layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • Precision: 0.9561
  • Recall: 0.9618
  • F1: 0.9590
  • Accuracy: 0.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.56 250 1.0075 0.7597 0.8046 0.7815 0.8145
1.3907 3.12 500 0.5155 0.8388 0.8683 0.8533 0.8841
1.3907 4.69 750 0.3486 0.8917 0.9117 0.9016 0.9283
0.3755 6.25 1000 0.2722 0.9211 0.9356 0.9283 0.9435
0.3755 7.81 1250 0.2399 0.9356 0.9461 0.9408 0.9533
0.1857 9.38 1500 0.2170 0.9376 0.9454 0.9415 0.9542
0.1857 10.94 1750 0.1917 0.9510 0.9588 0.9549 0.9660
0.1236 12.5 2000 0.1821 0.9502 0.9573 0.9538 0.9652
0.1236 14.06 2250 0.1870 0.9538 0.9588 0.9563 0.9669
0.0858 15.62 2500 0.1741 0.9583 0.9633 0.9608 0.9711
0.0858 17.19 2750 0.1726 0.9561 0.9611 0.9586 0.9690
0.0708 18.75 3000 0.1726 0.9561 0.9618 0.9590 0.9703

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for akanchha/layoutlmv3-finetuned-cord_100

Finetuned
(224)
this model

Evaluation results