SetFit with thenlper/gte-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses thenlper/gte-small as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: thenlper/gte-small
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.4865 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amplyfi/gte-small_all-labels_multilabel")
# Run inference
preds = model("LATAM Unveils New Dreamliner Economy Cabin Design")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 9.9616 | 30 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 0.3005 | - |
0.0903 | 50 | 0.2933 | - |
0.1805 | 100 | 0.2219 | - |
0.2708 | 150 | 0.1568 | - |
0.3610 | 200 | 0.1334 | - |
0.4513 | 250 | 0.1204 | - |
0.5415 | 300 | 0.1215 | - |
0.6318 | 350 | 0.1154 | - |
0.7220 | 400 | 0.1065 | - |
0.8123 | 450 | 0.0935 | - |
0.9025 | 500 | 0.0892 | - |
0.9928 | 550 | 0.0807 | - |
1.0830 | 600 | 0.0776 | - |
1.1733 | 650 | 0.0716 | - |
1.2635 | 700 | 0.06 | - |
1.3538 | 750 | 0.0677 | - |
1.4440 | 800 | 0.0607 | - |
1.5343 | 850 | 0.065 | - |
1.6245 | 900 | 0.0593 | - |
1.7148 | 950 | 0.0622 | - |
1.8051 | 1000 | 0.064 | - |
1.8953 | 1050 | 0.0624 | - |
1.9856 | 1100 | 0.0667 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 14
Inference API (serverless) has been turned off for this model.
Model tree for amplyfi/gte-small_all-labels_multilabel
Base model
thenlper/gte-small