WaRKiD's picture
Upload TFDistilBertForSequenceClassification
d144539
metadata
license: apache-2.0
base_model: distilbert-base-uncased-finetuned-sst-2-english
tags:
  - generated_from_keras_callback
model-index:
  - name: distilbert-base-uncased-finetuned-intel-llm-yn-dataset
    results: []

distilbert-base-uncased-finetuned-intel-llm-yn-dataset

This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3401
  • Train Accuracy: 0.8595
  • Validation Loss: 0.4899
  • Validation Accuracy: 0.7858
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2946, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.6333 0.6752 0.5191 0.7486 0
0.4562 0.7870 0.4849 0.7898 1
0.3401 0.8595 0.4899 0.7858 2

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.12.0
  • Datasets 2.14.5
  • Tokenizers 0.14.0