metadata
license: apache-2.0
base_model: google/vit-base-patch32-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: rmsProp_ViTB-32-224-in21k-1e-4-batch_16_epoch_4_classes_24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9583333333333334
rmsProp_ViTB-32-224-in21k-1e-4-batch_16_epoch_4_classes_24
This model is a fine-tuned version of google/vit-base-patch32-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1773
- Accuracy: 0.9583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5163 | 0.07 | 100 | 1.4460 | 0.8779 |
0.7184 | 0.14 | 200 | 0.8418 | 0.8764 |
0.3902 | 0.21 | 300 | 0.5001 | 0.9066 |
0.3509 | 0.28 | 400 | 0.4132 | 0.9138 |
0.1873 | 0.35 | 500 | 0.3207 | 0.9282 |
0.2124 | 0.42 | 600 | 0.3325 | 0.9239 |
0.1122 | 0.49 | 700 | 0.2961 | 0.9267 |
0.135 | 0.56 | 800 | 0.2646 | 0.9353 |
0.1275 | 0.63 | 900 | 0.2384 | 0.9411 |
0.1194 | 0.7 | 1000 | 0.2189 | 0.9397 |
0.1968 | 0.77 | 1100 | 0.2539 | 0.9282 |
0.078 | 0.84 | 1200 | 0.2293 | 0.9353 |
0.0345 | 0.91 | 1300 | 0.1585 | 0.9626 |
0.1068 | 0.97 | 1400 | 0.2896 | 0.9181 |
0.0429 | 1.04 | 1500 | 0.1876 | 0.9497 |
0.0153 | 1.11 | 1600 | 0.2637 | 0.9296 |
0.0296 | 1.18 | 1700 | 0.2153 | 0.9454 |
0.0262 | 1.25 | 1800 | 0.2906 | 0.9339 |
0.023 | 1.32 | 1900 | 0.2271 | 0.9483 |
0.0154 | 1.39 | 2000 | 0.2772 | 0.9397 |
0.0778 | 1.46 | 2100 | 0.2510 | 0.9353 |
0.0504 | 1.53 | 2200 | 0.1866 | 0.9555 |
0.0563 | 1.6 | 2300 | 0.2228 | 0.9454 |
0.0481 | 1.67 | 2400 | 0.2390 | 0.9497 |
0.0602 | 1.74 | 2500 | 0.2601 | 0.9382 |
0.0253 | 1.81 | 2600 | 0.2905 | 0.9339 |
0.0433 | 1.88 | 2700 | 0.2805 | 0.9325 |
0.0039 | 1.95 | 2800 | 0.2264 | 0.9425 |
0.0476 | 2.02 | 2900 | 0.2195 | 0.9511 |
0.0036 | 2.09 | 3000 | 0.2174 | 0.9511 |
0.003 | 2.16 | 3100 | 0.1697 | 0.9583 |
0.0026 | 2.23 | 3200 | 0.2194 | 0.9555 |
0.0049 | 2.3 | 3300 | 0.2416 | 0.9468 |
0.0023 | 2.37 | 3400 | 0.1703 | 0.9612 |
0.0023 | 2.44 | 3500 | 0.2082 | 0.9583 |
0.0262 | 2.51 | 3600 | 0.2328 | 0.9468 |
0.0026 | 2.58 | 3700 | 0.1798 | 0.9583 |
0.0458 | 2.65 | 3800 | 0.2406 | 0.9483 |
0.0027 | 2.72 | 3900 | 0.2298 | 0.9511 |
0.0019 | 2.79 | 4000 | 0.1836 | 0.9598 |
0.0146 | 2.86 | 4100 | 0.2025 | 0.9526 |
0.0739 | 2.92 | 4200 | 0.1946 | 0.9598 |
0.0054 | 2.99 | 4300 | 0.1972 | 0.9569 |
0.0015 | 3.06 | 4400 | 0.2329 | 0.9511 |
0.0015 | 3.13 | 4500 | 0.2094 | 0.9569 |
0.0016 | 3.2 | 4600 | 0.1888 | 0.9598 |
0.0017 | 3.27 | 4700 | 0.1853 | 0.9569 |
0.0014 | 3.34 | 4800 | 0.1809 | 0.9612 |
0.0013 | 3.41 | 4900 | 0.1802 | 0.9583 |
0.0014 | 3.48 | 5000 | 0.1795 | 0.9569 |
0.0012 | 3.55 | 5100 | 0.1737 | 0.9583 |
0.0012 | 3.62 | 5200 | 0.1777 | 0.9569 |
0.0012 | 3.69 | 5300 | 0.1796 | 0.9555 |
0.0012 | 3.76 | 5400 | 0.1782 | 0.9569 |
0.0012 | 3.83 | 5500 | 0.1771 | 0.9583 |
0.0012 | 3.9 | 5600 | 0.1773 | 0.9583 |
0.0011 | 3.97 | 5700 | 0.1773 | 0.9583 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2