Kaludi/csgo-weapon-classification
Image Classification
•
Updated
•
35
image
imagewidth (px) 206
6k
| label
class label 11
classes |
---|---|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
|
0AK-47
|
This dataset has for project csgo-weapon-classification was collected with the help of a bulk google image downloader.
The BCP-47 code for the dataset's language is unk.
A sample from this dataset looks as follows:
[
{
"image": "<1768x718 RGB PIL image>",
"target": 0
},
{
"image": "<716x375 RGBA PIL image>",
"target": 0
}
]
The dataset has the following fields (also called "features"):
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['AK-47', 'AWP', 'Famas', 'Galil-AR', 'Glock', 'M4A1', 'M4A4', 'P-90', 'SG-553', 'UMP', 'USP'], id=None)"
}
This dataset is split into a train and validation split. The split sizes are as follow:
Split name | Num samples |
---|---|
train | 1100 |
valid | 275 |