pogny-128-0.1
This model is a fine-tuned version of klue/roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6873
- Accuracy: 0.4376
- F1: 0.2665
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
42.1657 | 1.0 | 603 | 24.7694 | 0.4376 | 0.2665 |
38.0547 | 2.0 | 1206 | 34.6085 | 0.2545 | 0.1032 |
34.4507 | 3.0 | 1809 | 47.2521 | 0.0240 | 0.0011 |
33.6528 | 4.0 | 2412 | 23.6900 | 0.0702 | 0.0092 |
29.4715 | 5.0 | 3015 | 13.6478 | 0.0107 | 0.0002 |
26.073 | 6.0 | 3618 | 29.8545 | 0.4376 | 0.2665 |
23.0398 | 7.0 | 4221 | 17.9423 | 0.4376 | 0.2665 |
20.1565 | 8.0 | 4824 | 18.5313 | 0.0702 | 0.0092 |
17.9295 | 9.0 | 5427 | 16.2984 | 0.4376 | 0.2665 |
12.4633 | 10.0 | 6030 | 11.9847 | 0.2545 | 0.1032 |
9.5341 | 11.0 | 6633 | 10.4590 | 0.4376 | 0.2665 |
8.1157 | 12.0 | 7236 | 3.1051 | 0.4376 | 0.2665 |
5.1415 | 13.0 | 7839 | 3.4676 | 0.0702 | 0.0092 |
3.3891 | 14.0 | 8442 | 2.0901 | 0.4376 | 0.2665 |
1.854 | 15.0 | 9045 | 1.6873 | 0.4376 | 0.2665 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0a0+b5021ba
- Datasets 2.6.2
- Tokenizers 0.14.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bella05/pogny-128-0.1
Base model
klue/roberta-large