da-discourse-coherence-base

This model is a fine-tuned version of NbAiLab/nb-bert-base on the DDisco dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7487
  • Accuracy: 0.6915

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 703
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3422 0.4 5 1.0166 0.5721
0.9645 0.8 10 0.8966 0.5721
0.9854 1.24 15 0.8499 0.5721
0.8628 1.64 20 0.8379 0.6517
0.9046 2.08 25 0.8228 0.5721
0.8361 2.48 30 0.7980 0.5821
0.8158 2.88 35 0.8095 0.5821
0.8689 3.32 40 0.7989 0.6169
0.8125 3.72 45 0.7730 0.6965
0.843 4.16 50 0.7566 0.6418
0.7421 4.56 55 0.7840 0.6517
0.7949 4.96 60 0.7531 0.6915
0.828 5.4 65 0.7464 0.6816
0.7438 5.8 70 0.7487 0.6915

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.0a0+d0d6b1f
  • Datasets 2.9.0
  • Tokenizers 0.13.2

Contributor

ajders

Downloads last month
15
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alexandrainst/da-discourse-coherence-base

Finetuned
(17)
this model

Dataset used to train alexandrainst/da-discourse-coherence-base