ZeroXClem/Qwen2.5-7B-HomerCreative-Mix
ZeroXClem/Qwen2.5-7B-HomerCreative-Mix is an advanced language model meticulously crafted by merging four pre-trained models using the powerful mergekit framework. This fusion leverages the Model Stock merge method to combine the creative prowess of Qandora, the instructive capabilities of Qwen-Instruct-Fusion, the sophisticated blending of HomerSlerp1, and the foundational conversational strengths of Homer-v0.5-Qwen2.5-7B. The resulting model excels in creative text generation, contextual understanding, and dynamic conversational interactions.
🚀 Merged Models
This model merge incorporates the following:
bunnycore/Qandora-2.5-7B-Creative: Specializes in creative text generation, enhancing the model's ability to produce imaginative and diverse content.
bunnycore/Qwen2.5-7B-Instruct-Fusion: Focuses on instruction-following capabilities, improving the model's performance in understanding and executing user commands.
allknowingroger/HomerSlerp1-7B: Utilizes spherical linear interpolation (SLERP) to blend model weights smoothly, ensuring a harmonious integration of different model attributes.
newsbang/Homer-v0.5-Qwen2.5-7B: Acts as the foundational conversational model, providing robust language comprehension and generation capabilities.
🧩 Merge Configuration
The configuration below outlines how the models are merged using the Model Stock method. This approach ensures a balanced and effective integration of the unique strengths from each source model.
# Merge configuration for ZeroXClem/Qwen2.5-7B-HomerCreative-Mix using Model Stock
models:
- model: bunnycore/Qandora-2.5-7B-Creative
- model: bunnycore/Qwen2.5-7B-Instruct-Fusion
- model: allknowingroger/HomerSlerp1-7B
merge_method: model_stock
base_model: newsbang/Homer-v0.5-Qwen2.5-7B
normalize: false
int8_mask: true
dtype: bfloat16
Key Parameters
Merge Method (
merge_method
): Utilizes the Model Stock method, as described in Model Stock, to effectively combine multiple models by leveraging their strengths.Models (
models
): Specifies the list of models to be merged:- bunnycore/Qandora-2.5-7B-Creative: Enhances creative text generation.
- bunnycore/Qwen2.5-7B-Instruct-Fusion: Improves instruction-following capabilities.
- allknowingroger/HomerSlerp1-7B: Facilitates smooth blending of model weights using SLERP.
Base Model (
base_model
): Defines the foundational model for the merge, which is newsbang/Homer-v0.5-Qwen2.5-7B in this case.Normalization (
normalize
): Set tofalse
to retain the original scaling of the model weights during the merge.INT8 Mask (
int8_mask
): Enabled (true
) to apply INT8 quantization masking, optimizing the model for efficient inference without significant loss in precision.Data Type (
dtype
): Usesbfloat16
to maintain computational efficiency while ensuring high precision.
🏆 Performance Highlights
Creative Text Generation: Enhanced ability to produce imaginative and diverse content suitable for creative writing, storytelling, and content creation.
Instruction Following: Improved performance in understanding and executing user instructions, making the model more responsive and accurate in task execution.
Optimized Inference: INT8 masking and
bfloat16
data type contribute to efficient computation, enabling faster response times without compromising quality.
🎯 Use Case & Applications
ZeroXClem/Qwen2.5-7B-HomerCreative-Mix is designed to excel in environments that demand both creative generation and precise instruction following. Ideal applications include:
Creative Writing Assistance: Aiding authors and content creators in generating imaginative narratives, dialogues, and descriptive text.
Interactive Storytelling and Role-Playing: Enhancing dynamic and engaging interactions in role-playing games and interactive storytelling platforms.
Educational Tools and Tutoring Systems: Providing detailed explanations, answering questions, and assisting in educational content creation with contextual understanding.
Technical Support and Customer Service: Offering accurate and contextually relevant responses in technical support scenarios, improving user satisfaction.
Content Generation for Marketing: Creating compelling and diverse marketing copy, social media posts, and promotional material with creative flair.
📝 Usage
To utilize ZeroXClem/Qwen2.5-7B-HomerCreative-Mix, follow the steps below:
Installation
First, install the necessary libraries:
pip install -qU transformers accelerate
Example Code
Below is an example of how to load and use the model for text generation:
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Define the model name
model_name = "ZeroXClem/Qwen2.5-7B-HomerCreative-Mix"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Initialize the pipeline
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Define the input prompt
prompt = "Once upon a time in a land far, far away,"
# Generate the output
outputs = text_generator(
prompt,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
# Print the generated text
print(outputs[0]["generated_text"])
Notes
Fine-Tuning: This merged model may require fine-tuning to optimize performance for specific applications or domains.
Resource Requirements: Ensure that your environment has sufficient computational resources, especially GPU-enabled hardware, to handle the model efficiently during inference.
Customization: Users can adjust parameters such as
temperature
,top_k
, andtop_p
to control the creativity and diversity of the generated text.
📜 License
This model is open-sourced under the Apache-2.0 License.
💡 Tags
merge
mergekit
model_stock
Qwen
Homer
Creative
ZeroXClem/Qwen2.5-7B-HomerCreative-Mix
bunnycore/Qandora-2.5-7B-Creative
bunnycore/Qwen2.5-7B-Instruct-Fusion
allknowingroger/HomerSlerp1-7B
newsbang/Homer-v0.5-Qwen2.5-7B
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.35 |
IFEval (0-Shot) | 78.35 |
BBH (3-Shot) | 36.77 |
MATH Lvl 5 (4-Shot) | 32.33 |
GPQA (0-shot) | 6.60 |
MuSR (0-shot) | 13.77 |
MMLU-PRO (5-shot) | 38.30 |
- Downloads last month
- 125
Model tree for ZeroXClem/Qwen2.5-7B-HomerCreative-Mix
Collections including ZeroXClem/Qwen2.5-7B-HomerCreative-Mix
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard78.350
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard36.770
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard32.330
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.600
- acc_norm on MuSR (0-shot)Open LLM Leaderboard13.770
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard38.300