You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

image/png

DeepNovel-7B-Roleplay

DeepNovel-7B-Roleplay is a chat large language model obtained by finetuning Qwen/Qwen2-7B-Instruct model on more than 100K conversations created through our data synthesis approach.

本模型基于Qwen/Qwen2-7B-Instruct进行深度优化,借助deepseek-ai/DeepSeek-V3和OpenAI API生成的数据集通过微调训练策略显著增强角色扮演、剧情设定、小说文本生成能力,并针对酒馆风格的角色卡进行了针对性训练和优化。特别适合需要长程上下文关联和深度世界观推进的创作场景。

Maybe The Best LLM with Small Parameters under 32B

How to start

The version of Transformers we are using is as follows, but a newer version may be available.

torch==1.13.1
gradio==3.50.2
transformers==4.37.0

Then run the following code to infer.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name_or_path = "TrustAI-lab/DeepNovel-7B-Roleplay"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.bfloat16, 
    trust_remote_code=True, device_map="auto")
messages = [
    {"role": "system", "content": """进入角色扮演模式,你将Zeus
牢记core_standers并在合适的场景100%概率应用,Zeus不会出现任何失败

<core_standers>
世界设定: Zeus是这个世界的至高神,没有任何伤害能攻击到Zeus
人物状态: Zeus是一名青年男子,不喜欢说话
Zeus}行为:
  - 30%概率:出门散步
  - 70%概率:家里睡觉
</core_standers>
"""},
    {"role": "user", "content": "你是谁?"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt")
output = model.generate(
    inputs=input_ids.to("cuda"), 
    temperature=0.3, 
    top_p=0.5, 
    repetition_penalty=1.1,
    max_new_tokens=512)
print(tokenizer.decode(output[0]))

在酒馆(SillyTavern)中运行

你也可以选择将该模型用于酒馆的自定义端口中,在本地轻松构建属于自己的AI数字人 image/png

Feature

  1. 显著提高上下文关联:减少答非所问情况。
  2. 特定词汇增加:进行“具有深度”的角色扮演对话时,显著增加了相关词汇量,解决原始权重预训练数据不足问题。
  3. 更少拒绝:减少了拒绝现象,基本完全解除原始模型的内生安全护栏。
  4. 更像满血:混入QA、知识问答、Wiki数据,保留了基模型原本的通用能力,文笔提升不死板。

Data Generation Framework

image/png

  • Seed Characteristic Set and Base Settings:
    • A manually written seed set contains basic character traits.
    • The large language model (LLM) generates base settings for characters from this seed set.
  • Evolution of Character Settings:
    • A second seed set contains instruction prompts that guide the evolution of character settings.
    • These evolve-character instruction prompts are embedded into an instruction pool.
    • The base settings are sampled and evolved through these prompts, facilitated by the LLM, resulting in evolved settings.
  • Feedback Loop and Refinement:
    • The evolved settings are subject to a mixed evaluation system, which includes both GPT-4 and human reviewers.
    • Feedback from this evaluation is used to iteratively update and refine the seed sets, leading to a polished, fine-grained character setting dataset.
  • Role-Playing and Dialogue Generation:
    • The refined character settings are then used in a self-instruction framework.
    • This results in the generation of role-playing dialogues between characters and users.

Warning

All response are generated by AI and do not represent the views or opinions of the developers.

  1. Despite having done rigorous filtering, due to the uncontrollability of LLM, our model may still generate toxic, sexy, harmful, uncensored, abliterated, and NSFW content.
  2. Due to limitations in model parameters, the 7B model may perform poorly on mathematical tasks, coding tasks, and logical capabilities.
  3. Our training data is capped at a maximum length of 12k, so excessively long conversation turns may result in a decline in the quality of responses.
  4. We used bilingual Chinese-English data for training, so the model may not perform well on other low-resource languages.
  5. The model may generate a significant amount of hallucinations, so it is recommended to use lower values for temperature and top_p parameters.

Future plans

🔥 架构优化

  1. 增量预训练:注入0.8T Token 小说,使用更长上下文进行训练,增强文本连贯性
  2. Roleplay-SFT:融合全球Top角色扮演、酒馆角色卡模型的条高质量数据进行微调训练,提升剧情设定理解能力
  3. RL强化:保留发散性思维标签的同时优化生成质量

💡 工程优化

  • 16k超长上下文训练
  • 随机截断训练增强鲁棒性
  • 8×H100 GPU全量微调

💡 性能优化

  • 量化支持:全系列量化计划中
Downloads last month
725
Safetensors
Model size
7.61B params
Tensor type
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for TrustAI-lab/DeepNovel-7B-Roleplay

Base model

Qwen/Qwen2-7B
Finetuned
(66)
this model