ToastyPigeon commited on
Commit
8c081ae
·
verified ·
1 Parent(s): 8195459

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -183
README.md CHANGED
@@ -9,186 +9,4 @@ model-index:
9
  - name: mistral-small-adventure-qlora
10
  results: []
11
  ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- # huggingface-cli login --token $hf_key && wandb login $wandb_key
22
- # python -m axolotl.cli.preprocess ms-adventure.yml
23
- # accelerate launch -m axolotl.cli.train ms-adventure.yml
24
- # python -m axolotl.cli.merge_lora ms-adventure.yml
25
-
26
- base_model: mistralai/Mistral-Small-Instruct-2409
27
- model_type: AutoModelForCausalLM
28
- tokenizer_type: AutoTokenizer
29
-
30
- load_in_8bit: false
31
- load_in_4bit: true
32
- strict: false
33
- sequence_len: 16384 # 99% vram
34
- min_sample_len: 128
35
- bf16: true
36
- fp16:
37
- tf32: false
38
- flash_attention: true
39
- special_tokens:
40
-
41
- # Data
42
- dataset_prepared_path: last_run_prepared
43
- datasets:
44
- - path: ColumbidAI/adventure-ms-16k
45
- type: completion
46
- warmup_steps: 20
47
- shuffle_merged_datasets: true
48
-
49
- save_safetensors: true
50
-
51
- # WandB
52
- wandb_project: Mistral-Small-Skein
53
- wandb_entity:
54
-
55
- # Iterations
56
- num_epochs: 1
57
-
58
- # Output
59
- output_dir: ./adventure-workspace
60
- hub_model_id: ToastyPigeon/mistral-small-adventure-qlora
61
- hub_strategy: "all_checkpoints"
62
- saves_per_epoch: 5
63
-
64
- # Sampling
65
- sample_packing: true
66
- pad_to_sequence_len: true
67
-
68
- # Batching
69
- gradient_accumulation_steps: 4
70
- micro_batch_size: 1
71
- eval_batch_size: 1
72
- gradient_checkpointing: 'unsloth'
73
- gradient_checkpointing_kwargs:
74
- use_reentrant: true
75
-
76
- #unsloth_cross_entropy_loss: true
77
- #unsloth_lora_mlp: true
78
- #unsloth_lora_qkv: true
79
- #unsloth_lora_o: true
80
-
81
- # Evaluation
82
- val_set_size: 100
83
- evals_per_epoch: 5
84
- eval_table_size:
85
- eval_max_new_tokens: 256
86
- eval_sample_packing: false
87
-
88
- # LoRA
89
- adapter: qlora
90
- lora_model_dir:
91
- lora_r: 64
92
- lora_alpha: 32
93
- lora_dropout: 0.125
94
- lora_target_linear:
95
- lora_fan_in_fan_out:
96
- lora_target_modules:
97
- - gate_proj
98
- - down_proj
99
- - up_proj
100
- - q_proj
101
- - v_proj
102
- - k_proj
103
- - o_proj
104
- lora_modules_to_save:
105
-
106
- # Optimizer
107
- optimizer: paged_adamw_8bit # adamw_8bit
108
- lr_scheduler: cosine
109
- learning_rate: 0.0001
110
- cosine_min_lr_ratio: 0.1
111
- weight_decay: 0.01
112
- max_grad_norm: 10.0
113
-
114
- # Misc
115
- train_on_inputs: false
116
- group_by_length: false
117
- early_stopping_patience:
118
- local_rank:
119
- logging_steps: 1
120
- xformers_attention:
121
- debug:
122
- deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
123
- fsdp:
124
- fsdp_config:
125
-
126
- # Checkpoints
127
- resume_from_checkpoint:
128
-
129
-
130
- plugins:
131
- - axolotl.integrations.liger.LigerPlugin
132
- liger_rope: true
133
- liger_rms_norm: true
134
- liger_swiglu: true
135
- liger_fused_linear_cross_entropy: true
136
- ```
137
-
138
- </details><br>
139
-
140
- # mistral-small-adventure-qlora
141
-
142
- This model is a fine-tuned version of [mistralai/Mistral-Small-Instruct-2409](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) on the None dataset.
143
- It achieves the following results on the evaluation set:
144
- - Loss: 1.9117
145
-
146
- ## Model description
147
-
148
- More information needed
149
-
150
- ## Intended uses & limitations
151
-
152
- More information needed
153
-
154
- ## Training and evaluation data
155
-
156
- More information needed
157
-
158
- ## Training procedure
159
-
160
- ### Training hyperparameters
161
-
162
- The following hyperparameters were used during training:
163
- - learning_rate: 0.0001
164
- - train_batch_size: 1
165
- - eval_batch_size: 1
166
- - seed: 42
167
- - distributed_type: multi-GPU
168
- - num_devices: 2
169
- - gradient_accumulation_steps: 4
170
- - total_train_batch_size: 8
171
- - total_eval_batch_size: 2
172
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
173
- - lr_scheduler_type: cosine
174
- - lr_scheduler_warmup_steps: 20
175
- - num_epochs: 1
176
-
177
- ### Training results
178
-
179
- | Training Loss | Epoch | Step | Validation Loss |
180
- |:-------------:|:------:|:----:|:---------------:|
181
- | 1.8182 | 0.0035 | 1 | 2.1284 |
182
- | 1.8279 | 0.2043 | 59 | 1.9991 |
183
- | 1.8002 | 0.4087 | 118 | 1.9488 |
184
- | 1.7188 | 0.6130 | 177 | 1.9185 |
185
- | 1.7306 | 0.8173 | 236 | 1.9117 |
186
-
187
-
188
- ### Framework versions
189
-
190
- - PEFT 0.13.0
191
- - Transformers 4.45.0
192
- - Pytorch 2.3.1+cu121
193
- - Datasets 2.21.0
194
- - Tokenizers 0.20.0
 
9
  - name: mistral-small-adventure-qlora
10
  results: []
11
  ---
12
+ Mistral Small Instruct on Spring Dragon + Skein adventure dataset.