BERT_ep9_lr5
This model is a fine-tuned version of ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2914
- Precision: 0.6667
- Recall: 0.6372
- F1: 0.6516
- Accuracy: 0.9422
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-09
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 467 | 0.3040 | 0.6698 | 0.6295 | 0.6490 | 0.9420 |
0.2944 | 2.0 | 934 | 0.3003 | 0.6690 | 0.6311 | 0.6495 | 0.9422 |
0.2939 | 3.0 | 1401 | 0.2974 | 0.6674 | 0.6328 | 0.6497 | 0.9422 |
0.2865 | 4.0 | 1868 | 0.2951 | 0.6668 | 0.6342 | 0.6501 | 0.9422 |
0.2934 | 5.0 | 2335 | 0.2934 | 0.6676 | 0.6361 | 0.6515 | 0.9422 |
0.282 | 6.0 | 2802 | 0.2923 | 0.6674 | 0.6367 | 0.6517 | 0.9422 |
0.2788 | 7.0 | 3269 | 0.2917 | 0.6671 | 0.6372 | 0.6518 | 0.9422 |
0.2763 | 8.0 | 3736 | 0.2914 | 0.6667 | 0.6372 | 0.6516 | 0.9422 |
0.2864 | 9.0 | 4203 | 0.2914 | 0.6667 | 0.6372 | 0.6516 | 0.9422 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.