🚨 Update: This checkpoint is deprecated, please use https://huggingface.co/almanach/camembert-base instead 🚨

CamemBERT: a Tasty French Language Model

Introduction

CamemBERT is a state-of-the-art language model for French based on the RoBERTa model.

It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.

For further information or requests, please go to Camembert Website

Pre-trained models

Model #params Arch. Training data
camembert-base 110M Base OSCAR (138 GB of text)
camembert/camembert-large 335M Large CCNet (135 GB of text)
camembert/camembert-base-ccnet 110M Base CCNet (135 GB of text)
camembert/camembert-base-wikipedia-4gb 110M Base Wikipedia (4 GB of text)
camembert/camembert-base-oscar-4gb 110M Base Subsample of OSCAR (4 GB of text)
camembert/camembert-base-ccnet-4gb 110M Base Subsample of CCNet (4 GB of text)

How to use CamemBERT with HuggingFace

Load CamemBERT and its sub-word tokenizer :
from transformers import CamembertModel, CamembertTokenizer

# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")

camembert.eval()  # disable dropout (or leave in train mode to finetune)
Filling masks using pipeline
from transformers import pipeline 

camembert_fill_mask  = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
# results
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, 
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, 
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, 
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
Extract contextual embedding features from Camembert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] 

# 1-hot encode and add special starting and end tokens 
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")

# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
#tensor([[[-0.0928,  0.0506, -0.0094,  ..., -0.2388,  0.1177, -0.1302],
#         [ 0.0662,  0.1030, -0.2355,  ..., -0.4224, -0.0574, -0.2802],
#         [-0.0729,  0.0547,  0.0192,  ..., -0.1743,  0.0998, -0.2677],
#         ...,
Extract contextual embedding features from all Camembert layers
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)

embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
#  all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0059, -0.0227,  0.0065,  ..., -0.0770,  0.0369,  0.0095],
#         [ 0.2838, -0.1531, -0.3642,  ..., -0.0027, -0.8502, -0.7914],
#         [-0.0073, -0.0338, -0.0011,  ...,  0.0533, -0.0250, -0.0061],
#         ...,

Authors

CamemBERT was trained and evaluated by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.

Citation

If you use our work, please cite:

@inproceedings{martin2020camembert,
  title={CamemBERT: a Tasty French Language Model},
  author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2020}
}
Downloads last month
6,087
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for almanach/camembert-base-legacy

Finetunes
8 models

Space using almanach/camembert-base-legacy 1