Model Card for RLHF-PPO-PPOModel-LLama3-1B-v1
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the trl-internal-testing/descriptiveness-sentiment-trl-style dataset. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bikalnetomi/RLHF-PPO-PPOModel-LLama3-1B-v1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with PPO, a method introduced in Fine-Tuning Language Models from Human Preferences.
Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citations
Cite PPO as:
@article{mziegler2019fine-tuning,
title = {{Fine-Tuning Language Models from Human Preferences}},
author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
year = 2019,
eprint = {arXiv:1909.08593}
}
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bikalnetomi/RLHF-PPO-PPOModel-LLama3-1B-v1.0
Base model
meta-llama/Llama-3.2-1B-Instruct