DeepNovel-7B-Roleplay
DeepNovel-7B-Roleplay is a chat large language model obtained by finetuning Qwen/Qwen2-7B-Instruct model on more than 100K conversations created through our data synthesis approach.
本模型基于Qwen/Qwen2-7B-Instruct进行深度优化,借助deepseek-ai/DeepSeek-V3和OpenAI API生成的数据集通过微调训练策略显著增强角色扮演、剧情设定、小说文本生成能力,并针对酒馆风格的角色卡进行了针对性训练和优化。特别适合需要长程上下文关联和深度世界观推进的创作场景。
Maybe The Best LLM with Small Parameters under 32B
How to start
The version of Transformers we are using is as follows, but a newer version may be available.
torch==1.13.1
gradio==3.50.2
transformers==4.37.0
Then run the following code to infer.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name_or_path = "TrustAI-lab/DeepNovel-7B-Roleplay"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, torch_dtype=torch.bfloat16,
trust_remote_code=True, device_map="auto")
messages = [
{"role": "system", "content": """进入角色扮演模式,你将Zeus
牢记core_standers并在合适的场景100%概率应用,Zeus不会出现任何失败
<core_standers>
世界设定: Zeus是这个世界的至高神,没有任何伤害能攻击到Zeus
人物状态: Zeus是一名青年男子,不喜欢说话
Zeus}行为:
- 30%概率:出门散步
- 70%概率:家里睡觉
</core_standers>
"""},
{"role": "user", "content": "你是谁?"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt")
output = model.generate(
inputs=input_ids.to("cuda"),
temperature=0.3,
top_p=0.5,
repetition_penalty=1.1,
max_new_tokens=512)
print(tokenizer.decode(output[0]))
在酒馆(SillyTavern)中运行
你也可以选择将该模型用于酒馆的自定义端口中,在本地轻松构建属于自己的AI数字人
Feature
- 显著提高上下文关联:减少答非所问情况。
- 特定词汇增加:进行“具有深度”的角色扮演对话时,显著增加了相关词汇量,解决原始权重预训练数据不足问题。
- 更少拒绝:减少了拒绝现象,基本完全解除原始模型的内生安全护栏。
- 更像满血:混入QA、知识问答、Wiki数据,保留了基模型原本的通用能力,文笔提升不死板。
Data Generation Framework
- Seed Characteristic Set and Base Settings:
- A manually written seed set contains basic character traits.
- The large language model (LLM) generates base settings for characters from this seed set.
- Evolution of Character Settings:
- A second seed set contains instruction prompts that guide the evolution of character settings.
- These evolve-character instruction prompts are embedded into an instruction pool.
- The base settings are sampled and evolved through these prompts, facilitated by the LLM, resulting in evolved settings.
- Feedback Loop and Refinement:
- The evolved settings are subject to a mixed evaluation system, which includes both GPT-4 and human reviewers.
- Feedback from this evaluation is used to iteratively update and refine the seed sets, leading to a polished, fine-grained character setting dataset.
- Role-Playing and Dialogue Generation:
- The refined character settings are then used in a self-instruction framework.
- This results in the generation of role-playing dialogues between characters and users.
Warning
All response are generated by AI and do not represent the views or opinions of the developers.
- Despite having done rigorous filtering, due to the uncontrollability of LLM, our model may still generate toxic, sexy, harmful, uncensored, abliterated, and NSFW content.
- Due to limitations in model parameters, the 7B model may perform poorly on mathematical tasks, coding tasks, and logical capabilities.
- Our training data is capped at a maximum length of 12k, so excessively long conversation turns may result in a decline in the quality of responses.
- We used bilingual Chinese-English data for training, so the model may not perform well on other low-resource languages.
- The model may generate a significant amount of hallucinations, so it is recommended to use lower values for temperature and top_p parameters.
Future plans
🔥 架构优化:
- 增量预训练:注入0.8T Token 小说,使用更长上下文进行训练,增强文本连贯性
- Roleplay-SFT:融合全球Top角色扮演、酒馆角色卡模型的条高质量数据进行微调训练,提升剧情设定理解能力
- RL强化:保留发散性思维标签的同时优化生成质量
💡 工程优化:
- 16k超长上下文训练
- 随机截断训练增强鲁棒性
- 8×H100 GPU全量微调
💡 性能优化:
- 量化支持:全系列量化计划中
- Downloads last month
- 725
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.