FastPDN
FastPolDeepNer is model for Named Entity Recognition, designed for easy use, training and configuration. The forerunner of this project is PolDeepNer2. The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.
Source code: https://gitlab.clarin-pl.eu/grupa-wieszcz/ner/fast-pdn
How to use
Here is how to use this model to get Named Entities in text:
from transformers import pipeline
ner = pipeline('ner', model='clarin-pl/FastPDN', aggregation_strategy='simple')
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
ner_results = ner(text)
for output in ner_results:
print(output)
{'entity_group': 'nam_liv_person', 'score': 0.9996054, 'word': 'Jan Kowalski', 'start': 12, 'end': 24}
{'entity_group': 'nam_loc_gpe_city', 'score': 0.998931, 'word': 'Wrocławiu', 'start': 39, 'end': 48}
Here is how to use this model to get the logits for every token in text:
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN")
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN")
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
Training data
The FastPDN model was trained on datasets (with 82 class versions) of kpwr and cen. Annotation guidelines are specified here.
Pretraining
FastPDN models have been fine-tuned, thanks to pretrained models:
Evaluation
Runs trained on cen_n82
and kpwr_n82
:
name | test/f1 | test/pdn2_f1 | test/acc | test/precision | test/recall |
---|---|---|---|---|---|
distiluse | 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |
Authors
- Grupa Wieszcze CLARIN-PL
- Wiktor Walentynowicz
Contact
- Norbert Ropiak ([email protected])
- Downloads last month
- 226
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.