whisper-large-qve / README.md
cportoca's picture
End of training
bb76c1b verified
---
library_name: transformers
language:
- qve
license: apache-2.0
base_model: openai/whisper-large
tags:
- generated_from_trainer
datasets:
- cportoca/Quechua_dataset
metrics:
- wer
model-index:
- name: Whisper Large Ja-Qve - cportoca
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Quechua_dataset
type: cportoca/Quechua_dataset
args: 'config: Qve, split: train/test'
metrics:
- name: Wer
type: wer
value: 14.02572952620019
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Ja-Qve - cportoca
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Quechua_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1918
- Wer: 14.0257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.2039 | 1.3550 | 1000 | 0.2614 | 25.1961 |
| 0.0757 | 2.7100 | 2000 | 0.1891 | 33.3856 |
| 0.0211 | 4.0650 | 3000 | 0.1846 | 16.0966 |
| 0.0112 | 5.4201 | 4000 | 0.1876 | 15.8770 |
| 0.0027 | 6.7751 | 5000 | 0.1875 | 14.1826 |
| 0.0006 | 8.1301 | 6000 | 0.1888 | 14.2140 |
| 0.0002 | 9.4851 | 7000 | 0.1897 | 13.9316 |
| 0.0001 | 10.8401 | 8000 | 0.1918 | 14.0257 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3