|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robbert2809_lrate10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert2809_lrate10 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3760 |
|
- Precision: 0.7615 |
|
- Recall: 0.7517 |
|
- F1: 0.7566 |
|
- Accuracy: 0.8990 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 118 | 0.4116 | 0.7166 | 0.7104 | 0.7135 | 0.8906 | |
|
| No log | 2.0 | 236 | 0.3760 | 0.7615 | 0.7517 | 0.7566 | 0.8990 | |
|
| No log | 3.0 | 354 | 0.4114 | 0.7428 | 0.7692 | 0.7558 | 0.9019 | |
|
| No log | 4.0 | 472 | 0.4230 | 0.7881 | 0.7844 | 0.7862 | 0.9131 | |
|
| 0.1527 | 5.0 | 590 | 0.4550 | 0.7858 | 0.7716 | 0.7786 | 0.9092 | |
|
| 0.1527 | 6.0 | 708 | 0.4553 | 0.7876 | 0.8019 | 0.7947 | 0.9188 | |
|
| 0.1527 | 7.0 | 826 | 0.4824 | 0.7864 | 0.8001 | 0.7932 | 0.9181 | |
|
| 0.1527 | 8.0 | 944 | 0.4973 | 0.7922 | 0.7978 | 0.7950 | 0.9196 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|