en-vi-machine-translation

This is a custom Transformer encoder-decoder model. Training from scratch on iwslt2015-en-vi datasets.

It achieves the following results on the evaluation set:

  • Loss: 4.3761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 350
  • eval_batch_size: 350
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
7.5582 1.0 381 6.3939
6.0664 2.0 762 5.7502
5.6536 3.0 1143 5.4572
5.3981 4.0 1524 5.2329
5.199 5.0 1905 5.0636
5.0443 6.0 2286 4.9307
4.9222 7.0 2667 4.8311
4.8242 8.0 3048 4.7455
4.7445 9.0 3429 4.6765
4.6778 10.0 3810 4.6196
4.6218 11.0 4191 4.5714
4.5751 12.0 4572 4.5287
4.5343 13.0 4953 4.4960
4.5014 14.0 5334 4.4704
4.4739 15.0 5715 4.4467
4.4506 16.0 6096 4.4270
4.4324 17.0 6477 4.4121
4.417 18.0 6858 4.3996
4.4056 19.0 7239 4.3922
4.3967 20.0 7620 4.3843
4.3908 21.0 8001 4.3807
4.3865 22.0 8382 4.3784
4.3844 23.0 8763 4.3766
4.3838 24.0 9144 4.3761
4.3829 25.0 9525 4.3761

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu118
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
83
Safetensors
Model size
28.3M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.