BERT_ep9_lr5

This model is a fine-tuned version of ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2914
  • Precision: 0.6667
  • Recall: 0.6372
  • F1: 0.6516
  • Accuracy: 0.9422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-09
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 467 0.3040 0.6698 0.6295 0.6490 0.9420
0.2944 2.0 934 0.3003 0.6690 0.6311 0.6495 0.9422
0.2939 3.0 1401 0.2974 0.6674 0.6328 0.6497 0.9422
0.2865 4.0 1868 0.2951 0.6668 0.6342 0.6501 0.9422
0.2934 5.0 2335 0.2934 0.6676 0.6361 0.6515 0.9422
0.282 6.0 2802 0.2923 0.6674 0.6367 0.6517 0.9422
0.2788 7.0 3269 0.2917 0.6671 0.6372 0.6518 0.9422
0.2763 8.0 3736 0.2914 0.6667 0.6372 0.6516 0.9422
0.2864 9.0 4203 0.2914 0.6667 0.6372 0.6516 0.9422

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
107
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.