InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
GitHub: https://github.com/AlaaLab/InstructCV
Example
To use InstructCV
, install diffusers
using main
for now. The pipeline will be available in the next release
pip install diffusers accelerate safetensors transformers
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "yulu2/InstructCV"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
url = "put your url here"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(URL)
seed = random.randint(0, 100000)
generator = torch.manual_seed(seed)
width, height = image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
image = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS)
prompt = "Detect the person."
images = pipe(prompt, image=image, num_inference_steps=100, generator=generator).images[0]
images[0]
- Downloads last month
- 100
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.