robbert_dataaugmentation

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7814
  • Precisions: 0.8515
  • Recall: 0.8094
  • F-measure: 0.8265
  • Accuracy: 0.9039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.5813 1.0 285 0.4311 0.7695 0.7413 0.7537 0.8704
0.2533 2.0 570 0.4952 0.8339 0.7501 0.7745 0.8801
0.1216 3.0 855 0.5067 0.8403 0.7968 0.8148 0.8932
0.0685 4.0 1140 0.6121 0.8041 0.7972 0.7963 0.8886
0.0478 5.0 1425 0.6603 0.8239 0.7820 0.7983 0.8893
0.0294 6.0 1710 0.7029 0.8190 0.8029 0.8083 0.8954
0.0147 7.0 1995 0.7219 0.8332 0.8198 0.8227 0.8991
0.0142 8.0 2280 0.7702 0.8330 0.7953 0.8109 0.8961
0.0099 9.0 2565 0.7670 0.8340 0.7943 0.8086 0.8972
0.0044 10.0 2850 0.8132 0.8434 0.8026 0.8193 0.9025
0.0058 11.0 3135 0.7757 0.8468 0.8100 0.8253 0.9033
0.0046 12.0 3420 0.7814 0.8515 0.8094 0.8265 0.9039
0.0029 13.0 3705 0.8057 0.8494 0.8046 0.8229 0.9029
0.0012 14.0 3990 0.7994 0.8492 0.8047 0.8230 0.9031

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Tommert25/robbert_dataaugmentation

Finetuned
(41)
this model