BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("akashmaggon/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The table presents our market risk by asset category for positions accounted for at fair value or accounted for at the lower of cost or fair value, that are not included in VaR. As of December 2023, equity was at $1,562 million and debt was at $2,446 million.',
"What are the market risk values for Goldman Sachs' equity and debt positions not included in VaR as of December 2023?",
"What was the conclusion of the Company's review regarding the impact of the American Rescue Plan, the Consolidated Appropriations Act, 2021, and related tax provisions on its business for the fiscal year ended June 30, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6957 |
cosine_accuracy@3 | 0.8371 |
cosine_accuracy@5 | 0.8714 |
cosine_accuracy@10 | 0.9243 |
cosine_precision@1 | 0.6957 |
cosine_precision@3 | 0.279 |
cosine_precision@5 | 0.1743 |
cosine_precision@10 | 0.0924 |
cosine_recall@1 | 0.6957 |
cosine_recall@3 | 0.8371 |
cosine_recall@5 | 0.8714 |
cosine_recall@10 | 0.9243 |
cosine_ndcg@10 | 0.8105 |
cosine_mrr@10 | 0.7742 |
cosine_map@100 | 0.7773 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.9186 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.0919 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.9186 |
cosine_ndcg@10 | 0.809 |
cosine_mrr@10 | 0.774 |
cosine_map@100 | 0.7776 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6929 |
cosine_accuracy@3 | 0.8186 |
cosine_accuracy@5 | 0.8586 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.6929 |
cosine_precision@3 | 0.2729 |
cosine_precision@5 | 0.1717 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.6929 |
cosine_recall@3 | 0.8186 |
cosine_recall@5 | 0.8586 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8017 |
cosine_mrr@10 | 0.767 |
cosine_map@100 | 0.7712 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6871 |
cosine_accuracy@3 | 0.8071 |
cosine_accuracy@5 | 0.8586 |
cosine_accuracy@10 | 0.8986 |
cosine_precision@1 | 0.6871 |
cosine_precision@3 | 0.269 |
cosine_precision@5 | 0.1717 |
cosine_precision@10 | 0.0899 |
cosine_recall@1 | 0.6871 |
cosine_recall@3 | 0.8071 |
cosine_recall@5 | 0.8586 |
cosine_recall@10 | 0.8986 |
cosine_ndcg@10 | 0.7921 |
cosine_mrr@10 | 0.7581 |
cosine_map@100 | 0.7627 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6643 |
cosine_accuracy@3 | 0.7843 |
cosine_accuracy@5 | 0.8257 |
cosine_accuracy@10 | 0.8729 |
cosine_precision@1 | 0.6643 |
cosine_precision@3 | 0.2614 |
cosine_precision@5 | 0.1651 |
cosine_precision@10 | 0.0873 |
cosine_recall@1 | 0.6643 |
cosine_recall@3 | 0.7843 |
cosine_recall@5 | 0.8257 |
cosine_recall@10 | 0.8729 |
cosine_ndcg@10 | 0.769 |
cosine_mrr@10 | 0.7358 |
cosine_map@100 | 0.7407 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 7 tokens
- mean: 44.39 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 20.64 tokens
- max: 51 tokens
- Samples:
positive anchor Johnson & Johnson reported cash and cash equivalents of $21,859 million as of the end of 2023.
What was the amount of cash and cash equivalents reported by Johnson & Johnson at the end of 2023?
Johnson & Johnson's consolidated statements of earnings for 2023 reported total net earnings of $35,153 million.
What was the total net earnings for Johnson & Johnson in 2023?
As of December 31, 2023, short-term investments were valued at $236,118 thousand and long-term investments at $86,676 thousand.
What is the total value of short-term and long-term investments held by the company as of December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5779 | - | - | - | - | - |
0.9746 | 12 | - | 0.7388 | 0.7509 | 0.7604 | 0.7081 | 0.7579 |
1.6244 | 20 | 0.6572 | - | - | - | - | - |
1.9492 | 24 | - | 0.7612 | 0.7670 | 0.7729 | 0.7269 | 0.7705 |
2.4365 | 30 | 0.4661 | - | - | - | - | - |
2.9239 | 36 | - | 0.7623 | 0.7702 | 0.7771 | 0.7386 | 0.7758 |
3.2487 | 40 | 0.3774 | - | - | - | - | - |
3.8985 | 48 | - | 0.7627 | 0.7712 | 0.7776 | 0.7407 | 0.7773 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for akashmaggon/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.696
- Cosine Accuracy@3 on dim 768self-reported0.837
- Cosine Accuracy@5 on dim 768self-reported0.871
- Cosine Accuracy@10 on dim 768self-reported0.924
- Cosine Precision@1 on dim 768self-reported0.696
- Cosine Precision@3 on dim 768self-reported0.279
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.696
- Cosine Recall@3 on dim 768self-reported0.837