YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Usage:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

question_template = "# Question\n\n{question}\n\n# Solution\n\n"

model_name = "ScalableMath/llemma-7b-sft-metamath-level-1to3-hf"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/llemma_7b")

question = "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates.  Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$"
question = question_template.format(question=question)

input_tensor = torch.tensor([tokenizer.encode(question)])
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

Example result:

# Question
Convert the point $(0,3)$ in rectangular coordinates to polar coordinates.  Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$

# Solution
To convert from rectangular coordinates to polar coordinates, we use the formulas $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan\left(\frac{y}{x}\right)$.

In this case, $x = 0$ and $y = 3$, so $r = \sqrt{0^2 + 3^2} = 3$ and $\theta = \arctan\left(\frac{3}{0}\right)$.

Since $\frac{3}{0}$ is undefined, we can say that $\theta$ is undefined.
However, we know that $\theta$ is an angle, and since $r > 0$, we can say that $\theta$ is any angle that satisfies $0 \le \theta < 2 \pi$.

Therefore, the polar coordinates of the point $(0,3)$ are $\boxed{(3,\theta)}$, where $0 \le \theta < 2 \pi$.

# Answer

(3,\theta)
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ScalableMath/llemma-7b-sft-metamath-level-1to3-hf