sft

This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the glaive_toolcall_100k and the bespoke_reasoning_17k datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 14
  • total_eval_batch_size: 7
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.4468 0.2307 500 0.3987
0.4457 0.4614 1000 0.3861
0.4197 0.6920 1500 0.3745
0.4264 0.9227 2000 0.3640
0.3188 1.1532 2500 0.3638
0.2938 1.3839 3000 0.3572
0.2891 1.6145 3500 0.3523
0.3013 1.8452 4000 0.3492

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
51
Safetensors
Model size
14.8B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for aczhu/qwen_reason_fc

Base model

Qwen/Qwen2.5-14B
Finetuned
(116)
this model