language: en
tags:
- text-classification
- onnx
- int8
- roberta
- emotions
- multi-class-classification
- multi-label-classification
- optimum
datasets:
- go_emotions
license: mit
inference: false
widget:
- text: Thank goodness ONNX is available, it is lots faster!
This model is the ONNX version of https://huggingface.co/SamLowe/roberta-base-go_emotions.
Full precision ONNX version
onnx/model.onnx
is the full precision ONNX version
- that has identical accuracy/metrics to the original Transformers model
- and has the same model size (499MB)
- is faster in inference than normal Transformers, particularly for smaller batch sizes
- in my tests about 2x to 3x as fast for a batch size of 1 on a 8 core 11th gen i7 CPU using ONNXRuntime
Metrics
Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label:
- Accuracy: 0.474
- Precision: 0.575
- Recall: 0.396
- F1: 0.450
See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric.
Quantized (INT8) ONNX version
onnx/model_quantized.onnx
is the int8 quantized version
- that is one quarter the size (125MB) of the full precision model (above)
- but delivers almost all of the accuracy
- is faster in inference than both the full precision ONNX above, and the normal Transformers model
- about 2x as fast for a batch size of 1 on an 8 core 11th gen i7 CPU using ONNXRuntime vs the full precision model above
- which makes it circa 5x as fast as the full precision normal Transformers model (on the above mentioned CPU, for a batch of 1)
Metrics for Quantized (INT8) Model
Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label:
- Accuracy: 0.475
- Precision: 0.582
- Recall: 0.398
- F1: 0.447
Note how the metrics are almost identical to the full precision metrics above.
See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric.
How to use
Using Optimum Library ONNX Classes
Optimum library has equivalents (starting ORT
) for the main Transformers classes, so these models can be used with the familiar constructs. The only extra property needed is file_name
on the model creation, which in the below example specifies the quantized (INT8) model.
sentences = ["ONNX is seriously fast for small batches. Impressive"]
from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification
model_id = "SamLowe/roberta-base-go_emotions-onnx"
file_name = "onnx/model_quantized.onnx"
model = ORTModelForSequenceClassification.from_pretrained(model_id, file_name=file_name)
tokenizer = AutoTokenizer.from_pretrained(model_id)
onnx_classifier = pipeline(
task="text-classification",
model=model,
tokenizer=tokenizer,
top_k=None,
function_to_apply="sigmoid", # optional as is the default for the task
)
model_outputs = onnx_classifier(sentences)
# gives a list of outputs, each a list of dicts (one per label)
print(model_outputs)
# E.g.
# [[{'label': 'admiration', 'score': 0.9203393459320068},
# {'label': 'approval', 'score': 0.0560273639857769},
# {'label': 'neutral', 'score': 0.04265536740422249},
# {'label': 'gratitude', 'score': 0.015126707963645458},
# ...
Using ONNXRuntime
- Tokenization can be done before with the
tokenizers
library, - and then the fed into ONNXRuntime as the type of dict it uses,
- and then simply the postprocessing sigmoid is needed afterward on the model output (which comes as a numpy array) to create the embeddings.
from tokenizers import Tokenizer
import onnxruntime as ort
from os import cpu_count
import numpy as np # only used for the postprocessing sigmoid
sentences = ["hello world"] # for example a batch of 1
# labels as (ordered) list - from the go_emotions dataset
labels = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions")
# Optional - set pad to only pad to longest in batch, not a fixed length.
# (without this, the model will run slower, esp for shorter input strings)
params = {**tokenizer.padding, "length": None}
tokenizer.enable_padding(**params)
tokens_obj = tokenizer.encode_batch(sentences)
def load_onnx_model(model_filepath):
_options = ort.SessionOptions()
_options.inter_op_num_threads, _options.intra_op_num_threads = cpu_count(), cpu_count()
_providers = ["CPUExecutionProvider"] # could use ort.get_available_providers()
return ort.InferenceSession(path_or_bytes=model_filepath, sess_options=_options, providers=_providers)
model = load_onnx_model("path_to_model_dot_onnx_or_model_quantized_dot_onnx")
output_names = [model.get_outputs()[0].name] # E.g. ["logits"]
input_feed_dict = {
"input_ids": [t.ids for t in tokens_obj],
"attention_mask": [t.attention_mask for t in tokens_obj]
}
logits = model.run(output_names=output_names, input_feed=input_feed_dict)[0]
# produces a numpy array, one row per input item, one col per label
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
# Post-processing. Gets the scores per label in range.
# Auto done by Transformers' pipeline, but we must do it manually with ORT.
model_outputs = sigmoid(logits)
# for example, just to show the top result per input item
for probas in model_outputs:
top_result_index = np.argmax(probas)
print(labels[top_result_index], "with score:", probas[top_result_index])
Example notebook: showing usage, accuracy & performance
Notebook with more details to follow.