text
stringlengths
0
45
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.4860378 3.6895776 8.679246
0.4860378 3.6895776 8.679246
0.052674048 4.2618093 8.901914
-0.43096948 4.2737803 9.519637
-0.93616146 4.216318 9.337671
-0.45012367 4.022382 9.14613
0.05027977 3.7709827 9.227535
0.15083931 3.6871831 8.940222
-0.026337024 3.9242165 8.837268
-0.41420954 3.9697077 8.9976845
-0.36871833 3.7925313 9.6585045
-0.15323359 3.7326744 9.828498
-0.3304099 3.7111259 9.538791
-0.24900457 3.8667538 9.098245
-0.87630457 4.5706706 9.189227
-0.73743665 4.4725056 8.923462
-0.43096948 4.3695517 8.442213
-0.2753416 4.2594147 8.334471
-0.39266106 4.2211065 9.256267
0.22027329 4.3192716 9.47654
0.339987 4.3456087 9.177256
0.22745611 4.355186 9.119793
0.22745611 4.355186 9.119793
-0.531529 3.6991546 9.44302
0.31604427 4.084633 8.921068
0.4668836 4.6305275 8.844451
-0.6201172 4.537151 8.882759
-0.65363705 4.3671575 9.019233
-0.17478207 3.9098508 8.947405
-0.08619389 3.5985951 9.6896305
-0.10055954 3.4118416 9.962578
-0.047885496 3.641692 9.5244255
-0.16759923 3.9074564 9.088667
-0.32083282 4.051113 8.894731
-0.21548474 3.902668 9.253872
-0.038308397 3.641692 9.395134
-0.10774237 3.6584518 9.335278
-0.31604427 3.8140798 9.507666
-0.4644893 3.9194279 9.198804
-0.4644893 3.9194279 9.198804
-0.3423813 3.9768906 8.882759
-0.28252444 4.0032277 9.335278
-0.1699935 3.849994 9.273026
-0.22027329 3.756617 9.25866
-0.5770202 4.0343533 8.937828
-0.6464542 4.149278 8.631361
-0.6656084 4.106181 8.940222
-0.6656084 4.106181 8.940222
-0.60335726 4.0463243 9.2419
-0.2777359 3.7877429 8.755863
-0.679974 3.677606 8.865999
-0.8571504 3.9697077 9.27542
-0.84039044 3.9888618 9.96976
-0.7637737 3.8954852 9.61062
-0.6751855 4.000833 8.964165
-0.4836435 4.008016 9.057542
-0.46209505 3.929005 9.210775
-0.53871185 3.7183087 9.845258
-0.56265455 3.737463 9.629773
-0.6081458 3.7709827 9.469357
-0.5363176 3.7446458 9.076695
-0.5985687 3.7757714 9.25866
-0.72546524 3.869148 9.160496
-0.87630457 3.981679 9.366403
-0.79250497 3.9529476 9.110215
-0.6656084 3.8356283 9.344854
-0.5865973 3.7159145 9.450203
-0.6656084 3.833234 9.311335
-0.7302538 3.9601305 8.686429
-0.7398309 3.9170337 9.158101
-0.7996878 3.8787253 9.385557
-0.818842 3.912245 9.244295
-0.7948992 3.8859081 9.289786
-0.70870537 3.7877429 9.478934
-0.6440599 3.7446458 9.352037
-0.61293435 3.7781656 9.1940155
-0.65363705 3.8547823 9.191621
-0.6608198 3.842811 9.217958
-0.56744313 3.7159145 9.385557
-0.6656084 3.6991546 9.402317
-0.67279124 3.859571 9.371192
-0.62251145 3.7949257 9.450203
-0.6201172 3.7254915 9.411894
-0.7637737 3.8045027 9.438231
-0.90982443 3.9361877 9.390346
-0.7781393 3.8643596 9.117398
-0.75659084 3.8380225 9.1628895
-0.7685622 3.849994 9.215564
-0.7206767 3.8547823 9.256267
-0.62251145 3.7877429 9.284998
-0.6440599 3.8236568 9.304152
-0.8092649 3.8954852 9.3592205
-0.83081335 3.902668 9.28021
-0.8044763 3.8954852 9.229929
-0.6943397 3.8475995 9.347249
-0.6895511 3.8116856 9.397529
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Human Activity Recognition (HAR) using smartphones dataset. Classifying the type of movement amongst five categories:

  • WALKING,
  • WALKING_UPSTAIRS,
  • WALKING_DOWNSTAIRS,
  • SITTING,
  • STANDING

The experiments have been carried out with a group of 16 volunteers within an age bracket of 19-26 years. Each person performed five activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING) wearing a smartphone (Samsung Galaxy S8) in the pucket. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually.

'raw_data/labels.txt': include all the activity labels available for the dataset (1 per row).
   Column 1: experiment number ID,
   Column 2: user number ID,
   Column 3: activity number ID
   Column 4: Label start point (in number of signal log samples (recorded at 50Hz))
   Column 5: Label end point (in number of signal log samples)

activity_type:
 1 WALKING
 2 WALKING_UPSTAIRS
 3 WALKING_DOWNSTAIRS
 4 SITTING
 5 STANDING

Repository: DiFronzo/LSTM-for-Human-Activity-Recognition-classification

Downloads last month
26