lilt-ruroberta
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4919
- Comment: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6}
- Date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Labname: {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21}
- Laboratory: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Measure: {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9}
- Ref Value: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
- Result: {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12}
- Overall Precision: 0.4528
- Overall Recall: 0.4
- Overall F1: 0.4248
- Overall Accuracy: 0.8698
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Comment | Date | Labname | Laboratory | Measure | Ref Value | Result | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.4398 | 5.0 | 5 | 1.5928 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.5850 |
1.4788 | 10.0 | 10 | 1.1857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.6512 |
0.9806 | 15.0 | 15 | 0.8188 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.21875, 'recall': 0.3333333333333333, 'f1': 0.2641509433962264, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5, 'recall': 0.1111111111111111, 'f1': 0.1818181818181818, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.1667 | 0.1333 | 0.1481 | 0.7660 |
0.6358 | 20.0 | 20 | 0.5763 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.41935483870967744, 'recall': 0.6190476190476191, 'f1': 0.5, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7, 'recall': 0.7777777777777778, 'f1': 0.7368421052631577, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.42857142857142855, 'recall': 0.25, 'f1': 0.3157894736842105, 'number': 12} | 0.4182 | 0.3833 | 0.4 | 0.8675 |
0.4712 | 25.0 | 25 | 0.4919 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12} | 0.4528 | 0.4 | 0.4248 | 0.8698 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.