YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
GritLM-7B - GGUF
- Model creator: https://huggingface.co/GritLM/
- Original model: https://huggingface.co/GritLM/GritLM-7B/
Name | Quant method | Size |
---|---|---|
GritLM-7B.Q2_K.gguf | Q2_K | 2.53GB |
GritLM-7B.IQ3_XS.gguf | IQ3_XS | 2.81GB |
GritLM-7B.IQ3_S.gguf | IQ3_S | 2.96GB |
GritLM-7B.Q3_K_S.gguf | Q3_K_S | 2.95GB |
GritLM-7B.IQ3_M.gguf | IQ3_M | 3.06GB |
GritLM-7B.Q3_K.gguf | Q3_K | 3.28GB |
GritLM-7B.Q3_K_M.gguf | Q3_K_M | 3.28GB |
GritLM-7B.Q3_K_L.gguf | Q3_K_L | 3.56GB |
GritLM-7B.IQ4_XS.gguf | IQ4_XS | 3.67GB |
GritLM-7B.Q4_0.gguf | Q4_0 | 3.83GB |
GritLM-7B.IQ4_NL.gguf | IQ4_NL | 3.87GB |
GritLM-7B.Q4_K_S.gguf | Q4_K_S | 3.86GB |
GritLM-7B.Q4_K.gguf | Q4_K | 4.07GB |
GritLM-7B.Q4_K_M.gguf | Q4_K_M | 4.07GB |
GritLM-7B.Q4_1.gguf | Q4_1 | 4.24GB |
GritLM-7B.Q5_0.gguf | Q5_0 | 4.65GB |
GritLM-7B.Q5_K_S.gguf | Q5_K_S | 4.65GB |
GritLM-7B.Q5_K.gguf | Q5_K | 4.78GB |
GritLM-7B.Q5_K_M.gguf | Q5_K_M | 4.78GB |
GritLM-7B.Q5_1.gguf | Q5_1 | 5.07GB |
GritLM-7B.Q6_K.gguf | Q6_K | 5.53GB |
Original model description:
pipeline_tag: text-generation inference: true license: apache-2.0 datasets: - GritLM/tulu2 tags: - mteb model-index: - name: GritLM-7B results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 81.17910447761194 - type: ap value: 46.26260671758199 - type: f1 value: 75.44565719934167 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 96.5161 - type: ap value: 94.79131981460425 - type: f1 value: 96.51506148413065 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 57.806000000000004 - type: f1 value: 56.78350156257903 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 38.478 - type: map_at_10 value: 54.955 - type: map_at_100 value: 54.955 - type: map_at_1000 value: 54.955 - type: map_at_3 value: 50.888999999999996 - type: map_at_5 value: 53.349999999999994 - type: mrr_at_1 value: 39.757999999999996 - type: mrr_at_10 value: 55.449000000000005 - type: mrr_at_100 value: 55.449000000000005 - type: mrr_at_1000 value: 55.449000000000005 - type: mrr_at_3 value: 51.37500000000001 - type: mrr_at_5 value: 53.822 - type: ndcg_at_1 value: 38.478 - type: ndcg_at_10 value: 63.239999999999995 - type: ndcg_at_100 value: 63.239999999999995 - type: ndcg_at_1000 value: 63.239999999999995 - type: ndcg_at_3 value: 54.935 - type: ndcg_at_5 value: 59.379000000000005 - type: precision_at_1 value: 38.478 - type: precision_at_10 value: 8.933 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.089 - type: precision_at_3 value: 22.214 - type: precision_at_5 value: 15.491 - type: recall_at_1 value: 38.478 - type: recall_at_10 value: 89.331 - type: recall_at_100 value: 89.331 - type: recall_at_1000 value: 89.331 - type: recall_at_3 value: 66.643 - type: recall_at_5 value: 77.45400000000001 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 51.67144081472449 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 48.11256154264126 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 67.33801955487878 - type: mrr value: 80.71549487754474 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.1935203751726 - type: cos_sim_spearman value: 86.35497970498659 - type: euclidean_pearson value: 85.46910708503744 - type: euclidean_spearman value: 85.13928935405485 - type: manhattan_pearson value: 85.68373836333303 - type: manhattan_spearman value: 85.40013867117746 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 88.46753246753248 - type: f1 value: 88.43006344981134 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 40.86793640310432 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 39.80291334130727 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.421 - type: map_at_10 value: 52.349000000000004 - type: map_at_100 value: 52.349000000000004 - type: map_at_1000 value: 52.349000000000004 - type: map_at_3 value: 48.17 - type: map_at_5 value: 50.432 - type: mrr_at_1 value: 47.353 - type: mrr_at_10 value: 58.387 - type: mrr_at_100 value: 58.387 - type: mrr_at_1000 value: 58.387 - type: mrr_at_3 value: 56.199 - type: mrr_at_5 value: 57.487 - type: ndcg_at_1 value: 47.353 - type: ndcg_at_10 value: 59.202 - type: ndcg_at_100 value: 58.848 - type: ndcg_at_1000 value: 58.831999999999994 - type: ndcg_at_3 value: 54.112 - type: ndcg_at_5 value: 56.312 - type: precision_at_1 value: 47.353 - type: precision_at_10 value: 11.459 - type: precision_at_100 value: 1.146 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 26.133 - type: precision_at_5 value: 18.627 - type: recall_at_1 value: 38.421 - type: recall_at_10 value: 71.89 - type: recall_at_100 value: 71.89 - type: recall_at_1000 value: 71.89 - type: recall_at_3 value: 56.58 - type: recall_at_5 value: 63.125 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.025999999999996 - type: map_at_10 value: 50.590999999999994 - type: map_at_100 value: 51.99700000000001 - type: map_at_1000 value: 52.11599999999999 - type: map_at_3 value: 47.435 - type: map_at_5 value: 49.236000000000004 - type: mrr_at_1 value: 48.28 - type: mrr_at_10 value: 56.814 - type: mrr_at_100 value: 57.446 - type: mrr_at_1000 value: 57.476000000000006 - type: mrr_at_3 value: 54.958 - type: mrr_at_5 value: 56.084999999999994 - type: ndcg_at_1 value: 48.28 - type: ndcg_at_10 value: 56.442 - type: ndcg_at_100 value: 60.651999999999994 - type: ndcg_at_1000 value: 62.187000000000005 - type: ndcg_at_3 value: 52.866 - type: ndcg_at_5 value: 54.515 - type: precision_at_1 value: 48.28 - type: precision_at_10 value: 10.586 - type: precision_at_100 value: 1.6310000000000002 - type: precision_at_1000 value: 0.20600000000000002 - type: precision_at_3 value: 25.945 - type: precision_at_5 value: 18.076 - type: recall_at_1 value: 38.025999999999996 - type: recall_at_10 value: 66.11399999999999 - type: recall_at_100 value: 83.339 - type: recall_at_1000 value: 92.413 - type: recall_at_3 value: 54.493 - type: recall_at_5 value: 59.64699999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 47.905 - type: map_at_10 value: 61.58 - type: map_at_100 value: 62.605 - type: map_at_1000 value: 62.637 - type: map_at_3 value: 58.074000000000005 - type: map_at_5 value: 60.260000000000005 - type: mrr_at_1 value: 54.42 - type: mrr_at_10 value: 64.847 - type: mrr_at_100 value: 65.403 - type: mrr_at_1000 value: 65.41900000000001 - type: mrr_at_3 value: 62.675000000000004 - type: mrr_at_5 value: 64.101 - type: ndcg_at_1 value: 54.42 - type: ndcg_at_10 value: 67.394 - type: ndcg_at_100 value: 70.846 - type: ndcg_at_1000 value: 71.403 - type: ndcg_at_3 value: 62.025 - type: ndcg_at_5 value: 65.032 - type: precision_at_1 value: 54.42 - type: precision_at_10 value: 10.646 - type: precision_at_100 value: 1.325 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 27.398 - type: precision_at_5 value: 18.796 - type: recall_at_1 value: 47.905 - type: recall_at_10 value: 80.84599999999999 - type: recall_at_100 value: 95.078 - type: recall_at_1000 value: 98.878 - type: recall_at_3 value: 67.05600000000001 - type: recall_at_5 value: 74.261 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.745 - type: map_at_10 value: 41.021 - type: map_at_100 value: 41.021 - type: map_at_1000 value: 41.021 - type: map_at_3 value: 37.714999999999996 - type: map_at_5 value: 39.766 - type: mrr_at_1 value: 33.559 - type: mrr_at_10 value: 43.537 - type: mrr_at_100 value: 43.537 - type: mrr_at_1000 value: 43.537 - type: mrr_at_3 value: 40.546 - type: mrr_at_5 value: 42.439 - type: ndcg_at_1 value: 33.559 - type: ndcg_at_10 value: 46.781 - type: ndcg_at_100 value: 46.781 - type: ndcg_at_1000 value: 46.781 - type: ndcg_at_3 value: 40.516000000000005 - type: ndcg_at_5 value: 43.957 - type: precision_at_1 value: 33.559 - type: precision_at_10 value: 7.198 - type: precision_at_100 value: 0.72 - type: precision_at_1000 value: 0.07200000000000001 - type: precision_at_3 value: 17.1 - type: precision_at_5 value: 12.316 - type: recall_at_1 value: 30.745 - type: recall_at_10 value: 62.038000000000004 - type: recall_at_100 value: 62.038000000000004 - type: recall_at_1000 value: 62.038000000000004 - type: recall_at_3 value: 45.378 - type: recall_at_5 value: 53.580000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.637999999999998 - type: map_at_10 value: 31.05 - type: map_at_100 value: 31.05 - type: map_at_1000 value: 31.05 - type: map_at_3 value: 27.628000000000004 - type: map_at_5 value: 29.767 - type: mrr_at_1 value: 25.0 - type: mrr_at_10 value: 36.131 - type: mrr_at_100 value: 36.131 - type: mrr_at_1000 value: 36.131 - type: mrr_at_3 value: 33.333 - type: mrr_at_5 value: 35.143 - type: ndcg_at_1 value: 25.0 - type: ndcg_at_10 value: 37.478 - type: ndcg_at_100 value: 37.469 - type: ndcg_at_1000 value: 37.469 - type: ndcg_at_3 value: 31.757999999999996 - type: ndcg_at_5 value: 34.821999999999996 - type: precision_at_1 value: 25.0 - type: precision_at_10 value: 7.188999999999999 - type: precision_at_100 value: 0.719 - type: precision_at_1000 value: 0.07200000000000001 - type: precision_at_3 value: 15.837000000000002 - type: precision_at_5 value: 11.841 - type: recall_at_1 value: 19.637999999999998 - type: recall_at_10 value: 51.836000000000006 - type: recall_at_100 value: 51.836000000000006 - type: recall_at_1000 value: 51.836000000000006 - type: recall_at_3 value: 36.384 - type: recall_at_5 value: 43.964 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 34.884 - type: map_at_10 value: 47.88 - type: map_at_100 value: 47.88 - type: map_at_1000 value: 47.88 - type: map_at_3 value: 43.85 - type: map_at_5 value: 46.414 - type: mrr_at_1 value: 43.022 - type: mrr_at_10 value: 53.569 - type: mrr_at_100 value: 53.569 - type: mrr_at_1000 value: 53.569 - type: mrr_at_3 value: 51.075 - type: mrr_at_5 value: 52.725 - type: ndcg_at_1 value: 43.022 - type: ndcg_at_10 value: 54.461000000000006 - type: ndcg_at_100 value: 54.388000000000005 - type: ndcg_at_1000 value: 54.388000000000005 - type: ndcg_at_3 value: 48.864999999999995 - type: ndcg_at_5 value: 52.032000000000004 - type: precision_at_1 value: 43.022 - type: precision_at_10 value: 9.885 - type: precision_at_100 value: 0.988 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 23.612 - type: precision_at_5 value: 16.997 - type: recall_at_1 value: 34.884 - type: recall_at_10 value: 68.12899999999999 - type: recall_at_100 value: 68.12899999999999 - type: recall_at_1000 value: 68.12899999999999 - type: recall_at_3 value: 52.428 - type: recall_at_5 value: 60.662000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.588 - type: map_at_10 value: 43.85 - type: map_at_100 value: 45.317 - type: map_at_1000 value: 45.408 - type: map_at_3 value: 39.73 - type: map_at_5 value: 42.122 - type: mrr_at_1 value: 38.927 - type: mrr_at_10 value: 49.582 - type: mrr_at_100 value: 50.39 - type: mrr_at_1000 value: 50.426 - type: mrr_at_3 value: 46.518 - type: mrr_at_5 value: 48.271 - type: ndcg_at_1 value: 38.927 - type: ndcg_at_10 value: 50.605999999999995 - type: ndcg_at_100 value: 56.22200000000001 - type: ndcg_at_1000 value: 57.724 - type: ndcg_at_3 value: 44.232 - type: ndcg_at_5 value: 47.233999999999995 - type: precision_at_1 value: 38.927 - type: precision_at_10 value: 9.429 - type: precision_at_100 value: 1.435 - type: precision_at_1000 value: 0.172 - type: precision_at_3 value: 21.271 - type: precision_at_5 value: 15.434000000000001 - type: recall_at_1 value: 31.588 - type: recall_at_10 value: 64.836 - type: recall_at_100 value: 88.066 - type: recall_at_1000 value: 97.748 - type: recall_at_3 value: 47.128 - type: recall_at_5 value: 54.954 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.956083333333336 - type: map_at_10 value: 43.33483333333333 - type: map_at_100 value: 44.64883333333333 - type: map_at_1000 value: 44.75 - type: map_at_3 value: 39.87741666666666 - type: map_at_5 value: 41.86766666666667 - type: mrr_at_1 value: 38.06341666666667 - type: mrr_at_10 value: 47.839666666666666 - type: mrr_at_100 value: 48.644000000000005 - type: mrr_at_1000 value: 48.68566666666667 - type: mrr_at_3 value: 45.26358333333334 - type: mrr_at_5 value: 46.790000000000006 - type: ndcg_at_1 value: 38.06341666666667 - type: ndcg_at_10 value: 49.419333333333334 - type: ndcg_at_100 value: 54.50166666666667 - type: ndcg_at_1000 value: 56.161166666666674 - type: ndcg_at_3 value: 43.982416666666666 - type: ndcg_at_5 value: 46.638083333333334 - type: precision_at_1 value: 38.06341666666667 - type: precision_at_10 value: 8.70858333333333 - type: precision_at_100 value: 1.327 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 20.37816666666667 - type: precision_at_5 value: 14.516333333333334 - type: recall_at_1 value: 31.956083333333336 - type: recall_at_10 value: 62.69458333333334 - type: recall_at_100 value: 84.46433333333334 - type: recall_at_1000 value: 95.58449999999999 - type: recall_at_3 value: 47.52016666666666 - type: recall_at_5 value: 54.36066666666666 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.912 - type: map_at_10 value: 38.291 - type: map_at_100 value: 39.44 - type: map_at_1000 value: 39.528 - type: map_at_3 value: 35.638 - type: map_at_5 value: 37.218 - type: mrr_at_1 value: 32.822 - type: mrr_at_10 value: 41.661 - type: mrr_at_100 value: 42.546 - type: mrr_at_1000 value: 42.603 - type: mrr_at_3 value: 39.238 - type: mrr_at_5 value: 40.726 - type: ndcg_at_1 value: 32.822 - type: ndcg_at_10 value: 43.373 - type: ndcg_at_100 value: 48.638 - type: ndcg_at_1000 value: 50.654999999999994 - type: ndcg_at_3 value: 38.643 - type: ndcg_at_5 value: 41.126000000000005 - type: precision_at_1 value: 32.822 - type: precision_at_10 value: 6.8709999999999996 - type: precision_at_100 value: 1.032 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 16.82 - type: precision_at_5 value: 11.718 - type: recall_at_1 value: 28.912 - type: recall_at_10 value: 55.376999999999995 - type: recall_at_100 value: 79.066 - type: recall_at_1000 value: 93.664 - type: recall_at_3 value: 42.569 - type: recall_at_5 value: 48.719 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.181 - type: map_at_10 value: 31.462 - type: map_at_100 value: 32.73 - type: map_at_1000 value: 32.848 - type: map_at_3 value: 28.57 - type: map_at_5 value: 30.182 - type: mrr_at_1 value: 27.185 - type: mrr_at_10 value: 35.846000000000004 - type: mrr_at_100 value: 36.811 - type: mrr_at_1000 value: 36.873 - type: mrr_at_3 value: 33.437 - type: mrr_at_5 value: 34.813 - type: ndcg_at_1 value: 27.185 - type: ndcg_at_10 value: 36.858000000000004 - type: ndcg_at_100 value: 42.501 - type: ndcg_at_1000 value: 44.945 - type: ndcg_at_3 value: 32.066 - type: ndcg_at_5 value: 34.29 - type: precision_at_1 value: 27.185 - type: precision_at_10 value: 6.752 - type: precision_at_100 value: 1.111 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 15.290000000000001 - type: precision_at_5 value: 11.004999999999999 - type: recall_at_1 value: 22.181 - type: recall_at_10 value: 48.513 - type: recall_at_100 value: 73.418 - type: recall_at_1000 value: 90.306 - type: recall_at_3 value: 35.003 - type: recall_at_5 value: 40.876000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 33.934999999999995 - type: map_at_10 value: 44.727 - type: map_at_100 value: 44.727 - type: map_at_1000 value: 44.727 - type: map_at_3 value: 40.918 - type: map_at_5 value: 42.961 - type: mrr_at_1 value: 39.646 - type: mrr_at_10 value: 48.898 - type: mrr_at_100 value: 48.898 - type: mrr_at_1000 value: 48.898 - type: mrr_at_3 value: 45.896 - type: mrr_at_5 value: 47.514 - type: ndcg_at_1 value: 39.646 - type: ndcg_at_10 value: 50.817 - type: ndcg_at_100 value: 50.803 - type: ndcg_at_1000 value: 50.803 - type: ndcg_at_3 value: 44.507999999999996 - type: ndcg_at_5 value: 47.259 - type: precision_at_1 value: 39.646 - type: precision_at_10 value: 8.759 - type: precision_at_100 value: 0.876 - type: precision_at_1000 value: 0.08800000000000001 - type: precision_at_3 value: 20.274 - type: precision_at_5 value: 14.366000000000001 - type: recall_at_1 value: 33.934999999999995 - type: recall_at_10 value: 65.037 - type: recall_at_100 value: 65.037 - type: recall_at_1000 value: 65.037 - type: recall_at_3 value: 47.439 - type: recall_at_5 value: 54.567 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.058 - type: map_at_10 value: 43.137 - type: map_at_100 value: 43.137 - type: map_at_1000 value: 43.137 - type: map_at_3 value: 39.882 - type: map_at_5 value: 41.379 - type: mrr_at_1 value: 38.933 - type: mrr_at_10 value: 48.344 - type: mrr_at_100 value: 48.344 - type: mrr_at_1000 value: 48.344 - type: mrr_at_3 value: 45.652 - type: mrr_at_5 value: 46.877 - type: ndcg_at_1 value: 38.933 - type: ndcg_at_10 value: 49.964 - type: ndcg_at_100 value: 49.242000000000004 - type: ndcg_at_1000 value: 49.222 - type: ndcg_at_3 value: 44.605 - type: ndcg_at_5 value: 46.501999999999995 - type: precision_at_1 value: 38.933 - type: precision_at_10 value: 9.427000000000001 - type: precision_at_100 value: 0.943 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 20.685000000000002 - type: precision_at_5 value: 14.585 - type: recall_at_1 value: 32.058 - type: recall_at_10 value: 63.074 - type: recall_at_100 value: 63.074 - type: recall_at_1000 value: 63.074 - type: recall_at_3 value: 47.509 - type: recall_at_5 value: 52.455 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.029000000000003 - type: map_at_10 value: 34.646 - type: map_at_100 value: 34.646 - type: map_at_1000 value: 34.646 - type: map_at_3 value: 31.456 - type: map_at_5 value: 33.138 - type: mrr_at_1 value: 28.281 - type: mrr_at_10 value: 36.905 - type: mrr_at_100 value: 36.905 - type: mrr_at_1000 value: 36.905 - type: mrr_at_3 value: 34.011 - type: mrr_at_5 value: 35.638 - type: ndcg_at_1 value: 28.281 - type: ndcg_at_10 value: 40.159 - type: ndcg_at_100 value: 40.159 - type: ndcg_at_1000 value: 40.159 - type: ndcg_at_3 value: 33.995 - type: ndcg_at_5 value: 36.836999999999996 - type: precision_at_1 value: 28.281 - type: precision_at_10 value: 6.358999999999999 - type: precision_at_100 value: 0.636 - type: precision_at_1000 value: 0.064 - type: precision_at_3 value: 14.233 - type: precision_at_5 value: 10.314 - type: recall_at_1 value: 26.029000000000003 - type: recall_at_10 value: 55.08 - type: recall_at_100 value: 55.08 - type: recall_at_1000 value: 55.08 - type: recall_at_3 value: 38.487 - type: recall_at_5 value: 45.308 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 12.842999999999998 - type: map_at_10 value: 22.101000000000003 - type: map_at_100 value: 24.319 - type: map_at_1000 value: 24.51 - type: map_at_3 value: 18.372 - type: map_at_5 value: 20.323 - type: mrr_at_1 value: 27.948 - type: mrr_at_10 value: 40.321 - type: mrr_at_100 value: 41.262 - type: mrr_at_1000 value: 41.297 - type: mrr_at_3 value: 36.558 - type: mrr_at_5 value: 38.824999999999996 - type: ndcg_at_1 value: 27.948 - type: ndcg_at_10 value: 30.906 - type: ndcg_at_100 value: 38.986 - type: ndcg_at_1000 value: 42.136 - type: ndcg_at_3 value: 24.911 - type: ndcg_at_5 value: 27.168999999999997 - type: precision_at_1 value: 27.948 - type: precision_at_10 value: 9.798 - type: precision_at_100 value: 1.8399999999999999 - type: precision_at_1000 value: 0.243 - type: precision_at_3 value: 18.328 - type: precision_at_5 value: 14.502 - type: recall_at_1 value: 12.842999999999998 - type: recall_at_10 value: 37.245 - type: recall_at_100 value: 64.769 - type: recall_at_1000 value: 82.055 - type: recall_at_3 value: 23.159 - type: recall_at_5 value: 29.113 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.934000000000001 - type: map_at_10 value: 21.915000000000003 - type: map_at_100 value: 21.915000000000003 - type: map_at_1000 value: 21.915000000000003 - type: map_at_3 value: 14.623 - type: map_at_5 value: 17.841 - type: mrr_at_1 value: 71.25 - type: mrr_at_10 value: 78.994 - type: mrr_at_100 value: 78.994 - type: mrr_at_1000 value: 78.994 - type: mrr_at_3 value: 77.208 - type: mrr_at_5 value: 78.55799999999999 - type: ndcg_at_1 value: 60.62499999999999 - type: ndcg_at_10 value: 46.604 - type: ndcg_at_100 value: 35.653 - type: ndcg_at_1000 value: 35.531 - type: ndcg_at_3 value: 50.605 - type: ndcg_at_5 value: 48.730000000000004 - type: precision_at_1 value: 71.25 - type: precision_at_10 value: 37.75 - type: precision_at_100 value: 3.775 - type: precision_at_1000 value: 0.377 - type: precision_at_3 value: 54.417 - type: precision_at_5 value: 48.15 - type: recall_at_1 value: 8.934000000000001 - type: recall_at_10 value: 28.471000000000004 - type: recall_at_100 value: 28.471000000000004 - type: recall_at_1000 value: 28.471000000000004 - type: recall_at_3 value: 16.019 - type: recall_at_5 value: 21.410999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.81 - type: f1 value: 47.987573380720114 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 66.81899999999999 - type: map_at_10 value: 78.034 - type: map_at_100 value: 78.034 - type: map_at_1000 value: 78.034 - type: map_at_3 value: 76.43100000000001 - type: map_at_5 value: 77.515 - type: mrr_at_1 value: 71.542 - type: mrr_at_10 value: 81.638 - type: mrr_at_100 value: 81.638 - type: mrr_at_1000 value: 81.638 - type: mrr_at_3 value: 80.403 - type: mrr_at_5 value: 81.256 - type: ndcg_at_1 value: 71.542 - type: ndcg_at_10 value: 82.742 - type: ndcg_at_100 value: 82.741 - type: ndcg_at_1000 value: 82.741 - type: ndcg_at_3 value: 80.039 - type: ndcg_at_5 value: 81.695 - type: precision_at_1 value: 71.542 - type: precision_at_10 value: 10.387 - type: precision_at_100 value: 1.039 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 31.447999999999997 - type: precision_at_5 value: 19.91 - type: recall_at_1 value: 66.81899999999999 - type: recall_at_10 value: 93.372 - type: recall_at_100 value: 93.372 - type: recall_at_1000 value: 93.372 - type: recall_at_3 value: 86.33 - type: recall_at_5 value: 90.347 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 31.158 - type: map_at_10 value: 52.017 - type: map_at_100 value: 54.259 - type: map_at_1000 value: 54.367 - type: map_at_3 value: 45.738 - type: map_at_5 value: 49.283 - type: mrr_at_1 value: 57.87 - type: mrr_at_10 value: 66.215 - type: mrr_at_100 value: 66.735 - type: mrr_at_1000 value: 66.75 - type: mrr_at_3 value: 64.043 - type: mrr_at_5 value: 65.116 - type: ndcg_at_1 value: 57.87 - type: ndcg_at_10 value: 59.946999999999996 - type: ndcg_at_100 value: 66.31099999999999 - type: ndcg_at_1000 value: 67.75999999999999 - type: ndcg_at_3 value: 55.483000000000004 - type: ndcg_at_5 value: 56.891000000000005 - type: precision_at_1 value: 57.87 - type: precision_at_10 value: 16.497 - type: precision_at_100 value: 2.321 - type: precision_at_1000 value: 0.258 - type: precision_at_3 value: 37.14 - type: precision_at_5 value: 27.067999999999998 - type: recall_at_1 value: 31.158 - type: recall_at_10 value: 67.381 - type: recall_at_100 value: 89.464 - type: recall_at_1000 value: 97.989 - type: recall_at_3 value: 50.553000000000004 - type: recall_at_5 value: 57.824 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 42.073 - type: map_at_10 value: 72.418 - type: map_at_100 value: 73.175 - type: map_at_1000 value: 73.215 - type: map_at_3 value: 68.791 - type: map_at_5 value: 71.19 - type: mrr_at_1 value: 84.146 - type: mrr_at_10 value: 88.994 - type: mrr_at_100 value: 89.116 - type: mrr_at_1000 value: 89.12 - type: mrr_at_3 value: 88.373 - type: mrr_at_5 value: 88.82 - type: ndcg_at_1 value: 84.146 - type: ndcg_at_10 value: 79.404 - type: ndcg_at_100 value: 81.83200000000001 - type: ndcg_at_1000 value: 82.524 - type: ndcg_at_3 value: 74.595 - type: ndcg_at_5 value: 77.474 - type: precision_at_1 value: 84.146 - type: precision_at_10 value: 16.753999999999998 - type: precision_at_100 value: 1.8599999999999999 - type: precision_at_1000 value: 0.19499999999999998 - type: precision_at_3 value: 48.854 - type: precision_at_5 value: 31.579 - type: recall_at_1 value: 42.073 - type: recall_at_10 value: 83.768 - type: recall_at_100 value: 93.018 - type: recall_at_1000 value: 97.481 - type: recall_at_3 value: 73.282 - type: recall_at_5 value: 78.947 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 94.9968 - type: ap value: 92.93892195862824 - type: f1 value: 94.99327998213761 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.698 - type: map_at_10 value: 34.585 - type: map_at_100 value: 35.782000000000004 - type: map_at_1000 value: 35.825 - type: map_at_3 value: 30.397999999999996 - type: map_at_5 value: 32.72 - type: mrr_at_1 value: 22.192 - type: mrr_at_10 value: 35.085 - type: mrr_at_100 value: 36.218 - type: mrr_at_1000 value: 36.256 - type: mrr_at_3 value: 30.986000000000004 - type: mrr_at_5 value: 33.268 - type: ndcg_at_1 value: 22.192 - type: ndcg_at_10 value: 41.957 - type: ndcg_at_100 value: 47.658 - type: ndcg_at_1000 value: 48.697 - type: ndcg_at_3 value: 33.433 - type: ndcg_at_5 value: 37.551 - type: precision_at_1 value: 22.192 - type: precision_at_10 value: 6.781 - type: precision_at_100 value: 0.963 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 14.365 - type: precision_at_5 value: 10.713000000000001 - type: recall_at_1 value: 21.698 - type: recall_at_10 value: 64.79 - type: recall_at_100 value: 91.071 - type: recall_at_1000 value: 98.883 - type: recall_at_3 value: 41.611 - type: recall_at_5 value: 51.459999999999994 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 96.15823073415413 - type: f1 value: 96.00362034963248 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 87.12722298221614 - type: f1 value: 70.46888967516227 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 80.77673167451245 - type: f1 value: 77.60202561132175 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 82.09145931405514 - type: f1 value: 81.7701921473406 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 36.52153488185864 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 36.80090398444147 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.807141746058605 - type: mrr value: 32.85025611455029 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.920999999999999 - type: map_at_10 value: 16.049 - type: map_at_100 value: 16.049 - type: map_at_1000 value: 16.049 - type: map_at_3 value: 11.865 - type: map_at_5 value: 13.657 - type: mrr_at_1 value: 53.87 - type: mrr_at_10 value: 62.291 - type: mrr_at_100 value: 62.291 - type: mrr_at_1000 value: 62.291 - type: mrr_at_3 value: 60.681 - type: mrr_at_5 value: 61.61 - type: ndcg_at_1 value: 51.23799999999999 - type: ndcg_at_10 value: 40.892 - type: ndcg_at_100 value: 26.951999999999998 - type: ndcg_at_1000 value: 26.474999999999998 - type: ndcg_at_3 value: 46.821 - type: ndcg_at_5 value: 44.333 - type: precision_at_1 value: 53.251000000000005 - type: precision_at_10 value: 30.124000000000002 - type: precision_at_100 value: 3.012 - type: precision_at_1000 value: 0.301 - type: precision_at_3 value: 43.55 - type: precision_at_5 value: 38.266 - type: recall_at_1 value: 6.920999999999999 - type: recall_at_10 value: 20.852 - type: recall_at_100 value: 20.852 - type: recall_at_1000 value: 20.852 - type: recall_at_3 value: 13.628000000000002 - type: recall_at_5 value: 16.273 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 46.827999999999996 - type: map_at_10 value: 63.434000000000005 - type: map_at_100 value: 63.434000000000005 - type: map_at_1000 value: 63.434000000000005 - type: map_at_3 value: 59.794000000000004 - type: map_at_5 value: 62.08 - type: mrr_at_1 value: 52.288999999999994 - type: mrr_at_10 value: 65.95 - type: mrr_at_100 value: 65.95 - type: mrr_at_1000 value: 65.95 - type: mrr_at_3 value: 63.413 - type: mrr_at_5 value: 65.08 - type: ndcg_at_1 value: 52.288999999999994 - type: ndcg_at_10 value: 70.301 - type: ndcg_at_100 value: 70.301 - type: ndcg_at_1000 value: 70.301 - type: ndcg_at_3 value: 63.979 - type: ndcg_at_5 value: 67.582 - type: precision_at_1 value: 52.288999999999994 - type: precision_at_10 value: 10.576 - type: precision_at_100 value: 1.058 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 28.177000000000003 - type: precision_at_5 value: 19.073 - type: recall_at_1 value: 46.827999999999996 - type: recall_at_10 value: 88.236 - type: recall_at_100 value: 88.236 - type: recall_at_1000 value: 88.236 - type: recall_at_3 value: 72.371 - type: recall_at_5 value: 80.56 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.652 - type: map_at_10 value: 85.953 - type: map_at_100 value: 85.953 - type: map_at_1000 value: 85.953 - type: map_at_3 value: 83.05399999999999 - type: map_at_5 value: 84.89 - type: mrr_at_1 value: 82.42 - type: mrr_at_10 value: 88.473 - type: mrr_at_100 value: 88.473 - type: mrr_at_1000 value: 88.473 - type: mrr_at_3 value: 87.592 - type: mrr_at_5 value: 88.211 - type: ndcg_at_1 value: 82.44 - type: ndcg_at_10 value: 89.467 - type: ndcg_at_100 value: 89.33 - type: ndcg_at_1000 value: 89.33 - type: ndcg_at_3 value: 86.822 - type: ndcg_at_5 value: 88.307 - type: precision_at_1 value: 82.44 - type: precision_at_10 value: 13.616 - type: precision_at_100 value: 1.362 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 38.117000000000004 - type: precision_at_5 value: 25.05 - type: recall_at_1 value: 71.652 - type: recall_at_10 value: 96.224 - type: recall_at_100 value: 96.224 - type: recall_at_1000 value: 96.224 - type: recall_at_3 value: 88.571 - type: recall_at_5 value: 92.812 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 61.295010338050474 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 67.26380819328142 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.683 - type: map_at_10 value: 14.924999999999999 - type: map_at_100 value: 17.532 - type: map_at_1000 value: 17.875 - type: map_at_3 value: 10.392 - type: map_at_5 value: 12.592 - type: mrr_at_1 value: 28.000000000000004 - type: mrr_at_10 value: 39.951 - type: mrr_at_100 value: 41.025 - type: mrr_at_1000 value: 41.056 - type: mrr_at_3 value: 36.317 - type: mrr_at_5 value: 38.412 - type: ndcg_at_1 value: 28.000000000000004 - type: ndcg_at_10 value: 24.410999999999998 - type: ndcg_at_100 value: 33.79 - type: ndcg_at_1000 value: 39.035 - type: ndcg_at_3 value: 22.845 - type: ndcg_at_5 value: 20.080000000000002 - type: precision_at_1 value: 28.000000000000004 - type: precision_at_10 value: 12.790000000000001 - type: precision_at_100 value: 2.633 - type: precision_at_1000 value: 0.388 - type: precision_at_3 value: 21.367 - type: precision_at_5 value: 17.7 - type: recall_at_1 value: 5.683 - type: recall_at_10 value: 25.91 - type: recall_at_100 value: 53.443 - type: recall_at_1000 value: 78.73 - type: recall_at_3 value: 13.003 - type: recall_at_5 value: 17.932000000000002 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.677978681023 - type: cos_sim_spearman value: 83.13093441058189 - type: euclidean_pearson value: 83.35535759341572 - type: euclidean_spearman value: 83.42583744219611 - type: manhattan_pearson value: 83.2243124045889 - type: manhattan_spearman value: 83.39801618652632 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 81.68960206569666 - type: cos_sim_spearman value: 77.3368966488535 - type: euclidean_pearson value: 77.62828980560303 - type: euclidean_spearman value: 76.77951481444651 - type: manhattan_pearson value: 77.88637240839041 - type: manhattan_spearman value: 77.22157841466188 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.18745821650724 - type: cos_sim_spearman value: 85.04423285574542 - type: euclidean_pearson value: 85.46604816931023 - type: euclidean_spearman value: 85.5230593932974 - type: manhattan_pearson value: 85.57912805986261 - type: manhattan_spearman value: 85.65955905111873 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.6715333300355 - type: cos_sim_spearman value: 82.9058522514908 - type: euclidean_pearson value: 83.9640357424214 - type: euclidean_spearman value: 83.60415457472637 - type: manhattan_pearson value: 84.05621005853469 - type: manhattan_spearman value: 83.87077724707746 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.82422928098886 - type: cos_sim_spearman value: 88.12660311894628 - type: euclidean_pearson value: 87.50974805056555 - type: euclidean_spearman value: 87.91957275596677 - type: manhattan_pearson value: 87.74119404878883 - type: manhattan_spearman value: 88.2808922165719 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.80605838552093 - type: cos_sim_spearman value: 86.24123388765678 - type: euclidean_pearson value: 85.32648347339814 - type: euclidean_spearman value: 85.60046671950158 - type: manhattan_pearson value: 85.53800168487811 - type: manhattan_spearman value: 85.89542420480763 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.87540978988132 - type: cos_sim_spearman value: 90.12715295099461 - type: euclidean_pearson value: 91.61085993525275 - type: euclidean_spearman value: 91.31835942311758 - type: manhattan_pearson value: 91.57500202032934 - type: manhattan_spearman value: 91.1790925526635 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 69.87136205329556 - type: cos_sim_spearman value: 68.6253154635078 - type: euclidean_pearson value: 68.91536015034222 - type: euclidean_spearman value: 67.63744649352542 - type: manhattan_pearson value: 69.2000713045275 - type: manhattan_spearman value: 68.16002901587316 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.21849551039082 - type: cos_sim_spearman value: 85.6392959372461 - type: euclidean_pearson value: 85.92050852609488 - type: euclidean_spearman value: 85.97205649009734 - type: manhattan_pearson value: 86.1031154802254 - type: manhattan_spearman value: 86.26791155517466 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 86.83953958636627 - type: mrr value: 96.71167612344082 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 64.994 - type: map_at_10 value: 74.763 - type: map_at_100 value: 75.127 - type: map_at_1000 value: 75.143 - type: map_at_3 value: 71.824 - type: map_at_5 value: 73.71 - type: mrr_at_1 value: 68.333 - type: mrr_at_10 value: 75.749 - type: mrr_at_100 value: 75.922 - type: mrr_at_1000 value: 75.938 - type: mrr_at_3 value: 73.556 - type: mrr_at_5 value: 74.739 - type: ndcg_at_1 value: 68.333 - type: ndcg_at_10 value: 79.174 - type: ndcg_at_100 value: 80.41 - type: ndcg_at_1000 value: 80.804 - type: ndcg_at_3 value: 74.361 - type: ndcg_at_5 value: 76.861 - type: precision_at_1 value: 68.333 - type: precision_at_10 value: 10.333 - type: precision_at_100 value: 1.0999999999999999 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 28.778 - type: precision_at_5 value: 19.067 - type: recall_at_1 value: 64.994 - type: recall_at_10 value: 91.822 - type: recall_at_100 value: 97.0 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 78.878 - type: recall_at_5 value: 85.172 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.72079207920792 - type: cos_sim_ap value: 93.00265215525152 - type: cos_sim_f1 value: 85.06596306068602 - type: cos_sim_precision value: 90.05586592178771 - type: cos_sim_recall value: 80.60000000000001 - type: dot_accuracy value: 99.66039603960397 - type: dot_ap value: 91.22371407479089 - type: dot_f1 value: 82.34693877551021 - type: dot_precision value: 84.0625 - type: dot_recall value: 80.7 - type: euclidean_accuracy value: 99.71881188118812 - type: euclidean_ap value: 92.88449963304728 - type: euclidean_f1 value: 85.19480519480518 - type: euclidean_precision value: 88.64864864864866 - type: euclidean_recall value: 82.0 - type: manhattan_accuracy value: 99.73267326732673 - type: manhattan_ap value: 93.23055393056883 - type: manhattan_f1 value: 85.88957055214725 - type: manhattan_precision value: 87.86610878661088 - type: manhattan_recall value: 84.0 - type: max_accuracy value: 99.73267326732673 - type: max_ap value: 93.23055393056883 - type: max_f1 value: 85.88957055214725 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 77.3305735900358 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 41.32967136540674 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.95514866379359 - type: mrr value: 56.95423245055598 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.783007208997144 - type: cos_sim_spearman value: 30.373444721540533 - type: dot_pearson value: 29.210604111143905 - type: dot_spearman value: 29.98809758085659 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.234 - type: map_at_10 value: 1.894 - type: map_at_100 value: 1.894 - type: map_at_1000 value: 1.894 - type: map_at_3 value: 0.636 - type: map_at_5 value: 1.0 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 93.667 - type: mrr_at_100 value: 93.667 - type: mrr_at_1000 value: 93.667 - type: mrr_at_3 value: 93.667 - type: mrr_at_5 value: 93.667 - type: ndcg_at_1 value: 85.0 - type: ndcg_at_10 value: 74.798 - type: ndcg_at_100 value: 16.462 - type: ndcg_at_1000 value: 7.0889999999999995 - type: ndcg_at_3 value: 80.754 - type: ndcg_at_5 value: 77.319 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 78.0 - type: precision_at_100 value: 7.8 - type: precision_at_1000 value: 0.7799999999999999 - type: precision_at_3 value: 83.333 - type: precision_at_5 value: 80.80000000000001 - type: recall_at_1 value: 0.234 - type: recall_at_10 value: 2.093 - type: recall_at_100 value: 2.093 - type: recall_at_1000 value: 2.093 - type: recall_at_3 value: 0.662 - type: recall_at_5 value: 1.0739999999999998 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.703 - type: map_at_10 value: 10.866000000000001 - type: map_at_100 value: 10.866000000000001 - type: map_at_1000 value: 10.866000000000001 - type: map_at_3 value: 5.909 - type: map_at_5 value: 7.35 - type: mrr_at_1 value: 36.735 - type: mrr_at_10 value: 53.583000000000006 - type: mrr_at_100 value: 53.583000000000006 - type: mrr_at_1000 value: 53.583000000000006 - type: mrr_at_3 value: 49.32 - type: mrr_at_5 value: 51.769 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 27.926000000000002 - type: ndcg_at_100 value: 22.701 - type: ndcg_at_1000 value: 22.701 - type: ndcg_at_3 value: 32.073 - type: ndcg_at_5 value: 28.327999999999996 - type: precision_at_1 value: 36.735 - type: precision_at_10 value: 24.694 - type: precision_at_100 value: 2.469 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 2.703 - type: recall_at_10 value: 17.702 - type: recall_at_100 value: 17.702 - type: recall_at_1000 value: 17.702 - type: recall_at_3 value: 7.208 - type: recall_at_5 value: 9.748999999999999 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.79960000000001 - type: ap value: 15.467565415565815 - type: f1 value: 55.28639823443618 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 64.7792869269949 - type: f1 value: 65.08597154774318 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 55.70352297774293 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 88.27561542588067 - type: cos_sim_ap value: 81.08262141256193 - type: cos_sim_f1 value: 73.82341501361338 - type: cos_sim_precision value: 72.5720112159062 - type: cos_sim_recall value: 75.11873350923483 - type: dot_accuracy value: 86.66030875603504 - type: dot_ap value: 76.6052349228621 - type: dot_f1 value: 70.13897280966768 - type: dot_precision value: 64.70457079152732 - type: dot_recall value: 76.56992084432717 - type: euclidean_accuracy value: 88.37098408535495 - type: euclidean_ap value: 81.12515230092113 - type: euclidean_f1 value: 74.10338225909379 - type: euclidean_precision value: 71.76761433868974 - type: euclidean_recall value: 76.59630606860158 - type: manhattan_accuracy value: 88.34118137926924 - type: manhattan_ap value: 80.95751834536561 - type: manhattan_f1 value: 73.9119496855346 - type: manhattan_precision value: 70.625 - type: manhattan_recall value: 77.5197889182058 - type: max_accuracy value: 88.37098408535495 - type: max_ap value: 81.12515230092113 - type: max_f1 value: 74.10338225909379 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.79896767182831 - type: cos_sim_ap value: 87.40071784061065 - type: cos_sim_f1 value: 79.87753144712087 - type: cos_sim_precision value: 76.67304015296367 - type: cos_sim_recall value: 83.3615645210964 - type: dot_accuracy value: 88.95486474948578 - type: dot_ap value: 86.00227979119943 - type: dot_f1 value: 78.54601474525914 - type: dot_precision value: 75.00525394045535 - type: dot_recall value: 82.43763473975977 - type: euclidean_accuracy value: 89.7892653393876 - type: euclidean_ap value: 87.42174706480819 - type: euclidean_f1 value: 80.07283321194465 - type: euclidean_precision value: 75.96738529574351 - type: euclidean_recall value: 84.6473668001232 - type: manhattan_accuracy value: 89.8474793340319 - type: manhattan_ap value: 87.47814292587448 - type: manhattan_f1 value: 80.15461150280949 - type: manhattan_precision value: 74.88798234468 - type: manhattan_recall value: 86.21804742839544 - type: max_accuracy value: 89.8474793340319 - type: max_ap value: 87.47814292587448 - type: max_f1 value: 80.15461150280949
Model Summary
GritLM is a generative representational instruction tuned language model. It unifies text representation (embedding) and text generation into a single model achieving state-of-the-art performance on both types of tasks.
- Repository: ContextualAI/gritlm
- Paper: https://arxiv.org/abs/2402.09906
- Logs: https://wandb.ai/muennighoff/gritlm/runs/0uui712t/overview
- Script: https://github.com/ContextualAI/gritlm/blob/main/scripts/training/train_gritlm_7b.sh
Model | Description |
---|---|
GritLM 7B | Mistral 7B finetuned using GRIT |
GritLM 8x7B | Mixtral 8x7B finetuned using GRIT |
Use
The model usage is documented here.
Citation
@misc{muennighoff2024generative,
title={Generative Representational Instruction Tuning},
author={Niklas Muennighoff and Hongjin Su and Liang Wang and Nan Yang and Furu Wei and Tao Yu and Amanpreet Singh and Douwe Kiela},
year={2024},
eprint={2402.09906},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19