|
--- |
|
license: mit |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
This dataset contains two manually pre-labeled datasets: |
|
|
|
In the **economic agents dataset**, we labeled 6,205 randomized sentences from a [Fed database](https://github.com/Moritz-Pfeifer/CentralBankRoBERTa/tree/main/Data/FED) containing speeches (1948-2023) as speaking either about households, firms, the financial sector, the government, or the central bank itself. |
|
|
|
In the **sentiment dataset**, we labeled 6,683 randomized sentences from the same database, which are either labeled as being positive (1) or negative (0). |
|
|
|
The datasets were used to train an [agent classifier](https://huggingface.co/Moritz-Pfeifer/CentralBankRoBERTa-agent-classifier) and a [sentiment classifier](https://huggingface.co/Moritz-Pfeifer/CentralBankRoBERTa-sentiment-classifier). |
|
|
|
<table> |
|
<tr> |
|
<td colspan="2" style="border-top: 1px solid #ccc; padding: 5px; text-align: left;"> |
|
Please cite this model as Pfeifer, M. and Marohl, V.P. (2023) "CentralBankRoBERTa: A Fine-Tuned Large Language Model for Central Bank Communications" ADD SOURCE/LINK |
|
</td> |
|
</tr> |
|
<tr> |
|
<td style="padding: 5px;"> |
|
Moritz Pfeifer<br> |
|
Institute for Economic Policy, University of Leipzig<br> |
|
04109 Leipzig, Germany<br> |
|
<a href="mailto:[email protected]">[email protected]</a> |
|
</td> |
|
<td style="padding: 5px;"> |
|
Vincent P. Marohl<br> |
|
Department of Mathematics, Columbia University<br> |
|
New York NY 10027, USA<br> |
|
<a href="mailto:[email protected]">[email protected]</a> |
|
</td> |
|
</tr> |
|
</table> |