How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftMode

model_name_or_path = "bigscience/bloomz-7b1-mt"

peft_model_id = "acul3/bloomz-7b-instructions-lora"

model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")

model = PeftModel.from_pretrained(model, peft_model_id)

text = "Bagaimana Merebus Telur ?"
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-7b1-mt")
text = "User: " + text + "\n\Asisten: "
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids=input_ids.to("cuda"), max_length=400, pad_token_id=tokenizer.eos_token_id, do_sample=True, top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03, num_return_sequences=1)

res = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

print(res)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.