See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 25dc13ef72e71c3c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/25dc13ef72e71c3c_train_data.json
type:
field_instruction: user
field_output: chip2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
ddp_timeout: 1800
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
group_by_length: true
hub_model_id: brixeus/a4f6bd52-2bb7-4121-9571-36561652d546
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1800
micro_batch_size: 4
mlflow_experiment_name: /tmp/25dc13ef72e71c3c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
relora_prune_ratio: 0.9
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: acopia-grant
wandb_mode: online
wandb_name: 1618c0ef-2f11-467e-b374-2367bf7a9f3c
wandb_project: Gradients-On-60
wandb_run: your_name
wandb_runid: 1618c0ef-2f11-467e-b374-2367bf7a9f3c
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
a4f6bd52-2bb7-4121-9571-36561652d546
This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 1800
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 3.1939 |
2.0341 | 0.0120 | 150 | 2.5365 |
2.0174 | 0.0241 | 300 | 2.4113 |
1.8215 | 0.0361 | 450 | 2.3501 |
1.8674 | 0.0481 | 600 | 2.3039 |
1.8123 | 0.0602 | 750 | 2.2764 |
1.8245 | 0.0722 | 900 | 2.2413 |
1.6968 | 0.0842 | 1050 | 2.2148 |
1.8555 | 0.0962 | 1200 | 2.1874 |
1.6808 | 0.1083 | 1350 | 2.1682 |
1.8112 | 0.1203 | 1500 | 2.1497 |
1.8887 | 0.1323 | 1650 | 2.1332 |
1.7674 | 0.1444 | 1800 | 2.1167 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for brixeus/a4f6bd52-2bb7-4121-9571-36561652d546
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Math-1.5B-Instruct