6,7,8,9} \rbrace$. (a) How many elements are there in $P^X$? [ANS] Now let $A,B$ be two subsets of $X$ defined as follows: A=\lbrace {1,2,4,5,8,9} \rbrace B=\lbrace {1,2,7,9} \rbrace Enter the elements of each set below as a comma-separated list. Input N for the empty set. (b) What is the additive inverse of the subset $A$? $\lbrace$ [ANS] $\rbrace$ (c) What is $A+B$? $\lbrace$ [ANS] $\rbrace$ (d) What is $A \times B$? $\lbrace$ [ANS] $\rbrace$
[ "512", "(1, 2, 4, 5, 8, 9)", "(4, 5, 7, 8)", "(1, 2, 9)" ]
[ "NV", "UOL", "UOL", "UOL" ]
[ [], [], [], [] ]
For any set $X$, denote by $P^X$ the set of all subsets of $X$ (including the empty set $\emptyset$ and $X$ itself). This is called the power set of $X$. If $A, B$ are elements of $P^X$, define $A+B:=(A-B) \cup (B-A)$ $A \times B:=A \cap B$ FACT: $P^X$ together with these two operations forms a commutative ring with a multiplicative identity. For the rest of this exercise, take $X$ to be the set $\lbrace {1,2,3,4,5,6} \rbrace$. (a) How many elements are there in $P^X$? [ANS] Now let $A,B$ be two subsets of $X$ defined as follows: A=\lbrace {2,3,4,5,6} \rbrace B=\lbrace {3,4,5} \rbrace Enter the elements of each set below as a comma-separated list. Input N for the empty set. (b) What is the additive inverse of the subset $A$? $\lbrace$ [ANS] $\rbrace$ (c) What is $A+B$? $\lbrace$ [ANS] $\rbrace$ (d) What is $A \times B$? $\lbrace$ [ANS] $\rbrace$
[ "64", "(2, 3, 4, 5, 6)", "(2, 6)", "(3, 4, 5)" ]
[ "NV", "UOL", "UOL", "UOL" ]
[ [], [], [], [] ]
For any set $X$, denote by $P^X$ the set of all subsets of $X$ (including the empty set $\emptyset$ and $X$ itself). This is called the power set of $X$. If $A, B$ are elements of $P^X$, define $A+B:=(A-B) \cup (B-A)$ $A \times B:=A \cap B$ FACT: $P^X$ together with these two operations forms a commutative ring with a multiplicative identity. For the rest of this exercise, take $X$ to be the set $\lbrace {1,2,3,4,5,6,7} \rbrace$. (a) How many elements are there in $P^X$? [ANS] Now let $A,B$ be two subsets of $X$ defined as follows: A=\lbrace {1,3,4,6,7} \rbrace B=\lbrace {1,2,4} \rbrace Enter the elements of each set below as a comma-separated list. Input N for the empty set. (b) What is the additive inverse of the subset $A$? $\lbrace$ [ANS] $\rbrace$ (c) What is $A+B$? $\lbrace$ [ANS] $\rbrace$ (d) What is $A \times B$? $\lbrace$ [ANS] $\rbrace$
[ "128", "(1, 3, 4, 6, 7)", "(2, 3, 6, 7)", "(1, 4)" ]
[ "NV", "UOL", "UOL", "UOL" ]
[ [], [], [], [] ]
Abstract_algebra_0030
Abstract_algebra
Rings
Ring axioms
3
[ "ring axioms", "inverse" ]
(a) Find the multiplicative inverse of $38$ in $\mathbb{Z}_{39}$. [ANS] (b) Find the multiplicative inverse of $30$ in $\mathbb{Z}_{31}$. [ANS] (c) In general, what is the multiplicative inverse of $(n-1)$ in $\mathbb{Z}_{n}$? [ANS]
[ "38", "30", "n-1" ]
[ "NV", "NV", "EX" ]
[ [], [], [] ]
(a) Find the multiplicative inverse of $8$ in $\mathbb{Z}_{9}$. [ANS] (b) Find the multiplicative inverse of $46$ in $\mathbb{Z}_{47}$. [ANS] (c) In general, what is the multiplicative inverse of $(n-1)$ in $\mathbb{Z}_{n}$? [ANS]
[ "8", "46", "n-1" ]
[ "NV", "NV", "EX" ]
[ [], [], [] ]
(a) Find the multiplicative inverse of $19$ in $\mathbb{Z}_{20}$. [ANS] (b) Find the multiplicative inverse of $32$ in $\mathbb{Z}_{33}$. [ANS] (c) In general, what is the multiplicative inverse of $(n-1)$ in $\mathbb{Z}_{n}$? [ANS]
[ "19", "32", "n-1" ]
[ "NV", "NV", "EX" ]
[ [], [], [] ]
Abstract_algebra_0031
Abstract_algebra
Rings
Units and zero divisors
4
[ "commutativity", "zero-divisors" ]
Denote by $R$ the set of all functions from the set $\lbrace-8, 8, 9, 10 \rbrace$ to the ring $\mathbb{Z}_{45}$. FACT: $R$ becomes a ring under the following operations: $f+g: a \mapsto f(a)+g(a), f*g: a \mapsto f(a)g(a)$ (a) Is $R$ a commutative ring? (Y/N) [ANS] (b) How many units are there in $R$? [ANS] (c) Give an example of a non-zero $f \in R$ that is a zero-divisor by filling in the following table: $\begin{array}{cc}\hline x & f(x) \\ \hline-8 & [ANS] \\ \hline 8 & [ANS] \\ \hline 9 & [ANS] \\ \hline 10 & [ANS] \\ \hline \end{array}$
[ "Y", "331776", "(3, 0, 0, 0)" ]
[ "TF", "NV", "UOL" ]
[ [], [], [] ]
Denote by $R$ the set of all functions from the set $\lbrace-10, 2, 8, 10 \rbrace$ to the ring $\mathbb{Z}_{30}$. FACT: $R$ becomes a ring under the following operations: $f+g: a \mapsto f(a)+g(a), f*g: a \mapsto f(a)g(a)$ (a) Is $R$ a commutative ring? (Y/N) [ANS] (b) How many units are there in $R$? [ANS] (c) Give an example of a non-zero $f \in R$ that is a zero-divisor by filling in the following table: $\begin{array}{cc}\hline x & f(x) \\ \hline-10 & [ANS] \\ \hline 2 & [ANS] \\ \hline 8 & [ANS] \\ \hline 10 & [ANS] \\ \hline \end{array}$
[ "Y", "4096", "(2, 0, 0, 0)" ]
[ "TF", "NV", "UOL" ]
[ [], [], [] ]
Denote by $R$ the set of all functions from the set $\lbrace-8,-1, 2, 8 \rbrace$ to the ring $\mathbb{Z}_{18}$. FACT: $R$ becomes a ring under the following operations: $f+g: a \mapsto f(a)+g(a), f*g: a \mapsto f(a)g(a)$ (a) Is $R$ a commutative ring? (Y/N) [ANS] (b) How many units are there in $R$? [ANS] (c) Give an example of a non-zero $f \in R$ that is a zero-divisor by filling in the following table: $\begin{array}{cc}\hline x & f(x) \\ \hline-8 & [ANS] \\ \hline-1 & [ANS] \\ \hline 2 & [ANS] \\ \hline 8 & [ANS] \\ \hline \end{array}$
[ "TF", "1296", "(2, 0, 0, 0)" ]
[ "EX", "NV", "UOL" ]
[ [], [], [] ]
Abstract_algebra_0032
Abstract_algebra
Rings
Units and zero divisors
3
[ "characteristic" ]
(a) Determine the characteristic of the ring $\mathbb{Z}_{46} \times \mathbb{Z}_{36}$. [ANS] (b) Determine the characteristic of the ring $\mathbb{Z}_{38} \times \mathbb{Z}_{21}$. [ANS] (c) Determine the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}_{35}$. [ANS]
[ "828", "798", "0" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
(a) Determine the characteristic of the ring $\mathbb{Z}_{6} \times \mathbb{Z}_{56}$. [ANS] (b) Determine the characteristic of the ring $\mathbb{Z}_{10} \times \mathbb{Z}_{21}$. [ANS] (c) Determine the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}_{57}$. [ANS]
[ "168", "210", "0" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
(a) Determine the characteristic of the ring $\mathbb{Z}_{20} \times \mathbb{Z}_{18}$. [ANS] (b) Determine the characteristic of the ring $\mathbb{Z}_{34} \times \mathbb{Z}_{49}$. [ANS] (c) Determine the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}_{55}$. [ANS]
[ "180", "1666", "0" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Abstract_algebra_0033
Abstract_algebra
Rings
Units and zero divisors
4
[ "characteristic", "integral domains" ]
For each of the following rings, determine its characteristic and determine if it is an integral domain. $\begin{array}{ccc}\hline & characteristic & integral domain? (Y/N) \\ \hline \mathbb{Z} \times \mathbb{Z}_{36} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{44} \times \mathbb{Z}_{19} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{41} \times \mathbb{Z}_{41} & [ANS] & [ANS] \\ \hline \mathbb{Z}[x] & [ANS] & [ANS] \\ \hline \mathbb{Z}_{38}[x] & [ANS] & [ANS] \\ \hline \end{array}$
[ "0", "N", "836", "N", "41", "N", "0", "Y", "38", "N" ]
[ "NV", "TF", "NV", "TF", "NV", "TF", "NV", "TF", "NV", "TF" ]
[ [], [], [], [], [], [], [], [], [], [] ]
For each of the following rings, determine its characteristic and determine if it is an integral domain. $\begin{array}{ccc}\hline & characteristic & integral domain? (Y/N) \\ \hline \mathbb{Z} \times \mathbb{Z}_{56} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{21} \times \mathbb{Z}_{57} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{3} \times \mathbb{Z}_{3} & [ANS] & [ANS] \\ \hline \mathbb{Z}[x] & [ANS] & [ANS] \\ \hline \mathbb{Z}_{10}[x] & [ANS] & [ANS] \\ \hline \end{array}$
[ "0", "N", "399", "N", "3", "N", "0", "Y", "10", "N" ]
[ "NV", "EX", "NV", "TF", "NV", "TF", "NV", "TF", "NV", "TF" ]
[ [], [], [], [], [], [], [], [], [], [] ]
For each of the following rings, determine its characteristic and determine if it is an integral domain. $\begin{array}{ccc}\hline & characteristic & integral domain? (Y/N) \\ \hline \mathbb{Z} \times \mathbb{Z}_{37} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{34} \times \mathbb{Z}_{14} & [ANS] & [ANS] \\ \hline \mathbb{Z}_{13} \times \mathbb{Z}_{13} & [ANS] & [ANS] \\ \hline \mathbb{Z}[x] & [ANS] & [ANS] \\ \hline \mathbb{Z}_{18}[x] & [ANS] & [ANS] \\ \hline \end{array}$
[ "0", "N", "238", "N", "13", "N", "0", "Y", "18", "N" ]
[ "NV", "TF", "NV", "TF", "NV", "TF", "NV", "TF", "NV", "TF" ]
[ [], [], [], [], [], [], [], [], [], [] ]
Abstract_algebra_0034
Abstract_algebra
Rings
Units and zero divisors
2
[ "inverse", "zero-divisors" ]
For each of the following elements of the ring $\mathbb{Z}_{45}$, determine if it satisfies the following properties. If it is a unit, enter its inverse in the last column; if it is not, enter 0. $\begin{array}{ccc}\hline & zero-divisor? (Y/N) & inverse \\ \hline 25 & [ANS] & [ANS] \\ \hline 31 & [ANS] & [ANS] \\ \hline 14 & [ANS] & [ANS] \\ \hline 15 & [ANS] & [ANS] \\ \hline \end{array}$
[ "Y", "0", "N", "16", "N", "29", "Y", "0" ]
[ "TF", "NV", "TF", "NV", "TF", "NV", "TF", "NV" ]
[ [], [], [], [], [], [], [], [] ]
For each of the following elements of the ring $\mathbb{Z}_{30}$, determine if it satisfies the following properties. If it is a unit, enter its inverse in the last column; if it is not, enter 0. $\begin{array}{ccc}\hline & zero-divisor? (Y/N) & inverse \\ \hline 9 & [ANS] & [ANS] \\ \hline 13 & [ANS] & [ANS] \\ \hline 5 & [ANS] & [ANS] \\ \hline 23 & [ANS] & [ANS] \\ \hline \end{array}$
[ "Y", "0", "N", "7", "Y", "0", "N", "17" ]
[ "TF", "NV", "TF", "NV", "TF", "NV", "TF", "NV" ]
[ [], [], [], [], [], [], [], [] ]
For each of the following elements of the ring $\mathbb{Z}_{18}$, determine if it satisfies the following properties. If it is a unit, enter its inverse in the last column; if it is not, enter 0. $\begin{array}{ccc}\hline & zero-divisor? (Y/N) & inverse \\ \hline 5 & [ANS] & [ANS] \\ \hline 11 & [ANS] & [ANS] \\ \hline 6 & [ANS] & [ANS] \\ \hline 15 & [ANS] & [ANS] \\ \hline \end{array}$
[ "N", "11", "N", "5", "Y", "0", "Y", "0" ]
[ "TF", "NV", "TF", "NV", "TF", "NV", "TF", "NV" ]
[ [], [], [], [], [], [], [], [] ]
Abstract_algebra_0035
Abstract_algebra
Rings
Units and zero divisors
3
[ "zero-divisors" ]
For which of the integers $n \in \lbrace 34, 59, 73, 25, 30, 50, 58, 38 \rbrace$ is it true that if $x, y \in \mathbb{Z}_{n}$ satisfy $45x=45 y$ then $x=y$? [ANS]
[ "(73, 34, 58, 59, 38)" ]
[ "UOL" ]
[ [] ]
For which of the integers $n \in \lbrace 37, 35, 34, 19, 32, 18, 7, 95 \rbrace$ is it true that if $x, y \in \mathbb{Z}_{n}$ satisfy $30x=30 y$ then $x=y$? [ANS]
[ "(7, 19, 37)" ]
[ "UOL" ]
[ [] ]
For which of the integers $n \in \lbrace 87, 92, 35, 82, 21, 29, 55, 19 \rbrace$ is it true that if $x, y \in \mathbb{Z}_{n}$ satisfy $18x=18 y$ then $x=y$? [ANS]
[ "(55, 35, 19, 29)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0036
Abstract_algebra
Rings
Units and zero divisors
6
[ "zero divisors", "Chinese remainder theorem" ]
Find all integers $n$ in the set $\lbrace 33, 31, 48, 29, 24, 23, 26, 53, 42 \rbrace$ such that the ring $\mathbb{Z}_{n}$ satisifies the following properties: (a) $(xy=0) \Rightarrow (x=0 \textrm{or} y=0)$ (b) $(xy=xz \textrm{and} x \neq 0) \Rightarrow (y=z)$ (c) $(x^2=x) \Rightarrow (x=0 \textrm{or} x=1)$ [ANS] Reminder: In the ring $\mathbb{Z}_{n}$, $0$ means $0 \pmod{n}$, and equality means congruent modulo $n$. Hint for (c): The Chinese reminder theorem could be useful here.
[ "(31, 53, 23, 29)" ]
[ "UOL" ]
[ [] ]
Find all integers $n$ in the set $\lbrace 26, 38, 41, 43, 48, 31, 42 \rbrace$ such that the ring $\mathbb{Z}_{n}$ satisifies the following properties: (a) $(xy=0) \Rightarrow (x=0 \textrm{or} y=0)$ (b) $(xy=xz \textrm{and} x \neq 0) \Rightarrow (y=z)$ (c) $(x^2=x) \Rightarrow (x=0 \textrm{or} x=1)$ [ANS] Reminder: In the ring $\mathbb{Z}_{n}$, $0$ means $0 \pmod{n}$, and equality means congruent modulo $n$. Hint for (c): The Chinese reminder theorem could be useful here.
[ "(41, 31, 43)" ]
[ "UOL" ]
[ [] ]
Find all integers $n$ in the set $\lbrace 37, 42, 26, 24, 38, 23, 53, 28, 43, 47, 33 \rbrace$ such that the ring $\mathbb{Z}_{n}$ satisifies the following properties: (a) $(xy=0) \Rightarrow (x=0 \textrm{or} y=0)$ (b) $(xy=xz \textrm{and} x \neq 0) \Rightarrow (y=z)$ (c) $(x^2=x) \Rightarrow (x=0 \textrm{or} x=1)$ [ANS] Reminder: In the ring $\mathbb{Z}_{n}$, $0$ means $0 \pmod{n}$, and equality means congruent modulo $n$. Hint for (c): The Chinese reminder theorem could be useful here.
[ "(37, 47, 43, 23, 53)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0037
Abstract_algebra
Rings
Ideals and homomorphisms
6
[ "ring homomorphisms" ]
Determine the number of possible ring homomorphisms for each pair of rings: (a) $\mathbb{Z}_{45} \rightarrow \mathbb{Z}_{45}$: [ANS] (b) $\mathbb{Z}_{33} \rightarrow \mathbb{Z}_{11}$: [ANS] (c) $\mathbb{Z}_{93} \rightarrow \mathbb{Z}_{16}$: [ANS] Note: For this problem we do NOT require ring homomorphisms to take the multiplicative identity to the multiplicative identity.
[ "45", "11", "0" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Determine the number of possible ring homomorphisms for each pair of rings: (a) $\mathbb{Z}_{23} \rightarrow \mathbb{Z}_{23}$: [ANS] (b) $\mathbb{Z}_{55} \rightarrow \mathbb{Z}_{8}$: [ANS] (c) $\mathbb{Z}_{72} \rightarrow \mathbb{Z}_{24}$: [ANS] Note: For this problem we do NOT require ring homomorphisms to take the multiplicative identity to the multiplicative identity.
[ "23", "0", "24" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Determine the number of possible ring homomorphisms for each pair of rings: (a) $\mathbb{Z}_{35} \rightarrow \mathbb{Z}_{35}$: [ANS] (b) $\mathbb{Z}_{139} \rightarrow \mathbb{Z}_{21}$: [ANS] (c) $\mathbb{Z}_{36} \rightarrow \mathbb{Z}_{9}$: [ANS] Note: For this problem we do NOT require ring homomorphisms to take the multiplicative identity to the multiplicative identity.
[ "35", "0", "9" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Abstract_algebra_0038
Abstract_algebra
Rings
Ideals and homomorphisms
2
[ "ideals" ]
In the ring $\mathbb{Z}_{88}$, express each of the following ideals in the form $(m)$ for some element $m$ in the ring, where $0 \leq m < 88$. (a) $(51)+(55)$ $($ [ANS] $)$ (b) $(51)(55)$ $($ [ANS] $)$ (c) $(51) \cap (55)$ $($ [ANS] $)$
[ "1", "77", "77" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
In the ring $\mathbb{Z}_{54}$, express each of the following ideals in the form $(m)$ for some element $m$ in the ring, where $0 \leq m < 54$. (a) $(49)+(9)$ $($ [ANS] $)$ (b) $(49)(9)$ $($ [ANS] $)$ (c) $(49) \cap (9)$ $($ [ANS] $)$
[ "1", "9", "9" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
In the ring $\mathbb{Z}_{65}$, express each of the following ideals in the form $(m)$ for some element $m$ in the ring, where $0 \leq m < 65$. (a) $(39)+(18)$ $($ [ANS] $)$ (b) $(39)(18)$ $($ [ANS] $)$ (c) $(39) \cap (18)$ $($ [ANS] $)$
[ "3", "52", "52" ]
[ "NV", "NV", "NV" ]
[ [], [], [] ]
Abstract_algebra_0039
Abstract_algebra
Rings
Ideals and homomorphisms
3
[ "maximal ideals" ]
It is a fact that every ideal of $\mathbb{Z}_{144}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{144}$. (a) Determine all maximal ideals of $\mathbb{Z}_{144}$ containing the ideal $(64)$. Enter a generator for each of these ideals. That is, if you think $(64)$ is contained in the maximal ideals $(a)$ and $(b)$, enter $a, b$. [ANS]
[ "2" ]
[ "NV" ]
[ [] ]
It is a fact that every ideal of $\mathbb{Z}_{42}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{42}$. (a) Determine all maximal ideals of $\mathbb{Z}_{42}$ containing the ideal $(36)$. Enter a generator for each of these ideals. That is, if you think $(36)$ is contained in the maximal ideals $(a)$ and $(b)$, enter $a, b$. [ANS]
[ "(2, 3)" ]
[ "UOL" ]
[ [] ]
It is a fact that every ideal of $\mathbb{Z}_{70}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{70}$. (a) Determine all maximal ideals of $\mathbb{Z}_{70}$ containing the ideal $(50)$. Enter a generator for each of these ideals. That is, if you think $(50)$ is contained in the maximal ideals $(a)$ and $(b)$, enter $a, b$. [ANS]
[ "(2, 5)" ]
[ "UOL" ]
[ [] ]
Abstract_algebra_0040
Abstract_algebra
Rings
Ideals and homomorphisms
3
[ "ideals", "generators" ]
It is a fact that every ideal of $\mathbb{Z}_{72}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{72}$. (a) Find all the ideals $I$ of $\mathbb{Z}_{72}$ that are contained in the ideal $(162)$: $(162) \subseteq I \subseteq \mathbb{Z}_{72}$. In the answer blank below list one generator for each ideal. Separate the generators by commas. [ANS] (b) Find all the ideals $J$ of $\mathbb{Z}_{72}$ that contain the ideal $(162)$: J \subseteq (162) \subseteq \mathbb{Z}_{72}. As in part (a), list one generator for each ideal, separated by commas. [ANS] Remember that an ideal contains, and is contained in, itself!
[ "(0, 18, 36, 54)", "(1, 2, 3, 6, 9, 18)" ]
[ "UOL", "UOL" ]
[ [], [] ]
It is a fact that every ideal of $\mathbb{Z}_{40}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{40}$. (a) Find all the ideals $I$ of $\mathbb{Z}_{40}$ that are contained in the ideal $(56)$: $(56) \subseteq I \subseteq \mathbb{Z}_{40}$. In the answer blank below list one generator for each ideal. Separate the generators by commas. [ANS] (b) Find all the ideals $J$ of $\mathbb{Z}_{40}$ that contain the ideal $(56)$: J \subseteq (56) \subseteq \mathbb{Z}_{40}. As in part (a), list one generator for each ideal, separated by commas. [ANS] Remember that an ideal contains, and is contained in, itself!
[ "(0, 8, 16, 24, 32)", "(1, 2, 4, 8)" ]
[ "UOL", "UOL" ]
[ [], [] ]
It is a fact that every ideal of $\mathbb{Z}_{108}$ is of the form $(b)$ for some element $b$ of $\mathbb{Z}_{108}$. (a) Find all the ideals $I$ of $\mathbb{Z}_{108}$ that are contained in the ideal $(60)$: $(60) \subseteq I \subseteq \mathbb{Z}_{108}$. In the answer blank below list one generator for each ideal. Separate the generators by commas. [ANS] (b) Find all the ideals $J$ of $\mathbb{Z}_{108}$ that contain the ideal $(60)$: J \subseteq (60) \subseteq \mathbb{Z}_{108}. As in part (a), list one generator for each ideal, separated by commas. [ANS] Remember that an ideal contains, and is contained in, itself!
[ "(0, 12, 24, 36, 48, 60, 72, 84, 96)", "(1, 2, 3, 4, 6, 12)" ]
[ "UOL", "UOL" ]
[ [], [] ]
Abstract_algebra_0041
Abstract_algebra
Rings
Ideals and homomorphisms
2
[ "ideals" ]
(a) Determine all elements in the ideal $(10)$ of $\mathbb{Z}_{30}$. [ANS] (b) Determine all elements in the ideal $(10)+(12)$ of $\mathbb{Z}_{30}$. [ANS] (c) Determine all elements $m$ of $\mathbb{Z}_{30}$ such that $(10)+(m)$ is a proper ideal of $\mathbb{Z}_{30}$. [ANS]
[ "(0, 10, 20)", "(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28)", "(0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28)" ]
[ "UOL", "UOL", "UOL" ]
[ [], [], [] ]
(a) Determine all elements in the ideal $(14)$ of $\mathbb{Z}_{28}$. [ANS] (b) Determine all elements in the ideal $(14)+(12)$ of $\mathbb{Z}_{28}$. [ANS] (c) Determine all elements $m$ of $\mathbb{Z}_{28}$ such that $(14)+(m)$ is a proper ideal of $\mathbb{Z}_{28}$. [ANS]
[ "(0, 14)", "(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26)", "(0, 2, 4, 6, 7, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26)" ]
[ "UOL", "UOL", "UOL" ]
[ [], [], [] ]
(a) Determine all elements in the ideal $(10)$ of $\mathbb{Z}_{20}$. [ANS] (b) Determine all elements in the ideal $(10)+(8)$ of $\mathbb{Z}_{20}$. [ANS] (c) Determine all elements $m$ of $\mathbb{Z}_{20}$ such that $(10)+(m)$ is a proper ideal of $\mathbb{Z}_{20}$. [ANS]
[ "(0, 10)", "(0, 2, 4, 6, 8, 10, 12, 14, 16, 18)", "(0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18)" ]
[ "UOL", "UOL", "UOL" ]
[ [], [], [] ]
Abstract_algebra_0042
Abstract_algebra
Rings
Quotient rings and polynomial rings
5
[ "quotient rings", "polynomial rings" ]
Find all elements $b \in \mathbb{Z}_{7}$ such that the quotient ring $\mathbb{Z}_{7} [x]/(x^2+4*x+b)$ is a field. [ANS]
[ "(1, 5, 6)" ]
[ "UOL" ]
[ [] ]
Find all elements $b \in \mathbb{Z}_{2}$ such that the quotient ring $\mathbb{Z}_{2} [x]/(x^2+x+b)$ is a field. [ANS]
[ "1" ]
[ "NV" ]
[ [] ]
Find all elements $b \in \mathbb{Z}_{3}$ such that the quotient ring $\mathbb{Z}_{3} [x]/(x^2+x+b)$ is a field. [ANS]
[ "2" ]
[ "NV" ]
[ [] ]
Abstract_algebra_0043
Abstract_algebra
Rings
Quotient rings and polynomial rings
3
[ "polynomials rings", "associates" ]
(a) Find all associates of $(7*x^4+7*x^3+8)$ in $\mathbb{Z}_{12} [x]$. Make sure the coefficients are $\geq 0$ and $< 12$. [ANS] (b) Find all associates of $(1+i)$ in $\mathbb{Z}[i]$. [ANS]
[ "(7*x^4+7*x^3+8, 11*x^4+11*x^3+4, x^4+x^3+8, 5*x^4+5*x^3+4)", "(1+i, -1-i, -1+i, 1-i)" ]
[ "UOL", "UOL" ]
[ [], [] ]
(a) Find all associates of $(5*x^9+x^3+2)$ in $\mathbb{Z}_{6} [x]$. Make sure the coefficients are $\geq 0$ and $< 6$. [ANS] (b) Find all associates of $(-6-3i)$ in $\mathbb{Z}[i]$. [ANS]
[ "(5*x^9+x^3+2, x^9+5*x^3+4)", "(-6-3i, 6+3i, 3-6i, -3+6i)" ]
[ "UOL", "UOL" ]
[ [], [] ]
(a) Find all associates of $(5*x^9+3*x^7+6)$ in $\mathbb{Z}_{8} [x]$. Make sure the coefficients are $\geq 0$ and $< 8$. [ANS] (b) Find all associates of $(-6-4i)$ in $\mathbb{Z}[i]$. [ANS]
[ "(5*x^9+3*x^7+6, 7*x^9+x^7+2, x^9+7*x^7+6, 3*x^9+5*x^7+2)", "(-6-4i, 6+4i, 4-6i, -4+6i)" ]
[ "UOL", "UOL" ]
[ [], [] ]

UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models

UGMathBench is a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions.

An Example to load the data

from datasets import load_dataset
dataset=load_dataset("UGMathBench/ugmathbench", "Trigonometry", split="test")

print(dataset[0])

More details on loading and using the data are on our GitHub page.

If you do find our code helpful or use our benchmark dataset, please cite our paper.

@article{xu2025ugmathbench,
  title={UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models},
  author={Xu, Xin and Zhang, Jiaxin and Chen, Tianhao and Chao, Zitong and Hu, Jishan and Yang, Can},
  journal={arXiv preprint arXiv:2501.13766},
  year={2025}
}
Downloads last month
64