ViT5-large Finetuned on vietnews Abstractive Summarization

State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. PWC

How to use

For more details, do check out our Github repo and eval script.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization")
model.cuda()
​
sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam."
text =  "vietnews: " + sentence + " </s>"
encoding = tokenizer(text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

Citation

@inproceedings{phan-etal-2022-vit5,
    title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
    author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-srw.18",
    pages = "136--142",
}
Downloads last month
834
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for VietAI/vit5-large-vietnews-summarization

Finetunes
4 models

Dataset used to train VietAI/vit5-large-vietnews-summarization

Spaces using VietAI/vit5-large-vietnews-summarization 4